Semidefinite Programs for Exact Recovery of a Hidden Community (and Many Communities)

Bruce Hajek ¹ Yihong Wu ¹ Jiaming Xu ²

 1 University of Illinois at Urbana-Champaign

²Simons Insitute, UC Berkeley

June 23, 2016

Hidden community model [Deshpande-Montanari '13]

- Data: $n \times n$ symmetric matrix A with empty diagonal
- Community $C^* \subset [n]$ of size K uniform at random, such that

$$A_{ij} \sim egin{cases} P & ext{both } i ext{ and } j \in C \ Q & ext{otherwise} \end{cases}$$

- (K, P, Q) varies with n
- Goal: exact recovery of C from A

$$\mathbb{P}\{\widehat{C}=C^*\}\xrightarrow{n\to\infty}1$$

 Fruitful venue for stuying computational aspects of statistical problems

Examples

Planted dense subgraph

$$P = Bern(p), Q = Bern(q), \quad p > q$$

- A = adjancency matrix of G(n, q) planted with G(K, p)
- [Alon et al '98, McSherry '01, Arias-Castro-Verzelen '14, Chen-Xu 14, Montanari '15, ...]

Examples

Planted dense subgraph

$$P = Bern(p), Q = Bern(q), \quad p > q$$

- A = adjancency matrix of G(n, q) planted with G(K, p)
- [Alon et al '98, McSherry '01, Arias-Castro-Verzelen '14, Chen-Xu 14, Montanari '15, ...]

Submatrix localization

$$P = \mathcal{N}(0, \mu), Q = \mathcal{N}(0, 1), \quad \mu > 0$$

- $A = \begin{bmatrix} \mu \\ 0 \end{bmatrix} + \begin{bmatrix} \text{noise} \end{bmatrix}$
- [Shabalin et al '09, Butucea-Ingster '11, Kolar et al '11, Ma-W '13, Cai et al '15, ...]

Running example: Plated Dense Subgraph

 $oldsymbol{0}$ A community of K vertices are chosen randomly

- $oldsymbol{1}$ A community of K vertices are chosen randomly
- 2 For every pair of nodes in the community, add an edge w.p. p

- f 1 A community of K vertices are chosen randomly
- 2 For every pair of nodes in the community, add an edge w.p. p
- 3 For other pairs of nodes, add an edge w.p. q

- f 1 A community of K vertices are chosen randomly
- 2 For every pair of nodes in the community, add an edge w.p. p
- 3 For other pairs of nodes, add an edge w.p. q

Planted dense subgraph – adjacency matrix view

$$n = 200$$
, $K = 50$, $p = 0.3$, $q = 0.1$

Planted dense subgraph – adjacency matrix view

$$n = 200$$
, $K = 50$, $p = 0.3$, $q = 0.1$

Planted dense subgraph – adjacency matrix view

$$n = 200$$
, $K = 50$, $p = 0.3$, $q = 0.1$

Computational gap in planted Clique

$$p=1$$
 $q=\Omega(1)$

- $K = \Omega(\log n)$: exact recovery is possible via maximum likelihood
- $K = \Omega(\sqrt{n})$: exact recovery is attainable in poly-time [Alon et al. '98]
- $K = o(\sqrt{n})$: exact recovery is believed to be hard [Deshpande-Montanari '15] [Meka-Potechin-Wigderson '15], ...

Computational gap in planted Clique

$$p=1$$
 $q=\Omega(1)$

- $K = \Omega(\log n)$: exact recovery is possible via maximum likelihood
- $K = \Omega(\sqrt{n})$: exact recovery is attainable in poly-time [Alon et al. '98]
- $K = o(\sqrt{n})$: exact recovery is believed to be hard [Deshpande-Montanari '15] [Meka-Potechin-Wigderson '15], ...

What about dense subgraphs clique?

Linear community size

- $K = \rho n$
- $p = \frac{a \log n}{n}$ and $q = \frac{b \log n}{n}$

Theorem (Hajek-W-Xu Trans. IT 16)

- If $\rho > \rho^*$, exact recovery is possible in polynomial-time.
- If $\rho < \rho^*$, exact recovery is impossible.

Remarks

- $ho^* = 1/(a au^* \log rac{\mathrm{e} a}{ au^*})$ with $au^* = rac{a b}{\log a \log b}$
- Convex (SDP) relaxation works

Sublinear community size

[Hajek-W-Xu, COLT '15]

- $K = \Omega(n)$: SDP works
- $K = n^{1-\epsilon}$: no known poly-time algorithm
- Where is the SDP barrier?

Sublinear community size

[Hajek-W-Xu, COLT '15]

- $K = \Omega(n)$: SDP works
- $K = n^{1-\epsilon}$: no known poly-time algorithm
- Where is the SDP barrier? $K = \Theta(\frac{n}{\log n})$

SDP Relaxation vs. Information-Theoretic Limits

Main results: For both planted dense subgraph (Bernoulli) and submatrix localization (Gaussian)

- $K = \omega(\frac{n}{\log n})$: SDP attains the info-theoretic limit with sharp constants
- $K = \Theta(\frac{n}{\log n})$: SDP is order-wise optimal, but strictly suboptimal by a constant factor
- $K = o(\frac{n}{\log n})$ and $K \to \infty$: SDP is order-wise suboptimal

SDP Relaxation vs. Information-Theoretic Limits

Log-likelihood ratio matrix L

$$L_{ij} = \log \frac{dP}{dQ}(A_{ij}), i \neq j, \quad L_{ii} = 0$$

• Let $\xi = \text{indicator of } C$.

Maximum likelihood estimator = find densest K-subgraph

$$\hat{\xi}_{ ext{MLE}} = rg\max_{\xi} \; \sum_{i,j} L_{ij} \xi_i \xi_j$$
 s.t. $\xi \in \{0,1\}^n$ $\langle \xi, \mathbf{1}
angle = K$.

Lift: $Z = \xi \xi^*$

$$\hat{Z}_{\mathrm{MLE}} = rg \max_{Z} \left\langle L, Z \right
angle$$
 s.t. $\mathrm{rank}(Z) = 1$ $Z_{ii} \leq 1 \quad \forall i \in [n]$ $Z_{ij} \geq 0, \quad \forall i, j \in [n]$ $\langle \mathbf{I}, Z \rangle = K$ $\langle \mathbf{J}, Z \rangle = K^2$

Semidefinite programming

Natural SDP relaxation:

$$\begin{split} \hat{Z}_{\mathrm{SDP}} &= \arg\max_{Z} \, \left\langle L, Z \right\rangle \\ &\text{s.t.} \quad \frac{Z \succeq 0}{Z_{ii} \leq 1} \quad \forall i \in [n] \\ &Z \geq 0 \\ &\left\langle \mathbf{I}, Z \right\rangle = \mathcal{K} \\ &\left\langle \mathbf{J}, Z \right\rangle = \mathcal{K}^2 \end{split}$$

Semidefinite programming

Natural SDP relaxation:

$$\begin{split} \hat{Z}_{\mathrm{SDP}} &= \arg\max_{Z} \, \left\langle L, Z \right\rangle \\ &\text{s.t.} \quad \begin{array}{c} Z \succeq \mathbf{0} \\ Z_{ii} \leq 1 \quad \forall i \in [n] \\ Z \geq 0 \\ & \left\langle \mathbf{I}, Z \right\rangle = K \\ & \left\langle \mathbf{J}, Z \right\rangle = K^2 \end{split}$$

Goal:

$$\mathbb{P}\left\{\widehat{Z}_{\mathrm{SDP}}=\widehat{Z}_{\mathrm{MLE}}=egin{bmatrix} egin{bmatrix} \egn{bmatrix} \egn{bmatrix} \egn{bmatrix} \egn{bmatrix} \egn{bmatrix} \egn{bmatrix} \egn{bmatrix} \egn{bmatrix} \egn{bma$$

Analysis of SDP

Define

$$e(i, C^*) = \sum_{j \in C^*} L_{ij}, \quad i \in [n], \quad , \beta = -D(Q||P).$$

Analysis of SDP

Theorem

• Sufficient condition: $\widehat{Z}_{\mathrm{SDP}} = Z^*$, if

$$\min_{i \in C^*} e(i, C^*) - \max \left\{ \max_{j \notin C^*} e(j, C^*), K\beta \right\} > \|L - \mathbb{E}[L]\| - \beta$$

Analysis of SDP

Theorem

• Sufficient condition: $\widehat{Z}_{\mathrm{SDP}} = Z^*$, if

$$\min_{i \in C^*} e(i, C^*) - \max \left\{ \max_{j \notin C^*} e(j, C^*), K\beta \right\} > \|L - \mathbb{E}[L]\| - \beta$$

• Necessary condition: If $Z^* \in \widehat{Z}_{\mathrm{SDP}}$, then

$$\min_{i \in C^*} e(i, C^*) - \max_{j \notin C^*} e(j, C^*) \ge \sup_{1 \le a \le K} \left\{ V(a) - \frac{a}{K} \max_{j \notin C^*} e(j, C^*) \right\},$$

where

▶ $V(a) = \max\{\langle L_{\overline{C^*} \times \overline{C^*}}, Z \rangle : Z \succeq 0, Z \succeq 0, \text{Tr}(Z) = 1, \langle \mathbf{J}, Z \rangle = a\}$ is the value of an (simpler) auxilliary SDP

Remarks

- To apply this result, min, max, $\|L \mathbb{E}[L]\|$, etc concentrate
- Sufficient condition proof: construction of dual witnesses (standard)

Proof of necessary condition

 Primal proof: random perturbation of the ground truth to establish integrality gap

Proof of necessary condition

 Primal proof: random perturbation of the ground truth to establish integrality gap

Proof of necessary condition

 Primal proof: random perturbation of the ground truth to establish integrality gap

Dual proof: non-existence of dual witness

$$\max \ \sum_{\ell=1}^k \langle A, \boldsymbol{\theta_\ell} \boldsymbol{\theta_\ell^\top} \rangle$$

s.t.
$$m{ heta_\ell} \in \{0,1\}^n$$
 $\langle m{ heta_\ell}, m{1}
angle = n/k$ $\langle m{ heta_\ell}, m{ heta_{\ell'}}
angle = 0, \ell
eq \ell'$

$$\max \sum_{\ell=1}^{k} \langle A, \theta_{\ell} \theta_{\ell}^{\top} \rangle \qquad \max \langle A, Z \rangle$$
s.t. $\theta_{\ell} \in \{0, 1\}^{n} \iff \lim_{\ell \to \infty} \sum_{\ell=1}^{k} \theta_{\ell} \theta_{\ell}^{\top} \Rightarrow \text{s.t. } \operatorname{rank}(Z) = k$

$$\langle \theta_{\ell}, \mathbf{1} \rangle = n/k \qquad \qquad Z_{ii} = 1 \quad \forall i \in [n]$$

$$\langle \theta_{\ell}, \theta_{\ell'} \rangle = 0, \ell \neq \ell' \qquad \qquad Z_{ij} \geq 0, \quad \sum_{i} Z_{ij} = n/k$$

$$\max \sum_{\ell=1}^{k} \langle A, \theta_{\ell} \theta_{\ell}^{\top} \rangle \qquad \max \langle A, Z \rangle$$
s.t. $\theta_{\ell} \in \{0, 1\}^{n} \xleftarrow{\text{lift: } Z = \sum_{\ell=1}^{k} \theta_{\ell} \theta_{\ell}^{\top}} \qquad \text{s.t. } Z \succeq 0$

$$\langle \theta_{\ell}, \mathbf{1} \rangle = n/k \qquad \qquad Z_{ii} = 1 \quad \forall i \in [n]$$

$$\langle \theta_{\ell}, \theta_{\ell'} \rangle = 0, \ell \neq \ell' \qquad \qquad Z_{ij} \geq 0, \quad \sum_{i} Z_{ij} = n/k$$

$$\max \sum_{\ell=1}^{k} \langle A, \theta_{\ell} \theta_{\ell}^{\top} \rangle \qquad \max \langle A, Z \rangle$$
s.t. $\theta_{\ell} \in \{0, 1\}^{n} \xleftarrow{\text{lift: } Z = \sum_{\ell=1}^{k} \theta_{\ell} \theta_{\ell}^{\top}} \qquad \text{s.t. } Z \succeq 0$

$$\langle \theta_{\ell}, \mathbf{1} \rangle = n/k \qquad \qquad Z_{ii} = 1 \quad \forall i \in [n]$$

$$\langle \theta_{\ell}, \theta_{\ell'} \rangle = 0, \ell \neq \ell' \qquad \qquad Z_{ij} \geq 0, \quad \sum_{i} Z_{ij} = n/k$$

$$\mathsf{Goal} \colon \mathbb{P} \left\{ \widehat{Z}_{\mathrm{SDP}} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \right\} \to 1$$

k equal-sized communities: optimal recovery via SDP

Theorem (Hajek-W-Xu '15)

For a fixed k communities with $p = a \log n/n$ and $q = b \log n/n$.

- If $\sqrt{a} \sqrt{b} > \sqrt{k}$, exact recovery is attained via SDP in poly-time.
- If $\sqrt{a} \sqrt{b} < \sqrt{k}$, exact recovery is impossible.

k equal-sized communities: optimal recovery via SDP

Theorem (Hajek-W-Xu '15)

For a fixed k communities with $p = a \log n/n$ and $q = b \log n/n$.

- If $\sqrt{a} \sqrt{b} > \sqrt{k}$, exact recovery is attained via SDP in poly-time.
- If $\sqrt{a} \sqrt{b} < \sqrt{k}$, exact recovery is impossible.

Remarks

• Extended to $k = o(\log n)$ in [Agarwal-Bandeira-Koiliaris-Kolla '15]

k equal-sized communities: optimal recovery via SDP

Theorem (Hajek-W-Xu '15)

For a fixed k communities with $p = a \log n/n$ and $q = b \log n/n$.

- If $\sqrt{a} \sqrt{b} > \sqrt{k}$, exact recovery is attained via SDP in poly-time.
- If $\sqrt{a} \sqrt{b} < \sqrt{k}$, exact recovery is impossible.

Remarks

- Extended to $k = o(\log n)$ in [Agarwal-Bandeira-Koiliaris-Kolla '15]
- Extended to the case with multiple unequal-sized clusters [Perry-Wein '15]

When does SDP cease to be optimal?

Theorem (Hajek-W.-Xu '16)

- $k \ll \log n$: SDP achieves the optimal exact recovery threshold.
- $k \ge c \log n$: SDP is suboptimal by a constant factor.
- $k \gg \log n$: SDP is order-suboptimal.

Remarks

• A "hard but informationally possible" regime is conjectured to exist for exact recovery when $k \gg \log n$ [Chen-Xu '14]

Some remaining problems

- Can the computational gap for exact recovery be bridged by any polynomial time algorithm? (SoS hardness result or reduction to PC would offer further evidence for "no" answer.)
- Approximate recovery? (Current proof only rules out exact recovery.)

Some remaining problems

- Can the computational gap for exact recovery be bridged by any polynomial time algorithm? (SoS hardness result or reduction to PC would offer further evidence for "no" answer.)
- Approximate recovery? (Current proof only rules out exact recovery.)

Thank you!

Necessary condition for optimality of SDP

EXTRA SLIDES NOT INCLUDED IN ORIGINAL Let $M = L_{(C^*)^c \times (C^*)^c}$ denote the submatrix of L outside the community. For $a \in \mathbb{R}$, consider the (random) value of the following SDP:

$$V(a) \triangleq \max_{Z} \langle M, Z \rangle$$
 (1)
s.t. $Z \succeq 0$
 $Z \geq 0$
 $Tr(Z) = 1$
 $\langle \mathbf{J}, Z \rangle = a$.

Necessary condition for optimality of SDP

Theorem (Necessary condition for SDP)

If
$$Z^* \in \widehat{Z}_{\mathrm{SDP}}$$
, then

$$\min_{i \in C^*} e(i, C^*) - \max_{j \notin C^*} e(j, C^*) \ge \sup_{1 \le a \le K} \left\{ V(a) - \frac{a}{K} \max_{j \notin C^*} e(j, C^*) \right\}. \quad (2)$$

Weaker necessary condition (set a = K):

$$\min_{i \in C^*} e(i, C^*) \ge V(K)$$

.

SDP vs. MLE, message passing, and linear MP

Phase diagram for the Gaussian model with $K = \rho n/\log n$ and $\mu = \mu_0 \log n/\sqrt{n}$.