
Seeded Graph Matching: The Power of Multi-
hops

Jiaming Xu
The Fuqua School of Business

Duke University
Joint work with Elchanan Mossel (MIT)

Xiaojun Lin and Liren Yu (Purdue)

Graph matching (network alignment)

• Goal: find the node correspondence between two graphs that
minimizes # of adjacency disagreements
• Noiseless case: reduce to graph isomorphism

Two key challenges

• Statistical: two graphs are not exactly isomorphic
• Computational: # of possible node mapping is 𝑛!

Application 1: Network de-anonymization

• Successfully de-anonymize Netflix by matching it to IMDB [Narayanan-Shmatikov ‘08]

• Correctly identified 30.8% of node mappings between Twitter and Flickr
[Narayanan-Shmatikov ‘09]

Application 2: Machine translation

Automatically find/correct corresp. wiki articles in different languages
[Fishkind-Adali-Patsolic-Meng-Lyzinski-Priebe ’12]

Application 3: Protein interaction network

Aligning PPI networks between different species, to identify conserved
components and genes with common function [Singh-Xu-Berger’ 08]

[Kazemi-Hassani-Grossglauser-Modarres `16]

Application 4: Computer vision

A fundamental problem in computer vision: Detect and match similar
objects that undergo different deformations

Shape Retrieval Contest (SHREC) dataset [Lahner et al ’16]

3-D shapes -> geometric graphs (features -> nodes, distance -> edges)

Beyond worst-case intractability

• Cast as quadratic assignment problem (QAP)

min | 𝐴! − Π𝐴"Π⊺ |$

• NP-hard to solve or approximate in the worst case
• However, real networks are not designed by adversary!
• Recent surge of interest on average-case analysis of matching

correlated random graphs [Cullina-Kiyavash ‘16, 17, Ding-Ma-Wu-X. ‘18, Barak-Chou-Lei-
Schramm-Sheng ‘19, Fan-Mao-Wu-X. ‘19a, 19b, Ganassali-Massoulie ‘20, Mao-Rudelson-Tikhomirov ‘21,…]

Focus of this talk: Seeded graph matching

• An initial seed set of true pairs is revealed

• Goal: Match the remaining vertices based on seeds and graph structures

Seeded graph matching

• The seeds can be obtained by prior knowledge or manual labeling
• Example: Some users provide identifiable information across different social

media [Narayanan-Shmatikov `08]

• However, we often only have very few seeds

Previous ideas: 1-hop witnesses

𝑣

𝑖′

The seed (𝑖, 𝑖′) is a 1-hop witness for (𝑢, 𝑣)

𝐺! 𝐺"

𝑢

𝑖
Matched Vertices
(seeds)

• Most existing seeded matching algorithms use only 1-hop witnesses [Yartseva-
Grossglauser ‘13; Korula-Lattanzi ‘13; Kazemi-Hassani-Grossglauser ‘15].

Unmatched Vertices

• # of 1-hop witnesses => similarity measure

Our ideas: multi-hop witnesses
• Using 1-hop witness is insufficient

• The size of the 1-hop neighborhood can be too small => too few witnesses even for true pairs

𝐺! 𝐺"

1 1

• Explore much larger neighborhoods => more multi-hop witnesses

Matched vertices
(Seeds)

Unmatched vertices

𝐺! 𝐺"

A central challenge in using multi-hop witnesses
Fake pairs may have too many multi-hop witnesses

2

1

2

1

Neighborhood of vertex 1 Neighborhood of vertex 2
Common neighborhood of (1,2)

Matched vertices
(Seeds)

Unmatched vertices

Outline of the remainder

1. Matching correlated ER random graphs

2. Matching power-law graphs

3. Seeded graph neural network

4. Conclusion

Correlated Erdős-Rényi Random Graph Model

• For any two vertices 𝑖 and 𝑗, they are connected
independently with probability 𝑝

𝐺#

• A fraction 𝛼 of true pairs are chosen as seeds

𝐺! 𝐺"

𝑠 𝑠• Sample edges in 𝐺! to construct 𝐺"
and 𝐺# with probability 𝑠 Edge-sampling

Seeds

Relabel nodes according to
random permutation 𝜋∗

• The parent graph 𝐺! has 𝑛 vertices

Performance guarantee

Theorem [Mossel- X. ‘20]
Suppose 𝑠 = Θ(1). All vertices can be correctly matched in polynomial-time with
high probability, if

𝛼𝑛 ≥ .
𝑛%, log 𝑛 ≪ 𝑛𝑝 ≤ 𝑛%

Ω(log 𝑛) , 𝑛𝑝 = Θ(𝑛!/')
,

• Previous work on 1-hop witnesses need	𝛼𝑛 ≳ !
(

 [Korula-Lattanzi ‘14]

• Our results can achieve exponential reduction in seed size requirement

(Sparse regime)

(Dense regime)

Intuition behind

• The size of 𝐷-hop neighborhood ≈ 𝑛𝑝 %

• The size of intersection of two 𝐷-hop
neighborhoods ≈ 𝑛𝑝 % &' !

&

• So we need

𝑛𝑝) ≲ 𝑛	 𝛼 𝑛𝑝𝑠") ≳ log 𝑛

𝐺#

2

1

Fewer witnesses
for fake pairs

Sufficient witnesses
for true pairs

Outline of the remainder

1. Matching correlated ER random graphs

2. Matching power-law graphs

3. Seeded graph neural network

4. Conclusion

Real-world networks have power-law degree distribution

Fraction of vertices with degree ≥ 	𝑘	versus the threshold 𝑘

Many real-world networks have
power-law degree distribution:

𝑃(degree ≥ 𝑘)~𝑘!*+

ER graphs do not match this property

19

Difficulty in matching power-law graphs
Due to the degree fluctuations, a fake pair with high degrees may have many
more witnesses than a true pair with low degrees.

1

3

𝐺! 𝐺"

The true pair 1,1 only has 1 witness, but the fake pair 2,3 has 3 witnesses.

2

1

32

Matched vertices
(Seeds)

Unmatched vertices

20

Difficulty in matching power-law graphs

Our Contribution: PLD only needs Ω(polylog 𝑛)	seeds!

User
Matching
[Korula-

Lattanzi ‘14]

DDM
[Chiasserini-

Garetto-
Leonardi ‘16]

Y-test
[Bringmann-

Friedrich-
Krohmer ‘14]

Number of seeds
required to match
a constant fraction

of 𝑛 vertices

Ω(𝑛/log(𝑛))	 Ω(𝑛!/"-.) Ω(𝑛!/"-.)

21

Power-law
D-hop (PLD)

(ours)

Ω(log 𝑛 /01)
𝜂: the constant

exponent of power-law
degree distribution

Chung-Lu Random Graph Model

• For any two vertices 𝑖 and 𝑗, they are connected
independently with probability	𝑝,- =

.!."
/0.

• A𝑤 = !
/
∑,𝑤,

Parent graph	𝐺#
• Weight of vertex 𝑖: 	𝑤% = c(𝑛/𝑖)

"
#$"

• 𝑃(weight ≥ 𝑘) ≈ 𝑘"&'	
• 2 < 𝜂 < 3

• Each true pair is added into the seed set
with probability 𝛼 independently.

𝐺! 𝐺"

𝑠 𝑠

• Sample edges in 𝐺! to construct 𝐺"
and 𝐺# with probability 𝑠

Edge-sampling

Seeds

Relabel nodes according to
random permutation 𝜋∗

22

𝐺! 𝐺"

Key challenge: how to apply 𝐷-hop witnesses
Fake pairs with high weight may have too many 𝐷-hop witnesses

2

1

2

1

Neighborhood of vertex 1 Neighborhood of vertex 2

Common neighborhoods of (1,2)

23

Key new idea: control the 𝐷-hop neighborhood sizes

candidate vertex-pairs intermediate vertices seeds

2

1

24

Key choice #1: the candidate vertex-pairs

• Carefully choose the candidate vertex-pairs to be matched using the
𝐷-hop witnesses

• Weight is too small
 ⟹ True pairs have too few 𝐷-hop witnesses

• Weight is too large
 ⟹ Fake pairs have too many 𝐷-hop witnesses

• Our choice: weight of candidate vertex-pairs ≈ 𝑛1

2

1

25

Key choice #2: the seeds

• Utilize low-weight seeds while avoiding high-weight seeds.

degree

• There are many more low-weight
seeds than high-weight seeds due to
the power-law degree distribution

• Too many vertex-pairs will have
high-weight seeds as witnesses.

• Our choice: weight of seeds = Θ(1) 26

Key choice #3: the intermediate vertices

• The high-weight vertices are not suitable to be the intermediate
vertices when constructing the 𝐷-hop neighborhoods

• Our choice: weight of intermediate vertices ≤ 𝑛1

• When its weight is too large, an intermediate vertex leads to a very large
neighborhood

2

27

Estimating the size of the controlled 𝐷-hop neighborhoods

• The weight of candidate vertex-pairs ≈ 𝑛!

• The weight of intermediate vertices ≤ 𝑛!

• The weight of seeds ≈ 1

Size of the 𝐷-hop neighborhood
𝑁) =?

Recursion:
𝑁! ≈ 𝑛1
𝑁" ≈ 𝑁! H 𝑛1(4*+)
𝑁4 ≈ 𝑁" H 𝑛1(4*+)
 ⋮
𝑁) ≈ 𝑁)*! H 𝑛1(4*+) ≈ 𝑛1 H 𝑛()*!)1 4*+

1

28

Choice of 𝛾

• The size of the controlled 𝐷-hop neighborhood 𝑁) ≈ 𝑛1(4*+)*! 6!)	

• So we need

	 𝑁)≲
/

789 / #$% 𝛼𝑁) ≳ log 𝑛

• Together, the seed requirement can be dramatically reduced to Ω log 𝑛 :*+	

29

Sufficient witnesses
for true pairs

Fewer witnesses
for fake pairs

Sketch of the whole PLD algorithm

• Partition two graphs into slices
based on the vertex degree

Degree in 𝐺! Degree in 𝐺"

• Match the first slice (degree ≈ 𝑛#) with
𝐷-hop witnesses

• Using matched pairs as new seeds to trigger
a cascading process. Due to sufficient new
seeds, we can just use 1-hop witnesses for
other slices.

Further complication: 1. A true pair may have different degrees. We instead partition graphs by overlapped “imperfect slices”.
 2. For low-degree vertices with insufficient 1-hop witnesses, we apply the PGM algorithm in [Yartseva-
 Grossglauser ‘13] to match them. 30

Theoretical performance guarantee

Theorem [Yu-X.-Lin `21]

Suppose 𝐷 > :*+
4*+

. Choose

𝑛1(4*+)*! 6!) =
𝑐𝑛

log 𝑛 4*+ ,

for a sufficiently small constant 𝑐. If there are Ω(log	𝑛 :*+)	initial seeds chosen

independently at random, with high probability our Power-Law D-hop (PLD)

algorithm correctly matches Ω(𝑛)	vertex-pairs without any error.

• Time Complexity: O 𝑛4*"1(+*!)

31

Experimental results: choice of 𝛾
• Chung-Lu model with 10000 vertices, 𝜂 = 2.5
• Edge-sampling probability 𝑠 = 0.8
• 𝐷 = 3	(use 3-hop witnesses)
• When 𝛾 = 1/[(3	−	η)	(𝐷	−	1)	+	1],	PLD achieves the best matching accuracy

Fraction of Seeds 𝛼
32

η
η
η
η
η

Experimental results: simulated data
• Chung-Lu model with 10000 vertices, 𝜂= 2.5
• Edge-sampling probability 𝑠 = 0.8
• PLD (with optimal 𝛾 = 1/[(3	−	η)	(𝐷	−	1)	+	1]) achieves the best matching accuracy

Fraction of Seeds 𝛼 33

Experimental results: real data
• An Internet router network observed on 9 days (10K nodes, 22K-23K edges)
• Fraction of seeds	𝛼 = 0.01
• PLD achieves the best matching accuracy

34

Outline of the remainder

1. Matching correlated ER random graphs

2. Matching power-law graphs

3. Seeded graph neural network

4. Conclusion

Prior work
Limited to semi-supervised learning:
• Learn node embedding using a common GNN on each graph
• Using the seed set only in the training objective

Downsides:
• Require a very large seed set
• Require additional informative node features
• Only learn within a given pair of graphs and do not generalize

GNN

GNN

Similarities Loss

Seeds

𝐺%

𝐺&

Our method: SeedGNN

37

• Apply the GNN jointly over two graphs:

• Encode seeds as input

• learn the node-pair similarities directly

• Only require topological information

• Supervised learning from matched graph pairs and generalizing to unseen

graph pairs with only a few seeds

Pairwise
GNN

𝐺%

𝐺&

𝐺! 𝐺"

Encode seed information as input

1
2

3

Matched nodes (Seeds)
Unmatched nodes

1
2

3

1 2 3

1 0 0 0

2 0 1 0

3 0 0 0

• If the node-pair (𝑖, 𝑗)	is a seed, then 𝑆! 𝑖, 𝑗 = 1, and 0 otherwise.

𝑆!

• Vectoralization input: 𝑠! = vec 𝑆! ∈ 0,1 /&/'×!

Architecture overview

39

ℎ$ = (𝐴!⨂𝐴")𝑠$

Convolution Module

MLP 𝜙$
MLP 𝜌$

SoftMax

Percolation Module

Hungarian

Masking𝑠' Concat 𝑠'(%	

The 𝑙-layer of SeedGNN

• Convolution (local): Computing multi-hop witness information
• Percolation (global): Use highly-confident matched pairs as new seeds

Convolution Module

ℎ$ = (𝐴!⨂𝐴")𝑠$

Convolution Module

MLP 𝜙$• Count 1-hop witnesses: ℎ! = (𝐴!⨂𝐴")𝑠!
• 𝐴% is the adjacent matrix of 𝐺%, 𝑖 = 1,2

• ℎ! 𝑖 − 1 𝑛" + 𝑗, : = ∑ &,(:	+! &,% ,!,+" (,- ,! 𝑠![(𝑢 − 1)𝑛" + 𝑣, :]

• Compute 𝑙-hop witnesses: ℎ? = (𝐴!⨂𝐴")𝑠?
• 𝑠$ contains witness information within 𝑙 − 1 -hops and new seeds from percolation

• Apply 𝐾-layer neural network to combine different types of witness information

𝑚? = 𝜙? ℎ? 	

(Neighborhood aggregation)

Percolation Module

41

• Map vector representations to scalar similarities:	𝑥? = 𝜌?(𝑚?)

• Normalization:	𝑌? 	= softmax 𝑋? MLP 𝜌$

SoftMax

Percolation Module

• Similarity matrix contains a lot of “noisy” information:
• Many fake pairs have comparable similarity with true pairs.

• Use “Masking” to clean up the “noisy” information:
• Use the Hungarian algorithm to find highly-confident node-pairs.
• Discard potential noisy node-pairs

Hungarian

Masking

Architecture overview

42

• Time complexity: 𝑂(𝑛!𝑛"")

• Space complexity: 𝑂(𝑛!𝑛")

Convolution + Percolation adaptively decide on using which hops of witness information

ℎ$ = (𝐴!⨂𝐴")𝑠$

Convolution Module

MLP 𝜙$
MLP 𝜌$

SoftMax

Percolation Module

Hungarian

Masking𝑠' Concat 𝑠'(%	

The 𝑙-layer of SeedGNN

Loss function

43

Layer 1 Layer 2 Layer L Loss

• For each pair of graphs ℘, add up the cross-entropy loss of every layer:

• The total loss function is:

𝐿𝑜𝑠𝑠 𝜗 	= 	 Q
℘∈	012%3%34	560

𝐿𝑜𝑠𝑠℘(𝜗)

.

𝐿𝑜𝑠𝑠℘ 𝜗 	= 	 −Q
$,!

7

Q
%,- ,-,8(%)

log(𝑌$(𝑖, 𝑗)) + Q
%,- ,-;8(%)

log(1 − 𝑌$(𝑖, 𝑗))

Experimental setting
Training set:
• The correlated Erdős-Rényi graph model:

• 100 pairs of graphs, 𝑛 = 100, 𝑝 ∈ {0.1, 0.3, 0.5}, 𝑠 ∈ {0.6, 0.8, 1}

44

• Subsampled facebook networks [Traud et al., 2012]: size range from 962 to 32361

Baselines for comparison:
• 𝑫-hop algorithm: Use 𝐷-hop witnesses, iterate 𝑇 times
• PGM: Iteratively match node-pairs with ≥ 2 witnesses as new seeds
• SGM: Convex relaxation algorithm using the Frank–Wolfe method
• PLD: Designed for power-law graphs
• MGCN: Semi-supervised seeded graph matching

Experimental results: correlated Erdős-Rényi graphs
• Test graph pairs: 𝒏	 = 𝟓𝟎𝟎, 𝑠 = 0.8, 𝑝 = 0.01	or	0.2.

Experimental results: computer vision data

• Matching 3D deformable shapes: each shape is represented by a triangulated mesh graph
(8K−11K verSces, vertex degrees highly concentrate on 6)

• The SHREC’16 Dataset is not in the training set

46

Conclusion

• Develop a new notion of “multi-hop witness” for seeded graph matching

• # of seeds needed for poly-time recovery can be as low as
Ω(polylog 𝑛)	for matching both ER and power-law graphs

• Design a new graph neural network that learns to compute “multi-hop”
witnesses and to match unseen graphs of various types and sizes.

