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Distributed Machine Learning: Robustness

• An attractive solution to large-scale problems

I Algorithms: [Boyd et al. 11], [Jordan, Lee and Yang 16], etc.

I Systems: [Map-Reduce, Dean and Ghemawat 08], etc.

• The necessity of robustness:

Corrupted data

I Statistical noise: [Candes et al, JACM 11] [Loh and Wainwright,
NIPS 11]

I Adversarial corruption: No structural assumptions [Chen, Caramanis
and Mannor, ICML 13] [Diakonikolas et al., FOCS 16] [Charikar et
al., STOC 17]



Distributed Machine Learning: Robustness

• An attractive solution to large-scale problems

I Algorithms: [Boyd et al. 11], [Jordan, Lee and Yang 16], etc.

I Systems: [Map-Reduce, Dean and Ghemawat 08], etc.

• The necessity of robustness:

Corrupted data

I Statistical noise: [Candes et al, JACM 11] [Loh and Wainwright,
NIPS 11]

I Adversarial corruption: No structural assumptions [Chen, Caramanis
and Mannor, ICML 13] [Diakonikolas et al., FOCS 16] [Charikar et
al., STOC 17]



Distributed Machine Learning: Robustness

• An attractive solution to large-scale problems

I Algorithms: [Boyd et al. 11], [Jordan, Lee and Yang 16], etc.

I Systems: [Map-Reduce, Dean and Ghemawat 08], etc.

• The necessity of robustness: Corrupted data

I Statistical noise: [Candes et al, JACM 11] [Loh and Wainwright,
NIPS 11]

I Adversarial corruption: No structural assumptions [Chen, Caramanis
and Mannor, ICML 13] [Diakonikolas et al., FOCS 16] [Charikar et
al., STOC 17]



Our Goal

• Implicit assumption of previous work: Reliable learning system

I Each computing device follows some designed specification

• Our focus: Unreliable learning system

I Adversarial attacks: Some unknown subset of computing devices are
compromised, and behave adversarially – such as sending out
malicious messages

Goal: Secure model training in unreliable learning system
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Why consider unreliable learning system?



Privacy Risk in Conventional Learning Paradigm

• Data is collected from providers and stored at clouds

• Serious privacy risks:
I Facebook data scandal
I PRISM: Facebook, Google, Yahoo!, Apple, Microsoft, Dropbox, etc.
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New Learning Paradigm: Federated Learning

Key idea: Leave training data on mobile devices

• Learning with external workers (data providers)
• Proposed by Google researcher [McMahan 16]
• Tested by Gboard on Android and Google Keyboard
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Security Risk in Federated Learning

• Less secured implementation environment
• External workers are prone to adversarial attack – reprogrammed by

system hackers and behave maliciously
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Goal: Secure model training in unreliable learning system



Challenges of Securing Unreliable Learning Systems

• Low local data volume versus high model complexity

I Local estimator is statistically inaccurate

I Hard to distinguish statistical errors from adversarial errors

I Call for close interaction between the learner (cloud) and the workers

• Communication constraints: Data transmission suffers high latency
and low throughout

Objectives

• Tolerate adversarial failures of the external workers

• Accurately learn highly complex models with low local data volume

• Use only a few communication rounds
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Outline of the Remainder

1 Problem formulation

2 Algorithm 1: Geometric median of means

3 Algorithm 2 (Optimal Algorithm):
Iterative rewriting + projecting + filtering

4 Summary and concluding remarks
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Problem Formulation: Learning Model

• N i.i.d. data points Xi
i.i.d.∼ µ

• Collectively kept by m workers – each worker keeps N
m data points

• The learner wants to pick a model in Θ ⊆ Rd

• loss function f(x, θ): loss induced by x ∈ X under the model choice
θ ∈ Θ

Target: θ∗ ∈ arg minθ∈Θ F (θ) , E[f(X, θ)]

NOTE: the population risk F (θ) is unknown



Example: Linear Regression

• N i.i.d. data points Xi = (wi, yi)
i.i.d.∼ µ

I wi can be the features of a house/apartment, and yi is its sold price

• Θ ⊆ Rd: the set of possible linear predictors

• Risk function f(x, θ) = 1
2(y − 〈w, θ〉)2

Target: θ∗ ∈ arg minθ∈Θ E
[

1
2(y − 〈w, θ〉)2

]



Problem Formulation: Byzantine Fault Model

• In any iteration, up to q out of m workers are compromised and
behave arbitrarily;

• the set of faulty workers may be different across iterations;

• faulty workers have complete knowledge of the system;

• faulty workers can collude
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Algorithm: Byzantine Gradient Descent

The learner:

1 Broadcast the current model parameter estimator θt−1;

2 Wait to receive all the gradients g
(j)
t from all workers j;

3 Aggregate gradients to obtain F̂ (θt−1);

4 Update: θt ← θt−1 − ηt × F̂ (θt−1);

Non-faulty worker j:

1 Compute the sample gradient g
(j)
t =

∑
local data Xi

∇f(Xi, θt−1);

2 Send g
(j)
t back to the learner;

Averaging, i.e., taking F̂ (θt−1) = 1
m

∑m
j=1 g

(j)
t , is not robust to

even a single Byzantine failure!
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Algorithm: Byzantine Gradient Descent

The learner:

1 Broadcast the current model parameter estimator θt−1;

2 Wait to receive all the gradients g
(j)
t from all workers j;

3 Robust gradient aggregate to obtain F̂ (θt−1);

4 Update: θt ← θt−1 − ηt × F̂ (θt−1);

Non-faulty worker j:

1 Compute the sample gradient g
(j)
t =

∑
local data Xi

∇f(Xi, θt−1);

2 Send g
(j)
t back to the learner;

Simple averaging, i.e., taking F̂ (θt−1) = 1
m

∑m
j=1 g

(j)
t , is not robust to

even a single Byzantine failure!



Generic Key Technical Challenges

Target: θ∗ ∈ arg minθ∈Θ F (θ) , E[f(X, θ)]

• Suppose F (θ) is known: Perfect gradient descent –
θt = θt−1 − η ×∇F (θt−1)

• But F (θ) is unknown: Approximate gradient descent –

θ′t = θ′t−1 − ηt ×∇F̂ (θ′t−1) = θ′t−1 − ηt ×∇F (θ′t−1) + ε(θ′t−1).

I The elements in
{
ε(θ′t−1)

}∞
t=1

are dependent on each other;

I Complicated interplay between the randomness and the arbitrary
behaviors of Byzantine workers.

Our analysis plan: show uniform convergence,
i.e., show ε(θ) ≈ 0 uniformly for all θ ∈ Θ

Standard concentration results might not suffice
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Algorithm I: Median of Means



Robust Gradient Aggregation: Median of Means

Median of Means

Given nk points X1, . . . , Xnk,

φ̂MM , median

 1

n

n∑
i=1

Xi, · · · ,
1

n

kn∑
i=(k−1)n+1

Xi



Definition (Geometric median)

y∗ , med {y1, · · · , ym} = arg miny∈Rd

∑m
i=1 ‖y − yi‖2

Efficient computation of Geometric Median: Nearly linear time
[Cohen et al. STOC 2016]



Robustness of Geometric Median

Definition (Geometric median)

y∗ , med {y1, · · · , ym} = arg miny∈Rd

∑m
i=1 ‖y − yi‖2

• One-dimension case: Geometric median = standard median
If strictly more than bn/2c points are in [−r, r] for some r ∈ R,
then median ALSO lies in [−r, r]

• Multi-dimension case:

Lemma (Minsker et al. 2015)

For any α ∈ (0, 1/2) and given r ∈ R, if
∑n

i=1 1{‖yi‖2≤r} ≥ (1− α)n,

then ‖y∗‖2 ≤ Cαr, where Cα = 1−α√
1−2α

.

Intuition: Majority voting in the noisy setting
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Performance with Median of Means

(1) q ≥ 1: the maximum # of Byzantine workers;
(2) d: model dimension, i.e., Θ ⊆ Rd

Theorem (Informal)

Suppose some mild technical assumptions hold, and 2(1 + ε)q ≤ k ≤ m.
Assume F (θ) is M -strongly convex with L-Lipschitz gradient. Then whp

‖θt − θ∗‖ ≤ ρt‖θ0 − θ∗‖+ C

√
dk

N
, ∀t ≥ 1,

where ρ = 1
2 + 1

2

√
1− M2

4L2 ∈ (0, 1).

• After logN rounds,
√
dq/N becomes the dominant part

• When q = 0, we choose k = 1

• When q is large, we choose k = 2(1 + ε)q, resulting error of
O(
√
dq/N)



Drawbacks of Geometric Median in High Dimensions

y∗ = arg min

m∑
i=1

‖y − yi‖ ⇐⇒
m∑
i=1

yi − y∗

‖yi − y∗‖
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• Good data yi
i.i.d.∼ N (µ, Id)

• ε fraction is adversarially
corrupted

• GM suffers from ε
√
d error
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Algorithm II:
Optimal Algorithm in High Dimension

[Su and Xu, 2018] improves the estimation error

from O

(√
qd
N

)
to O(

√
d/N +

√
q/N) – matching the minimax

error rate in the ideal failure-free setting as long as q = O(d).
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Ideas of Iterative Filtering [SCV ’18]
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µ
u

• If the center µ were known, from

uu> ∈ arg max
∑
i

(yi − µ)> U (yi − µ)

s.t. U � 0

Tr(U) ≤ 1,

filter out outliers based on 〈yi − µ, u〉2

• However, µ is unknown!

• Idea: represent yi through
∑

jWjiyj ;

Wji is constrained to be around 1
(1−ε)m
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Iterative Filtering Algorithm [SCV ’18]

Define cost function

φ(W,U) =
∑
i∈S

ci

yi −∑
j∈S

Wjiyj

> U
yi −∑

j∈A
Wjiyj


1 Compute saddle point

(Center approxi.) W ∗ ∈ arg min
W

max
U

φ(W,U)

(Extreme direction) U∗ ∈ arg max
U

min
W

φ(W,U)

2 If φ(W ∗, U∗) is small enough, stop; otherwise, down-weight ci

proportional to
(
yi −

∑
j∈SW

∗
jiyj

)>
U∗
(
yi −

∑
j∈SW

∗
jiyj

)
, throw

away data points for which ci ≤ 1/2, and repeat.
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Guarantees of Iterative Filtering Algorithm [SCV ’18]

Lemma (SCV ’18)

Define µS = 1
m

∑m
i=1 yi. Suppose that∥∥∥∥ 1

m

∑
i

(yi − µS) (yi − µS)>
∥∥∥∥

2

≤ σ2.

Then for ε ≤ 1
4 , Iterative Filtering Algorithm outputs µ̂ such that

‖µ̂− µS‖ = O(σ
√
ε).

• Gradient vectors {gj(θt−1)}mj=1 are not i.i.d.
• Apply with yj = gradient functions:

gj(θ) =
1

|Sj |
∑
i∈Sj

∇f (Xi, θ)

• Need concentration of matrix [g1(θ), . . . , gm(θ)] uniformly over θ
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Uniform Concentration of Sample Covariance Matrix

• If gradient functions gj(θ) is sub-Gaussian, use ε-net

• However, in many cases such as linear regression, gj(θ) is
sub-exponential

• Existing tail bounds for matrices with sub-exponential columns are
not tight
State-of-the-art: Standard concentration bounds [ALPTJ ’10]:√
md+ d

Theorem (SX ’18)

Let A be a d×m matrix whose columns Aj are i.i.d. sub-exponential,
zero-mean. Then with probability at least 1− e−d,

‖A‖2 .
√
m+ d log3 d

Remark:Tight up to poly-log factors
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Guarantees of Aggregated Gradient by Iterative Filtering

Theorem (SX ’18)

Suppose some mild technical assumptions hold and N & d2. Let ∇F̂ (θ)
be the aggregated gradient function by Iterative Filtering Algorithm.

Then with probability at least 1− 2e−
√
d,

∥∥∥∇F̂ (θ)−∇F (θ)
∥∥∥ .

(√
q

N
+

√
d

N

)
‖θ − θ∗‖+

(√
q

N
+

√
d

N

)

• N & d2 is due to our sub-exponential assumption and is inevitable

• If assuming sub-Gaussian instead, only N & d is needed
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Main Convergence Result

Theorem (SX ’18)

Suppose some mild technical assumptions hold and N & d2. Assume
F (θ) is M -strongly convex with L-Lipschitz gradient. Then whp,

‖θt − θ∗‖ .
(

1− M2

16L2

)t
‖θ0 − θ∗‖+

(√
q

N
+

√
d

N

)
.

• Improves over geometric median (
√
dq/N)

• If q = O(d), error rate is optimal

• Tolerate up to q/m = Θ(1) fraction of Byzantine errors

• Exponential convergence → only logarithmic communication rounds
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