Learning with Shared Representations:
Statistical Rates & Optimal Algorithms

Jiaming Xu

The Fuqua School of Business
Duke University

Joint work with
Xiaochun Niu (Duke), Lili Su (Northeastern), Pengkun Yang (Tsinghua)

JSM, August 2025



Motivating Example: Transfer Learning

Datasets



Motivating Example: Transfer Learning

Datasets

Tasks

Task

Task

Task

Examples: LLMs

Generating Text

Conversations

Summarizing Articles

Translating Languages



Motivating Example: Transfer Learning

Datasets Tasks  Examples: LLMs

...............................................

Generating Text

..-..-.
v
—
-8
=
.

L)
1
[
[
[
]
[
[
[
[
[
[
[
[
[
'
[
[
[
[
[
[
[
[
[
]
[
[
[
[
[
[
[
[
[
'
[
[
[
[
[
[
[
[
[
]
U

Conversations

cmmmmm.
-
35
=~
‘eanmaa?

Summarizing Articles

Translating Languages

..-..-.
4
—
=
=
mmmmm

Separately train each task from scratch:

Inefficient; costly; limited task-specific data; less accurate.
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Motivating Example: Transfer Learning

Datasets Tasks  Examples: LLMs
' Task Generating Text
— —_— 1
Conversations
- — - -
Summarizing Articles
— — [ Task Translating L
M g Languages

Input  Shared Foundation Model Fine-tuning Output

Improve model performance;
Reduce sample complexity;

Goes by many other names: meta-learning, multi-task learning, ...



Example: Personalized Federated Learning

Server

Coordinate to learn B

Hospital 1 Hospital M

1
e Tolerate data heterogeneity: small hospitals benefit from large ones

e Achieve model personalization and protect privacy

*Figure: Collins et al. (2021)
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Model: Learning with Shared Linear Representations
There are M clients, each with n; data samples (xjj, y;); N = Z,'\il n;.

Vij = XI-}Hi + &ij xj €ERY, y; €R, j€[n]ie€[M]
Here 6; € RY share a common low-dimensional representation B,

0; = Bay, B € Ok «; € RX.

Goal: Collaboratively learn B using datasets {(x;j,y,j-)}';l}i"il.

Address high-dimensional challenge: d > n;

Tolerate data heterogeneity: different data distributions and sizes

Estimated B can be further leveraged for (private) fine-tuning

Can be extended to general non-linear models
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Model: Shared Linear Representations

There are M clients, each with n; data samples:

Yii = XJBO(,‘ + 5,-], B e Oka, Q; € Rk-

Singular values of the estimated parameter matrix [51, e ,§M]:

Eigenvalues of Estimated Parameter Matrix from Diabetes Dataset

% : e M =102:
E‘ISA e d = 1801
é l: e k ~ 20.
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Suboptimal Statistical Rates in Existing Works

To estimate B;
Data: {(x;,y;)}. 7 M= k1) # of clients k : subspace dimension

d = k%1 : ambient dimension
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p (m,=n= kﬂ)




Suboptimal Statistical Rates in Existing Works

To estimate B;

Data: {(x;,y;)}. 7 M= k1) # of clients k : subspace dimension
d = k%! . ambient dimension
o+ 1
impossible # of local samples
0 5+ 1 Fm=n=k)

e Minimax lower bound: Q(\/dk/(Mn)). Tripuraneni et al. (2021).
N

# of unknown parameters  # of total data samples



Suboptimal Statistical Rates in Existing Works

To estimate B;
Data: {(Xuvyu)} Y (M = k1) #of clients k : subspace dimension

d = k%1 : ambient dimension
6+2

o+1

impossible # of local samples

p m=n=1K"

0 o+1 o+2

e Minimax lower bound: Q(\/dk/(Mn)). Tripuraneni et al. (2021).
e Best-known error upper bound: O(y/dk?/(Mn)).

Tripuraneni et al. (2021); Du et al. (2021); Duchi et al. (2022).



Suboptimal Statistical Rates in Existing Works

To estimate B;
Data: {(Xuvyu)} Y (M = k1) #of clients k : subspace dimension

d = k%1 : ambient dimension
6+2

o+1

impossible # of local samples

p m=n=1K"

0 o+1 o+2

Open Problem
What is the optimal statistical rate to learn B?

Thekumparampil et al. (2021); Thaker et al. (2023); Tian et al. (2023).
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e The identified optimal rate is ©(\/dk/(Mn) + 1/ dk?/(Mn?) ).

e Two distinct phases: statistical penalty when M is large or n is small.



Main Contributions

To estimate B;
Data: {(Xuvyu)} Y (M = k1) #of clients k : subspace dimension

d = k%1 : ambient dimension
6+2

o+1

. -I
impossible # of local samples

p m=n=1K"

0 1 o+1 o+2

e The identified optimal rate is ©(y/dk/(Mn) + /dk2/(Mn?)).

e Two distinct phases: statistical penalty when M is large or n is small.

e Apply to any small n;; Some requires n; > d (Du et al., 2021; Duan and
Wang, 2023; Tian et al., 2023).
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Limitations of Existing Estimators
All the following methods lead to suboptimal error upper bounds.

e The method-of-moments estimator uses (Tripuraneni et al., 2021),

M n;
2
oM = E E y,-jx,-jxi}.

i=1 j=1
- The analysis is limited to cases where x,-j"r'f'N(O, la).

e A subsequent estimator uses the matrix (Duchi et al., 2022),

Z\tom = E E YipYipXinX U2
I

11#12
- To handle cases where the noise &; may depend on Xxj.

e Alternating minimization methods is studied by Thekumparampil et al.
(2021); Collins et al. (2021); Zhang et al. (2024),

- Initialization via the method-of-moments estimator.
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Warm-up Example: Mean Estimation Problems

Each client i observes n; data sample vectors u;; € RY, where
uj = 0; + &jj = Baj + &jj.

For the non-convex least squares minimization problem,

M n;
min ZZHUU—BQ;HZ,

BEOka7{Q’,‘} i=1 J:1

The optimal solution is formed by the top-k eigenvectors of the matrix

where T; = (37, ujj)/nj is the local average at client /.
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Let Z; = (3_7, yijxij)/ni- The top-k eigenvectors of Z,Ail niziz} is an
approximated optimal solution.



Our Optimal Estimator

The least squares problem for linear regression is,

BrE:In ZZ Yij = Xji Ba,

i=1 j=1

Let Z; = (3_7, yijxij)/ni- The top-k eigenvectors of M niziz} is an
approximated optimal solution. However,

[Zn,, }43(%( — Dai(ar) ) T+ZE[§ 10,

i=1

+Z ZE[XTQ X,JX,JXU]



Our Optimal Estimator

The least squares problem for linear regression is,
m|n E g y,J X;; Ba,
i=1 j=1

Let Z; = (377, yixij)/ni. The top-k eigenvectors of SM . miziz! s an
approximated optimal solution. However,

i=1 i=1

[Z 2?} — B(Z( nj — 1)041(041')T)(B)T + %E[g?j]/d
i—1

—i—Z Z]E[X 0:(0;) xijxijx;; 1.
- \

Unknown fourth-order moments



Our Optimal Estimator

Two independent replicas of local averages z; = (2/n;) - Zj"’z/lz yijx;j and
2= /) S s Vi

Our estimator B is given by the top-k singular vectors of the matrix
Z = Z n,-?,-E;-T.
i=1

Similar replica ideas appeared in related mixed linear regression problems
(Kong et al., 2020; Su et al., 2024).
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Our Optimal Estimator

Two independent replicas of local averages z; = (2/n;) - ZJ"’Z/IZ yijx;j and
zi = (2/ni) - 320 ran YiiXii-

Our estimator B is given by the top-k singular vectors of the matrix
Z = Z n,-?,-E;-T.
i=1

Similar replica ideas appeared in related mixed linear regression problems
(Kong et al., 2020; Su et al., 2024). In expectation,

EZ = B(ﬁﬂ: njaial ) BT.

i=1

T : _\M njg 2. T
- Local averaging: reduces noises. Recall Zyiom = ;24 i1 Vi XiiXi;

- Sending only local averages but not raw data: to preserve privacy.
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Main Results: Key Factor for Learnability of B

Dataset at client / provides information about B along direction «;

Vij = XJBO[,' +€ij7 J € [ni]

The learnability of B is governed by the client diversity matrix:

1M
N Z njajal € RK*k
i=1

with the largest eigenvalue A; and the smallest eigenvalue (.
B is well-represented if the condition number A1 /Ay = ©(1), which is

satisfied when «;'s are spread out and local dataset sizes {n;} are not too
unbalanced



Main Results

d: ambient dimension; M: # of clients; N: # of total data samples; \;
(Ak): largest (smallest) eigenvalues of the client diversity matrix.

Theorem (Error Upper Bound)

For our spectral estimator with local averaging B, with high probability,

. ~ ~ d\
H sin©(B, B)” = O<<\/N)\; \/NZ)\z




Main Results

d: ambient dimension; M: # of clients; N: # of total data samples; \;
(Ak): largest (smallest) eigenvalues of the client diversity matrix.

Theorem (Error Upper Bound)

For our spectral estimator with local averaging B, with high probability,

. ~ ~ d\
H sin©(B, B)” = O<<\/N)\; \/Nz)\2

Theorem (Minimax Lower Bound)

/ I\/Id
PO S [l sine(B, B} = N N2A2 Al




Main Results

d: ambient dimension; M: # of clients; N: # of total data samples; \;
(Ak): largest (smallest) eigenvalues of the client diversity matrix.

Theorem (Error Upper Bound)

For our spectral estimator with local averaging B, with high probability,

. ~ ~ d\
H sin©(B, B)” = O<<\/N)\; \/Nz)\2

Theorem (Minimax Lower Bound)

/ I\/Id
B;gf,x%;:ﬁan [[sine(B. B[] = N T\ N2)\2

o If \; = ©(\) = ©(1/k), we have ©(+/dk/N + \/Mdk?/N?).



Minimax Lower Bound

Our lower bound

Existing bound (Tripu-
raneni et al., 2021)

[ d Md / / dk
Rate Q( W+‘/N2/\i) < NAk )
First term Packing set & Mutual | Le Cam’s two-point

(deterministic «;)

information bound

method

Second term

Gaussian-generated «;

N/A




Applications: Fine Tuning for New Clients

At a new client M + 1 with npy1 data points and 0y 1 = Bayy1.
Given a fixed B, learn Qu\41 Via regression on projected covariates:

npm+1
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Applications: Fine Tuning for New Clients

At a new client M + 1 with npy1 data points and 0y 1 = Bayy1.

Given a fixed B, learn a1 via regression on projected covariates:

npm+1 )
~ _ . T =
Qapm41 = argmin E |yms1 — XMHJB@MHH :
[eTVESE j=1

Corollary (Fine-tuning)

For our estimator B and ap+1, with high probability,

. ~(dk  Mdk® Kk
HBaMJrl—BaM+1}|2:O< Mdk” )

N N2 * Np+1




Applications: Fine Tuning for New Clients

At a new client M + 1 with npy1 data points and 0y 1 = Bayy1.

Given a fixed B, learn a1 via regression on projected covariates:

npm+1 )
~ _ . T =
Qapm41 = argmin E |yms1 — XMHJBQMHH :
[eTVESE j=1

Corollary (Fine-tuning)

For our estimator B and ap+1, with high probability,

. ~(dk  Mdk® Kk
HBaMH_BaMH}f:o( Mdk” )

N N2 np+1

Can be also applied to private fine-tuning for new clients Thaker et al.
(2023).



Numerical Experiments: Diabetes Dataset

AUC

V]
°
5

Global

Local

RME MoM
Methods

Duchietal Ours, k=8

Global

Local

RME MoM
Methods

Duchi etal Ours, k=15

Figure: Hospital A.

Figure: Hospital B.
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Concluding Remarks
Main contributions: ] _ o
Y (M= k") #of clients k : subspace dimension

d = k%! . original dimension
5+2 9

s5+1 possible

|
impossilble

i
0 1 o+1 o+2

v" Designed a spectral estimator with local averaging.
v Extensions to general non-linear models: E[y; | x;] = fi(B" x;;)

# of local samples

p (y=n=1k")

Future directions:

e Non-identical representations B;? Tian et al. (2023); Duan and Wang
(2023)

e In-context learning

Niu, X., Su, L., Xu, J., & Yang, P. (2024). Learning with Shared Representations:
Statistical Rates and Optimal Algorithms. arXiv:2409.04919.
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