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Cluster/Community structure in networks

Network of political webblogs [Adamic-Glance ’05]

Social networks: social communities; Metabolic networks:
functional communities; Recommendation systems: user and
item communities ...
Q: How to recover hidden cluster structure? → Community
Detection
Application: link prediction in social networks, rating prediction
in recommendation systems ...
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I Simple model: Erdős-Rényi type model with “planted”
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I Information-theoretic view: Converse and achievability for
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I Computational view: Performance limit of polynomial-time
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Stochastic blockmodel (planted partition model)

A random graph model to generate graph with cluster structure

n = 5000, r = 10,K = 500,p = 0.999,q = 0.001. Ref.
https://projects.skewed.de/graph-tool.

Goal: Exactly recover the hidden clusters given the graph.
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Cluster recovery as matrix recovery
Cluster matrix: Yij = 1 if i and j are in the same cluster;
otherwise Yij = 0.
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Cluster recovery under stochastic blockmodel

Vast literature on stochastic blockmodel [Holland et al. ’83] and
planted partition model [Condon-Karp ’01]:

I [Bickel-Chen ’09] [Rohe et al. ’10] [Mossel et al. ’12] . . .
I [Karrer-Newman ’11] [Decelle et al. ’11]

[Nadakuditi-Newman ’12] [Krzakala et al. ’13 ] . . .
I [McSherry ’01] [Coja-Oghlan ’10] [Tomozei-Massoulié ’11]

[Chaudhuri et al. ’12] [Chen-Sanghavi-Xu ’12] [Heimlicher
et al. ’12] [Anandkumar et al. ’13] [Lelarge et al. ’13] . . .

Two fundamental questions still unclear:
I Information limit: In which regime of n,K ,p,q, is

exact cluster recovery possible (impossible)?
I Computational limit: In which regime of n,K ,p,q, is

exact cluster recovery easy (hard)?
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Cluster recovery under stochastic blockmodel

Our (non-asymptotic) results apply to general setting allowing
any n,K ,p,q.
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Converse for cluster recovery
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P(Ŷ 6= Y ∗) by upper bounding I(Y ∗; A).
Intuition: The observation A does not carry enough information
to distinguish between different possible Y ∗.
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Achievability by maximum likelihood estimation

Maximum likelihood estimator: Ŷ = arg maxP(A|Y )

Y ∗ −→ A −→ Ŷ

If p > q, maximum likelihood estimation is equivalent to finding
the r most densely connected subgraphs of size K in the graph:
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Y

∑
i,j
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s.t. Y is a cluster matrix.

Q: When maximum likelihood estimator equals Y ∗?
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Polynomial-time recovery: convex relaxation of MLE
Cluster matrix Y has low rank:

rank


1 1 0 0
1 1 0 0
0 0 1 1
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 = 2.

Nuclear norm ‖Y‖∗ (sum of singular values) is a convex
surrogate for rank function.
A convex relaxation of MLE [Chen-Sangavi-Xu ’12]:

max
Y

∑
ij

AijYij

s.t. ‖Y‖∗ ≤ n∑
ij

Yij = rK 2, Yij ∈ [0,1].
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Polynomial-time recovery: counting common neighbor
Similarity between two nodes: The number of common
neighbors [Dyer-Frieze ’98].

Algorithm: Each node finds the K − 1 most similar nodes.
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Polynomial-time recovery: spectral algorithms

Spectral algorithms: based on principal singular vectors (PCA)

Example: n = 64, r = 6,K = n0.75,p = n−0.25,q = p/8

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Adjacency matrix

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

Signal of Cluster Information 

Noise

Singular value histogram

I The r principal singular vectors contain cluster information.
I The bulk of spectrum is caused by the random noise.
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Polynomial-time recovery: spectral algorithms
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A similar conjecture appears in the planted clique model.
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Review: Conjecture in planted clique model

A = clique

Ber(p)

K

K +

Ber(0.5)

Ber(q)

I Feasible if and only if K > 2 log2 n
I Simple algorithm by picking the K nodes with highest

degree works if K = Ω(
√

n log n)

I Spectral algorithm works if K = Ω(
√

n) [Alon et al. ’98]
I Belief: No polynomial-time algorithm works if K = o(

√
n)

Planted dense subgraph model: p,q ∈ [0,1]
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Concluding remarks

I Simple model: Stochastic blockmodel (planted partition
model).

I If K = Θ(n), cluster structure can be recovered up to the
information limit via polynomial-time algorithms.

I If K = o(n), cluster structure can be recovered up to the
information limit via exponential-time algorithms but might
not via polynomial-time algorithms due to spectral barrier.

I Conjecture on existence of big gap between information
and computational limit also appears in planted dense
subgraph model.

I Future work: prove the conjecture by assuming no
polynomial-time algorithm detects hidden clique of size
o(
√

n) in the planted clique model.
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