
Two Vignettes from the Interface
of Learning and Optimization

Jiaming Xu

Krannert School of Management
Purdue University

Workshop in Operations/Management Science
February 27, 2018

Talk outline

1 Operate online service platforms with uncertain payoff and dynamic
I Learning: unknown true payoffs
I Optimization: service allocation

2 Recover a hidden Hamiltonian cycle in a network

I Learning: unknown Hamiltonian cycle
I Optimization: Travelling salesman problem

Jiaming Xu (Purdue) Learning and Optimization 2

Operate online service platforms with uncertain payoff and dynamic

joint work with Wei-Kang Hsu, Xiaojun Lin, and Mark R. Bell (Purdue ECE)

Jiaming Xu (Purdue) Learning and Optimization 3

A proliferation of online service platforms

Goal: assign client to server to maximize total payoffs subj. to capacity

• Clients: Advertiser

• Servers: Keyword searches

• Payoffs: Click-through-rate

Two key challenges

• unknown payoff → learn payoffs from noisy feedback

• uncertain client dynamics → adaptively control assignments

Jiaming Xu (Purdue) Learning and Optimization 4

A proliferation of online service platforms

Goal: assign client to server to maximize total payoffs subj. to capacity

• Clients: Advertiser

• Servers: Keyword searches

• Payoffs: Click-through-rate

Two key challenges

• unknown payoff → learn payoffs from noisy feedback

• uncertain client dynamics → adaptively control assignments

Jiaming Xu (Purdue) Learning and Optimization 4

Queueing model with uncertain dynamic and payoff

µ1

µ2

client 1

client 2

class 1

client 3

client 4

class 2

C∗11

C∗12

C∗22

C∗21

λ
N

λ1
N

λ2
N

• New client (Advertiser) carries Geom(N) number of tasks (Ads)

• Server (keyword searches) j serve µj tasks per slot

• Observe Bern(C∗ij) payoff after a task of class i departs at server j

• Do not know λi, N, class label, # of tasks, or payoff vectors

Jiaming Xu (Purdue) Learning and Optimization 5

Queueing model with uncertain dynamic and payoff

µ1

µ2

client 1

client 2

class 1

client 3

client 4

class 2

C∗11

C∗12

C∗22

C∗21

λ
N

λ1
N

λ2
N

• New client (Advertiser) carries Geom(N) number of tasks (Ads)

• Server (keyword searches) j serve µj tasks per slot

• Observe Bern(C∗ij) payoff after a task of class i departs at server j

• Do not know λi, N, class label, # of tasks, or payoff vectors

Jiaming Xu (Purdue) Learning and Optimization 5

Queueing model with uncertain dynamic and payoff

µ1

µ2

client 1

client 2

class 1

client 3

client 4

class 2

C∗11

C∗12

C∗22

C∗21

λ
N

λ1
N

λ2
N

• New client (Advertiser) carries Geom(N) number of tasks (Ads)

• Server (keyword searches) j serve µj tasks per slot

• Observe Bern(C∗ij) payoff after a task of class i departs at server j

• Do not know λi, N, class label, # of tasks, or payoff vectors

Jiaming Xu (Purdue) Learning and Optimization 5

Queueing model with uncertain dynamic and payoff

µ1

µ2

client 1

client 2

class 1

client 3

client 4

class 2

C∗11

C∗12

C∗22

C∗21

λ
N

λ1
N

λ2
N

• New client (Advertiser) carries Geom(N) number of tasks (Ads)

• Server (keyword searches) j serve µj tasks per slot

• Observe Bern(C∗ij) payoff after a task of class i departs at server j

• Do not know λi, N, class label, # of tasks, or payoff vectors

Jiaming Xu (Purdue) Learning and Optimization 5

Queueing model with uncertain dynamic and payoff

µ1

µ2

client 1

client 2

class 1

client 3

client 4

class 2

C∗11

C∗12

C∗22

C∗21

λ
N

λ1
N

λ2
N

• New client (Advertiser) carries Geom(N) number of tasks (Ads)

• Server (keyword searches) j serve µj tasks per slot

• Observe Bern(C∗ij) payoff after a task of class i departs at server j

• Do not know λi, N, class label, # of tasks, or payoff vectors

Jiaming Xu (Purdue) Learning and Optimization 5

Performance metric and oracle bound

Expected payoff per unit time of a policy Π:

RT (Π) =
1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j


plj(t) : mean number of tasks assigned to server j from client l at time t

Oracle LP bound with perfect information:

R∗ = max
[pij]≥0

I∑
i=1

λi

J∑
j=1

pijC
∗
ij

s.t.
I∑
i=1

λipij ≤ µj for all servers j = 1, . . . , J

J∑
j=1

pij = 1 for all classes i = 1, . . . , I

Jiaming Xu (Purdue) Learning and Optimization 6

Performance metric and oracle bound

Expected payoff per unit time of a policy Π:

RT (Π) =
1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j


plj(t) : mean number of tasks assigned to server j from client l at time t

Oracle LP bound with perfect information:

R∗ = max
[pij]≥0

I∑
i=1

λi

J∑
j=1

pijC
∗
ij

s.t.
I∑
i=1

λipij ≤ µj for all servers j = 1, . . . , J

J∑
j=1

pij = 1 for all classes i = 1, . . . , I

Jiaming Xu (Purdue) Learning and Optimization 6

Performance metric and oracle bound

Expected payoff per unit time of a policy Π:

RT (Π) =
1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j


plj(t) : mean number of tasks assigned to server j from client l at time t

Oracle LP bound with perfect information:

R∗ = max
[pij]≥0

I∑
i=1

λi

J∑
j=1

pijC
∗
ij

s.t.
I∑
i=1

λipij ≤ µj for all servers j = 1, . . . , J

J∑
j=1

pij = 1 for all classes i = 1, . . . , I

Jiaming Xu (Purdue) Learning and Optimization 6

Weakness of queue length based control

With known payoff vectors [Tassiulas and Ephremides ’92, ...]

1 Use queue length qj at server j to capture congestion level

2 Adjust each client’s payoff parameter by subtracting qj/V

3 Assign the next task to the server with the highest adjusted payoff

With unknown payoff vectors: vicious cycle

Learning

Uncertain
Feature/

Payoff

Queueing

Uncertain
Agent

Dynamics

Decisions based on
inaccurate payoffs

Feedback delay &
learning slow-down

Jiaming Xu (Purdue) Learning and Optimization 7

Weakness of queue length based control

With known payoff vectors [Tassiulas and Ephremides ’92, ...]

1 Use queue length qj at server j to capture congestion level

2 Adjust each client’s payoff parameter by subtracting qj/V

3 Assign the next task to the server with the highest adjusted payoff

With unknown payoff vectors: vicious cycle

Learning

Uncertain
Feature/

Payoff

Queueing

Uncertain
Agent

Dynamics

Decisions based on
inaccurate payoffs

Feedback delay &
learning slow-down

Jiaming Xu (Purdue) Learning and Optimization 7

Weakness of myopic matching

max
[plj]≥0

n(t)∑
l=1

J∑
j=1

plj C
l
j(t)

s.t.

n(t)∑
l=1

plj ≤ µj for all servers j = 1, . . . , J

• No task-queue at servers → no payoff feedback delay

• Payoff estimate C lj(t) based on Upper-Confidence-Bound (UCB)
[Lai-Robbins ’85]:

C lj(t) = min

{
C
l
j(t− 1) +

√
2 log hl(t− 1)

hlj(t− 1)
, 1

}

C
l
j(t− 1): empirical average payoff of client l;

hlj(t− 1): # of tasks assigned to server j from client l

• Do not look into future and hence long-term payoff is suboptimal!

Jiaming Xu (Purdue) Learning and Optimization 8

Weakness of myopic matching

max
[plj]≥0

n(t)∑
l=1

J∑
j=1

plj C
l
j(t)

s.t.

n(t)∑
l=1

plj ≤ µj for all servers j = 1, . . . , J

• No task-queue at servers → no payoff feedback delay

• Payoff estimate C lj(t) based on Upper-Confidence-Bound (UCB)
[Lai-Robbins ’85]:

C lj(t) = min

{
C
l
j(t− 1) +

√
2 log hl(t− 1)

hlj(t− 1)
, 1

}

C
l
j(t− 1): empirical average payoff of client l;

hlj(t− 1): # of tasks assigned to server j from client l

• Do not look into future and hence long-term payoff is suboptimal!

Jiaming Xu (Purdue) Learning and Optimization 8

Weakness of myopic matching

max
[plj]≥0

n(t)∑
l=1

J∑
j=1

plj C
l
j(t)

s.t.

n(t)∑
l=1

plj ≤ µj for all servers j = 1, . . . , J

• No task-queue at servers → no payoff feedback delay

• Payoff estimate C lj(t) based on Upper-Confidence-Bound (UCB)
[Lai-Robbins ’85]:

C lj(t) = min

{
C
l
j(t− 1) +

√
2 log hl(t− 1)

hlj(t− 1)
, 1

}

C
l
j(t− 1): empirical average payoff of client l;

hlj(t− 1): # of tasks assigned to server j from client l

• Do not look into future and hence long-term payoff is suboptimal!

Jiaming Xu (Purdue) Learning and Optimization 8

Our approach based on utility optimization

max
[plj]≥0

n(t)∑
l=1

{
1

V
log
(J∑
j=1

plj
)

+

J∑
j=1

plj(C
l
j(t)− γ)

}

s.t.

n(t)∑
l=1

plj ≤ µj for all servers j = 1, . . . , J .

• Log utility function promotes fairness → every client can learn

• V > 0: as V increases
I clients are more conservative in choosing low-payoff servers
I more clients are backlogged in the system

• γ > 1: prevent clients choosing low-payoff servers too aggressively

• Inspired by flow-level congestion control in communication networks
[Lin-Shroff-Srikant ’08]

Jiaming Xu (Purdue) Learning and Optimization 9

Performance guarantees of our policy

λ : total arrival rate µ : total service rate n(t) : # of clients

Theorem (mean number of backlogged clients)

E [n(t)] ≤ 2µ

µ− λ

(
1 +

µ2γ

γ − 1

)
+ µγV.

• implies system is stable

• mean number of backlogged clients increases linearly in V

• Proof: couple to a Geom/Geom/µ queue with Bernoulli arrivals and
Binomial departures

Jiaming Xu (Purdue) Learning and Optimization 10

Performance guarantees of our policy

λ : total arrival rate µ : total service rate n(t) : # of clients

Theorem (mean number of backlogged clients)

E [n(t)] ≤ 2µ

µ− λ

(
1 +

µ2γ

γ − 1

)
+ µγV.

• implies system is stable

• mean number of backlogged clients increases linearly in V

• Proof: couple to a Geom/Geom/µ queue with Bernoulli arrivals and
Binomial departures

Jiaming Xu (Purdue) Learning and Optimization 10

Performance guarantees of our policy

Theorem (Payoff gap to oracle bound)

R∗ −RT ≤
β1

V
+ β2

√
logN

N
+ β3

N(V + 1)

T

• β1, β2, β3: functions of λi, µj , γ

• 1/V : Impact of the uncertainty in client dynamics

•
√

logN/N : Impact of the uncertainty in payoffs

• N(V + 1)/T : Payoff loss incurred by backlogged tasks

• Captures the transient behavior in finite T in contrast to study of
stationary regime in [Johari-Kamble-Kanoria ’17]

Jiaming Xu (Purdue) Learning and Optimization 11

Proof ideas

1 Use Lyapunov drift analysis to show

R∗ −RT .
1

V
+

1

T

T∑
t=1

E [A(t)] +
N

T
E [n(T)] ,

where A(t) =

n(t)∑
l=1

J∑
j=1

(
C lj(t)− C∗i(l),j

)
︸ ︷︷ ︸

learning error

(
plj(t)− p̃lj(t)

)
︸ ︷︷ ︸

controlling error

p̃lj(t): optimal assignment if our policy knew true payoffs

2 Use duality +UCB regret analysis + martingale argument to show

1

T

T∑
t=1

E [A(t)] .

√
logN

N

Jiaming Xu (Purdue) Learning and Optimization 12

To show

1

T

T∑
t=1

E

n(t)∑
l=1

J∑
j=1

(
C lj(t)− C∗i(l),j

)(
plj(t)− p̃lj(t)

) .

√
N logN

N

1 Convex duality ∑J
j=1 p̃

l
j(t)∑J

j=1 p
l
j(t)
≤
(

γ

γ − 1

)2

2 UCB regret analysis

E
[(
C lj(t)− C∗i(l),j

)
plj(t)

]
.

N∑
k=1

√
log k

k
.
√
N logN

Use martingale argument to take care of dependency
between plj(t) and {C lj(s) : s ≤ t}

Jiaming Xu (Purdue) Learning and Optimization 13

Numerical results: simulation setup

1

1

𝜆

𝑁
=
1.2

𝑁
0.9

Server 1

Server 2

1

𝑁

Class 1

0.1

0.3

0.9

1/2

1/2

Clients

Class 2

Oracle solution:

p∗11 = 1, p∗12 = 0, p∗21 =
2

3
, p∗22 =

1

3
, R∗ = 0.96

Jiaming Xu (Purdue) Learning and Optimization 14

Numerical results: performance comparison

0 1 2 3 4

Time 10
4

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 p

a
y
o

ff

 Upper bound

 Algorithm 1, V = 21
 Algorithm 1, V = 2

 Queue-length based policy, V= 100
 Queue-length based policy, V= 2

 Myopic matching

N = 100 and γ = 1.1 and R∗ = 0.96

Jiaming Xu (Purdue) Learning and Optimization 15

Related literature

Learning and adaptive control seperately

• Multi-armed bandits: [Lai-Robbins ’85], [Auer-Cesa-Bianchi-Fischer ’02],...

• Adaptive control: [Tassiulas-Ephremides ’92], [Neely-Modiano-Li ’05],...

Integrate learning and adaptive control

• Online matching while learning: [Johari-Kamble-Kanoria ’17]

I Stationary setting with known arrival rates and class-dependent
payoff vectors

I Divide learning and adaptive control into two stages

• Learning unknown labels with capacity constraints: [Xu-Massoulié ’16]

• Processing tasks of unknown types with capacity constraints:
[Bimpikis-Markakis ’15], [Shah-Gulikers-Massoulié-Vojnovic ’17]

Jiaming Xu (Purdue) Learning and Optimization 16

Related literature

Learning and adaptive control seperately

• Multi-armed bandits: [Lai-Robbins ’85], [Auer-Cesa-Bianchi-Fischer ’02],...

• Adaptive control: [Tassiulas-Ephremides ’92], [Neely-Modiano-Li ’05],...

Integrate learning and adaptive control

• Online matching while learning: [Johari-Kamble-Kanoria ’17]

I Stationary setting with known arrival rates and class-dependent
payoff vectors

I Divide learning and adaptive control into two stages

• Learning unknown labels with capacity constraints: [Xu-Massoulié ’16]

• Processing tasks of unknown types with capacity constraints:
[Bimpikis-Markakis ’15], [Shah-Gulikers-Massoulié-Vojnovic ’17]

Jiaming Xu (Purdue) Learning and Optimization 16

Conclusion remarks

Propose an online learning and adaptive control policy based on utility
optimization:

payoff gap .
1

V︸︷︷︸
uncertain dynamics

+

√
logN

N︸ ︷︷ ︸
uncertain payoffs

+
N(V + 1)

T︸ ︷︷ ︸
backlogged tasks

Future work

• Improve the exploration-exploitation tradeoff to logN/N

• Adapt to random service time or unknown service rates

Jiaming Xu (Purdue) Learning and Optimization 17

Conclusion remarks

Propose an online learning and adaptive control policy based on utility
optimization:

payoff gap .
1

V︸︷︷︸
uncertain dynamics

+

√
logN

N︸ ︷︷ ︸
uncertain payoffs

+
N(V + 1)

T︸ ︷︷ ︸
backlogged tasks

Future work

• Improve the exploration-exploitation tradeoff to logN/N

• Adapt to random service time or unknown service rates

Jiaming Xu (Purdue) Learning and Optimization 17

Recover a Hidden Hamiltonian Cycle via Linear Programming

joint work with V. Bagaria, David Tse (Stanford), J. Ding (Wharton), Y. Wu (Yale)

Jiaming Xu (Purdue) Learning and Optimization 18

DNA high-throughput sequencing

Original	DNA

Shortgun Seq.

Short	reads

Jiaming Xu (Purdue) Learning and Optimization 19

Key challenge in DNA high-throughput sequencing

Short	reads

DNA	Assembly

Scaffolds
Length	~	100	kb

High-throughput sequencing has low contiguity!

Jiaming Xu (Purdue) Learning and Optimization 20

Key challenge in DNA high-throughput sequencing

Short	reads

DNA	Assembly

Scaffolds
Length	~	100	kb

High-throughput sequencing has low contiguity!

Jiaming Xu (Purdue) Learning and Optimization 20

Boost contiguity: cross-links in Chicago datasets

1 Reconstitute chromatin in vitro upon naked DNA

2 Produce cross-links by fixing chromatin with formaldehyde

Chicago datasets generate cross-links among contigs [Putnam et al. ’16]

On average more cross-links exist between adjacent contigs

Jiaming Xu (Purdue) Learning and Optimization 21

Ordering DNA contigs with Chicago cross-links

DNA	Scaffolding

Reduces to travelling salesman problem (TSP):

Find a path (tour) to visit every contig exactly once with the maximum
number of cross-links

Jiaming Xu (Purdue) Learning and Optimization 22

Ordering DNA contigs with Chicago cross-links

DNA	Scaffolding

Reduces to travelling salesman problem (TSP):

Find a path (tour) to visit every contig exactly once with the maximum
number of cross-links

Jiaming Xu (Purdue) Learning and Optimization 22

Key challenges for DNA scaffolding with Chicago data

• Computational: TSP is NP-hard in the worst-case

• Statistical: spurious cross-links between contigs far apart

Key questions:

• How to efficiently order hundreds of thousands of contigs?

• How much noise can be tolerated for accurate DNA scaffolding?

Jiaming Xu (Purdue) Learning and Optimization 23

Key challenges for DNA scaffolding with Chicago data

• Computational: TSP is NP-hard in the worst-case

• Statistical: spurious cross-links between contigs far apart

Key questions:

• How to efficiently order hundreds of thousands of contigs?

• How much noise can be tolerated for accurate DNA scaffolding?

Jiaming Xu (Purdue) Learning and Optimization 23

Our mathematical model for DNA scaffolding

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

10

20

30

40

50

60

Real DNA data [Putnam et al. ’16]

Jiaming Xu (Purdue) Learning and Optimization 24

Our mathematical model for DNA scaffolding

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

10

20

30

40

50

60

Real DNA data [Putnam et al. ’16]

Jiaming Xu (Purdue) Learning and Optimization 24

Our mathematical model for DNA scaffolding

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

10

20

30

40

50

60

Real DNA data [Putnam et al. ’16]

n Pn

Qn

Qn

Jiaming Xu (Purdue) Learning and Optimization 24

Our mathematical model for DNA scaffolding

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

10

20

30

40

50

60

Real DNA data [Putnam et al. ’16]

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

5

10

15

20

25

30

35

40

Pn = Pois(λ1), Qn = Pois(λ2)

Jiaming Xu (Purdue) Learning and Optimization 24

Our mathematical model for DNA scaffolding

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

10

20

30

40

50

60

Real DNA data [Putnam et al. ’16]

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

5

10

15

20

25

30

35

40

recover hidden Hamiltonian cycle

Jiaming Xu (Purdue) Learning and Optimization 24

What is known information-theoretically

Consider the Gaussian case P = N (µ, 1) and Q = N (0, 1)

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
µ2

log n
> 4,

exact recovery is information-theoretically possible.
Conversely, if

µ2

log n
< 4,

then exact recovery is impossible.

Jiaming Xu (Purdue) Learning and Optimization 25

What is known algorithmically

• Spectral methods fails miserably:
I µ2 � n5 (spectral gap of cycle is too small)

• Thresholding or nearest-neighbor method:
I µ2 > 8 log n

• Greedy merging [Motahari-Bresler-Tse ’13]:
I µ2 > 6 log n

Suboptimal comparing to IT-limit µ2 > 4 log n!

Jiaming Xu (Purdue) Learning and Optimization 26

What is known algorithmically

• Spectral methods fails miserably:
I µ2 � n5 (spectral gap of cycle is too small)

• Thresholding or nearest-neighbor method:
I µ2 > 8 log n

• Greedy merging [Motahari-Bresler-Tse ’13]:
I µ2 > 6 log n

Suboptimal comparing to IT-limit µ2 > 4 log n!

Jiaming Xu (Purdue) Learning and Optimization 26

What is known algorithmically

• Spectral methods fails miserably:
I µ2 � n5 (spectral gap of cycle is too small)

• Thresholding or nearest-neighbor method:
I µ2 > 8 log n

• Greedy merging [Motahari-Bresler-Tse ’13]:
I µ2 > 6 log n

Suboptimal comparing to IT-limit µ2 > 4 log n!

Jiaming Xu (Purdue) Learning and Optimization 26

What is known algorithmically

• Spectral methods fails miserably:
I µ2 � n5 (spectral gap of cycle is too small)

• Thresholding or nearest-neighbor method:
I µ2 > 8 log n

• Greedy merging [Motahari-Bresler-Tse ’13]:
I µ2 > 6 log n

Suboptimal comparing to IT-limit µ2 > 4 log n!

Jiaming Xu (Purdue) Learning and Optimization 26

Maximum likelihood estimation reduces to TSP

x̂ML = arg max
x
〈w, x〉

s.t. x is an adjacency vector

of a Hamiltonian cycle

• Find a maximum weighted Hamiltonian cycle ⇐⇒ TSP

• NP hard!

Jiaming Xu (Purdue) Learning and Optimization 27

Fractional 2-factor linear relaxation of TSP

x̂F2F = arg max
x
〈w, x〉

s.t.
∑
e∈δ(v)

xe = 2 ∀ vertex v

xe ∈ [0, 1] ∀ edge e

• Extensively studied in worst case [Schalekamp-Williamson-van Zuylen ’14]

• The integrality gap 2F
F2F ≤

4
3 for metric TSP [Boyd-Carr ’99]

• What is the integrality gap in our planted TSP?

Jiaming Xu (Purdue) Learning and Optimization 28

Optimal recovery via fractional 2-factor LP

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
µ2 − 4 log n→ +∞,

then minx∗ P {x̂F2F = x∗} → 1.

Remarks:

• Achieving the IT-limit µ2 = 4 log n

• When above IT-limit, the integrality gap is 1 whp!

Jiaming Xu (Purdue) Learning and Optimization 29

Optimal recovery via fractional 2-factor LP

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
µ2 − 4 log n→ +∞,

then minx∗ P {x̂F2F = x∗} → 1.

Remarks:

• Achieving the IT-limit µ2 = 4 log n

• When above IT-limit, the integrality gap is 1 whp!

Jiaming Xu (Purdue) Learning and Optimization 29

General distributions Pn and Qn

Threshold determined by Battacharyya distance (a.k.a. Rényi divergence
of order 1

2):

B(P,Q) , −2 log

∫ √
dPdQ

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
B(P,Q)− log n→ +∞,

then minx∗ P {x̂F2F = x∗} → 1.

Remarks

• B(P,Q) ≥ (1 + o(1)) log n is necessary for any estimator to succeed

• F2F achieves the optimal recovery threshold:

lim inf
n→∞

B(P,Q)

log n
= 1.

Jiaming Xu (Purdue) Learning and Optimization 30

General distributions Pn and Qn

Threshold determined by Battacharyya distance (a.k.a. Rényi divergence
of order 1

2):

B(P,Q) , −2 log

∫ √
dPdQ

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
B(P,Q)− log n→ +∞,

then minx∗ P {x̂F2F = x∗} → 1.

Remarks

• B(P,Q) ≥ (1 + o(1)) log n is necessary for any estimator to succeed

• F2F achieves the optimal recovery threshold:

lim inf
n→∞

B(P,Q)

log n
= 1.

Jiaming Xu (Purdue) Learning and Optimization 30

General distributions Pn and Qn

Threshold determined by Battacharyya distance (a.k.a. Rényi divergence
of order 1

2):

B(P,Q) , −2 log

∫ √
dPdQ

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
B(P,Q)− log n→ +∞,

then minx∗ P {x̂F2F = x∗} → 1.

Remarks

• B(P,Q) ≥ (1 + o(1)) log n is necessary for any estimator to succeed

• F2F achieves the optimal recovery threshold:

lim inf
n→∞

B(P,Q)

log n
= 1.

Jiaming Xu (Purdue) Learning and Optimization 30

Proof attempt via dual certificate argument

• KKT conditions (Farkas’ lemma): x̂F2F = x∗ ⇐⇒ ∃u ∈ Rn (dual
certificate):

ui + uj ≤ wij , if x∗ij = 1

ui + uj ≥ wij , if x∗ij = 0

• One feasible choice of dual:

ui =
1

2
min
j

{
wij : x∗ij = 1

}
• This certificate shows correctness if µ2 > 6 log n (same as greedy

merging), unable to get to IT limit µ2 > 4 log n!

Jiaming Xu (Purdue) Learning and Optimization 31

Our proof based on primal analysis

General recipe: show whp for all extremal points x 6= x∗ of

F2F polytope ,
{
x ∈ [0, 1](

n
2) : x(δ(v)) = 2,∀v ∈ [n]

}
,

it holds that
〈w, x− x∗〉 < 0

The proof heavily exploits the characterization of extremal points

• F2F polytope is not integral: fractional extremal points exist

• Half integrality [Balinski ’65]: for any extremal point x,

xe ∈ {0, 1/2, 1}

Jiaming Xu (Purdue) Learning and Optimization 32

Our proof based on primal analysis

General recipe: show whp for all extremal points x 6= x∗ of

F2F polytope ,
{
x ∈ [0, 1](

n
2) : x(δ(v)) = 2,∀v ∈ [n]

}
,

it holds that
〈w, x− x∗〉 < 0

The proof heavily exploits the characterization of extremal points

• F2F polytope is not integral: fractional extremal points exist

• Half integrality [Balinski ’65]: for any extremal point x,

xe ∈ {0, 1/2, 1}

Jiaming Xu (Purdue) Learning and Optimization 32

Proof outline

1 Encode the perturbation: for any extremal point x, represent
2(x− x∗) as a bicolored multigraph Gx with

w(Gx) =
∑
e

we (xe − x∗e)

2 Divide and conquer: decompose Gx as a union of graphs in family F

w(Gx) =
∑
i

w(Fi), Fi ∈ F

3 Counting and large dev. bounds: show whp w(F) < 0 for all F ∈ F

Jiaming Xu (Purdue) Learning and Optimization 33

Step 1: Bicolored multigraph representation

1

1 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX

key observation

GX is always balanced: red degree = blue degree

Jiaming Xu (Purdue) Learning and Optimization 34

Step 1: Bicolored multigraph representation

11 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX

key observation

GX is always balanced: red degree = blue degree

Jiaming Xu (Purdue) Learning and Optimization 34

Step 1: Bicolored multigraph representation

11 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX

key observation

GX is always balanced: red degree = blue degree

Jiaming Xu (Purdue) Learning and Optimization 34

Step 1: Bicolored multigraph representation

11 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX

key observation

GX is always balanced: red degree = blue degree

Jiaming Xu (Purdue) Learning and Optimization 34

1
2 1

2

1
1
2

1
2

1
2

1
2

11
2

1
2

1

1
2

1
2

1

1

⇓

Jiaming Xu (Purdue) Learning and Optimization 35

Step 2: Edge decomposition

Theorem (Kotzig ’68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.

Remarks

• An Eulerian circuit may traverse a double edge twice

“Dumbbell” structure

Jiaming Xu (Purdue) Learning and Optimization 36

Step 2: Edge decomposition

Theorem (Kotzig ’68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.

Remarks

• An Eulerian circuit may traverse a double edge twice

“Dumbbell” structure

Jiaming Xu (Purdue) Learning and Optimization 36

Step 2: Edge decomposition

U : collection of graphs recursively constructed

1 Start with an even cycle in alternating colors

2 Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (path of double edges followed by an
alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 4 times

However, not every GX is of this form...

Jiaming Xu (Purdue) Learning and Optimization 37

Step 2: Edge decomposition

U : collection of graphs recursively constructed

1 Start with an even cycle in alternating colors

2 Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (path of double edges followed by an
alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 4 times

However, not every GX is of this form...

Jiaming Xu (Purdue) Learning and Optimization 37

Step 2: Edge decomposition

• Graph homomorphism φ : H → F is a vertex map that preserves
edges

F = {F : there exists H ∈ U such that H → F}

Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an union of elements in F .

•

2

1

3

9

8

11

10

7

12
4

5

6

H

φ−−−→ 2

1

3

9

8

11

10

7

4

5

6

F

• remains to show minF∈F w(F) < 0 whp

Jiaming Xu (Purdue) Learning and Optimization 38

Step 2: Edge decomposition

• Graph homomorphism φ : H → F is a vertex map that preserves
edges

F = {F : there exists H ∈ U such that H → F}

Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an union of elements in F .

•

2

1

3

9

8

11

10

7

12
4

5

6

H

φ−−−→ 2

1

3

9

8

11

10

7

4

5

6

F

• remains to show minF∈F w(F) < 0 whp

Jiaming Xu (Purdue) Learning and Optimization 38

Step 3: Counting and probabilistic arguments

Fk,` = {F ∈ F : E(F) consists of k double edges and ` single edges }

Lemma

For any k ≥ 0 and ` ≥ 3. With probability at least 1− n−Θ(k+`),

max
F∈Fk,`

(w(F)− E [w(F)]) ≤ (1 + ε) (2k + `)
√

log n

Remarks

• Total: 2k + ` edges, half are red (by balancedness). Weights on red
edges: N(µ, 1)

E [w(F)] = −(2k + `)µ/2

• Proof: Counting Fk,` and large deviation bounds

• Key observation for counting: condition on one end of a red edge,
the other end has at most 2 choices

Jiaming Xu (Purdue) Learning and Optimization 39

Step 3: Counting and probabilistic arguments

Fk,` = {F ∈ F : E(F) consists of k double edges and ` single edges }

Lemma

For any k ≥ 0 and ` ≥ 3. With probability at least 1− n−Θ(k+`),

max
F∈Fk,`

(w(F)− E [w(F)]) ≤ (1 + ε) (2k + `)
√

log n

Remarks

• Total: 2k + ` edges, half are red (by balancedness). Weights on red
edges: N(µ, 1)

E [w(F)] = −(2k + `)µ/2

• Proof: Counting Fk,` and large deviation bounds

• Key observation for counting: condition on one end of a red edge,
the other end has at most 2 choices

Jiaming Xu (Purdue) Learning and Optimization 39

Real data experiment

• 1000 DNA contigs of size 45 kb

• 0.45 million Chicago cross-links

• Subsample each cross-link with probability p

0.1 0.2 0.3 0.4 0.5 0.6
Subsampling Probability

0

0.05

0.1

0.15

0.2

F
ra

c
ti
o

n
 o

f
m

is
c
la

s
s
if
ie

d
 a

d
ja

c
e

n
t

p
a

ir
s

Naive Thresholding

LP Relaxations

Greedy Merging

Jiaming Xu (Purdue) Learning and Optimization 40

Jiaming Xu (Purdue) Learning and Optimization 41

Conclusion and remarks

µ2/ log n
4

IT limit/F2F

6

greedy

8

thresholding

• Curse of high-dim. =⇒ MLE is computationally intractable

• Bless of high-dim. =⇒ convex relaxations are statistically optimal

Connections to other work

• graph partioning (community detection): [Hajek-Wu-Xu ’14]

• graph isomorphism (network alignment)

Jiaming Xu (Purdue) Learning and Optimization 42

Conclusion and remarks

µ2/ log n
4

IT limit/F2F

6

greedy

8

thresholding

• Curse of high-dim. =⇒ MLE is computationally intractable

• Bless of high-dim. =⇒ convex relaxations are statistically optimal

Connections to other work

• graph partioning (community detection): [Hajek-Wu-Xu ’14]

• graph isomorphism (network alignment)

Jiaming Xu (Purdue) Learning and Optimization 42

Conclusion and remarks

µ2/ log n
4

IT limit/F2F

6

greedy

8

thresholding

• Curse of high-dim. =⇒ MLE is computationally intractable

• Bless of high-dim. =⇒ convex relaxations are statistically optimal

Connections to other work

• graph partioning (community detection): [Hajek-Wu-Xu ’14]

• graph isomorphism (network alignment)

Jiaming Xu (Purdue) Learning and Optimization 42

