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Hidden community model [Deshpande-Montanari '13]

e Data: n x n symmetric matrix A with empty
diagonal

e Community C* C [n] of size K uniform at
random, such that

P Q AP bothiandjeC
Y Q otherwise

D
')
[ ]

(K, P, Q) varies with n

Goal: exact recovery of C from A

P{C=C*} 1221

Fruitful venue for stuying computational aspects
of statistical problems
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Examples

Planted dense subgraph

P = Bern(p), Q = Bern(q), p>gq

e A = adjancency matrix of G(n, q) planted with G(K, p)

e [Alon et al '98, McSherry '01, Arias-Castro-Verzelen '14, Chen-Xu
14, Montanari '15, ...]
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Planted dense subgraph

P = Bern(p), @ = Bern(q), p>gq

e A = adjancency matrix of G(n, q) planted with G(K, p)

e [Alon et al '98, McSherry '01, Arias-Castro-Verzelen '14, Chen-Xu
14, Montanari '15, ...]

Submatrix localization

P=N(0,1),Q =N(0,1), p>0

1
o A= 0 -+ | noise

e [Shabalin et al '09, Butucea-Ingster '11, Kolar et al '11, Ma-W '13,
Cai et al '15, .. ]
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Planted dense subgraph — graph view
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Planted dense subgraph — graph view

@ A community of K vertices are chosen randomly
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Planted dense subgraph — graph view

@ A community of K vertices are chosen randomly
® For every pair of nodes in the community, add an edge w.p. p

Bruce Hajek, Yihong Wu and Jiaming Xu SDP for Community Recovery



=
Q2
>
<
o
©
) -
e10)

Planted dense subgraph —

@ A community of K vertices are chosen randomly
® For every pair of nodes in the community,

add an edge w.p. p

, add an edge w.p. q

© For other pairs of nodes

SDP for Community Recovery
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Planted dense subgraph — graph view

@ A community of K vertices are chosen randomly
® For every pair of nodes in the community, add an edge w.p. p
© For other pairs of nodes, add an edge w.p. g
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Planted dense subgraph — adjacency matrix view
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n=200, K="50, p=0.3, g=0.1
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Planted dense subgraph — adjacency matrix view
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Planted dense subgraph — adjacency matrix view
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Computational gap in planted Clique

e K =(logn): exact recovery is possible via maximum likelihood

o K =Q(+/n): exact recovery is attainable in poly-time [Alon et al.
'98]

e K = o(y/n): exact recovery is believed to be hard
[Deshpande-Montanari '15] [Meka-Potechin-Wigderson '15], ...
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Computational gap in planted Clique

e K =(logn): exact recovery is possible via maximum likelihood

o K =Q(+/n): exact recovery is attainable in poly-time [Alon et al.
'98]

e K = o(y/n): exact recovery is believed to be hard
[Deshpande-Montanari '15] [Meka-Potechin-Wigderson '15], ...

What about dense subgraphs eligue?
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Linear community size

.K:pn
.p_

alogn ogn

and g =

Theorem (Hajek-W-Xu Trans. IT 16)

e If p > p*, exact recovery is possible in polynomial-time.

e |f p < p*, exact recovery is impossible.

Remarks

o p*zl/(afq—*logi—f) with 7* W

e Convex (SDP) relaxation works
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Sublinear community size

[Hajek-W-Xu, COLT '15]

1/2

impossible

p=cq=0(n"")

o 2/3 1

e K =Q(n): SDP works
e K = n'"¢: no known poly-time algorithm
e Where is the SDP barrier?
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Sublinear community size

[Hajek-W-Xu, COLT '15]

1/2

impossible

p=cq=0(n"")

o 2/3 1

e K =Q(n): SDP works
e K = n'"¢: no known poly-time algorithm
e Where is the SDP barrier? K = O(-2-)

logn
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SDP Relaxation vs. Information-Theoretic Limits

Main results: For both planted dense subgraph (Bernoulli) and submatrix
localization (Gaussian)
e K =w(2): SDP attains the info-theoretic limit with sharp

log n
constants
e K= @(Iogn): SDP is order-wise optimal, but strictly suboptimal by
a constant factor

* K =o0(j5g;) and K — co: SDP is order-wise suboptimal
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SDP Relaxation vs. Information-Theoretic Limits

e Log-likelihood ratio matrix L

dP L.
Lj =log E(Aij),' #j, Li=0

e Let £ = indicator of C.

Maximum likelihood estimator = find densest K-subgraph
fuLe = argmax Y Li&ig;

st. £€{0,1}"
€1y =K.
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ZMLE = arg max
z

s.t.

(L, 2)

rank(Z) =1

Z; <1 Vie]n]
Zj>0, Vije|n]
1,2y =K

J,2) = K?

Bruce Hajek, Yihong Wu and Jiaming Xu
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Semidefinite programming

Natural SDP relaxation:

Zspp = argmax (L, Z)

V4
s.t.

Bruce Hajek, Yihong Wu and Jiaming Xu

Z-0

Z; <1 Vieln]
Z>0
1,2)=K
J,2) = K?
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Semidefinite programming

Natural SDP relaxation:

Goal:

Zspp = argmax (L, Z)

z
st. Z~-0
Zi<1 Vieln]
Z>0
0,2) =K
J,2) = K?
1
P{ Zspp = Zuie = 0 —1

Bruce Hajek, Yihong Wu and Jiaming Xu
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Analysis of SDP

Define

e(i,C*)=> Ly ie€ln, ,8=-D(QIP).

Jjecx
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Analysis of SDP

e Sufficient condition: ngp =7% if

min e(i, C*) — max{(gzz_xe(j, c), KB} >|L-E[L]|| -8
jdce

ieC*
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Analysis of SDP

e Sufficient condition: ZgDp =7% if

min e(i, C*) — max{(gzéxe(j, c), KB} >|IL-E[L]|| -5
jdce

ieC*

e Necessary condition: If Z* € 23Dp, then

a
min e(i, C*) —maxe(j,C*) > su V(a) — — maxe(j, C*
min e(.C") ~ maxe(. €)= sup {V(a) - % maxe(i.C") .
where
» V(a) = max{(Leye,2) 1 Z2>=0,Z2>0,Tr(Z2)=1,(J,Z) =a} is
the value of an (simpler) auxilliary SDP
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e To apply this result, min, max, ||[L — E[L] ||, etc concentrate

o Sufficient condition proof: construction of dual witnesses (standard)
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Proof of necessary condition

e Primal proof: random perturbation of the ground truth to establish
integrality gap

Z* =1

Z*=0

Z*=0
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Proof of necessary condition

e Primal proof: random perturbation of the ground truth to establish
integrality gap

7r=1 -+

Z*=0 +
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Proof of necessary condition

e Primal proof: random perturbation of the ground truth to establish
integrality gap

7r=1 -+

Zr=0 +

e Dual proof: non-existence of dual witness
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k communities: MLE = SDP relaxation

SBM with k communities and parameter (p, q)

k

max Z(A, 0.0, )
/=1

st. 6, €{0,1}"
(6¢,1) = n/k
(B¢,0p) =0,0+ 1
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k communities: MLE = SDP relaxation

SBM with k communities and parameter (p, q)

k
max Y (A,0,0;) max (A, Z)
=1
n lift: Z=3"5_, 0,6,
sit. 6,€{0,1} s.t. rank(Z) =k
<0£, 1> = n/k Zi=1 Vie [n]
(Be,0p) = 0,0 # 1 Z;>0, Y Zj=n/k
J
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k communities: MLE = SDP relaxation

SBM with k communities and parameter (p, q)

K

max Z<A7 6.6, ) max (A, Z)

=1

ift: Z=S"k_. 6,0]

st. 0, €{0,1}" W 2=20%%, o 740

<0£, 1> = n/k Zi=1 Vie [n]

(0, 0p) = 0,0 £ Z;>0, Y Zj=n/k

J
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k communities: MLE = SDP relaxation

SBM with k communities and parameter (p, q)

k
max Y (A,0,0;) max (A, Z)
=1
lift: Z=S"k_. 6,07
st. Gp € {0,1}" ©Zn %% 4 7 =0
<0£, 1> = n/k Zi=1 Vie [n]
<0£76£’>:O7£3£€/ Zjj >0, ZZijzn/k
J
1 . 0
GOB'Z P 2SDP = 1 -1
0 "
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k equal-sized communities: optimal recovery via SDP

Theorem (Hajek-W-Xu '15)

For a fixed k communities with p = alogn/n and q = blogn/n.
o If \/a— /b > 'k, exact recovery is attained via SDP in poly-time.
o If \/a— /b < 'k, exact recovery is impossible.
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k equal-sized communities: optimal recovery via SDP

Theorem (Hajek-W-Xu '15)

For a fixed k communities with p = alogn/n and q = blogn/n.
o If \/a— /b > 'k, exact recovery is attained via SDP in poly-time.
o If \/a— /b < 'k, exact recovery is impossible.

Remarks

e Extended to k = o(log n) in [Agarwal-Bandeira-Koiliaris-Kolla '15]
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k equal-sized communities: optimal recovery via SDP

Theorem (Hajek-W-Xu '15)

For a fixed k communities with p = alogn/n and q = blogn/n.
o If \/a— /b > 'k, exact recovery is attained via SDP in poly-time.
o If \/a— /b < 'k, exact recovery is impossible.

Remarks
e Extended to k = o(log n) in [Agarwal-Bandeira-Koiliaris-Kolla '15]

e Extended to the case with multiple unequal-sized clusters
[Perry-Wein '15]
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When does SDP cease to be optimal?

Theorem (Hajek-W.-Xu '16)
e k < logn: SDP achieves the optimal exact recovery threshold.

e k > clogn: SDP is suboptimal by a constant factor.
e k > logn: SDP is order-suboptimal.

Remarks

e A “hard but informationally possible" regime is conjectured to exist
for exact recovery when k > log n [Chen-Xu '14]
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Some remaining problems

e Can the computational gap for exact recovery be bridged by any
polynomial time algorithm? (SoS hardness result or reduction to PC
would offer further evidence for “no” answer.)

e Approximate recovery? (Current proof only rules out exact recovery.)
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Some remaining problems

e Can the computational gap for exact recovery be bridged by any
polynomial time algorithm? (SoS hardness result or reduction to PC
would offer further evidence for “no” answer.)

e Approximate recovery? (Current proof only rules out exact recovery.)

Thank you!
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Necessary condition for optimality of SDP

EXTRA SLIDES NOT INCLUDED IN ORIGINAL Let M = Lcyex(c*)e
denote the submatrix of L outside the community. For a € R, consider
the (random) value of the following SDP:

V(a) & max (M, Z) (1)
st. Z>=0
Z>0
Tr(Z2)=1
(J,Z) = a.
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Necessary condition for optimality of SDP

Theorem (Necessary condition for SDP)
If Z* € Zspp, then
a
min e(i, C*) — maxe(j, C*) > su V(a) — —maxe(j,C") . (2
min (%)~ maxe(j. ) > sup {Vi(a) = % maxe(j.C)}. (2
Weaker necessary condition (set a = K):

min e(i, C*) > V(K)
ieC*
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SDP vs. MLE, message passing, and linear MP
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Phase diagram for the Gaussian model
with K = pn/logn and = pglogn/+/n.
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