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Cluster/Community structure in networks

Network of political webblogs [Adamic-Glance '05]

Social networks: social communities; Metabolic networks:
functional communities; Recommendation systems: user and
item communities ...

Q: How to recover hidden cluster structure? — Community
Detection

Application: link prediction in social networks, rating prediction
in recommendation systems ...
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Information theory of community detection

» Simple model: Erdés-Rényi type model with “planted”
clusters

» Information-theoretic view: Converse and achievability for
cluster recovery

» Computational view: Performance limit of polynomial-time
algorithms for cluster recovery
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Stochastic blockmodel (planted partition model)

A random graph model to generate graph with cluster structure

n=5000,r =10, K =500, p = 0.999, g = 0.001. Ref.
https://projects.skewed.de/graph-tool.

Goal: Exactly recover the hidden clusters given the graph.
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Cluster recovery as matrix recovery
Cluster matrix: Yj; = 1 if i and j are in the same cluster;
otherwise Yj = 0.
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Cluster recovery as a specific matrix recovery problem:
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Vast literature on stochastic blockmodel [Holland et al. '83] and
planted partition model [Condon-Karp '01]:

» [Bickel-Chen ’09] [Rohe et al. '10] [Mossel et al. ’12] ...

» [Karrer-Newman ’11] [Decelle et al. ’11]
[Nadakuditi-Newman ’12] [Krzakala et al. ’13] ...

» [McSherry ’01] [Coja-Oghlan ’10] [Tomozei-Massouli€ '11]
[Chaudhuri et al. ’12] [Chen-Sanghavi-Xu *12] [Heimlicher
et al. '12] [Anandkumar et al. *13] [Lelarge et al. "13] ...

Two fundamental questions still unclear:

» Information limit: In which regime of n, K, p, q, is
exact cluster recovery possible (impossible)?

» Computational limit: In which regime of n, K, p, q, is
exact cluster recovery easy (hard)?



Cluster recovery under stochastic blockmodel

Our (non-asymptotic) results apply to general setting allowing
any n, K, p,q.
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Proof: Y* — A — Y. Apply Fano’s inequality to lower bound
P(Y # Y*) by upper bounding /( Y*; A).

Intuition: The observation A does not carry enough information
to distinguish between different possible Y*.
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Achievability by maximum likelihood estimation

Maximum likelihood estimator: ¥ = arg max P(A|Y)
Yi 5 A— Y

If p > q, maximum likelihood estimation is equivalent to finding
the r most densely connected subgraphs of size K in the graph:

mex DAYy
I7j
s.t. Y s a cluster matrix.

Q: When maximum likelihood estimator equals Y*?
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BrK=0(n)

information limit

p=2q9=06(n")
(0]

(0] 1

Proof: Concentration inequality + union bound (needs clever
counting argument and peeling technique)

Q: MLE takes an exponential time to solve. Can we achieve
information limit via polynomial-time algorithms?
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Polynomial-time recovery: convex relaxation of MLE

Cluster matrix Y has low rank:

rank =2.

—_ a OO0
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Nuclear norm || Y||.. (sum of singular values) is a convex
surrogate for rank function.
A convex relaxation of MLE [Chen-Sangavi-Xu '12]:
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Polynomial-time recovery: counting common neighbor

Similarity between two nodes: The number of common
neighbors [Dyer-Frieze ’98].
Algorithm: Each node finds the K — 1 most similar nodes.
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Proof: Similarity concentrates around its mean.
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Polynomial-time recovery: spectral algorithms

Spectral algorithms: based on principal singular vectors (PCA)
Example: n=6*r=6,K=n""%p=n"92 g=p/8
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» The r principal singular vectors contain cluster information.
» The bulk of spectrum is caused by the random noise.
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Conjecture: no polynomial-time algorithm succeeds beyond
spectral barrier.
A similar conjecture appears in the planted clique model.
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Review: Conjecture in planted clique model

K Ber(q)
A =| K Ber(p) +

» Feasible if and only if K > 2log, n

» Simple algorithm by picking the K nodes with highest

degree works if K = Q(y/nlog n)
» Spectral algorithm works if K = Q(+/n) [Alon et al. "98]
» Belief: No polynomial-time algorithm works if K = o(+/n)

Planted dense subgraph model: p, g € [0, 1]
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K = ©(n?)
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Conjecture: no polynomial-time algorithm succeeds beyond the
spectral barrier.
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Concluding remarks

Simple model: Stochastic blockmodel (planted partition
model).

If K = ©(n), cluster structure can be recovered up to the
information limit via polynomial-time algorithms.

If K = o(n), cluster structure can be recovered up to the
information limit via exponential-time algorithms but might
not via polynomial-time algorithms due to spectral barrier.

Conjecture on existence of big gap between information
and computational limit also appears in planted dense
subgraph model.

Future work: prove the conjecture by assuming no
polynomial-time algorithm detects hidden clique of size
o(v/n) in the planted clique model.



Gap between information and computational limit
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