
Reconstruction in the Sparse Labeled
Stochastic Block Model

Marc Lelarge 1 Laurent Massoulié 2 Jiaming Xu 3

1INRIA-ENS

2INRIA-Microsoft Research Joint Centre

3University of Illinois, Urbana-Champaign

September 10, 2013



Motivation: community detection

Identify underlying communities based on the pairwise
interactions represented by graph

Network of political webblogs
[Adamic-Glance ’05]

5 

5 

3 

4 

5 

4 

3 

5 

Recommendation system



A popular model: stochastic block model

Graph generated from stochastic block model with n = 5000, r = 10,
p = 0.999, q = 0.001. Ref. https://projects.skewed.de/graph-tool.



Model we use: sparse labeled stochastic block model

Two important aspects received little attention:
1 Sparse graph: Limited amount of interaction
2 Interaction can be of multiple types: ratings can be 1 to 5

We use sparse labeled stochastic block model:
1 Nodes have bounded average degree: edge probabilities

p,q = O(1/n).
2 Edges carry label: label represents interaction type
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Sparse labeled stochastic block model: two symmetric
communities

A random graph model on n nodes with two constants, a,b ≥ 0
and two discrete prob. distributions, µ, ν.
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Sparse labeled stochastic block model: two symmetric
communities

A random graph model on n nodes with two constants, a,b ≥ 0
and two discrete prob. distributions, µ, ν.

Assign each node to
community +1 or −1 uniformly
at random.
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Sparse labeled stochastic block model: two symmetric
communities

A random graph model on n nodes with two constants, a,b ≥ 0
and two discrete prob. distributions, µ, ν.

Independently for each pair of
nodes:
Draw an edge w.p. a/n if they
are in the same community;
w.p. b/n otherwise.
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𝑎/𝑛 b/𝑛 𝑎/𝑛 

a = 4,b = 2



Sparse labeled stochastic block model: two symmetric
communities

A random graph model on n nodes with two constants, a,b ≥ 0
and two discrete prob. distributions, µ, ν.

Independently for each edge:
Label the edge w.d. µ if the two
endpoints are in the same
community; w.d. ν otherwise.
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𝑎/𝑛 b/𝑛 𝑎/𝑛 

µ(r) = 0.6, µ(b) = 0.4
ν(r) = 0.4, ν(b) = 0.6



Correlated reconstruction of community assignment

Isolated nodes render the exact reconstruction impossible.

Focus on correlated reconstruction, i.e., agrees with the true
community assignment in more than half of all nodes.
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Phase transition for correlated reconstruction

[Heimlicher et al. ’12] conjectures:
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It generalizes the conjecture in stochastic block model [Decelle
et al. ’11] [Mossel et al. ’12].
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Our contribution

0
τ

1 32 log 2 64 C
√

a + b

Impossible, MinBisection, Spectral*, Spectral

(A) Prove the impossibility result: correlated reconstruction is
impossible if τ < 1.

(B) Prove the achievability result: correlated reconstruction is
possible if τ > 32 log 2 by MinBisection algorithm.

(C) Propose a polynomial-time Spectral algorithm and show it
achieves correlated reconstruction if τ is large enough.
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(A) Impossibility for correlated reconstruction if τ < 1

First step of proof: correlated reconstruction =⇒ long range
correlation: The community memberships of any two nodes
randomly chosen are asymptotically correlated conditional on
the labeled graph [Mossel et al. ’12].



(A) Impossibility for correlated reconstruction if τ < 1

Second step of proof: The small local neighborhood of a node
“looks like” a labeled Poisson tree [Mossel et al. ’12].
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(A) Impossibility for correlated reconstruction if τ < 1

Third step: The community memberships of leaf nodes is
uninformative on the community membership of root
asymptotically [Heimlicher et al. ’12].
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(B) Achievability of correlated reconstruction if
τ > 32 log 2

Consider minimum bisection algorithm: Find two equal-sized
parts with the minimum sum of weights of edges between parts
with weight function w(`) = aµ(`)−bν(`)

aµ(`)+bν(`) .

Theorem

solutions of minimum bisection are correlated with the true
community assignment if τ > 32 log 2 and
a
∑

` µ(`)w2(`),b
∑

` ν(`)w2(`) > 8 ln 2.

Proof uses the Chernoff bound
and the weight function w(`) is
chosen optimally.
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(C) Polynomial-time reconstruction for τ large enough

A polynomial-time algorithm exploiting the spectrum of
weighted adjacency matrix W with weight function
w(`) = aµ(`)−bν(`)

aµ(`)+bν(`)

The expectation of W conditional on the true community
assignment σ satisfies:

E[W |σ] =
a− b

2n
11> +

τ

n
σσ>.

If W ≈ E[W |σ], then the top left singular vector of
W − a−b

2n 11> approximates σ.

Due to nodes with high degrees Ω( log n
log log n ), W is not

concentrated around its conditional mean.
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(C) Polynomial-time reconstruction for τ large enough

Spectral-Reconstruction algorithm: Input a,b, µ, ν,W ; Output
community assignment.

1 Remove nodes with degree greater than 3
2(a + b) and

assign random community to these nodes.
2 Define W ′ by setting to zero the rows and columns of W

corresponding to the nodes removed.
3 Let x̂ denote the left singular vector associated with the

largest singular values of W ′ − a−b
n 11>. Output sign(x̂) as

the community assignment for remaining nodes.
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(C) Polynomial-time reconstruction for τ large enough

Theorem

Spectral-Reconstruction algorithm outputs a community
assignment correlated with the true one if τ > C

√
a + b.

Proof:
The spectral norm of W ′ − E[W |σ] is O(

√
a + b). Ref.

[Feige-Ofek ’05], [Coja-Oghlan ’10].
The L2 distance between σ/

√
n and x̂ is bounded by

O(‖W ′ − E[W |σ]‖/τ).
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(C) Polynomial-time reconstruction for τ > 64

Better performance guarantee if max{a,b} = Ω(log6 n).

Theorem

Spectral-Reconstruction algorithm outputs a community
assignment correlated with the true one if τ > 64 and
max{a,b} = Ω(log6 n).

Proof: ‖W − E[W |σ]‖ ≤ 2
√

2τ . Ref. [Vu ’07].
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Simulation of Spectral-Reconstruction algorithm
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Two labels: r and b with µ(r) = 0.5 + ε and ν(r) = 0.5− ε. The
threshold τ = 1 is depicted as a vertical dash line.



Summary of our results

0
τ

1 32 log 2 64 C
√

a + b

Impossible, Open,MinBisection, Spectral*, Spectral



Future work

Apply sparse labeled stochastic block model into real data
Convergence of belief propagation
Reconstruction algorithms approaching the reconstruction
threshold
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