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Example: Personalized Federated Learning
Exploiting Shared Representations for Personalized Federated Learning

where fi and qi are the error function and learning model for
the i-th client, respectively, and Qn is the space of feasible
sets of n models. We consider a supervised setting in which
the data for the i-th client is generated by a distribution
(xi, yi) ⇠ Di. The learning model qi : Rd ! Y maps
inputs xi 2 Rd to predicted labels qi(xi) 2 Y , which we
would like to resemble the true labels yi. The error fi is
in the form of an expected risk over Di, namely fi(qi) :=
E(xi,yi)⇠Di

[`(qi(xi), yi)], where ` : Y ⇥ Y ! R is a loss
function that penalizes the distance of qi(xi) from yi.

In order to minimize fi, the i-th client accesses a dataset
of Mi labelled samples {(xj

i , y
j
i )}Mi

j=1 from Di for training.
Federated learning addresses settings in which the Mi’s
are typically small relative to the problem dimension while
the number of clients n is large. Thus, clients may not
be able to obtain solutions qi with small expected risk by
training completely locally on only their Mi local samples.
Instead, federated learning enables the clients to cooperate,
by exchanging messages with a central server, in order to
learn models using the cumulative data of all the clients.

Standard approaches to federated learning aim at learning a
single shared model q = q1 = · · · = qn that performs well
on average across the clients (McMahan et al., 2017; Li et al.,
2018). In this way, the clients aim to solve a special version
of Problem (1), which is to minimize (1/n)

P
i fi(q) over

the choice of the shared model q. However, this approach
may yield a solution that performs poorly in heterogeneous
settings where the data distributions Di vary across the
clients. Indeed, in the presence of data heterogeneity, the
error functions fi will have different forms and their mini-
mizers are not the same. Hence, learning a shared model q
may not provide good solution to Problem (1). This neces-
sities the search for more personalized solutions {qi} that
can be learned in a federated manner using the clients’ data.

Learning a Common Representation. We are motivated
by insights from centralized machine learning that suggest
that heterogeneous data distributed across tasks may share a
common representation despite having different labels (Ben-
gio et al., 2013; LeCun et al., 2015); e.g., shared features
across many types of images, or across word-prediction
tasks. Using this common (low-dimensional) representation,
the labels for each client can be simply learned using a linear
classifier or a shallow neural network.

Formally, we consider a setting consisting of a global repre-
sentation q : Rd ! Rk, which is a function parameterized
by � 2 that maps data points to a lower space of di-
mension k, and client-specific heads qhi

: Rk ! Y , which
are functions parameterized by hi 2 H for i 2 [n] that
map from the low-dimensional representation space to the
label space. The model for the i-th client is the composi-
tion of the client’s local parameters and the representation:
qi(x) = (qhi

� q )(x). Critically, k ⌧ d, meaning that

clientclient 1

}
}

}
}

server

Figure 2. Federated representation learning structure where clients
and the server aim at learning a global representation together,
while each client i learns its unique head hi locally.

the number of parameters that must be learned locally by
each client may be small. Thus, we can assume that any
client’s optimal classifier for any fixed representation is easy
to compute, which motivates the following re-written global
objective:

min
2

1

n

nX

i=1

min
hi2H

fi(hi, �), (2)

where we have used the shorthand fi(hi, �) := fi(qhi
� q )

for ease of notation. In our proposed scheme, clients coop-
erate to learn the global model using all clients’ data, while
they use their local information to learn their personalized
head. We discuss this in detail in Section 3.

2.1. Comparison with Standard Federated Learning

To formally demonstrate the advantage of our formulation
over the standard (single-model) federated learning formula-
tion in heterogeneous settings with a shared representation,
we study a linear representation setting with quadratic loss.
As we will see below, standard federated learning cannot
recover the underlying representation in the face of hetero-
geneity, while our formulation does indeed recover it.

Consider a setting in which the functions fi are quadratic
losses, the representation q is a projection onto a k-
dimensional subspace of Rd given by matrix B 2 Rd⇥k,
and the i-th client’s local head qhi is a vector wi 2 Rk. In
this setting, we model the local data of clients {Di}i such
that yi = w⇤

i
>B⇤>xi for some ground-truth representation

B⇤ 2 Rd⇥k and local heads w⇤
i 2 Rk. This setting will

be described in detail in Section 4. In particular, one can
show that the expected error over the data distribution Di

has the following form: fi(wi,B) := 1
2kBwi �B⇤w⇤

i k22.

M

α1 αM

B B

x1 xM

BCoordinate to learn 

Server

Hospital 1 Hospital M

1

• Tolerate data heterogeneity: small hospitals benefit from large ones
• Achieve model personalization and protect privacy
1Figure: Collins et al. (2021)



Model: Learning with Shared Linear Representations

There are M clients, each with ni data samples (xij , yij); N =
∑M

i=1 ni .

yij = x⊺ij θi + ξij , xij ∈ Rd , yij ∈ R, j ∈ [ni ] i ∈ [M].

Here θi ∈ Rd share a common low-dimensional representation B ,

θi = Bαi , B ∈ Od×k , αi ∈ Rk .

Goal: Collaboratively learn B using datasets {(xij , yij)nij=1}Mi=1.

• Address high-dimensional challenge: d ≫ ni

• Tolerate data heterogeneity: different data distributions and sizes
• Estimated B can be further leveraged for (private) fine-tuning
• Can be extended to general non-linear models
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Model: Shared Linear Representations

There are M clients, each with ni data samples:

yij = x⊺ijBαi + ξij , B ∈ Od×k , αi ∈ Rk .

Singular values of the estimated parameter matrix [θ̂1, · · · , θ̂M ]:
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• M = 102;
• d = 180;
• k ≈ 20.
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Suboptimal Statistical Rates in Existing Works
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To estimate B ;
Data: {(xij , yij)}.

• Minimax lower bound: ⌦(
p

dk/(Mn)). Tripuraneni et al. (2021).

• Best-known error upper bound: O(
p

dk2/(Mn)).
Tripuraneni et al. (2021); Du et al. (2021); Duchi et al. (2022).
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Suboptimal Statistical Rates in Existing Works

Open Problem
What is the optimal statistical rate to learn B?

Thekumparampil et al. (2021); Thaker et al. (2023); Tian et al. (2023).
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Main Contributions

• The identified optimal rate is ⇥(
p

dk/(Mn) +
p

dk2/(Mn2)).
• Two distinct phases: statistical penalty when M is large or n is small.
• Applied to any small ni ; Some requires ni � d (Du et al., 2021; Duan

and Wang, 2023; Tian et al., 2023).
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Limitations of Existing Estimators

All the following methods lead to suboptimal error upper bounds.

• The method-of-moments estimator uses (Tripuraneni et al., 2021),

ZMoM =
M∑

i=1

ni∑

j=1

y2
ij xijx

⊺
ij .

- The analysis is limited to cases where xij
i.i.d.∼ N(0, Id).

• A subsequent estimator uses the matrix (Duchi et al., 2022),

Z ′
MoM =

M∑

i=1

1
ni − 1

∑

j1 ̸=j2

yij1yij2xij1x
⊺
ij2
.

- To handle cases where the noise ξij may depend on xij .

• Alternating minimization methods is studied by Thekumparampil et al.
(2021); Collins et al. (2021); Zhang et al. (2024),

- Initialization via the method-of-moments estimator.
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Warm-up Example: Mean Estimation Problems

Each client i observes ni data sample vectors uij ∈ Rd , where

uij = θi + ξij = Bαi + ξij .

For the non-convex least squares minimization problem,

min
B∈Od×k ,{αi}

M∑

i=1

ni∑

j=1

∥uij − Bαi∥2,

The optimal solution is formed by the top-k eigenvectors of the matrix

M∑

i=1

niuiu
⊺
i ,

where ui = (
∑ni

j=1 uij)/ni is the local average at client i .
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Our Optimal Estimator

The least squares problem for linear regression is,

min
B,{αi}

M∑

i=1

ni∑

j=1

(
yij − x⊺ijBαi

)2
.

Let ẑi = (
∑ni

j=1 yijxij)/ni . The top-k eigenvectors of
∑M

i=1 ni ẑi ẑ
⊺
i is an

approximated optimal solution.

However,

E
[ M∑

i=1

ni ẑi ẑ
⊺
i

]
= B

( M∑

i=1

(ni − 1)αi (αi )
⊺
)
(B)⊺ +

M∑

i=1

E[ξ2
ij ]Id

+
M∑

i=1

1
ni

ni∑

j=1

E[x⊺ij θi (θi )
⊺xijxijx

⊺
ij ].
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Our Optimal Estimator

The least squares problem for linear regression is,

min
B,{↵i}

MX

i=1

niX

j=1

�
yij � x|

ij B↵i

�2
.

Let bzi = (
Pni

j=1 yijxij)/ni . The top-k eigenvectors of
PM

i=1 nibzibz|i is an
approximated optimal solution. However,

E
h MX

i=1

nibzibz|i
i

= B
⇣ MX

i=1

(ni � 1)↵i (↵i )
|
⌘
(B)| +

MX

i=1

E[⇠2
ij ]Id

+
MX

i=1

1
ni

niX

j=1

E[x|
ij ✓i (✓i )

|xijxijx
|
ij ].
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Unknown fourth-order moments



Our Optimal Estimator
Two independent replicas of local averages z i = (2/ni ) ·

∑ni/2
j=1 yijxij and

z̃i = (2/ni ) ·
∑ni

j=ni/2+1 yijxij .

Our estimator B̂ is given by the top-k singular vectors of the matrix

Z =
M∑

i=1

niz i z̃
⊺
i .

Similar replica ideas appeared in related mixed linear regression problems
(Kong et al., 2020; Su et al., 2024).

In expectation,

EZ = B
( M∑

i=1

niαiα
⊺
i

)
B⊺.

- Local averaging: reduces noises. Recall ZMoM =
∑M

i=1
∑ni

j=1 y
2
ij xijx

⊺
ij

- Sending only local averages but not raw data: to preserve privacy.
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- Sending only local averages but not raw data: to preserve privacy.
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Main Results: Key Factor for Learnability of B

Dataset at client i provides information about B along direction αi

yij = x⊺ijBαi + ξij , j ∈ [ni ]

The learnability of B is governed by the client diversity matrix:

1
N

M∑

i=1

niαiα
⊺
i ∈ Rk×k

with the largest eigenvalue λ1 and the smallest eigenvalue λk .

B is well-represented if the condition number λ1/λk = Θ(1), which is
satisfied when αi ’s are spread out and local dataset sizes {ni} are not too
unbalanced
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Main Results
d : ambient dimension; M: # of clients; N: # of total data samples; λ1
(λk): largest (smallest) eigenvalues of the client diversity matrix.

Theorem (Error Upper Bound)

For our spectral estimator with local averaging B̂ , with high probability,

∥∥ sinΘ(B̂,B)
∥∥ = Õ

((√
dλ1

Nλ2
k

+

√
Md

N2λ2
k

)
∧ 1

)
.

Theorem (Minimax Lower Bound)

inf
B̂∈Od×k

sup
B∈Od×k ,α,n⃗

E
[∥∥ sinΘ(B̂,B)

∥∥] = Ω

((√
d

Nλk
+

√
Md

N2λ2
k

)
∧ 1

)
.

• If λ1 = Θ(λk) = Θ(1/k), we have Θ̃(
√
dk/N +

√
Mdk2/N2).
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Minimax Lower Bound

Our lower bound Existing bound (Tripu-
raneni et al., 2021)

Rate Ω
(√

d
Nλk

+
√

Md
N2λ2

k

)
Ω
(√

1
Nλk

+
√

dk
N

)

First term
(deterministic αi )

Packing set & Mutual
information bound

Le Cam’s two-point
method

Second term Gaussian-generated αi N/A



Applications: Fine Tuning for New Clients

At a new client M + 1 with nM+1 data points and θM+1 = BαM+1.

Given a fixed B̂ , learn αM+1 via regression on projected covariates:

α̂M+1 = argmin
αM+1

nM+1∑

j=1

∥∥yM+1,j − x⊺M+1,j B̂αM+1
∥∥2
.

Corollary (Fine-tuning)

For our estimator B̂ and α̂M+1, with high probability,

∥∥B̂α̂M+1 − BαM+1
∥∥2

= Õ

(
dk

N
+

Mdk2

N2 +
k

nM+1

)
.

Can be also applied to private fine-tuning for new clients Thaker et al.
(2023).
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Numerical Experiments: Diabetes Dataset
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Figure: Hospital A.

Figure: Hospital B.
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(M = kγ+1)

β (ni ≡ n = kβ)

k :
d = kδ+1 :

# of local samples

# of clients
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possible

impossible

✓ Designed a spectral estimator with local averaging.
✓ Extensions to general non-linear models: E[yij | xij ] = fi (B

⊤xij)

Future directions:
• Non-identical representations Bi? Tian et al. (2023); Duan and Wang

(2023)
• In-context learning

Niu, X., Su, L., Xu, J., & Yang, P. (2024). Learning with Shared Representations:
Statistical Rates and Optimal Algorithms. arXiv:2409.04919.
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