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Motivating example in network de-anonymization

• Narayanan and Shmatikov correctly identified a fraction of users between Twitter and 
Flickr in 2009. 
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• Biology [Singh-Xu-Berger ’2008;  Kazemi et al. ’2016 ]

Applications

• Computer Vision [Lähner et al. ’2016;  Fan-Mao-Wu-Xu ’2020 ]
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proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =

|V1|−1 ∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, "π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., "π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i =
2|PWi,1 ∩ π−1(PWi,2)|

|PWi,1| + |PWi,2|
. (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if "π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
"π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ =
#FPWδ

#PWδ
. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

2 



• Computational: # of possible node mappings is   ; 

• Statistical: two graphs may be correlated but not exactly the same;
n! (100! ≈ 10158)
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Real-world challenges

: number of nodesn



• NP-hard for matching two graphs in worst case 

• However, real networks are not arbitrary and have latent structures
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• NP-hard for matching two graphs in worst case 

• However, real networks are not arbitrary and have latent structures 

• Recent surge of interest on the average-case analysis  
• [Cullina-Kiyavash ’16,17] 

• [Cullina-Kiyavash-Mittal-Poor ’19, Dai-Cullina-Kiyavash-Grossglauser ’19, Ding-Ma-
Wu-Xu ’18, Barak-Chou-Lei-Schramm-Sheng ’19, Fan-Mao-Wu-Xu ’19a,19b]  

• [Ganassali-Massoulié ’20, Hall-Massoulié ’20, Wu-Xu-Yu ’21, Ganassali-Lelarge-
Massoulié ’21, Mao-Rudelson-Tikhomirov ’21a, 21b] 

• [Ding-Du ’21, 22, Mao-Wu-Xu-Yu ’22, Ganassali-Massoulié-Semerjian ’22] 

• [Ding-Li’ 23, Ding-Du-Li’ 23] 

• …
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: number of nodesn

Each two nodes are connected 
with probability q
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•  and  are edge-wise correlated ( ) under the hidden node correspondence . 

•  is the edge correlation. 

•  is the average degree for  and .

A B ρ π

ρ

nq A B

Observe  and , we want to recover the hidden node correspondence , when .A B π n → ∞
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Permute the node labels

By  uniformlyπ

A ∼ 𝒢(n, q ≜ ps)

s

s

•  and  are edge-wise correlated 
under the latent permutation  with 
correlation parameter  

•

A B
π

ρ =
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MLE: Quadratic Assignment Problem (QAP)

6 

• Maximum likelihood estimator: 

   QAP) 

• QAP was introduced by [Koopmans-Beckmann ’57] 

• It is NP-hard to solve or even approximate. 

• How much does  have in common with  ?

πML = arg max
̂π ∑

i<j

AijB ̂π(i) ̂π( j) (

πML π

overlap (πML, π) ≜
1
n

{i ∈ [n] : πML(i) = π(i)}

Fraction of correctly matched vertices



Sharp recovery threshold: dense Erdös-Rényi graphs
Theorem [Wu-Xu-Yu ’21]  

Suppose . Then n−o(1) ≤ p ≤ 1 − Ω(1)

8 

If nps2 ≥
(2 + ϵ)log n

log 1
p − 1 + p

⇒ overlap (πML, π) = 1 − o(1) w.h.p.

If nps2 ≤
(2 − ϵ)log n

log 1
p − 1 + p

⇒ overlap ( ̂π, π) = o(1) w.h.p.∀ ̂π
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1

E [overlap (⇡̂, ⇡)]

0
nps2(log(1/p)�1+p)

log n2

Partial recovery

impossible

“Nothing”

Almost exact recovery

possible (MLE)

“All”
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• IT Interpretation of threshold 

   

•  

• Threshold is at 

I(π; A, B) ≈ (n
2) × ps2 (log

1
p

− 1 + p)
H(π) ≈ n log n

I(π; A, B) ≈ H(π)
Mutual info btw two correlated edges
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|E(U) |
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graphs  [Hajek ’90, Anantharam-Salez ’16]: 

• The negative result of  is proved in [Ganassali-Lelarge-Massoulié ’21] 

• Sharpens our previous threshold  for MLE [Wu-Xu-Yu ’21]  

• “All-or-nothing” phenomenon does not exist, as almost exact recovery (overlap 
=  ) requires  [Cullina-Kiyavash-Mittal-Poor ’19]

γ : [1,∞) → [1,∞)
𝒢(n, λ/n)

α = 1

nps2 = Θ(1)

1 − o(1) nps2 → ∞

max
∅≠U⊂[n]

|E(U) |
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Theorem [Wu-Xu-Yu ’21]  
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Exact recovery threshold
Theorem [Wu-Xu-Yu ’21]  

Suppose . Then p ≤ 1 − Ω(1)

8 

If nps2 ≥
(1 + ϵ)log n
(1 − p)2

⇒ overlap (πML, π) = 1 w.h.p.

If nps2 ≤
(1 − ϵ)log n
(1 − p)2

⇒ overlap ( ̂π, π) ≠ 1 w.h.p∀ ̂π

• : reduces to the connectivity threshold of the intersection graph 
 [Cullina-Kiyavash ’16 17] 

• : strictly higher than the connectivity threshold

p = o(1)
A* ∧ B ∼ 𝒢(n, ps2)

p = Ω(1)
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Only a vanishing amount of correlation is needed for recovery information-theoretically!

Can we develop a scalable algorithm to recover  with a strong statistical guarantee? π
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Examples of vertex signature: 

• Degree 

• Degrees of neighbors: only works for  [Ding-Ma-Wu-Xu ’18] 

• The local tree structure: only works for sparse graphs [Mao-Rudelson-Tikhomirov ’21] 
[Ganassali-Massoulié ’20][Ganassali-Massoulié-Lelarge ’21] 

The above vertex signatures are either sensitive to noise or only work in sparse regime.

ρ = 1 − 1/polylog(n)



Our idea: subgraph count



14 

subgraph H

i

A

Subgraph count

•  copies of  in graph # H A



14 

subgraph H

i

A

Subgraph count

•  copies of  in graph # H A

(  copies of  appear in )6 H A



14 

subgraph H

i

A

Subgraph count

•  copies of  in graph # H A

(  copies of  appear in )6 H A



14 

subgraph H

i

A

Subgraph count

•  copies of  in graph # H A

(  copies of  appear in )6 H A



14 

subgraph H

i

A

Subgraph count

•  copies of  in graph # H A

(  copies of  appear in )6 H A



14 

subgraph H

i

A

Subgraph count

•  copies of  in graph # H A

(  copies of  appear in )6 H A



14 

subgraph H

i

A

Subgraph count

•  copies of  in graph # H A

(  copies of  appear in )6 H A



14 

subgraph H

i

A

Subgraph count

•  copies of  in graph   capture some graph information;# H A ⟹

(  copies of  appear in )6 H A



14 

subgraph H

i

A

Subgraph count

•  copies of  in graph   capture some graph information; 

• It is very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-
Kashtan ’02]);

# H A ⟹

(  copies of  appear in )6 H A



14 

Subgraph count

i

A

subgraph H

•  copies of  in graph   capture some graph information; 

• It is very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-
Kashtan ’02]); 

• Has been applied to graph matching [Barak-Chou-Lei-Schramm-Sheng ’19]

# H A ⟹



14 

Subgraph count

ii

A

i

subgraph H

•  copies of  in graph   capture some graph information; 

• It is very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-
Kashtan ’02]); 

• Has been applied to graph matching [Barak-Chou-Lei-Schramm-Sheng ’19] 

• How to capture the vertex information of ?

# H A ⟹

i



ii

A

Rooted subgraph count

Root

Rooted subgraph H

23 

i

•  copies of  rooted at  in graph , denoted as ;# H i A Wi,H(A)



ii

A

Rooted subgraph count

Root

Rooted subgraph H

23 

i

(  copies of  rooted at node  appear in )3 H i A

•  copies of  rooted at  in graph , denoted as ;# H i A Wi,H(A)



ii

A

Rooted subgraph count

Root

Rooted subgraph H

23 

i

(  copies of  rooted at node  appear in )3 H i A

•  copies of  rooted at  in graph , denoted as ;# H i A Wi,H(A)



ii

A

Rooted subgraph count

Root

Rooted subgraph H

23 

i

(  copies of  rooted at node  appear in )3 H i A

•  copies of  rooted at  in graph , denoted as ; # H i A Wi,H(A)



ii

A

Rooted subgraph count

•  copies of  rooted at  in graph , denoted as ; # H i A Wi,H(A)

Root

Rooted subgraph H

23 

i

(  copies of  rooted at node  appear in ) 

    

3 H i A

Wi,H(A) = 3



ii

A

Rooted subgraph count

•  copies of  rooted at  in graph , denoted as ;  

• Capture some vertex information;

# H i A Wi,H(A)

Root

Rooted subgraph H

23 

i

(  copies of  rooted at node  appear in ) 

    

3 H i A

Wi,H(A) = 3



ii

A

Rooted subgraph count

•  copies of  rooted at  in graph , denoted as ;  

• Capture some vertex information; 

• Idea: construct a rich family of rooted subgraphs:

# H i A Wi,H(A)

Root

Rooted subgraph H

23 

i

(  copies of  rooted at node  appear in ) 

    

3 H i A

Wi,H(A) = 3



ii

A

Rooted subgraph count

•  copies of  rooted at  in graph , denoted as ;  

• Capture some vertex information; 

• Idea: construct a rich family of rooted subgraphs: 

• Each rooted subgraph captures some information about the vertex;

# H i A Wi,H(A)

Root

Rooted subgraph H

23 

i

(  copies of  rooted at node  appear in ) 

    

3 H i A

Wi,H(A) = 3



ii

A

Rooted subgraph count

•  copies of  rooted at  in graph , denoted as ;  

• Capture some vertex information; 

• Idea: construct a rich family of rooted subgraphs: 

• Each rooted subgraph captures some information about the vertex; 

• Combine all the information  vertex signature to be more informative.

# H i A Wi,H(A)

⟹

Root

Rooted subgraph H

23 

i

(  copies of  rooted at node  appear in ) 

    

3 H i A

Wi,H(A) = 3



Graph matching via counting rooted subgraphs
Given a family  of rooted subgraphs with  edges:ℋ N

24 

{ },
e.g. N = 4, ℋ =

, ,
⋯



1.  For each vertex  in  , its vertex signature is i A si = (Wi,H(A))H∈ℋ

Graph matching via counting rooted subgraphs
Given a family  of rooted subgraphs with  edges:ℋ N

{ },
e.g. N = 4, ℋ =

, ,
⋯

24 



1.  For each vertex  in  , its vertex signature is i A si = (Wi,H(A))H∈ℋ

Graph matching via counting rooted subgraphs
Given a family  of rooted subgraphs with  edges:ℋ N

{ },
e.g. N = 4, ℋ =

, ,
⋯

Highly correlated across different H

24 



1.  For each vertex  in  , its vertex signature is i A si = (Wi,H( ))H∈ℋ

Graph matching via counting rooted subgraphs
Given a family  of rooted subgraphs with  edges:ℋ N

A

{ },
e.g. N = 4, ℋ =

, ,
⋯

24 



1.  For each vertex  in  , its vertex signature is i A si = (Wi,H( ))H∈ℋ

Graph matching via counting rooted subgraphs
Given a family  of rooted subgraphs with  edges:ℋ N

A

{ },
e.g. N = 4, ℋ =

, ,
⋯

; 
Count the weighted copies in  
A = A − 𝔼[A]

A
Wi,H(Ā) = ∑
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= =
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Let  denote a special family of chandeliers: 

• Large: The size of chandeliers , where  is some small constant. 

• Rich: Choose , to ensure .  

• Almost as rich as the whole family of all rooted trees.  

• Informative: Choose smaller  and larger , when graphs are sparser.

ℋ

N = c log n c

K ≫ M |ℋ | = (α + o(1))−N

L M

Summary on properties of Chandeliers
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Summary on efficient algorithms

?

1 1p
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0
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impossible

polynomial-time possible

hard?

�

⇢

Conjectured hard

nq = λ log n
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Open problems and future directions

31 

• Rigorous evidences for statistical-computational gaps 

• Beyond Erdős–Rényi graphs: 

• Random geometric graph matching [Wang-Wu-Xu-Yolou’ 22, … ] 

                      

• Community recovery and graph matching in correlated stochastic block models 
[Racz-Sridhar’ 21, Gaudio-Racz-Sridhar ’22]  

• Matching preferential attachment graphs [Korula-Lanttanzi '14] or power-law 
graphs [Yu-Xu-Lin ’21] 

• Seeded Graph matching with initial “noisy” matched pairs [Kazemi-Hassani-
Grossglausser ’15, Lubars-Srikant ’18, Mossel-Xu ’20, Yu-Xu-Lin ’20] 

• Graph matching with node attribute information [Zhang-Wang-Wang-Wang ’20]  

• “Robust” graph matching [Ameen-Hajek ’ 23] 

• Random graph matching with multiple graphs [Ameen-Hajek ’ 24] 

• Database alignment/record linkage problem [Dai-Cullina-Kiyavash ’19, …]

A = (κ(xi, xj)), B = (κ(yi, yj)),  where (xπ(i), yi)
iid∼ P



• Maximum likelihood estimator: 

   QAP) 

Suppose   correlated Erdős–Rényi graph model under a hidden node mapping . 

The likelihood function is   

 

Then, we have  

 

πMLE = arg max
̂π ∑

i<j

AijB ̂π(i) ̂π( j) (

A, B ∼ ̂π

𝒫(A, B | ̂π) = (q(q + ρ − qρ))∑i<j AijB ̂π(i) ̂π( j)

(q(1 − q)(1 − ρ))∑i<j Aij(1−B ̂π(i) ̂π( j))+∑i<j (1−Aij)B ̂π(i) ̂π( j)

(1 − q(2 − q − ρ + qρ))∑i<j (1−Aij)(1−B ̂π(i) ̂π( j))

∝ ( (q + ρ − qρ)(1 − q(2 − q − ρ + qρ))
q(1 − q)2(1 − ρ)2 )

∑i<j AijB ̂π(i) ̂π( j)

.

MLEπ = arg max
̂π

𝒫(A, B | ̂π) = arg max ∑
i<j

AijB ̂π(i) ̂π( j) .

MLE: Quadratic Assignment Problem (QAP)



17 

Approximately count signed trees via color coding
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1. For each unmatched pair , compute 
“common” neighbors  under  

2. If , match , append it to 
, and repeat

(i, j)
N(i, j) ̂π

N(i, j) ≥ γ (i, j)
̂π

Seeded graph matching (SGM) 

i j

̂π

Theorem [Mao-Wu-X.-Yu ’22]  

Suppose  and . With probability , given 
any input  that completely coincides with  on at least  vertices, SGM with an 
appropriate choice of threshold  outputs  in time . 

nq(q + ρ(1 − q)) ≥ (1 + ϵ)log n ρ ≥ ϵ 1 − o(1)
̂π π (1 − ϵ)n

γ π̃ = π O(n3q2)

• Proof: Intersection graph is an expander, so SGM iteratively matches all vertices

Similar to percolation graph matching [Yarteva-Grossglauser’13, Barak-Chou-Lei-Schramm-
Sheng ’19] 
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1/r μt

Wi,H(A) ≈
1/r

∑
t=1

Xi,H(A, μt)

 edgesN
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• Centered adjacency matrices: ; 

• Count weighted copies of rooted graph in     (rooted signed subgraph 
count) [Bubeck-Ding-Eldan-Rácz ’16]; 

• Crucially,  and  are uncorrelated for distinct subgraphs  and .

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Wi,H(A) Wi,I(A) H I

Rooted subgraph H


