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Graph matching (network alignment)

/

* Goal: find the node correspondence between two graphs that
minimizes # of adjacency disagreements

* Noiseless case: reduce to graph isomorphism



Two key challenges

e Statistical: two graphs are not exactly isomorphic
* Computational: # of possible node mapping is n!
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Application 1: Network de-anonymization

Linked [T})

* Successfully de-anonymize Netflix by matching it to IMDB [narayanan-Shmatikov ‘08]
* Correctly identified 30.8% of node mappings between Twitter and Flickr

[Narayanan-Shmatikov ‘09]



Application 2: Machine translation

English Wikipedia French Wikipédia

Comptabilité

y
— économiques

Automatically find/correct corresp. wiki articles in different languages
[Fishkind-Adali-Patsolic-Meng-Lyzinski-Priebe "12]



Application 3: Protein interaction network
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[Kazemi-Hassani-Grossglauser-Modarres 16]

Aligning PPl networks between different species, to identify conserved
components and genes with common function [singh-xu-Berger’ 08]



Application 4: Computer vision

A fundamental problem in computer vision: Detect and match similar
objects that undergo different deformations

Shape Retrieval Contest (SHREC) dataset [Lahner et al "16]

3-D shapes -> geometric graphs (features -> nodes, distance -> edges)



Beyond worst-case intractability

e Cast as quadratic assignment problem (QAP)

min ||A; — A IT'||

* NP-hard to solve or approximate in the worst case
* However, real networks are not designed by adversary!

* Recent surge of interest on average-case analysis of matching

correlated random graphs [Cullina-Kiyavash ‘16, 17, Ding-Ma-Wu-X. ‘18, Barak-Chou-Lei-
Schramm-Sheng ‘19, Fan-Mao-Wu-X. ‘19a, 19b, Ganassali-Massoulie ‘20, Mao-Rudelson-Tikhomirov ‘21, ...]



Focus of this talk: Seeded graph matching

* An initial seed set of true pairs is revealed

e Goal: Match the remaining vertices based on seeds and graph structures



Seeded graph matching

* The seeds can be obtained by prior knowledge or manual labeling

* Example: Some users provide identifiable information across different social
media [Narayanan-Shmatikov "08]

Alice@facebook Alice@instagram

v Alice@twitter
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* However, we often only have very few seeds



Previous ideas: 1-hop witnesses
Gl GZ

Matched Vertices
(seeds)

‘ ‘ Unmatched Vertices

The seed (i,1') is a 1-hop witness for (1, V)

* #of 1-hop witnesses => similarity measure

* Most existing seeded matching algorithms use only 1-hop witnesses [Yartseva-
Grossglauser ‘13; Korula-Lattanzi ‘13; Kazemi-Hassani-Grossglauser ‘15].



Our ideas: multi-hop withesses

* Using 1-hop witness is insufficient
* The size of the 1-hop neighborhood can be too small => too few witnesses even for true pairs

* Explore much larger neighborhoods => more multi-hop witnesses

@® Matched vertices
(Seeds)

‘ Unmatched vertices




A central challenge in using multi-hop witnhesses

Fake pairs may have too many multi-hop witnesses

G2

@ Matched vertices
(Seeds)

@ Unmatched vertices

| Common neighborhood of (1,2)
Neighborhood of vertex 1 Neighborhood of vertex 2



Outline of the remainder

1. Matching correlated ER random graphs
2. Matching power-law graphs
3. Seeded graph neural network

4. Conclusion



Correlated Erd6s-Rényi Random Graph Model

The parent graph G has n vertices

Go
For any two vertices i and J, they are connected X
independently with probability p
I - S S
Sample efjges in Gy -t.o construct G4 / Edge-sampling \
and G, with probability s
A fraction a of true pairs are chosen as seeds Relabel nodes according to

random permutation m*

© Seeds



Performance guarantee

Theorem [Mossel- X. 20]

Suppose s = O(1). All vertices can be correctly matched in polynomial-time with
high probability, if

ne, logn K np < n® (Sparse regime)
Q(log Tl) , np = @(n ) (Dense regime)

: . 1
* Previous work on 1-hop witnesses need an = - [Korula-Lattanzi ‘14]

* Our results can achieve exponential reduction in seed size requirement



Intuition behind

Go

* The size of D-hop neighborhood =~ (np)?
* The size of intersection of two D-hop

. p (np)P
neighborhoods ~ (np)” ~—
* So we need
(np)P s n a(nps?)P = logn
\ J \ J
| |
Fewer witnesses Sufficient witnesses

for fake pairs for true pairs



Outline of the remainder

1. Matching correlated ER random graphs
2. Matching power-law graphs
3. Seeded graph neural network

4. Conclusion



Real-world networks have power-law degree distribution
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Difficulty in matching power-law graphs

Due to the degree fluctuations, a fake pair with high degrees may have many
more withesses than a true pair with low degrees.

Gl GZ

@ Matched vertices
(Seeds)

‘ ‘ Unmatched vertices

The true pair (1,1) only has 1 witness, but the fake pair (2,3) has 3 witnesses.
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Difficulty in matching power-law graphs

User DDM Y-test Power-law
Matching | [Chiasserini- | [Bringmann- D-hop (PLD)
[Korula- Garetto- Friedrich- (ort:rs)
Lattanzi ‘14] | Leonardi ‘16] | Krohmer ‘14]
Number of seeds Q((log n)4—17)
required to match 0 1 1/2+€ 1/2+€ n: the constant
a constant fraction (Tl/ Og(‘l’l)) .Q.(Tl ) ‘Q'(n ) '

of n vertices

Our Contribution: PLD only needs Q) (polylogn) seeds!

exponent of power-law
degree distribution
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Chung-Lu Random Graph Model

1
Weight of vertex i: w; = c(n/i)n-1 =<
« P(weight > k) ~ k™"
e 2<n<3

Parent graph Gy

For any two vertices i and J, they are connected

W;i W]
independently with probability p;; =

nw S \ S
/ Edge-sampling

Sample edges in G to construct G4
and G, with probability s

§I

— _ZLWL

Each true pair is added into the seed set

with probability a independently. Relabel nodes according to
random permutation m*

. Seeds 22



Key challenge: how to apply D-hop witnesses

Fake pairs with high weight may have too many D-hop witnesses
G

| Common neighborhoods of (1,2)

Neighborhood of vertex 1 Neighborhood of vertex 2



Key new idea: control the D-hop neighborhood sizes

candidate vertex-pairs intermediate vertices seeds

24



Key choice #1: the candidate vertex-pairs

e Carefully choose the candidate vertex-pairs to be matched using the
D-hop witnesses

* Weight is too small
= True pairs have too few D-hop witnhesses

* Weight is too large
— Fake pairs have too many D-hop witnesses

* Our choice: weight of candidate vertex-pairs = n"

25



Key choice #2: the seeds

* Utilize low-weight seeds while avoiding high-weight seeds.

* There are many more low-weight * Too many vertex-pairs will have
seeds than high-weight seeds due to high-weight seeds as witnesses.

/\ the power-law degree distribution

g |

v, .

degree

* Our choice: weight of seeds = 0(1) 26



Key choice #3: the intermediate vertices

* The high-weight vertices are not suitable to be the intermediate
vertices when constructing the D-hop neighborhoods

 When its weight is too large, an intermediate vertex leads to a very large
neighborhood

e Our choice: weight of intermediate vertices < nY

27



Estimating the size of the controlled D-hop neighborhoods

* The weight of candidate vertex-pairs = n¥
* The weight of intermediate vertices < n¥
* The weight of seeds = 1

Size of the D-hop neighborhood
ND =7
Recursion:

ND ~ ND—l . nY(3—77) ~ ny . n(D—l)V(3—77)

28



Choice of ¥

* The size of the controlled D-hop neighborhood Np = nY(G=mD-1+1)

* So we nheed

n
< =
Np=< Qog )3 aNp = logn
\ J
' \ y J
Fewer witnesses Sufficient witnesses
for fake pairs for true pairs

* Together, the seed requirement can be dramatically reduced to Q( (logn)*~")



Sketch of the whole PLD algorithm

* Using matched pairs as new seeds to trigger « Match the first slice (degree ~ n¥ ) with
a cascading process. Due to sufficient new D-hop witnesses
seeds, we can just use 1-hop witnesses for
other slices.

eTalalelelaEeRpuualafalalalake

* Partition two graphs into slices
based on the vertex degree

v
v

Degree in G4 Degree in G,
Further complication: 1. A true pair may have different degrees. We instead partition graphs by overlapped “imperfect slices”.
2. For low-degree vertices with insufficient 1-hop witnesses, we apply the PGM algorithm in [Yartseva-

Grossglauser “13] to match them.



Theoretical performance guarantee

Theorem [Yu-X.-Lin "21]

4
_77. Choose

Suppose D > -

cn
(logn)3—"’

for a sufficiently small constant c. If there are Q( (log n)*™™) initial seeds chosen

nY(@-m(D-1D+1) _

independently at random, with high probability our Power-Law D-hop (PLD)

algorithm correctly matches (L(n) vertex-pairs without any error.

» Time Complexity: 0(n372¥(1—1))

31



Experimental results: choice of y

Chung-Lu model with 10000 vertices, n = 2.5
Edge-sampling probability s = 0.8

D = 3 (use 3-hop witnesses)
Wheny =1/[(3 —n) (D — 1) + 1], PLD achieves the best matching accuracy

\1 f . . ,
——~=1/(3-n)(D-1)
—=—v=1/((3M)(D-1)+1)| |
o — == 1/((3-T)(D-1)+2)| 4
o —&—=1/((3-N)(D-1)+3)
oC — & —y=1/((3-N)(D-1)+4)|
> -
O &
S .
-
O
O
<
_______ P
T - _ _
0.00 0.006 0.008 0.01

Fraction of Seeds «

32



Experimental results: simulated data

* Chung-Lu model with 10000 vertices, n=2.5
* Edge-sampling probability s = 0.8
* PLD (with optimaly = 1/[(3 —n) (D — 1) + 1]) achieves the best matching accuracy

P
o —&—PLD D=2
S — & —PLD D=3 |
~%-—PLD D=4 P
—e—DDM
. _o|--=-Y-pst )\
o _|—&—User Matching | -
BT e 2oy
-4—-PGM

Accuracy Rate

e

0 0.005

0.01 0.015 0.02 0.025 0.03
Fraction of Seeds «
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Experimental results: real data

* An Internet router network observed on 9 days (10K nodes, 22K-23K edges)

* Fraction of seeds a = 0.01
e PLD achieves the best matching accuracy

——PLD D=2
—-e-PLD D=3
-+-PLD D=4
—=—DDM
—&-Y-test
—o—User Matching
—&-2-hop
-+-PGM

Accuracy Rate

3/31 4/7 4/14 4/21 4/28 5/5 5/12 5/19 5/26
Date 34
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Prior work

Limited to semi-supervised learning:
* Learn node embedding using a common GNN on each graph

* Using the seed set only in the training objective

Seeds
4 ) 4 )
. J . J [ ) (
Similarities " Loss
4 ) 4 ) L J
g J _ J
Downsides:

e Require a very large seed set
* Require additional informative node features
* Only learn within a given pair of graphs and do not generalize



Our method: SeedGNN

* Apply the GNN jointly over two graphs:

Pairwise
GNN

* Encode seeds as input

* learn the node-pair similarities directly

* Only require topological information

e Supervised learning from matched graph pairs and generalizing to unseen

graph pairs with only a few seeds



Encode seed information as input

* |If the node-pair (i,)) is a seed, then S;(i,j) = 1, and 0 otherwise.

Gy G2

® Matched nodes (Seeds)
@ Unmatched nodes

* Vectoralization input: s; = vec(S;) € {0,1}"1"2*1



Architecture overview

The [-layer of SeedGNN

/ Convolution Module

Ehl = (A1©43)s; H MLP ¢, ]}7

Percolation Module

e

AU

[ MLP p, ] [ Masking ]

[ SoftMax ]—>[ Hungarian]

N

\
H[ Concat }

Si+1

4

.

J

e Convolution (local): Computing multi-hop witness information

* Percolation (global): Use highly-confident matched pairs as new seeds

39



Convolution Module Convolution Module

* Count 1-hop witnesses: hy = (A1®A4,)s4 [[hz = (A1®4;)s H MLP ¢, ﬂ

* A;is the adjacent matrixof G;, i = 1,2

* [ =Dny+j,:] = Xww): a,wi=1.4,w,)=151[k — Dny + v,:]  (Neighborhood aggregation)

* Compute [-hop witnesses: h; = (A1®A4,)s;

* s; contains witness information within (I — 1)-hops and new seeds from percolation

* Apply K-layer neural network to combine different types of witness information

m; = ¢;(hy)



Percolation Module

* Map vector representations to scalar similarities: x; = p;(m;) Percolation Module

* Normalization: ¥; = softmax(X;) g [ MLP p, ] [ Masking ]\

 Similarity matrix contains a lot of “noisy” information: [ SoftMax ]—{ Hungarian ]
* Many fake pairs have comparable similarity with true pairs. =

Y|

o | 0.02 gek:{sl 0.05 | O.

© | 0.1 [0.05]0.3
-04

< | 0.1 |0.06 0.26‘ b

m@)o.os o.1e< i

1 2 3

=02

-0.0

* Use “Masking” to clean up the “noisy” information:
e Use the Hungarian algorithm to find highly-confident node-pairs.
* Discard potential noisy node-pairs 41




Architecture overview

The [-layer of SeedGNN

/ Convolution Module

v

b ﬁhl = (4:1®45)s; H MLP ¢, ]]7

Percolation Module

e

AU

[ MLP p, ] [ Masking]

[ SoftMax H Hungarian]

N

Si+1

H[ Concat }

4

.

J

v

Convolution + Percolation adaptively decide on using which hops of withess information

* Time Complexity: 0("1"%)

* Space complexity: O(n{n,)

42



Loss function

Layer 1 Layer2 | e e Layer L [ Loss }

! | |
- ©® ® |

* For each pair of graphs £, add up the cross-entropy loss of every layer:

L

Loss(®) = Ogi(L) + ), logl1 = %(01))

=1 <(i, D, j=mr() (i,)),j#m (i)

 The total loss function is:

Loss(9) = Z Lossg,(19)
€ training set



Experimental setting

Training set:
* The correlated Erd6s-Rényi graph model:
* 100 pairs of graphs, n = 100,p € {0.1,0.3,0.5},s € {0.6,0.8, 1}

e Subsampled facebook networks [Traud et al., 2012]: size range from 962 to 32361

Baselines for comparison:

* D-hop algorithm: Use D-hop witnesses, iterate T times

 PGM: Iteratively match node-pairs with = 2 witnesses as new seeds
* SGM: Convex relaxation algorithm using the Frank—Wolfe method

e PLD: Designed for power-law graphs

MGCN: Semi-supervised seeded graph matching



Experimental results: correlated Erd8s-Rényi graphs

 Test graph pairs:n = 500, s =0.8, p = 0.01 or 0.2.

—&— SeedGNNL=6 ~-M- SGM =%~ 1l-hopT=6 =—k=- 2-hopT=3 -4~ 3-hopT=2 -«4- PGM -—9— MGCN
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< 0.2- L.0:2:4
0.0 ot - - | 0.0 —boopo 4o
0.0 0.04 0.08 0.12 0.16 0.2 0.00 0.01 0.02 0.03 0.04 o0.05
Fraction of Seeds 6 Fraction of Seeds @

(a) p = 0.01 (b) p = 0.2



Experimental results: computer vision data

* Matching 3D deformable shapes: each shape is represented by a triangulated mesh graph
(8K-11K vertices, vertex degrees highly concentrate on 6)

 The SHREC’16 Dataset is not in the training set

1.0
9 0.8 -
©
a'd 0.6 - —8— SeedGNN L=6
o -~ SGM
© —% - 1-hop T=6
3 0.4- -k~ 2-hop T=3
O -&- 3-hop T=2
< 0.2 -4~ PGM

—— MGCN
0.0

'0.00 0.02 0.04 0.06 0.08 0.10
Fraction of Seeds 6



Conclusion

* Develop a new notion of “multi-hop witness” for seeded graph matching

* ## of seeds needed for poly-time recovery can be as low as
((polylog n) for matching both ER and power-law graphs

* Design a new graph neural network that learns to compute “multi-hop”
witnesses and to match unseen graphs of various types and sizes.



