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Graph matching (network alignment)

• Goal: find the node correspondence between two graphs that 
minimizes # of adjacency disagreements
• Noiseless case: reduce to graph isomorphism



Two key challenges

• Statistical: two graphs are not exactly isomorphic
• Computational: # of possible node mapping is 𝑛!



Application 1: Network de-anonymization

• Successfully de-anonymize Netflix by matching it to IMDB [Narayanan-Shmatikov ‘08]

• Correctly identified 30.8% of node mappings between Twitter and Flickr 
[Narayanan-Shmatikov ‘09]



Application 2: Machine translation

Automatically find/correct corresp. wiki articles in different languages 
[Fishkind-Adali-Patsolic-Meng-Lyzinski-Priebe ’12]



Application 3: Protein interaction network

Aligning PPI networks between different species, to identify conserved 
components and genes with common function [Singh-Xu-Berger’ 08]

[Kazemi-Hassani-Grossglauser-Modarres `16]



Application 4: Computer vision

A fundamental problem in computer vision: Detect and match similar 
objects that undergo different deformations

Shape Retrieval Contest (SHREC) dataset [Lahner et al ’16]

3-D shapes -> geometric graphs (features -> nodes, distance -> edges)



Beyond worst-case intractability 

• Cast as quadratic assignment problem (QAP)

min | 𝐴! − Π𝐴"Π⊺ |$

• NP-hard to solve or approximate in the worst case
• However, real networks are not designed by adversary!
• Recent surge of interest on average-case analysis of matching 

correlated random graphs [Cullina-Kiyavash ‘16, 17, Ding-Ma-Wu-X. ‘18, Barak-Chou-Lei-
Schramm-Sheng ‘19, Fan-Mao-Wu-X. ‘19a, 19b, Ganassali-Massoulie ‘20, Mao-Rudelson-Tikhomirov ‘21,…]



Focus of this talk: Seeded graph matching

• An initial seed set of true pairs is revealed

• Goal: Match the remaining vertices based on seeds and graph structures



Seeded graph matching

• The seeds can be obtained by prior knowledge or manual labeling
• Example: Some users provide identifiable information across different social 

media [Narayanan-Shmatikov `08]

• However, we often only have very few seeds



Previous ideas: 1-hop witnesses

𝑣

𝑖′

The seed (𝑖, 𝑖′) is a 1-hop witness for (𝑢, 𝑣)

𝐺!                                                    𝐺"

𝑢

𝑖
Matched Vertices 
(seeds)

• Most existing seeded matching algorithms use only 1-hop witnesses [Yartseva-
Grossglauser ‘13; Korula-Lattanzi ‘13; Kazemi-Hassani-Grossglauser ‘15].

Unmatched Vertices

•  # of 1-hop witnesses  => similarity measure 



Our ideas: multi-hop witnesses
• Using 1-hop witness is insufficient

• The size of the 1-hop neighborhood can be too small => too few witnesses even for true pairs

𝐺!                                                      𝐺"

1 1

• Explore much larger neighborhoods => more multi-hop witnesses

Matched vertices  
(Seeds)

Unmatched vertices  



𝐺!                                                                  𝐺"

A central challenge in using multi-hop witnesses
Fake pairs may have too many multi-hop witnesses 
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1

2

1

Neighborhood of vertex 1 Neighborhood of vertex 2
Common neighborhood of (1,2)

Matched vertices  
(Seeds)

Unmatched vertices



Outline of the remainder

1. Matching correlated ER random graphs

2. Matching power-law graphs

3. Seeded graph neural network

4. Conclusion



Correlated Erdős-Rényi Random Graph Model

• For any two vertices 𝑖 and 𝑗, they are connected 
independently with probability 𝑝

𝐺#

• A fraction 𝛼 of true pairs are chosen as seeds

𝐺! 𝐺"

𝑠 𝑠• Sample edges in 𝐺! to construct 𝐺" 
and 𝐺# with probability 𝑠 Edge-sampling

Seeds

Relabel nodes according to 
random permutation 𝜋∗

• The parent graph 𝐺! has 𝑛 vertices 



Performance guarantee

Theorem [Mossel- X. ‘20]
Suppose 𝑠 = Θ(1). All vertices can be correctly matched in polynomial-time with 
high probability, if

𝛼𝑛 ≥ .
𝑛%, log 𝑛 ≪ 𝑛𝑝 ≤ 𝑛%

Ω(log 𝑛) , 𝑛𝑝 = Θ(𝑛!/')
,

• Previous work on 1-hop witnesses need	𝛼𝑛 ≳ !
(

  [Korula-Lattanzi ‘14]

• Our results can achieve exponential reduction in seed size requirement

(Sparse regime)

(Dense regime)



Intuition behind

• The size of 𝐷-hop neighborhood ≈ 𝑛𝑝 %

• The size of intersection of two 𝐷-hop 
neighborhoods ≈ 𝑛𝑝 % &' !

&
  

• So we need

𝑛𝑝 ) ≲ 𝑛	 𝛼 𝑛𝑝𝑠" ) ≳ log 𝑛

𝐺#

2

1

Fewer witnesses 
for fake pairs

Sufficient witnesses 
for true pairs
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Real-world networks have power-law degree distribution

Fraction of vertices with degree ≥ 	𝑘	versus the threshold 𝑘

Many real-world networks have 
power-law degree distribution:

𝑃(degree ≥ 𝑘)~𝑘!*+

ER graphs do not match this property

19



Difficulty in matching power-law graphs
Due to the degree fluctuations, a fake pair with high degrees may have many 
more witnesses than a true pair with low degrees.

1

3

𝐺!                                                         𝐺"

The true pair 1,1  only has 1 witness, but the fake pair 2,3  has 3 witnesses. 

2

1

32

Matched vertices  
(Seeds)

Unmatched vertices
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Difficulty in matching power-law graphs

Our Contribution: PLD only needs Ω(polylog 𝑛)	seeds!

User 
Matching 
[Korula-

Lattanzi ‘14] 

DDM 
[Chiasserini-

Garetto-
Leonardi ‘16] 

Y-test 
[Bringmann-

Friedrich-
Krohmer ‘14]

Number of seeds 
required to match 
a constant fraction 

of 𝑛 vertices

Ω(𝑛/log(𝑛))	 Ω(𝑛!/"-.) Ω(𝑛!/"-.) 

21

Power-law 
D-hop (PLD) 

(ours)

Ω( log 𝑛 /01) 
𝜂: the constant 

exponent of power-law 
degree distribution



Chung-Lu Random Graph Model

• For any two vertices 𝑖 and 𝑗, they are connected 
independently with probability	𝑝,- =

.!."
/0.

• A𝑤 = !
/
∑,𝑤,

Parent graph	𝐺#
• Weight of vertex 𝑖: 	𝑤% = c(𝑛/𝑖)

"
#$"

• 𝑃(weight ≥ 𝑘) ≈ 𝑘"&'	
• 2 < 𝜂 < 3

• Each true pair is added into the seed set 
with probability 𝛼 independently. 

𝐺! 𝐺"

𝑠 𝑠

• Sample edges in 𝐺! to construct 𝐺" 
and 𝐺# with probability 𝑠

Edge-sampling

Seeds

Relabel nodes according to 
random permutation 𝜋∗

22



𝐺!                                                                          𝐺"

Key challenge: how to apply 𝐷-hop witnesses
Fake pairs with high weight may have too many 𝐷-hop witnesses 

2

1

2

1

Neighborhood of vertex 1 Neighborhood of vertex 2

Common neighborhoods of (1,2)
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Key new idea: control the 𝐷-hop neighborhood sizes

candidate vertex-pairs     intermediate vertices                  seeds

2

1
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Key choice #1: the candidate vertex-pairs 

• Carefully choose the candidate vertex-pairs to be matched using the 
𝐷-hop witnesses

• Weight is too small 
    ⟹ True pairs have too few 𝐷-hop witnesses 

• Weight is too large
   ⟹ Fake pairs have too many 𝐷-hop witnesses 

• Our choice: weight of candidate vertex-pairs ≈ 𝑛1

2

1
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Key choice #2: the seeds

• Utilize low-weight seeds while avoiding high-weight seeds.

degree

• There are many more low-weight 
seeds than high-weight seeds due to 
the power-law degree distribution

• Too many vertex-pairs will have 
high-weight seeds as witnesses.

• Our choice: weight of seeds = Θ(1) 26



Key choice #3: the intermediate vertices

• The high-weight vertices are not suitable to be the intermediate 
vertices when constructing the 𝐷-hop neighborhoods

• Our choice: weight of intermediate vertices ≤ 𝑛1

• When its weight is too large, an intermediate vertex leads to a very large 
neighborhood

2

27



Estimating the size of the controlled 𝐷-hop neighborhoods

• The weight of candidate vertex-pairs ≈ 𝑛!

• The weight of intermediate vertices ≤ 𝑛!

• The weight of seeds ≈ 1

Size of the 𝐷-hop neighborhood 
𝑁) =?

Recursion:
𝑁! ≈ 𝑛1 
𝑁" ≈ 𝑁! H 𝑛1(4*+) 
𝑁4 ≈ 𝑁" H 𝑛1(4*+) 
       ⋮ 
𝑁) ≈ 𝑁)*! H 𝑛1(4*+) ≈ 𝑛1 H 𝑛()*!)1 4*+  

1

28



Choice of 𝛾

• The size of the controlled 𝐷-hop neighborhood 𝑁) ≈ 𝑛1( 4*+ )*! 6!)	

• So we need

	 𝑁)≲
/

789 / #$% 𝛼𝑁) ≳ log 𝑛

• Together, the seed requirement can be dramatically reduced to Ω log 𝑛 :*+	

29

Sufficient witnesses 
for true pairs

Fewer witnesses 
for fake pairs



Sketch of the whole PLD algorithm

• Partition two graphs into slices 
based on the vertex degree

Degree in 𝐺! Degree in 𝐺"

• Match the first slice (degree ≈ 𝑛#	 ) with 
𝐷-hop witnesses

• Using matched pairs as new seeds to trigger 
a cascading process. Due to sufficient new 
seeds, we can just use 1-hop witnesses for 
other slices. 

Further complication: 1. A true pair may have different degrees. We instead partition graphs by overlapped “imperfect slices”.
      2. For low-degree vertices with insufficient 1-hop witnesses, we apply the PGM algorithm in [Yartseva- 
           Grossglauser ‘13] to match them. 30



Theoretical performance guarantee

Theorem [Yu-X.-Lin `21]

Suppose 𝐷 > :*+
4*+

. Choose

𝑛1( 4*+ )*! 6!) =
𝑐𝑛

log 𝑛 4*+ ,

for a sufficiently small constant 𝑐. If there are Ω( log	𝑛 :*+	)	initial seeds chosen 

independently at random, with high probability our Power-Law D-hop (PLD) 

algorithm correctly matches Ω(𝑛)	vertex-pairs without any error.

• Time Complexity: O 𝑛4*"1(+*!)

31



Experimental results: choice of 𝛾
• Chung-Lu model with 10000 vertices, 𝜂 = 2.5 
• Edge-sampling probability 𝑠 = 0.8
• 𝐷 = 3	(use 3-hop witnesses)
• When 𝛾 = 1/[(3	−	η)	(𝐷	−	1)	+	1],	PLD achieves the best matching accuracy

Fraction of Seeds 𝛼
32
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Experimental results: simulated data 
• Chung-Lu model with 10000 vertices, 𝜂= 2.5 
• Edge-sampling probability 𝑠 = 0.8
• PLD (with optimal 𝛾 = 1/[(3	−	η)	(𝐷	−	1)	+	1]) achieves the best matching accuracy

Fraction of Seeds 𝛼 33



Experimental results: real data 
• An Internet router network observed on 9 days (10K nodes, 22K-23K edges) 
• Fraction of seeds	𝛼 = 0.01
• PLD achieves the best matching accuracy

34



Outline of the remainder

1. Matching correlated ER random graphs

2. Matching power-law graphs

3. Seeded graph neural network

4. Conclusion



Prior work
Limited to semi-supervised learning:
• Learn node embedding using a common GNN on each graph
• Using the seed set only in the training objective

Downsides:
• Require a very large seed set
• Require additional informative node features
• Only learn within a given pair of graphs and do not generalize

GNN

GNN

Similarities Loss

Seeds

𝐺%

𝐺&



Our method: SeedGNN

37

• Apply the GNN jointly over two graphs:

• Encode seeds as input

• learn the node-pair similarities directly

• Only require topological information

• Supervised learning from matched graph pairs and generalizing to unseen 

graph pairs with only a few seeds

Pairwise 
GNN

𝐺%

𝐺&



𝐺!                                        𝐺"

Encode seed information as input

1
2

3

Matched nodes (Seeds)
Unmatched nodes

1
2

3

1 2 3

1 0 0 0

2 0 1 0

3 0 0 0

• If the node-pair (𝑖, 𝑗)	is a seed, then 𝑆! 𝑖, 𝑗 = 1, and 0 otherwise.

𝑆!

• Vectoralization input: 𝑠! = vec 𝑆! ∈ 0,1 /&/'×!



Architecture overview

39

ℎ$ = (𝐴!⨂𝐴")𝑠$

Convolution Module

MLP 𝜙$
MLP 𝜌$

SoftMax

Percolation Module

Hungarian

Masking𝑠' Concat 𝑠'(%	

The 𝑙-layer of SeedGNN

• Convolution (local): Computing multi-hop witness information
• Percolation (global): Use highly-confident matched pairs as new seeds



Convolution Module

ℎ$ = (𝐴!⨂𝐴")𝑠$

Convolution Module

MLP 𝜙$• Count 1-hop witnesses: ℎ! = (𝐴!⨂𝐴")𝑠!
• 𝐴% is the adjacent matrix of 𝐺%, 𝑖 = 1,2

• ℎ! 𝑖 − 1 𝑛" + 𝑗, : = ∑ &,( :	+! &,% ,!,+" (,- ,! 𝑠![(𝑢 − 1)𝑛" + 𝑣, : ]

• Compute 𝑙-hop witnesses: ℎ? = (𝐴!⨂𝐴")𝑠?
• 𝑠$ contains witness information within 𝑙 − 1 -hops and new seeds from percolation

• Apply 𝐾-layer neural network to combine different types of witness information

𝑚? = 𝜙? ℎ? 	

(Neighborhood aggregation)



Percolation Module

41

• Map vector representations to scalar similarities:	𝑥? = 𝜌?(𝑚?)

• Normalization:	𝑌? 	= softmax 𝑋? MLP 𝜌$ 

SoftMax

Percolation Module

• Similarity matrix contains a lot of “noisy” information:
• Many fake pairs have comparable similarity with true pairs. 

• Use “Masking” to clean up the “noisy” information:
• Use the Hungarian algorithm to find highly-confident node-pairs.
• Discard potential noisy node-pairs

Hungarian

Masking



Architecture overview

42

• Time complexity: 𝑂(𝑛!𝑛"")

• Space complexity: 𝑂(𝑛!𝑛")

Convolution + Percolation adaptively decide on using which hops of witness information

ℎ$ = (𝐴!⨂𝐴")𝑠$

Convolution Module

MLP 𝜙$
MLP 𝜌$

SoftMax

Percolation Module

Hungarian

Masking𝑠' Concat 𝑠'(%	

The 𝑙-layer of SeedGNN



Loss function
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Layer 1 Layer 2 Layer L Loss

• For each pair of graphs ℘, add up the cross-entropy loss of every layer:

• The total loss function is:

𝐿𝑜𝑠𝑠 𝜗 	= 	 Q
℘∈	012%3%34	560

𝐿𝑜𝑠𝑠℘(𝜗)

. . . . .

𝐿𝑜𝑠𝑠℘ 𝜗 	= 	 −Q
$,!

7

Q
%,- ,-,8(%)

log(𝑌$(𝑖, 𝑗)) + Q
%,- ,-;8(%)

log(1 − 𝑌$(𝑖, 𝑗))



Experimental setting
Training set:
• The correlated Erdős-Rényi graph model:

• 100 pairs of graphs, 𝑛 = 100, 𝑝 ∈ {0.1, 0.3, 0.5}, 𝑠 ∈ {0.6, 0.8, 1}

44

• Subsampled facebook networks [Traud et al., 2012]: size range from 962 to 32361

Baselines for comparison:
• 𝑫-hop algorithm: Use 𝐷-hop witnesses, iterate 𝑇 times
• PGM: Iteratively match node-pairs with ≥ 2 witnesses as new seeds
• SGM: Convex relaxation algorithm using the Frank–Wolfe method 
• PLD: Designed for power-law graphs
• MGCN: Semi-supervised seeded graph matching



Experimental results: correlated Erdős-Rényi graphs
• Test graph pairs: 𝒏	 = 𝟓𝟎𝟎, 𝑠 = 0.8, 𝑝 = 0.01	or	0.2.



Experimental results: computer vision data  

• Matching 3D deformable shapes: each shape is represented by a triangulated mesh graph 
(8K−11K verSces, vertex degrees highly concentrate on 6)

• The SHREC’16 Dataset is not in the training set
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Conclusion

• Develop a new notion of “multi-hop witness” for seeded graph matching

• # of seeds needed for poly-time recovery can be as low as 
Ω(polylog 𝑛)	for matching both ER and power-law graphs

• Design a new graph neural network that learns to compute “multi-hop” 
witnesses and to match unseen graphs of various types and sizes.  


