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Talk outline

1 Operate online service platforms with uncertain payoff and dynamic
I Learning: unknown true payoffs
I Optimization: service allocation

2 Recover a hidden Hamiltonian cycle in a network

I Learning: unknown Hamiltonian cycle
I Optimization: Travelling salesman problem
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Operate online service platforms with uncertain payoff and dynamic

joint work with Wei-Kang Hsu, Xiaojun Lin, and Mark R. Bell (Purdue ECE)
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A proliferation of online service platforms

Goal: assign client to server to maximize total payoffs subj. to capacity

• Clients: Advertiser

• Servers: Keyword searches

• Payoffs: Click-through-rate

Two key challenges

• unknown payoff → learn payoffs from noisy feedback

• uncertain client dynamics → adaptively control assignments
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Queueing model with uncertain dynamic and payoff
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• New client (Advertiser) carries Geom(N) number of tasks (Ads)

• Server (keyword searches) j serve µj tasks per slot

• Observe Bern(C∗ij) payoff after a task of class i departs at server j

• Do not know λi, N, class label, # of tasks, or payoff vectors
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Performance metric and oracle bound

Expected payoff per unit time of a policy Π:

RT (Π) =
1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j


plj(t) : mean number of tasks assigned to server j from client l at time t

Oracle LP bound with perfect information:

R∗ = max
[pij ]≥0

I∑
i=1

λi

J∑
j=1

pijC
∗
ij

s.t.
I∑
i=1

λipij ≤ µj for all servers j = 1, . . . , J

J∑
j=1

pij = 1 for all classes i = 1, . . . , I

Jiaming Xu (Purdue) Learning and Optimization 6



Performance metric and oracle bound

Expected payoff per unit time of a policy Π:

RT (Π) =
1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j


plj(t) : mean number of tasks assigned to server j from client l at time t

Oracle LP bound with perfect information:

R∗ = max
[pij ]≥0

I∑
i=1

λi

J∑
j=1

pijC
∗
ij

s.t.
I∑
i=1

λipij ≤ µj for all servers j = 1, . . . , J

J∑
j=1

pij = 1 for all classes i = 1, . . . , I

Jiaming Xu (Purdue) Learning and Optimization 6



Performance metric and oracle bound

Expected payoff per unit time of a policy Π:

RT (Π) =
1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j


plj(t) : mean number of tasks assigned to server j from client l at time t

Oracle LP bound with perfect information:

R∗ = max
[pij ]≥0

I∑
i=1

λi

J∑
j=1

pijC
∗
ij

s.t.
I∑
i=1

λipij ≤ µj for all servers j = 1, . . . , J

J∑
j=1

pij = 1 for all classes i = 1, . . . , I

Jiaming Xu (Purdue) Learning and Optimization 6



Weakness of queue length based control

With known payoff vectors [Tassiulas and Ephremides ’92, ...]

1 Use queue length qj at server j to capture congestion level

2 Adjust each client’s payoff parameter by subtracting qj/V

3 Assign the next task to the server with the highest adjusted payoff

With unknown payoff vectors: vicious cycle

Learning

Uncertain 
Feature/

Payoff

Queueing

Uncertain 
Agent 

Dynamics

Decisions based on 
inaccurate payoffs

Feedback delay & 
learning slow-down
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Weakness of myopic matching

max
[plj ]≥0

n(t)∑
l=1

J∑
j=1

plj C
l
j(t)

s.t.

n(t)∑
l=1

plj ≤ µj for all servers j = 1, . . . , J

• No task-queue at servers → no payoff feedback delay

• Payoff estimate C lj(t) based on Upper-Confidence-Bound (UCB)
[Lai-Robbins ’85]:

C lj(t) = min

{
C
l
j(t− 1) +

√
2 log hl(t− 1)

hlj(t− 1)
, 1

}

C
l
j(t− 1): empirical average payoff of client l;

hlj(t− 1): # of tasks assigned to server j from client l

• Do not look into future and hence long-term payoff is suboptimal!
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Our approach based on utility optimization

max
[plj ]≥0

n(t)∑
l=1

{
1

V
log
( J∑
j=1

plj
)

+

J∑
j=1

plj(C
l
j(t)− γ)

}

s.t.

n(t)∑
l=1

plj ≤ µj for all servers j = 1, . . . , J .

• Log utility function promotes fairness → every client can learn

• V > 0: as V increases
I clients are more conservative in choosing low-payoff servers
I more clients are backlogged in the system

• γ > 1: prevent clients choosing low-payoff servers too aggressively

• Inspired by flow-level congestion control in communication networks
[Lin-Shroff-Srikant ’08]
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Performance guarantees of our policy

λ : total arrival rate µ : total service rate n(t) : # of clients

Theorem (mean number of backlogged clients)

E [n(t)] ≤ 2µ

µ− λ

(
1 +

µ2γ

γ − 1

)
+ µγV.

• implies system is stable

• mean number of backlogged clients increases linearly in V

• Proof: couple to a Geom/Geom/µ queue with Bernoulli arrivals and
Binomial departures
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Performance guarantees of our policy

Theorem (Payoff gap to oracle bound)

R∗ −RT ≤
β1

V
+ β2

√
logN

N
+ β3

N(V + 1)

T

• β1, β2, β3: functions of λi, µj , γ

• 1/V : Impact of the uncertainty in client dynamics

•
√

logN/N : Impact of the uncertainty in payoffs

• N(V + 1)/T : Payoff loss incurred by backlogged tasks

• Captures the transient behavior in finite T in contrast to study of
stationary regime in [Johari-Kamble-Kanoria ’17]
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Proof ideas

1 Use Lyapunov drift analysis to show

R∗ −RT .
1

V
+

1

T

T∑
t=1

E [A(t)] +
N

T
E [n(T )] ,

where A(t) =

n(t)∑
l=1

J∑
j=1

(
C lj(t)− C∗i(l),j

)
︸ ︷︷ ︸

learning error

(
plj(t)− p̃lj(t)

)
︸ ︷︷ ︸

controlling error

p̃lj(t): optimal assignment if our policy knew true payoffs

2 Use duality +UCB regret analysis + martingale argument to show

1

T

T∑
t=1

E [A(t)] .

√
logN

N
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To show

1

T

T∑
t=1

E

n(t)∑
l=1

J∑
j=1

(
C lj(t)− C∗i(l),j

)(
plj(t)− p̃lj(t)

) .

√
N logN

N

1 Convex duality ∑J
j=1 p̃

l
j(t)∑J

j=1 p
l
j(t)
≤
(

γ

γ − 1

)2

2 UCB regret analysis

E
[(
C lj(t)− C∗i(l),j

)
plj(t)

]
.

N∑
k=1

√
log k

k
.
√
N logN

Use martingale argument to take care of dependency
between plj(t) and {C lj(s) : s ≤ t}
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Numerical results: simulation setup
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3
, R∗ = 0.96
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Numerical results: performance comparison
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Related literature

Learning and adaptive control seperately

• Multi-armed bandits: [Lai-Robbins ’85], [Auer-Cesa-Bianchi-Fischer ’02],...

• Adaptive control: [Tassiulas-Ephremides ’92], [Neely-Modiano-Li ’05],...

Integrate learning and adaptive control

• Online matching while learning: [Johari-Kamble-Kanoria ’17]

I Stationary setting with known arrival rates and class-dependent
payoff vectors

I Divide learning and adaptive control into two stages

• Learning unknown labels with capacity constraints: [Xu-Massoulié ’16]

• Processing tasks of unknown types with capacity constraints:
[Bimpikis-Markakis ’15], [Shah-Gulikers-Massoulié-Vojnovic ’17]
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Conclusion remarks

Propose an online learning and adaptive control policy based on utility
optimization:

payoff gap .
1

V︸︷︷︸
uncertain dynamics

+

√
logN

N︸ ︷︷ ︸
uncertain payoffs

+
N(V + 1)

T︸ ︷︷ ︸
backlogged tasks

Future work

• Improve the exploration-exploitation tradeoff to logN/N

• Adapt to random service time or unknown service rates
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Recover a Hidden Hamiltonian Cycle via Linear Programming

joint work with V. Bagaria, David Tse (Stanford), J. Ding (Wharton), Y. Wu (Yale)

Jiaming Xu (Purdue) Learning and Optimization 18



DNA high-throughput sequencing

Original	DNA

Shortgun Seq.

Short	reads
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Key challenge in DNA high-throughput sequencing

Short	reads

DNA	Assembly

Scaffolds
Length	~	100	kb

High-throughput sequencing has low contiguity!
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Boost contiguity: cross-links in Chicago datasets

1 Reconstitute chromatin in vitro upon naked DNA

2 Produce cross-links by fixing chromatin with formaldehyde

Chicago datasets generate cross-links among contigs [Putnam et al. ’16 ]

On average more cross-links exist between adjacent contigs

Jiaming Xu (Purdue) Learning and Optimization 21



Ordering DNA contigs with Chicago cross-links

DNA	Scaffolding

Reduces to travelling salesman problem (TSP):

Find a path (tour) to visit every contig exactly once with the maximum
number of cross-links

Jiaming Xu (Purdue) Learning and Optimization 22
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Key challenges for DNA scaffolding with Chicago data

• Computational: TSP is NP-hard in the worst-case

• Statistical: spurious cross-links between contigs far apart

Key questions:

• How to efficiently order hundreds of thousands of contigs?

• How much noise can be tolerated for accurate DNA scaffolding?

Jiaming Xu (Purdue) Learning and Optimization 23
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Our mathematical model for DNA scaffolding
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Real DNA data [Putnam et al. ’16]
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Our mathematical model for DNA scaffolding
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What is known information-theoretically

Consider the Gaussian case P = N (µ, 1) and Q = N (0, 1)

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
µ2

log n
> 4,

exact recovery is information-theoretically possible.
Conversely, if

µ2

log n
< 4,

then exact recovery is impossible.

Jiaming Xu (Purdue) Learning and Optimization 25



What is known algorithmically

• Spectral methods fails miserably:
I µ2 � n5 (spectral gap of cycle is too small)

• Thresholding or nearest-neighbor method:
I µ2 > 8 log n

• Greedy merging [Motahari-Bresler-Tse ’13]:
I µ2 > 6 log n

Suboptimal comparing to IT-limit µ2 > 4 log n!

Jiaming Xu (Purdue) Learning and Optimization 26



What is known algorithmically

• Spectral methods fails miserably:
I µ2 � n5 (spectral gap of cycle is too small)

• Thresholding or nearest-neighbor method:
I µ2 > 8 log n

• Greedy merging [Motahari-Bresler-Tse ’13]:
I µ2 > 6 log n

Suboptimal comparing to IT-limit µ2 > 4 log n!

Jiaming Xu (Purdue) Learning and Optimization 26



What is known algorithmically

• Spectral methods fails miserably:
I µ2 � n5 (spectral gap of cycle is too small)

• Thresholding or nearest-neighbor method:
I µ2 > 8 log n

• Greedy merging [Motahari-Bresler-Tse ’13]:
I µ2 > 6 log n

Suboptimal comparing to IT-limit µ2 > 4 log n!

Jiaming Xu (Purdue) Learning and Optimization 26



What is known algorithmically

• Spectral methods fails miserably:
I µ2 � n5 (spectral gap of cycle is too small)

• Thresholding or nearest-neighbor method:
I µ2 > 8 log n

• Greedy merging [Motahari-Bresler-Tse ’13]:
I µ2 > 6 log n

Suboptimal comparing to IT-limit µ2 > 4 log n!

Jiaming Xu (Purdue) Learning and Optimization 26



Maximum likelihood estimation reduces to TSP

x̂ML = arg max
x
〈w, x〉

s.t. x is an adjacency vector

of a Hamiltonian cycle

• Find a maximum weighted Hamiltonian cycle ⇐⇒ TSP

• NP hard!

Jiaming Xu (Purdue) Learning and Optimization 27



Fractional 2-factor linear relaxation of TSP

x̂F2F = arg max
x
〈w, x〉

s.t.
∑
e∈δ(v)

xe = 2 ∀ vertex v

xe ∈ [0, 1] ∀ edge e

• Extensively studied in worst case [Schalekamp-Williamson-van Zuylen ’14]

• The integrality gap 2F
F2F ≤

4
3 for metric TSP [Boyd-Carr ’99]

• What is the integrality gap in our planted TSP?

Jiaming Xu (Purdue) Learning and Optimization 28



Optimal recovery via fractional 2-factor LP

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
µ2 − 4 log n→ +∞,

then minx∗ P {x̂F2F = x∗} → 1.

Remarks:

• Achieving the IT-limit µ2 = 4 log n

• When above IT-limit, the integrality gap is 1 whp!
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General distributions Pn and Qn

Threshold determined by Battacharyya distance (a.k.a. Rényi divergence
of order 1

2):

B(P,Q) , −2 log

∫ √
dPdQ

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
B(P,Q)− log n→ +∞,

then minx∗ P {x̂F2F = x∗} → 1.

Remarks

• B(P,Q) ≥ (1 + o(1)) log n is necessary for any estimator to succeed

• F2F achieves the optimal recovery threshold:

lim inf
n→∞

B(P,Q)

log n
= 1.
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Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If
B(P,Q)− log n→ +∞,

then minx∗ P {x̂F2F = x∗} → 1.

Remarks

• B(P,Q) ≥ (1 + o(1)) log n is necessary for any estimator to succeed
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Proof attempt via dual certificate argument

• KKT conditions (Farkas’ lemma): x̂F2F = x∗ ⇐⇒ ∃u ∈ Rn (dual
certificate):

ui + uj ≤ wij , if x∗ij = 1

ui + uj ≥ wij , if x∗ij = 0

• One feasible choice of dual:

ui =
1

2
min
j

{
wij : x∗ij = 1

}
• This certificate shows correctness if µ2 > 6 log n (same as greedy

merging), unable to get to IT limit µ2 > 4 log n!
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Our proof based on primal analysis

General recipe: show whp for all extremal points x 6= x∗ of

F2F polytope ,
{
x ∈ [0, 1](

n
2) : x(δ(v)) = 2,∀v ∈ [n]

}
,

it holds that
〈w, x− x∗〉 < 0

The proof heavily exploits the characterization of extremal points

• F2F polytope is not integral: fractional extremal points exist

• Half integrality [Balinski ’65]: for any extremal point x,

xe ∈ {0, 1/2, 1}
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Proof outline

1 Encode the perturbation: for any extremal point x, represent
2(x− x∗) as a bicolored multigraph Gx with

w(Gx) =
∑
e

we (xe − x∗e)

2 Divide and conquer: decompose Gx as a union of graphs in family F

w(Gx) =
∑
i

w(Fi), Fi ∈ F

3 Counting and large dev. bounds: show whp w(F ) < 0 for all F ∈ F
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Step 1: Bicolored multigraph representation

1

1 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX

key observation

GX is always balanced: red degree = blue degree
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Step 2: Edge decomposition

Theorem (Kotzig ’68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.

Remarks

• An Eulerian circuit may traverse a double edge twice

“Dumbbell” structure
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Step 2: Edge decomposition

U : collection of graphs recursively constructed

1 Start with an even cycle in alternating colors

2 Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (path of double edges followed by an
alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 4 times

However, not every GX is of this form...
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Step 2: Edge decomposition

• Graph homomorphism φ : H → F is a vertex map that preserves
edges

F = {F : there exists H ∈ U such that H → F}

Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an union of elements in F .

•
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H

φ−−−→ 2

1
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9

8

11
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7

4

5

6

F

• remains to show minF∈F w(F ) < 0 whp
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Step 3: Counting and probabilistic arguments

Fk,` = {F ∈ F : E(F ) consists of k double edges and ` single edges }

Lemma

For any k ≥ 0 and ` ≥ 3. With probability at least 1− n−Θ(k+`),

max
F∈Fk,`

(w(F )− E [w(F )]) ≤ (1 + ε) (2k + `)
√

log n

Remarks

• Total: 2k + ` edges, half are red (by balancedness). Weights on red
edges: N(µ, 1)

E [w(F )] = −(2k + `)µ/2

• Proof: Counting Fk,` and large deviation bounds

• Key observation for counting: condition on one end of a red edge,
the other end has at most 2 choices
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Real data experiment

• 1000 DNA contigs of size 45 kb

• 0.45 million Chicago cross-links

• Subsample each cross-link with probability p
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Conclusion and remarks

µ2/ log n
4

IT limit/F2F

6

greedy

8

thresholding

• Curse of high-dim. =⇒ MLE is computationally intractable

• Bless of high-dim. =⇒ convex relaxations are statistically optimal

Connections to other work

• graph partioning (community detection): [Hajek-Wu-Xu ’14]

• graph isomorphism (network alignment)
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