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Motivating example 1n network de-anonymization

flickr™

* Narayanan and Shmatikov correctly 1dentified a fraction of users between Twitter and
Flickr 1n 2009.



Applications

* Biology [Singh-Xu-Berger *2008; Kazemi et al. *2016 ]
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e Computer Vision [Lihner et al. >2016; Fan-Mao-Wu-Xu *2020 ]




Real-world challenges

n: number of nodes

e Computational: # of possible node mappings is n! (100! ~ 101°9) ;

e Statistical: two graphs may be correlated but not exactly the same;



Beyond worst-case intractability

e NP-hard for matching two graphs in worst case

e However, real networks are not arbitrary and have latent structures



Beyond worst-case intractability

e NP-hard for matching two graphs in worst case

e However, real networks are not arbitrary and have latent structures

e Recent surge of interest on the average-case analysis

[Cullina-Kiyavash *16,17]

[Cullina-Kiyavash-Mittal-Poor 19, Dai-Cullina-Kiyavash-Grossglauser *19, Ding-Ma-
Wu-Xu ’18, Barak-Chou-Lei-Schramm-Sheng ’19, Fan-Mao-Wu-Xu ’19a,19b]

[Ganassali-Massouli¢ *20, Hall-Massouli¢ *20, Wu-Xu-Yu ’21, Ganassali-Lelarge-
Massoulié ’21, Mao-Rudelson-Tikhomirov °21a, 21b]

[Ding-Du 21, 22, Mao-Wu-Xu-Yu ’22, Ganassali-Massouli¢-Semerjian *22]
[Ding-L1’ 23, Ding-Du-L1’ 23]
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/1IN /1N
NN \

A ﬁg, q) B~ 9(n,q)
A

n: number of nodes

Each two nodes are connected
with probability g
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e A and B are edge-wise correlated (p) under the hidden node correspondence 7.
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e A and B are edge-wise correlated (p) under the hidden node correspondence 7.

(Aij, B (i J-)) are 1.1.d. pairs of two Bern(q) with correlation p
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* p 1s the edge correlation.

e 1ngq 1is the average degree for A and B.



Correlated Erdés—RéHYi graph mOdel[Pedarsani-Grossglauser "11]

/1IN /1N
NN \

A~ En,q) B~ %(n,q)

e A and B are edge-wise correlated (p) under the hidden node correspondence 7.
* p 1s the edge correlation.

e ngq 1s the average degree for A and B.

Observe A and B, we want to recover the hidden node correspondence 7, when n — 0.
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Edge subsampling
probability

3—@

A~ G(n,q 2 ps)

Parent graph edge probability

B~ ¥%(n,q éps)



Alternative view: subsampling model

Edge subsampling

probability Permute the node labels,

0
@9 @

5
®e

A~ E(n,q = ps)

=

By 7 uniformly

e A and B are edge-wise correlated
under the latent permutation 7 with

. A\
correlation parameter p = 1 1
—q

Parent graph edge probability

e A* AB ~ €(n,ps?)

B~ ¥%(n,q éps)
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e Maximum likelihood estimator:

Ty, = arg max Z ABriyay (QAP)

1<j
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e Maximum likelihood estimator:

v = Arg max Z ABriyay (QAP)

i<j
* QAP was mtroduced by [Koopmans-Beckmann *57]

COWLES FOUNDATION DISCUSSION PAPER; NO. i+

Assignment Problems and the Location of Economic Activities**

by
Tjalling C. Koopmens and Martin Beclmsnn



MLE: Quadratic Assignment Problem (QAP)

e Maximum likelihood estimator:

Ty, = arg max Z ABriyay (QAP)

i<j
* QAP was mtroduced by [Koopmans-Beckmann *57]

COWLES FOUNDATION DISCUSSION PAPER; NO. i+

Assignment Problems and the Location of Economic Activities**

by
Tjalling C. Koopmens and Martin Beclmsnn

e It1s NP-hard to solve or even approximate.

e How much does 7y have in common with 7 ?

RN . .
overlap (nML, 7‘[) = — ‘ {i € [n] : myp (0) = z(7) }

Fraction of correctly matched vertices



Sharp recovery threshold: dense Erdos-Rényi graphs

Theorem [Wu-Xu-Yu ’21]

Suppose 7V < p <1 — Q(1). Then

2+ e)l
If nps? > ( 1 ¢)logn = overlap (nML, n) =1-o0(1) w.h.p.
log i l+p
2 —e)l
If nps? < (2 —¢)logn = overlap (7, 7) = o(1) W.h.p.V7

log%—1+p
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Theorem [Wu-Xu-Yu ’21]

Suppose 7V < p <1 — Q(1). Then

2+ e)l
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1

Partial recovery E Almost exact recovery
impossible +  possible (MLE)
“Nothing” E “All”

: s nps>(log(1/p)—1+p)
0 2 ’ logn




Sharp recovery threshold: dense Erdos-Rényi graphs

Theorem [Wu-Xu-Yu ’21]

Suppose 7V < p <1 — Q(1). Then

2+ e)l
If nps? > ( 1 ¢)logn = overlap (nML, n) =1-o0(1) w.h.p.
log i l+p
2 —e)l
If nps? < ( 1 e)logn = overlap (7, 7) = o(1) w.h.p.V7
log e l+p

e IT Interpretation of threshold

n 5 1
I(r;A,B) ~ , Xps“|{log——1+p
p

e H(r) ~® nlogn \

Mutual info btw two correlated edges

e Threshold is at I(x; A, B) ~ H(x)



Sharp recovery threshold: sparse Erdos-Reényi graphs

Theorem [Ding-Du *22]

Suppose p = 1~ “ for a € (0,1] and 1* = y~'(1/a). Then

If nps? > 1* + € = 37 s.1. overlap (7, 7) = Q(1) w.h.p.
If nps? < A* — e = overlap (7, 7) = o(1) w.h.p.V7#
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Theorem [Ding-Du *22]

Suppose p = n~“for a € (0,1] and 1* = y~'(1/c). Then

If nps? > 1* + € = 37 s.1. overlap (7, 7) = Q(1) w.h.p.
If nps? < A* — e = overlap (7, 7) = o(1) w.h.p.V7#

e v:[l,00) = [1,00) is given by the densest subgraph problem in Erdds-Rényi
graphs & (n, A/n) [Hajek *90, Anantharam-Salez *16]:
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o#Ucinl | U]
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Theorem [Ding-Du *22]

Suppose p = n~“for a € (0,1] and 1* = y~'(1/c). Then

If nps? > 1* + € = 37 s.1. overlap (7, 7) = Q(1) w.h.p.
If nps? < A* — e = overlap (7, 7) = o(1) w.h.p.V7#

e v:[l,00) = [1,00) is given by the densest subgraph problem in Erdds-Rényi
graphs & (n, A/n) [Hajek *90, Anantharam-Salez *16]:
|E(U)|
y(d)
o#Ucinl | U]
e The negative result of @ = 1 is proved in [Ganassali-Lelarge-Massoulié *21]

e Sharpens our previous threshold nps® = ®(1) for MLE [Wu-Xu-Yu *21]

e “All-or-nothing” phenomenon does not exist, as almost exact recovery (overlap
=1 — o(1) ) requires nps? — oo [Cullina-Kiyavash-Mittal-Poor *19]



Exact recovery threshold

Theorem [Wu-Xu-Yu *21]

Suppose p < | — CQ(1). Then

>
(1-+/p)

1 —e)l
If nps? < (1 ~e)logn = overlap (#, 7) # 1 w.h.pVz

~ (1—y/p2




Exact recovery threshold

Theorem [Wu-Xu-Yu *21]

Suppose p < | — CQ(1). Then

If > = overla ,7) =1 w.h
nps (1 \/13)2 p (”ML 77) P
, U —=¢e)logn R R
If nps~ < = overlap (#, 7) # 1 w.h.pVz
(1 p)

* p = o(l): reduces to the connectivity threshold of the intersection graph
A* A B ~ €(n, ps?) [Cullina-Kiyavash ’16 17]

e p = Q(1): strictly higher than the connectivity threshold



Summary on information-theoretic thresholds

Partial

% Almost exact

r(ejzi;/:’gc)n recovery Exact recovery
—o(1) 2 __ 2logn
» L NP5 = log(1/p)—1+p nps®(1-yp)° _ 1
log n IR
n— nps? = \* nps? = w(1)
. 2
Gaussian =4

logn




Summary on information-theoretic thresholds

Partial

% Almost exact

r(ejce:;/:xm recovery Exact recovery
n_o(l) n 82 . 2logn 5 5
) PS" = fog(i/p)—17p nps"(1=vP)” _ 4
logn
n— nps? = \* nps? = w(1)
. 2
Gaussian =4

logn

Only a vanishing amount of correlation 1s needed for recovery information-theoretically!



Summary on information-theoretic thresholds

Partial

% Almost exact

r(ejz;/::i};n recovery Exact recovery
—ol1 2 2logn
p | h nPS” = og(1/p)—1+p nps®(1-v/b)® _ 4
logn
n~% nps? = \* nps® = w(l)
. 2
Gaussian lzgn =4

Only a vanishing amount of correlation 1s needed for recovery information-theoretically!

Can we develop a scalable algorithm to recover 7 with a strong statistical guarantee?
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n®0ogm_time recovery when p = o(1) [Barak-Chou-Lei-Schramm-Sheng *19]
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State of the art (polynomial-time algorithms)

ng Sparse graphs Dense graphs
o)

P ng = n°M ng =n

Extremely high correlation

p—1

high correlation

p close to 1
Low correlation p? > a ~ 0.338 [Mao-Wu-Xu-Yu *22]
Constant p a = Otter's tree counting constant

ANNALS OF MATHEMATICS
Vol. 49, No. 3, July, 1948

The number of unlabeled trees with N edges

— THE NUMBER OF TREES
~ a N [Otter *1948]

RicEARD OTTER!
(Received June 10, 1947)




State of the art (polynomial-time algorithms)

ng Sparse graphs Dense graphs

Extremely high correlation

p—1

high correlation

p close to 1
Low correlation p? > a ~ 0.338 [Mao-Wu-Xu-Yu *22]
Constant p a = Otter's tree counting constant

A different (local) algorithm is shown to achieve partial recovery in the sparse
regime when p > \/E [Ganassali-Massoulié-Semerjian *22]
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Our results

Theorem [Mao-Wu-Xu-Yu ’22]

When p” > a ~ 0.338 (a £ Otter's tree counting constant), as 7 — ©o, our
polynomial-time matching algorithm with probability 1 — o(1) achieves:

e Ifng > C, partial recovery (correctly match a positive constant fraction of vertices)
e Ifng = w(l), almost exact recovery (correctly match 1 — o(1) fraction of vertices)

e Ifng(g+ p(1 —¢q)) > (1 + ¢€)log n, exact recovery (correctly match all vertices)

* No mismatching error;

e The intersection graph between A and B under the hidden node correspondence 7z
~ Z (n,q(qg+p(1 —q)));

e ng(g+ p(l —q)) > (1 + ¢)logn is the connectivity threshold and information-
theoretically necessary for exact recovery;



Phase transition diagram for exact recovery

Let’s focus on the regime when ng = Alog n, where A is some constant.
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Let’s focus on the regime when ng = Alog n, where A is some constant.
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efficiency

possible
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The curve 1s the information theoretical limit where p = min { LI} [Cullina-
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Phase transition diagram for exact recovery

Let’s focus on the regime when ng = Alog n, where A is some constant.

- P
'\ polynomial-time possible
(@ ~ 0.338) Vo _"i".
. impossible _
0 L -
0 1_L o )
Va

1
Our condition coincides with the information-theoretic imit when 1 < 4 < —.

a



Phase transition diagram for exact recovery

Let’s focus on the regime when ng = Alog n, where A is some constant.

'\ polynomial-time possible

(a ~0.338) Vo -+~

Conjectured hard

impossible —

0
0 1

A
7

0 A

i
-
Low-degree polynomial estimators fail when p < \/E [Ding-Du-Li *23];

Local algorithms fail when p < \/E In sparse regime [Ganassali-Massoulié-Semerjian *22]
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Meta algorithm



Algorithm
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Meta algorithm

e Step I: signature embedding

Based on the structure of A:

Construct a vertex signature (number or vector) for each vertex in A.

RN
N

Vertex in A | Vertex signature
1 1
2 )
3 53
4 54
5 55

20



Meta algorithm

e Step I: signature embedding

Based on the structure of B:

Construct a vertex signature (number or vector) for each vertex in B.

b\

B~ &n,q)

Vertex in B | Vertex signature
1 I
2 2
3 I3
4 Iy
5 Is
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e Step 2: Similarity score

For any vertex pair of i in A and j in B, compute similarity score @, based on s; and ¢
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How to construct the vertex signature?

1 1
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Examples of vertex signature:
* Degree

e Degrees of neighbors: only works for p = 1 — 1/polylog(n) [Ding-Ma-Wu-Xu 18]



How to construct the vertex signature?

| |
2/ \4 2/ \4
NL N \
3 5 : 3

Examples of vertex signature:
* Degree
e Degrees of neighbors: only works for p = 1 — 1/polylog(n) [Ding-Ma-Wu-Xu 18]

* The local tree structure: only works for sparse graphs [Mao-Rudelson-Tikhomirov *21]
[Ganassali-Massouli¢ ’20][Ganassali-Massouli¢-Lelarge *21]
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How to construct the vertex signature?

| |
2/ \4 2/ \4
NL N \
3 5 . 3

Examples of vertex signature:
* Degree
e Degrees of neighbors: only works for p = 1 — 1/polylog(n) [Ding-Ma-Wu-Xu 18]

* The local tree structure: only works for sparse graphs [Mao-Rudelson-Tikhomirov *21]
[Ganassali-Massouli¢ ’20][Ganassali-Massouli¢-Lelarge *21]

The above vertex signatures are either sensitive to noise or only work in sparse regime.
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Subgraph count
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Subgraph count

AN /N

NN

subgraph H

e # copies of H in graph A = capture some graph information;

e [tis very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-
Kashtan ’02]);

e Has been applied to graph matching [Barak-Chou-Lei-Schramm-Sheng *19]

 How to capture the vertex information of i?
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Rooted subgraph count

A A

Rooted subgraph H

o # copies of H rooted at i in graph A, denoted as W, 4(A);
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Rooted subgraph count

A A
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Rooted subgraph H

(3 copies of H rooted at node i appear in A)
W, y(A) = 3

o # copies of H rooted at i in graph A, denoted as W, 4(A);
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Rooted subgraph count

A A

NN

Rooted subgraph H

(3 copies of H rooted at node i appear in A)
W, y(A) = 3

o # copies of H rooted at i in graph A, denoted as W, 4(A);

e (Capture some vertex information;
e Idea: construct a rich family of rooted subgraphs:
e Each rooted subgraph captures some information about the vertex;

e Combine all the information = vertex signature to be more informative.
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Graph matching via counting rooted subgraphs

Given a family 7 of rooted subgraphs with N edges:

eqg.N=4, # =
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/0\ ® o
II’/\,\|,

eqg.N=4, X =
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1. For each vertex i in A , its vertex signature 1s §; = (Wl H(A))He»;



Graph matching via counting rooted subgraphs

Given a family 7 of rooted subgraphs with N edges:

/0\ o o
II’/\,\|,

eqg.N=4, # =

1. For each vertex i in A , its vertex signature 1s §; = (Wl H(K))

He7
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Graph matching via counting rooted subgraphs

Given a family 7 of rooted subgraphs with N edges:

eqg.N=4, # =

| I/\

1. For each vertex i in A , its vertex signature 1s §; = (Wl H(K))

~—

p

He7

A = A — E[A]; B
Count the weighted copies in A

VVi,H(A)Z Z H Ae

S()=H e€E(S)
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Graph matching via counting rooted signed subgraphs

Given a family 7 of rooted subgraphs with N edges:

/\ » o
eqg.N=4, F =
J | L JIN T [
B rooted “signed”
1. For each vertex i in A , its vertex signature 1s §; = (Wl H(A)) subgraph count

He#x [Bubeck-Ding-
Eldan-Racz ’16]

A=A — E[A];

Count the weighted copies in A

VVi,H(A)Z 2 H Ae

S()=H e€E(S)
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Graph matching via counting rooted signed subgraphs

Given a family 7 of rooted subgraphs with N edges:
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Uncorrelated across different H
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Graph matching via counting rooted signed subgraphs

Given a family 7 of rooted subgraphs with N edges:
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Uncorrelated across different H

1. For each vertex i in A , 1ts vertex signature 1s s; = (Wl H(K))H e‘; AN
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2. For each vertex j in B, its vertex signature is ¢; = (W, q(B )) subgraph count

HeZ
3. Similarity score: N e

Uncorrelated across different H

;= (sp1) = 3 atEW, J(DOW, (B)
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where aut(H ) is the number of automorphism of H.
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Graph matching via counting rooted signed subgraphs

Given a family 7 of rooted subgraphs with N edges:

/O\ O ®
e.qg.N=4, H =
J | LN, — L
Uncorrelated across different H
1. For each vertex i in A , 1ts vertex signature 1s s; = (Wl H(K))H e‘; AN
.. : ] . _ rooted ““signed”
2. For each vertex j in B , its vertex signature 1s #; = (W] H(B)>H _ subgraph count
€
3. Similarity score: N\ '

Uncorrelated across different H

®; = <Si’ ’&'> = D, aut(H )VVi,I-{iK)VVj,H(E)a
Hex

Polynomials of A;’s and B;;’s

where aut(H ) is the number of automorphism of H.

4. Matchitojit ®; > 7 for some threshold 7.
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Desirable properties of similarity scores (Mean)

For each vertex i in A and j in B:

;= (5,1) = X aut(HW, ()W, ,(B)
HeZx N—

Correlated 1ff j = z(7) (true pair)

Fake pair: j # (i) True pair: j = 7(i)

| |
0 H

I I
E[®,] E[D,;)]

Mean separation = u

ij
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Desirable properties of similarity scores (Variance)

For each vertex i in A and j in B:

;= (5,1) = X aut(HW, ()W, ,(B)
HeZx N—

Correlated 1ff j = z(7) (true pair)

We want: fluctuation of @;; to be relatively small compared to .

Fake pair: j # (i) True pair: j = 7(i)

| |
0 H

I I
E[D,] E[D,, ;)]

Mean separation = u

ij

25



Desirable properties of similarity scores (Variance)

For each vertex i in A and j in B:

;= (5,1) = X aut(HW, ()W, ,(B)
HeZx N—

Correlated 1ff j = z(7) (true pair)

We want: fluctuation of @;; to be relatively small compared to .

Fake pair: j # (i) True pair: j = 7(i)
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Desirable properties of similarity scores (Variance)

For each vertex i in A and j in B:

;= (5,1) = X aut(HW, ()W, ,(B)
HeZx N—

Correlated 1ff j = z(7) (true pair)

We want: fluctuation of @;; to be relatively small compared to .

Fake pair: j # (i) True pair: j = 7(i)
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Desirable properties of similarity scores (Variance)

For each vertex i in A and j in B:

;= (5,1) = X aut(HW, ()W, ,(B)
HeZx N—

Correlated 1ff j = z(7) (true pair)

We want: fluctuation of @;; to be relatively small compared to .

Fake pair: j # (i) True pair: j = 7(i)

| | > D

I ]
0 T 7

I I
E[D,] E[D,, ;)]

Mean separation = u

Which family of # (rooted subgraphs) to choose?

25



Which family of rooted subgraphs to count?

Suppose # be a family of rooted subgraphs with N edges.

For each vertex i in A and j in B:

;= (s5,4) = X awt(H)W, ()W, ,(B)
Hex
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Which family of rooted subgraphs to count?

Suppose # be a family of rooted subgraphs with N edges.
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o Wishful thinking: ignoring the cross-correlations of aut(H)W; oA )Wi, 4(B) and
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Var[D, ] 1  goal
IS | | p*N
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A family of rooted trees

Suppose # be a family of rooted trees with N edges.

For each vertex i in A and j in B:
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A family of rooted trees

Suppose # be a family of rooted trees with N edges.

For each vertex i in A and j in B:

;= (s5,4) = X awt(H)W, ()W, ,(B)
Hex

o Wishful thinking: ignoring the cross-correlations of aut(H)W; oA )Wi, 4(B) and
aut(l)W; (A) w; /(B) for different subgraphs H and I

p->a

Var[®,] 1 / ;

N

w2 NI p

which requires
e The family # to be “rich”: | # | = (a + o(1))™";
e The subgraph H to be “large”: N grows in n;

e If H1s atree, 1t 1s “simple” to count via color coding [Alon-Yuster-Zwick’ 95].

* However, we cannot ignore the cross-correlations.
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We need to construct a special family of trees.



A special family of rooted trees

For each vertex i in A and j in B:

®, = <sl., tj> = Y aut(H)W, ()W, 4(B).
He7#

We want to construct a special family of trees:
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A special family of rooted trees - Chandeliers

For each vertex i in A and j in B:
®, = <sl., tj> = Y aut(H)W, ()W, 4(B).
He7

We want to construct a special family of trees:

e Suppress the undesirable cross-correlations to control Var[CDl-j] / ,uz;

e Let # denote the special family of chandeliers with NV edges.

e Pick K > M, we can ensure the richness of Z: | # | = (a + o(1))™".

» Wire: path with M edges

Majority of trees have
exp(O(K))
automorphisms
[Olsson-Wagner *22]

Bulb: rooted subtree with K edges
and exp(O(K)) automorphisms

\ S Chandelier has N edges where
L branches N=W+KL
27



Summary on properties of Chandeliers

Let # denote a special family of chandeliers:
e Large: The size of chandeliers N = clog n, where ¢ i1s some small constant.
e Rich: Choose K > M, to ensure | # | = (a + o(1))7V.

e Almost as rich as the whole family of all rooted trees.

e Informative: Choose smaller L and larger M, when graphs are sparser.

Root

» Wire: path with M edges

Bulb: rooted subtree with K edges
and exp(O(K)) automorphisms

Chandelier has N edges

S~—— where N = (M + K)L

L branches
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Summary on efficient algorithms

ng = Alogn

polynomial-time possible

Conjectured hard

impossible

10
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Open problems and future directions

* Rigorous evidences for statistical-computational gaps
 Beyond Erdos—Reény1 graphs:
e Random geometric graph matching [Wang-Wu-Xu-Yolou’ 22, ... ]

iid
A= (K Xis XJ)>, B = <K(yi9 yj))s where (Xﬂ(l-),yi) ~ P

 Community recovery and graph matching in correlated stochastic block models

[Racz-Sridhar’ 21, Gaudio-Racz-Sridhar ’22]

* Matching preferential attachment graphs [Korula-Lanttanzi '14] or power-law
graphs [Yu-Xu-Lin 21]

e Seeded Graph matching with initial “noisy” matched pairs [Kazemi-Hassani-
Grossglausser ’15, Lubars-Srikant *18, Mossel-Xu ’20, Yu-Xu-Lin *20]

* Graph matching with node attribute information [Zhang-Wang-Wang-Wang *20]
e “Robust” graph matching [Ameen-Hajek * 23]
 Random graph matching with multiple graphs [Ameen-Hajek > 24]

e Database alignment/record linkage problem [Dai-Cullina-Kiyavash *19, ...]
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MLE: Quadratic Assignment Problem (QAP)

e Maximum likelihood estimator:
7MLE = Arg Max Z AiBaiac) (QAP)
i<j
Suppose A, B ~ correlated Erdds—Rény1 graph model under a hidden node mapping 7.
The likelihood function 1s

PA,BIR) = (qq+p — gp)) & tiPom
(q(l —g)(1 - ,0)> Zig A1 =Bronp)t i (1=A)Brirec

Y (1=A)(1=Bj)
(1-qQ2—g—p+qp))=a 7 700

- ( (g+p—qgp)l—qg2—q—p+qp)) > Lic; AiBiiic)
q(1 — g)*(1 - p)*

Then, we have

MLE, = arg max &(A, B| 7) = arg max Z A;iB i) -

i<j



Approximately count signed trees via color coding

Root

1 /‘\ N edges

Rooted tree H

 Exhaustive search takes n” times: super poly-time when N — oo
e Solution: approximate count in 72e ™) time via color coding [Alon-Yuster-Zwick *95]

1. Assign random color u to each vertex from color set [NV + 1] uniformly
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Root

1 /‘\ N edges

Rooted tree H

 Exhaustive search takes n” times: super poly-time when N — oo
e Solution: approximate count in 72e ™) time via color coding [Alon-Yuster-Zwick *95]
1. Assign random color u to each vertex from color set [NV + 1] uniformly

2. Count colorful copies of H (all vertices have distinct colors) = X; ;(A, u)
[Eu[Xi,H(KaM)] = i”W,-,H(K), where r = (N + 1) /(N + )N+

3. Generate 1/r independent random colorings y, so that

1/r
W, @)~ Y X, (A, )
=1
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Boost almost exact recovery to exact recovery

Seeded graph matching (SGM)

1. For each unmatched pair (i, j), compute
“common’ neighbors N(i, j) under 7

2. If N(i,j) > y, match (i, j), append it to
7, and repeat
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Boost almost exact recovery to exact recovery

Seeded graph matching (SGM)

1. For each unmatched pair (i, j), compute
J “common” neighbors N(i, j) under 7

2. If N(i,j) > y, match (i, j), append it to
7, and repeat

Similar to percolation graph matching [Yarteva-Grossglauser’13, Barak-Chou-Lei-Schramm-
Sheng *19]

Theorem [Mao-Wu-X.-Yu ’22]

Suppose ng(qg + p(1 —q)) = (1 + ¢)logn and p > €. With probability 1 — o(1), given
any input 7 that completely coincides with 7 on at least (1 — e¢)n vertices, SGM with an
appropriate choice of threshold y outputs # = 7 in time O(n’g?).

* Proof: Intersection graph 1s an expander, so SGM iteratively matches all vertices
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Rooted signed subgraph count

..... Root
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-------- Rooted subgraph H

e Centered adjacency matrices: A = A — E[A];

« Count weighted copies of rooted graph in A = W, ;(A) (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Racz *16];

 Crucially, W; 4(A) and W, /(A) are uncorrelated for distinct subgraphs H and I.



