Recent advances on random graph matching

Jiaming Xu

The Fuqua School of Business Duke University

Joint work: Cheng Mao (GaTech), Yihong Wu (Yale), and Sophie H. Yu (Wharton)

Stochastic Networks Conference 2024

Outline

- Motivation and problem setup
- Information-theoretic limits
- Efficient algorithms
- Concluding remarks

Motivating example in network de-anonymization

• Narayanan and Shmatikov correctly identified a fraction of users between Twitter and Flickr in 2009.

Applications

• Biology [Singh-Xu-Berger '2008; Kazemi et al. '2016]

• Computer Vision [Lähner et al. '2016; Fan-Mao-Wu-Xu '2020]

Real-world challenges

- **Computational:** # of possible node mappings is $n! (100! \approx 10^{158})$;
- **Statistical:** two graphs may be correlated but not exactly the same;

Beyond worst-case intractability

- NP-hard for matching two graphs in worst case
- However, real networks are not arbitrary and have latent structures

Beyond worst-case intractability

- **NP-hard** for matching two graphs in worst case
- However, real networks are not arbitrary and have latent structures
- Recent surge of interest on the average-case analysis
 - [Cullina-Kiyavash '16,17]
 - [Cullina-Kiyavash-Mittal-Poor '19, Dai-Cullina-Kiyavash-Grossglauser '19, Ding-Ma-Wu-Xu '18, Barak-Chou-Lei-Schramm-Sheng '19, Fan-Mao-Wu-Xu '19a,19b]
 - [Ganassali-Massoulié '20, Hall-Massoulié '20, Wu-Xu-Yu '21, Ganassali-Lelarge-Massoulié '21, Mao-Rudelson-Tikhomirov '21a, 21b]
 - [Ding-Du '21, 22, Mao-Wu-Xu-Yu '22, Ganassali-Massoulié-Semerjian '22]
 - [Ding-Li' 23, Ding-Du-Li' 23]
 - ...

 $A \sim \mathcal{G}(n,q)$

 $B \sim \mathcal{G}(n,q)$

• A and B are edge-wise correlated (ρ) under the hidden node correspondence π .

• A and B are edge-wise correlated (ρ) under the hidden node correspondence π .

 $(A_{ij}, B_{\pi(i)\pi(j)})$ are i.i.d. pairs of two Bern(q) with correlation ρ

• A and B are edge-wise correlated (ρ) under the hidden node correspondence π .

 $(A_{ij}, B_{\pi(i)\pi(j)})$ are i.i.d. pairs of two Bern(q) with correlation ρ

• A and B are edge-wise correlated (ρ) under the hidden node correspondence π .

 $(A_{ij}, B_{\pi(i)\pi(j)})$ are i.i.d. pairs of two Bern(q) with correlation ρ

- A and B are edge-wise correlated (ρ) under the hidden node correspondence π .
- ρ is the edge correlation.

- A and B are edge-wise correlated (ρ) under the hidden node correspondence π .
- ρ is the edge correlation.
- *nq* is the average degree for *A* and *B*.

- A and B are edge-wise correlated (ρ) under the hidden node correspondence π .
- ρ is the edge correlation.
- *nq* is the average degree for *A* and *B*.

Observe *A* and *B*, we want to **recover** the hidden node correspondence π , when $n \to \infty$.

Parent graph edge probability

 $B \sim \mathcal{G}(n, q \triangleq ps)$

Outline

- Motivation and problem setup
- Information-theoretic limits
- Efficient algorithms
- Concluding remarks

MLE: Quadratic Assignment Problem (QAP)

• Maximum likelihood estimator:

$$\pi_{\rm ML} = \arg \max_{\hat{\pi}} \sum_{i < j} A_{ij} B_{\hat{\pi}(i)\hat{\pi}(j)} \quad (\rm QAP)$$

MLE: Quadratic Assignment Problem (QAP)

• Maximum likelihood estimator:

$$\pi_{\text{ML}} = \arg \max_{\hat{\pi}} \sum_{i < j} A_{ij} B_{\hat{\pi}(i)\hat{\pi}(j)} \quad (\text{QAP})$$

• QAP was introduced by [Koopmans-Beckmann '57]

COWLES FOUNDATION DISCUSSION PAPER, NO. 4*

Assignment Problems and the Location of Economic Activities**

Ъy

Tjalling C. Koopmans and Martin Beckmann

MLE: Quadratic Assignment Problem (QAP)

• Maximum likelihood estimator:

$$\pi_{\text{ML}} = \arg \max_{\hat{\pi}} \sum_{i < j} A_{ij} B_{\hat{\pi}(i)\hat{\pi}(j)} \quad (\text{QAP})$$

• QAP was introduced by [Koopmans-Beckmann '57]

- Tjalling C. Koopmans and Martin Beckmann
- It is **NP-hard** to solve or even approximate.
- How much does π_{ML} have in common with π ?

overlap
$$\left(\pi_{\mathrm{ML}}, \pi\right) \triangleq \frac{1}{n} \left| \left\{ i \in [n] : \pi_{\mathrm{ML}}(i) = \pi(i) \right\} \right|$$

Fraction of correctly matched vertices

Sharp recovery threshold: dense Erdös-Rényi graphs

Theorem [Wu-Xu-Yu '21]

Suppose $n^{-o(1)} \le p \le 1 - \Omega(1)$. Then

If
$$nps^2 \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \Rightarrow \text{overlap}\left(\pi_{\text{ML}}, \pi\right) = 1 - o(1) \text{ w.h.p.}$$

If $nps^2 \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \Rightarrow \text{overlap}\left(\hat{\pi}, \pi\right) = o(1) \text{ w.h.p.} \forall \hat{\pi}$

Sharp recovery threshold: dense Erdös-Rényi graphs

Theorem [Wu-Xu-Yu '21]

Suppose $n^{-o(1)} \le p \le 1 - \Omega(1)$. Then

If
$$nps^2 \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \Rightarrow \text{overlap}(\pi_{\text{ML}}, \pi) = 1 - o(1) \text{ w.h.p.}$$

If $nps^2 \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \Rightarrow \text{overlap}(\hat{\pi}, \pi) = o(1) \text{ w.h.p.} \forall \hat{\pi}$

Sharp recovery threshold: dense Erdös-Rényi graphs

Theorem [Wu-Xu-Yu '21]

Suppose $n^{-o(1)} \le p \le 1 - \Omega(1)$. Then

If
$$nps^2 \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \Rightarrow \text{overlap}\left(\pi_{\text{ML}}, \pi\right) = 1 - o(1) \text{ w.h.p.}$$

If $nps^2 \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \Rightarrow \text{overlap}\left(\hat{\pi}, \pi\right) = o(1) \text{ w.h.p.} \forall \hat{\pi}$

• IT Interpretation of threshold

$$I(\pi; A, B) \approx {\binom{n}{2}} \times ps^2 \left(\log \frac{1}{p} - 1 + p\right)$$

• $H(\pi) \approx n \log n$

Mutual info btw two correlated edges

• Threshold is at $I(\pi; A, B) \approx H(\pi)$

Sharp recovery threshold: sparse Erdös-Rényi graphs

Theorem [Ding-Du '22]

Suppose $p = n^{-\alpha}$ for $\alpha \in (0,1]$ and $\lambda^* = \gamma^{-1}(1/\alpha)$. Then

If $nps^2 \ge \lambda^* + \epsilon \Rightarrow \exists \hat{\pi} \text{ s.t. overlap}(\hat{\pi}, \pi) = \Omega(1) \text{ w.h.p.}$ If $nps^2 \le \lambda^* - \epsilon \Rightarrow \text{ overlap}(\hat{\pi}, \pi) = o(1) \text{ w.h.p.} \forall \hat{\pi}$

Sharp recovery threshold: sparse Erdös-Rényi graphs

```
Theorem [Ding-Du '22]

Suppose p = n^{-\alpha} for \alpha \in (0,1] and \lambda^* = \gamma^{-1}(1/\alpha). Then

If nps^2 \ge \lambda^* + \epsilon \Rightarrow \exists \hat{\pi} s.t. overlap (\hat{\pi}, \pi) = \Omega(1) w.h.p.

If nps^2 \le \lambda^* - \epsilon \Rightarrow overlap (\hat{\pi}, \pi) = o(1) w.h.p. \forall \hat{\pi}
```

• $\gamma : [1,\infty) \to [1,\infty)$ is given by the densest subgraph problem in Erdös-Rényi graphs $\mathscr{G}(n, \lambda/n)$ [Hajek '90, Anantharam-Salez '16]:

$$\max_{\emptyset \neq U \subset [n]} \frac{|E(U)|}{|U|} \to \gamma(\lambda)$$

Sharp recovery threshold: sparse Erdös-Rényi graphs

```
Theorem [Ding-Du '22]

Suppose p = n^{-\alpha} for \alpha \in (0,1] and \lambda^* = \gamma^{-1}(1/\alpha). Then

If nps^2 \ge \lambda^* + \epsilon \Rightarrow \exists \hat{\pi} s.t. overlap (\hat{\pi}, \pi) = \Omega(1) w.h.p.

If nps^2 \le \lambda^* - \epsilon \Rightarrow overlap (\hat{\pi}, \pi) = o(1) w.h.p. \forall \hat{\pi}
```

γ: [1,∞) → [1,∞) is given by the densest subgraph problem in Erdös-Rényi graphs G(n, λ/n) [Hajek '90, Anantharam-Salez '16]:

$$\max_{\emptyset \neq U \subset [n]} \frac{|E(U)|}{|U|} \to \gamma(\lambda)$$

- The negative result of $\alpha = 1$ is proved in [Ganassali-Lelarge-Massoulié '21]
- Sharpens our previous threshold $nps^2 = \Theta(1)$ for MLE [Wu-Xu-Yu '21]
Sharp recovery threshold: sparse Erdös-Rényi graphs

```
Theorem [Ding-Du '22]

Suppose p = n^{-\alpha} for \alpha \in (0,1] and \lambda^* = \gamma^{-1}(1/\alpha). Then

If nps^2 \ge \lambda^* + \epsilon \Rightarrow \exists \hat{\pi} s.t. overlap (\hat{\pi}, \pi) = \Omega(1) w.h.p.

If nps^2 \le \lambda^* - \epsilon \Rightarrow overlap (\hat{\pi}, \pi) = o(1) w.h.p. \forall \hat{\pi}
```

• $\gamma : [1,\infty) \to [1,\infty)$ is given by the densest subgraph problem in Erdös-Rényi graphs $\mathscr{G}(n,\lambda/n)$ [Hajek '90, Anantharam-Salez '16]:

$$\max_{\emptyset \neq U \subset [n]} \frac{|E(U)|}{|U|} \to \gamma(\lambda)$$

- The negative result of $\alpha = 1$ is proved in [Ganassali-Lelarge-Massoulié '21]
- Sharpens our previous threshold $nps^2 = \Theta(1)$ for MLE [Wu-Xu-Yu '21]
- "All-or-nothing" phenomenon does not exist, as almost exact recovery (overlap = 1 o(1)) requires $nps^2 \rightarrow \infty$ [Cullina-Kiyavash-Mittal-Poor '19]

Exact recovery threshold

Theorem [Wu-Xu-Yu '21]

Suppose $p \leq 1 - \Omega(1)$. Then

If
$$nps^2 \ge \frac{(1+\epsilon)\log n}{(1-\sqrt{p})^2} \Rightarrow \text{overlap}(\pi_{\text{ML}}, \pi) = 1 \text{ w.h.p.}$$

If $nps^2 \le \frac{(1-\epsilon)\log n}{(1-\sqrt{p})^2} \Rightarrow \text{overlap}(\hat{\pi}, \pi) \ne 1 \text{ w.h.p} \forall \hat{\pi}$

Exact recovery threshold

Theorem [Wu-Xu-Yu '21]

Suppose $p \leq 1 - \Omega(1)$. Then

If
$$nps^2 \ge \frac{(1+\epsilon)\log n}{(1-\sqrt{p})^2} \Rightarrow \text{overlap}(\pi_{\text{ML}}, \pi) = 1 \text{ w.h.p.}$$

If $nps^2 \le \frac{(1-\epsilon)\log n}{(1-\sqrt{p})^2} \Rightarrow \text{overlap}(\hat{\pi}, \pi) \ne 1 \text{ w.h.p} \forall \hat{\pi}$

- p = o(1): reduces to the connectivity threshold of the intersection graph $A^* \wedge B \sim \mathcal{G}(n, ps^2)$ [Cullina-Kiyavash '16 17]
- $p = \Omega(1)$: strictly higher than the connectivity threshold

Summary on information-theoretic thresholds

		Partial recovery & detection	Almost exact recovery	Exact recovery
p	$n^{-o(1)}$	$nps^2 = \frac{1}{\log 2}$	$rac{2\log n}{\operatorname{g}(1/p)-1+p}$	$\frac{nps^2(1-\sqrt{p})^2}{\log n} = 1$
Γ	$n^{-\alpha}$	$nps^2 = \lambda^*$	$nps^2 = \omega(1)$	log n
Gaussian			$\frac{n\rho^2}{\log n} = 4$	-

Summary on information-theoretic thresholds

		Partial recovery & detection	Almost exact recovery	Exact recovery
p	$n^{-o(1)}$	$nps^2 = \frac{1}{\log 2}$	$rac{2\log n}{\operatorname{g}(1/p)-1+p}$	$\frac{nps^2(1-\sqrt{p})^2}{\log n} = 1$
1	$n^{-\alpha}$	$nps^2 = \lambda^*$	$nps^2 = \omega(1)$	log n
Gaussian			$\frac{n\rho^2}{\log n} = 4$	<u>.</u>

Only a vanishing amount of correlation is needed for recovery information-theoretically!

Summary on information-theoretic thresholds

		Partial recovery & detection	Almost exact recovery	Exact recovery
p	$n^{-o(1)}$	$-o(1)$ $nps^2 = \frac{2\log n}{\log(1/p) - 1 + p}$		$\frac{nps^2(1-\sqrt{p})^2}{\log n} = 1$
1	$n^{-\alpha}$	$nps^2 = \lambda^*$	$nps^2 = \omega(1)$	log n
Gaussian			$\frac{n\rho^2}{\log n} = 4$	

Only a vanishing amount of correlation is needed for recovery information-theoretically!

Can we develop a scalable algorithm to recover π with a strong statistical guarantee?

Outline

- Motivation and problem setup
- Information-theoretic limits
- Efficient algorithms
- Concluding remarks

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$		
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$		
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$		
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$		
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$		
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$		
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$	[Babai-Erdős-Selkow '80][Bollobá [Czajka-Pandurangan '07]	$\left\{ e^{82} \right\} \rho = 1$
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$	[Babai-Erdős-Selkow '80][Bollobá [Czajka-Pandurangan '07] [Dai-Cullina-Kiyavash-Grossglaus	$\begin{cases} \text{is '82} \\ \text{er '18} \end{cases} \rho = 1 \\ \rho = 1 - 1/\text{poly}(n) \end{cases}$
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$	[Babai-Erdős-Selkow '80][Bollobá [Czajka-Pandurangan '07] [Dai-Cullina-Kiyavash-Grossglaus [Ding-Ma-Wu-Xu '18] [Fan-Mao-Wu-Xu '19] $\rho = 1 - 1$	$\begin{cases} \text{is '82]} \\ \text{er '18]} \\ \rho = 1 - 1/\text{poly}(n) \\ 1/\text{polylog}(n) \end{cases}$
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$	$ \begin{bmatrix} \text{Babai-Erdős-Selkow '80} \\ \text{[Czajka-Pandurangan '07]} \end{bmatrix} \rho = 1 \\ \begin{bmatrix} \text{Czajka-Pandurangan '07]} \\ \text{[Dai-Cullina-Kiyavash-Grossglauser '18]} \\ \rho = 1 - 1/\text{poly}(n) \\ \begin{bmatrix} \text{Ding-Ma-Wu-Xu '18]} \\ \text{[Fan-Mao-Wu-Xu '19]} \end{bmatrix} \rho = 1 - 1/\text{polylog}(n) \\ \begin{bmatrix} \text{Mao-Rudelson-Tikhomirov '21]} \\ \rho = 1 - 1/\text{polyloglog}(n) \end{bmatrix} $	
high correlation ρ close to 1		
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$	$ \begin{array}{l} [Babai-Erdős-Selkow '80] [Bollobá \\ [Czajka-Pandurangan '07] \\ [Dai-Cullina-Kiyavash-Grossglaus \\ [Ding-Ma-Wu-Xu '18] \\ [Fan-Mao-Wu-Xu '19] \end{array} \right\} \rho = 1 - \\ [Mao-Rudelson-Tikhomirov '21] \end{array} $	$\left. \begin{array}{l} \text{is '82]} \\ \text{er '18]} \end{array} \right\} \rho = 1$ 1/polylog(n) $\rho = 1 - 1/\text{polylog}(n)$
high correlation ρ close to 1	[Ganassali-Massoulié '20] [Ganassali-Massoulié-Lelarge'21] [Mao-Rudelson-Tikhomirov '21]	$\left. \right\} \rho = 1 - c$
Low correlation Constant ρ		

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$	$ \begin{bmatrix} Babai-Erdős-Selkow '80 \end{bmatrix} \begin{bmatrix} Bollobá \\ [Czajka-Pandurangan '07] \\ [Dai-Cullina-Kiyavash-Grossglaus \\ [Ding-Ma-Wu-Xu '18] \\ [Fan-Mao-Wu-Xu '19] \end{bmatrix} \rho = 1 - \\ \begin{bmatrix} Mao-Rudelson-Tikhomirov '21 \end{bmatrix} $	$\begin{cases} \text{is '82]} \\ \text{er '18]} \\ \rho = 1 - 1/\text{poly}(n) \\ 1/\text{polylog}(n) \\ \rho = 1 - 1/\text{polyloglog}(n) \end{cases}$
high correlation ρ close to 1	[Ganassali-Massoulié '20] [Ganassali-Massoulié-Lelarge'21] [Mao-Rudelson-Tikhomirov '21]	$\left. \right\} \rho = 1 - c$
Low correlation Constant ρ		

 $n^{\Theta(\log n)}$ -time recovery when $\rho = o(1)$ [Barak-Chou-Lei-Schramm-Sheng '19]

ρ nq	Sparse graphs $nq = n^{o(1)}$	Dense graphs $nq = n^{\Theta(1)}$
Extremely high correlation $\rho \rightarrow 1$	[Babai-Erdős-Selkow '80][Bollobá [Czajka-Pandurangan '07] [Dai-Cullina-Kiyavash-Grossglaus [Ding-Ma-Wu-Xu '18] [Fan-Mao-Wu-Xu '19] $\rho = 1 - 1$ [Mao-Rudelson-Tikhomirov '21]	$\begin{cases} \text{is '82} \\ \text{or '18} \\ \rho = 1 \\ \rho = 1 - 1/\text{poly}(n) \\ \rho = 1 - 1/\text{polylog}(n) \\ \rho = 1 - 1/\text{polyloglog}(n) \end{cases}$
high correlation ρ close to 1	[Ganassali-Massoulié '20] [Ganassali-Massoulié-Lelarge'21] [Mao-Rudelson-Tikhomirov '21]	$\left. \right\} \rho = 1 - c$
Low correlation Constant ρ	?	

Annals of Mathematics Vol. 49, No. 3, July, 1948

The number of unlabeled trees with N edges $\approx \alpha^{-N}$ [Otter '1948]

THE NUMBER OF TREES

RICHARD OTTER¹ (Received June 10, 1947)

A different (local) algorithm is shown to achieve partial recovery in the sparse regime when $\rho > \sqrt{\alpha}$ [Ganassali-Massoulié-Semerjian '22]

Theorem [Mao-Wu-Xu-Yu '22]

When $\rho^2 > \alpha \approx 0.338$ ($\alpha \triangleq$ Otter's tree counting constant), as $n \to \infty$, our polynomial-time matching algorithm with probability 1 - o(1) achieves:

• If $nq \ge C$, partial recovery (correctly match a positive constant fraction of vertices)

Theorem [Mao-Wu-Xu-Yu '22]

- If $nq \ge C$, partial recovery (correctly match a positive constant fraction of vertices)
- If $nq = \omega(1)$, almost exact recovery (correctly match 1 o(1) fraction of vertices)

Theorem [Mao-Wu-Xu-Yu '22]

- If $nq \ge C$, partial recovery (correctly match a positive constant fraction of vertices)
- If $nq = \omega(1)$, almost exact recovery (correctly match 1 o(1) fraction of vertices)
- If $nq(q + \rho(1 q)) \ge (1 + \epsilon)\log n$, exact recovery (correctly match all vertices)

Theorem [Mao-Wu-Xu-Yu '22]

- If $nq \ge C$, partial recovery (correctly match a positive constant fraction of vertices)
- If $nq = \omega(1)$, almost exact recovery (correctly match 1 o(1) fraction of vertices)
- If $nq(q + \rho(1 q)) \ge (1 + \epsilon)\log n$, exact recovery (correctly match all vertices)
- No mismatching error;

Theorem [Mao-Wu-Xu-Yu '22]

- If $nq \ge C$, partial recovery (correctly match a positive constant fraction of vertices)
- If $nq = \omega(1)$, almost exact recovery (correctly match 1 o(1) fraction of vertices)
- If $nq(q + \rho(1 q)) \ge (1 + \epsilon)\log n$, exact recovery (correctly match all vertices)
- No mismatching error;
- The intersection graph between *A* and *B* under the hidden node correspondence $\pi \sim \mathcal{G}(n, q(q + \rho(1 q)));$

Theorem [Mao-Wu-Xu-Yu '22]

- If $nq \ge C$, partial recovery (correctly match a positive constant fraction of vertices)
- If $nq = \omega(1)$, almost exact recovery (correctly match 1 o(1) fraction of vertices)
- If $nq(q + \rho(1 q)) \ge (1 + \epsilon)\log n$, exact recovery (correctly match all vertices)
- No mismatching error;
- The intersection graph between *A* and *B* under the hidden node correspondence $\pi \sim \mathcal{G}(n, q(q + \rho(1 q)));$
- $nq(q + \rho(1 q)) \ge (1 + \epsilon)\log n$ is the connectivity threshold and information-theoretically necessary for exact recovery;

Phase transition diagram for exact recovery

Let's focus on the regime when $nq = \lambda \log n$, where λ is some constant.

Phase transition diagram for exact recovery

Let's focus on the regime when $nq = \lambda \log n$, where λ is some constant.

Low-degree polynomial estimators fail when $\rho < \sqrt{\alpha}$ [Ding-Du-Li '23];

Local algorithms fail when $\rho < \sqrt{\alpha}$ in sparse regime [Ganassali-Massoulié-Semerjian '22]

Algorithm

• Step 1: signature embedding Based on the structure of *A*:

Construct a vertex signature (number or vector) for each vertex in A.

Vertex in A	Vertex signature
1	<i>s</i> ₁
2	<i>s</i> ₂
3	s ₃
4	<i>s</i> ₄
5	<i>s</i> ₅

• Step 1: signature embedding Based on the structure of *B*:

Construct a vertex signature (number or vector) for each vertex in *B*.

 $B\sim \mathcal{G}(n,q)$

Vertex in <i>B</i>	Vertex signature
1	t_1
2	t_2
3	t_3
4	t_4
5	t_5

Vertex in A	Vertex signature	Vertex in B	Vertex signature
1	<i>s</i> ₁	1	t_1
2	<i>s</i> ₂	2	t_2
3	<i>s</i> ₃	3	t_3
4	s ₄	4	t_4
5	<i>s</i> ₅	5	t_5

• Step 2: Similarity score

For any vertex pair of *i* in *A* and *j* in *B*, compute similarity score Φ_{ij} based on s_i and t_j .

Vertex in A	Vertex signature	Vertex in B	Vertex signature
1	<i>s</i> ₁	1	t_1
2	<i>s</i> ₂	2	t_2
3	<i>s</i> ₃	3	t_3
4	s ₄	4	t_4
5	<i>S</i> ₅	5	t_5

• Step 2: Similarity score

For any vertex pair of *i* in *A* and *j* in *B*, compute similarity score Φ_{ij} based on s_i and t_j . We want

- For $j = \pi(i)$ (true pair), s_i is close to $t_j \Longrightarrow \Phi_{ij}$ is relatively large;
- For $j \neq \pi(i)$ (fake pair), s_i is far from $t_j \Longrightarrow \Phi_{ij}$ is relatively small;

Vertex in A	Vertex signature	Vertex in <i>B</i>	Vertex signature
1	<i>s</i> ₁	1	t_1
2	<i>s</i> ₂	2	t_2
3	<i>s</i> ₃	3	t_3
4	s ₄	4	t_4
5	<i>s</i> ₅	5	t_5

• Step 2: Similarity score

For any vertex pair of *i* in *A* and *j* in *B*, compute similarity score Φ_{ij} based on s_i and t_j . We want

- For $j = \pi(i)$ (true pair), s_i is close to $t_j \Longrightarrow \Phi_{ij}$ is relatively large;
- For $j \neq \pi(i)$ (fake pair), s_i is far from $t_j \Longrightarrow \Phi_{ij}$ is relatively small;

Examples of vertex signature:

• Degree

Examples of vertex signature:

- Degree
- Degrees of neighbors: only works for $\rho = 1 1/\text{polylog}(n)$ [Ding-Ma-Wu-Xu '18]

Examples of vertex signature:

- Degree
- Degrees of neighbors: only works for $\rho = 1 1/\text{polylog}(n)$ [Ding-Ma-Wu-Xu '18]
- The local tree structure: only works for sparse graphs [Mao-Rudelson-Tikhomirov '21] [Ganassali-Massoulié '20][Ganassali-Massoulié-Lelarge '21]

Examples of vertex signature:

- Degree
- Degrees of neighbors: only works for $\rho = 1 1/\text{polylog}(n)$ [Ding-Ma-Wu-Xu '18]
- The local tree structure: only works for sparse graphs [Mao-Rudelson-Tikhomirov '21] [Ganassali-Massoulié '20][Ganassali-Massoulié-Lelarge '21]

The above vertex signatures are either sensitive to noise or only work in sparse regime.

Our idea: subgraph count

• # copies of H in graph $A \implies$ capture some graph information;

- # copies of H in graph $A \implies$ capture some graph information;
- It is very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-Kashtan '02]);

- # copies of H in graph $A \Longrightarrow$ capture some graph information;
- It is very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-Kashtan '02]);
- Has been applied to graph matching [Barak-Chou-Lei-Schramm-Sheng '19]

- # copies of H in graph $A \Longrightarrow$ capture some graph information;
- It is very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-Kashtan '02]);
- Has been applied to graph matching [Barak-Chou-Lei-Schramm-Sheng '19]
- How to capture the vertex information of *i*?

- # copies of H rooted at i in graph A, denoted as $W_{i,H}(A)$;
- Capture some vertex information;

- # copies of H rooted at i in graph A, denoted as $W_{i,H}(A)$;
- Capture some vertex information;
- Idea: construct a rich family of rooted subgraphs:

- # copies of H rooted at i in graph A, denoted as $W_{i,H}(A)$;
- Capture some vertex information;
- Idea: construct a rich family of rooted subgraphs:
 - Each rooted subgraph captures some information about the vertex;

- # copies of H rooted at i in graph A, denoted as $W_{i,H}(A)$;
- Capture some vertex information;
- Idea: construct a rich family of rooted subgraphs:
 - Each rooted subgraph captures some information about the vertex;
 - **Combine** all the information \implies vertex signature to be more informative.

Graph matching via counting rooted subgraphs

Given a family \mathcal{H} of rooted subgraphs with N edges:

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\$
Given a family \mathcal{H} of rooted subgraphs with N edges:

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\$

1. For each vertex *i* in *A* , its vertex signature is $s_i = (W_{i,H}(A))_{H \in \mathcal{H}}$

Given a family \mathcal{H} of rooted subgraphs with N edges:

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\$

Highly correlated across different H

1. For each vertex *i* in *A*, its vertex signature is $s_i = (W_{i,H}(A))_{H \in \mathcal{H}}$

Given a family \mathcal{H} of rooted subgraphs with N edges:

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\$

1. For each vertex *i* in *A* , its vertex signature is $s_i = (W_{i,H}(\overline{A}))_{H \in \mathcal{H}}$

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\$

1. For each vertex *i* in *A* , its vertex signature is
$$s_i = (W_{i,H}(\overline{A}))_{H \in \mathscr{H}}$$

 $\overline{A} = A - \mathbb{E}[A];$
Count the weighted copies in \overline{A}
 $W_{i,H}(\overline{A}) = \sum_{S(i) \cong H} \prod_{e \in E(S)} \overline{A}_e$

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right\}$, $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$, $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$, $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$, $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
1. For each vertex *i* in *A*, its vertex signature is $s_i = \left(W_{i,H}(\overline{A}) \right)_{H \in \mathcal{H}}$
 $\left\{ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}(& & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}(& & \\ \end{array} \right\}$
 $\left\{ \begin{array}(& & \\ & & \\ \end{array} \right\}$
 $\left\{ \begin{array}(& & \\ \end{array} \right\}$
 $\left\{ \begin{array}(& & \\ \end{array} \right\}$
 $\left\{ \begin{array}(& &$

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\ & & \\ & & \\ \end{array}$, $\begin{array}{c} & & \\ \end{array}$, \\, $\begin{array}{c} & & \\ \end{array}$, $\begin{array}{c} & & \\ \end{array}$, $\begin{array}{c} & & \\ \end{array}$, \\\end{array}, $\begin{array}{c} & & \\ \end{array}$, \\\end{array}, $\begin{array}{c} & & \\ \end{array}$, $\begin{array}{c} & & \\ \end{array}$, \\\end{array}, $\begin{array}{c} & & \\ \end{array}$, $\begin{array}{c} & & \\ \end{array}$, \\\end{array}, $\begin{array}{c} & & \\ \end{array}$, \\\end{array}, $\begin{array}{c} & & \end{array}$, \\, $\begin{array}{c} & & \end{array}$, \\, $\begin{array}{c} & & \end{array}$, \\, \\\end{array}, \end{array}

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \right\}$
Uncorrelated across different H
1. For each vertex i in A , its vertex signature is $s_i = \left(W_{i,H}(\overline{A})\right)_{H \in \mathcal{H}}$
2. For each vertex j in B , its vertex signature is $t_j = \left(W_{j,H}(\overline{B})\right)_{H \in \mathcal{H}}$
Uncorrelated across different H

Given a family \mathcal{H} of rooted subgraphs with N edges:

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \right\}$, $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$, $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$, $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
Uncorrelated across different H
1. For each vertex i in A , its vertex signature is $s_i = \left(W_{i,H}(\overline{A}) \right)_{H \in \mathcal{H}}$
2. For each vertex j in B , its vertex signature is $t_j = \left(W_{j,H}(\overline{B}) \right)_{H \in \mathcal{H}}$
3. Similarity score:

Uncorrelated across different *H*

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}),$$

where aut(H) is the number of automorphism of H.

Given a family \mathcal{H} of rooted subgraphs with N edges:

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \right\}$, $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$
Uncorrelated across different H
1. For each vertex i in A , its vertex signature is $s_i = \left(W_{i,H}(\overline{A}) \right)_{H \in \mathcal{H}}$
 $\left(\begin{array}{c} & & \\ & & \\ \end{array} \right)$

- 2. For each vertex *j* in *B*, its vertex signature is $t_j = \left(W_{j,H}(\overline{B})\right)_{H \in \mathcal{H}}$
 - rooted "**signed**" subgraph count

3. Similarity score:

Uncorrelated across different H

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}),$$

where aut(H) is the number of automorphism of H.

4. Match *i* to *j* if $\Phi_{ij} \ge \tau$ for some threshold τ .

Given a family \mathcal{H} of rooted subgraphs with N edges:

e.g.
$$N = 4$$
, $\mathcal{H} = \left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \right\}$
Uncorrelated across different H
1. For each vertex i in A , its vertex signature is $s_i = \left(W_{i,H}(\overline{A})\right)_{H \in \mathcal{H}}$
2. For each vertex j in B , its vertex signature is $t_j = \left(W_{j,H}(\overline{B})\right)_{H \in \mathcal{H}}$
3. Similarity score:
Uncorrelated across different H
 $\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}),$
Polynomials of A_{ij} 's and B_{ij} 's

where aut(H) is the number of automorphism of H.

4. Match *i* to *j* if $\Phi_{ij} \ge \tau$ for some threshold τ .

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathscr{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

Correlated iff $j = \pi(i)$ (true pair

Fake pair: $j \neq \pi(i)$ True pair: $j = \pi(i)$

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathscr{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

Correlated iff $j = \pi(i)$ (true pair

We want: **fluctuation** of Φ_{ij} to be relatively small compared to μ .

Fake pair: $j \neq \pi(i)$ True pair: $j = \pi(i)$

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

Correlated iff $j = \pi(i)$ (true pair)

We want: **fluctuation** of Φ_{ij} to be relatively small compared to μ .

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

Correlated iff $j = \pi(i)$ (true pair)

We want: **fluctuation** of Φ_{ij} to be relatively small compared to μ .

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

Correlated iff $j = \pi(i)$ (true pair)

We want: **fluctuation** of Φ_{ii} to be relatively small compared to μ .

Suppose \mathcal{H} be a family of rooted subgraphs with *N* edges. For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathscr{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

Suppose \mathcal{H} be a family of rooted subgraphs with N edges.

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

• <u>Wishful thinking</u>: ignoring the cross-correlations of $\operatorname{aut}(H)W_{i,H}(\overline{A})W_{j,H}(\overline{B})$ and $\operatorname{aut}(I)W_{i,I}(\overline{A})W_{j,I}(\overline{B})$ for different subgraphs *H* and *I*:

$$\frac{\operatorname{Var}[\Phi_{ij}]}{\mu^2} \approx \frac{1}{|\mathscr{H}|\rho^{2N}} \xrightarrow{\operatorname{goal}} 0$$

Suppose \mathcal{H} be a family of rooted subgraphs with N edges.

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

• <u>Wishful thinking</u>: ignoring the cross-correlations of $aut(H)W_{i,H}(\overline{A})W_{j,H}(\overline{B})$ and $aut(I)W_{i,I}(\overline{A})W_{j,I}(\overline{B})$ for different subgraphs *H* and *I*:

$$\frac{\operatorname{Var}[\Phi_{ij}]}{\mu^2} \approx \frac{1}{|\mathcal{H}|\rho^{2N}} \xrightarrow{\operatorname{goal}} 0$$

- The family \mathcal{H} to be "**rich**": $|\mathcal{H}|$ grows at least exponentially in N;
- The subgraph *H* to be "large": *N* grows in *n*;

Suppose \mathcal{H} be a family of rooted subgraphs with N edges.

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

• <u>Wishful thinking</u>: ignoring the cross-correlations of $\operatorname{aut}(H)W_{i,H}(\overline{A})W_{j,H}(\overline{B})$ and $\operatorname{aut}(I)W_{i,I}(\overline{A})W_{j,I}(\overline{B})$ for different subgraphs *H* and *I*:

$$\frac{\operatorname{Var}[\Phi_{ij}]}{\mu^2} \approx \frac{1}{|\mathscr{H}|\rho^{2N}} \xrightarrow{\operatorname{goal}} 0$$

- The family \mathcal{H} to be "**rich**": $|\mathcal{H}|$ grows at least exponentially in N;
- The subgraph *H* to be "large": *N* grows in *n*;
- We also want *H* to be "simple" to count.

Suppose \mathcal{H} be a family of rooted subgraphs with N edges.

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

<u>Wishful thinking</u>: **ignoring the cross-correlations** of $aut(H)W_{i,H}(\overline{A})W_{i,H}(\overline{B})$ and $\operatorname{aut}(I)W_{i,I}(\overline{A})W_{i,I}(\overline{B})$ for different subgraphs *H* and *I*:

$$\frac{\operatorname{Var}[\Phi_{ij}]}{\mu^2} \approx \frac{1}{|\mathcal{H}|\rho^{2N}} \xrightarrow{\operatorname{goal}} 0$$

- The family \mathcal{H} to be "**rich**": $|\mathcal{H}|$ grows at least exponentially in N;
- The subgraph *H* to be "large": *N* grows in *n*;
- We also want *H* to be "simple" to count.

Suppose \mathcal{H} be a family of rooted **trees** with *N* edges.

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

• <u>Wishful thinking</u>: ignoring the cross-correlations of $\operatorname{aut}(H)W_{i,H}(\overline{A})W_{j,H}(\overline{B})$ and $\operatorname{aut}(I)W_{i,I}(\overline{A})W_{j,I}(\overline{B})$ for different subgraphs *H* and *I*:

$$\frac{\operatorname{Var}[\Phi_{ij}]}{\mu^2} \approx \frac{1}{|\mathcal{H}|\rho^{2N}} \xrightarrow{\operatorname{goal}} 0$$

- The family \mathscr{H} to be "**rich**": $|\mathscr{H}| = (\alpha + o(1))^{-N}$;
- The subgraph *H* to be "large": *N* grows in *n*;
- We also want *H* to be "simple" to count.

Suppose \mathcal{H} be a family of rooted **trees** with *N* edges.

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

• <u>Wishful thinking</u>: ignoring the cross-correlations of $\operatorname{aut}(H)W_{i,H}(\overline{A})W_{j,H}(\overline{B})$ and $\operatorname{aut}(I)W_{i,I}(\overline{A})W_{j,I}(\overline{B})$ for different subgraphs *H* and *I*:

$$\frac{\operatorname{Var}[\Phi_{ij}]}{\mu^2} \approx \frac{1}{|\mathcal{H}|\rho^{2N}} \longrightarrow 0$$

- The family \mathscr{H} to be "**rich**": $|\mathscr{H}| = (\alpha + o(1))^{-N}$;
- The subgraph *H* to be "large": *N* grows in *n*;
- We also want *H* to be "simple" to count.

Suppose \mathcal{H} be a family of rooted **trees** with *N* edges.

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

• <u>Wishful thinking</u>: ignoring the cross-correlations of $aut(H)W_{i,H}(\overline{A})W_{j,H}(\overline{B})$ and $aut(I)W_{i,I}(\overline{A})W_{j,I}(\overline{B})$ for different subgraphs *H* and *I*:

$$\frac{\operatorname{Var}[\Phi_{ij}]}{\mu^2} \approx \frac{1}{|\mathcal{H}|\rho^{2N}} \longrightarrow 0$$

- The family \mathscr{H} to be "**rich**": $|\mathscr{H}| = (\alpha + o(1))^{-N}$;
- The subgraph *H* to be "large": *N* grows in *n*;
- If H is a tree, it is "simple" to count via color coding [Alon-Yuster-Zwick' 95] \checkmark

Suppose \mathcal{H} be a family of rooted **trees** with *N* edges.

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}) \,.$$

• <u>Wishful thinking</u>: ignoring the cross-correlations of $\operatorname{aut}(H)W_{i,H}(\overline{A})W_{j,H}(\overline{B})$ and $\operatorname{aut}(I)W_{i,I}(\overline{A})W_{j,I}(\overline{B})$ for different subgraphs *H* and *I*:

$$\frac{\operatorname{Var}[\Phi_{ij}]}{\mu^2} \approx \frac{1}{|\mathcal{H}|\rho^{2N}} \longrightarrow 0$$

- The family \mathscr{H} to be "**rich**": $|\mathscr{H}| = (\alpha + o(1))^{-N}$;
- The subgraph *H* to be "large": *N* grows in *n*;
- If *H* is a tree, it is "simple" to count via color coding [Alon-Yuster-Zwick'95].
- However, we cannot ignore the cross-correlations.

A special family of rooted trees

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

A special family of rooted trees

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

We want to construct a special family of trees:

• **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;

A special family of rooted trees

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- This special family of trees has to be "rich" enough;

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- This special family of trees has to be "rich" enough;

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- This special family of trees has to be "rich" enough;

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- This special family of trees has to be "rich" enough;

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- This special family of trees has to be "rich" enough;

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- This special family of trees has to be "rich" enough;

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- This special family of trees has to be "rich" enough;

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- Let \mathcal{H} denote the special family of chandeliers with N edges.

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- Let \mathcal{H} denote the special family of chandeliers with N edges.
- Pick $K \gg M$, we can ensure the **richness** of $\mathcal{H}: |\mathcal{H}| = (\alpha + o(1))^{-N}$.

A special family of rooted trees - Chandeliers

For each vertex *i* in *A* and *j* in *B*:

$$\Phi_{ij} = \left\langle s_i, t_j \right\rangle = \sum_{H \in \mathcal{H}} \operatorname{aut}(H) W_{i,H}(\overline{A}) W_{j,H}(\overline{B}).$$

We want to construct a special family of trees:

- **Suppress** the undesirable cross-correlations to control Var $[\Phi_{ij}]/\mu^2$;
- Let \mathcal{H} denote the special family of chandeliers with N edges.
- Pick $K \gg M$, we can ensure the **richness** of $\mathcal{H}: |\mathcal{H}| = (\alpha + o(1))^{-N}$.

Summary on properties of Chandeliers

Let \mathcal{H} denote a special family of chandeliers:

- Large: The size of chandeliers $N = c \log n$, where c is some small constant.
- **Rich:** Choose $K \gg M$, to ensure $|\mathcal{H}| = (\alpha + o(1))^{-N}$.
 - Almost as rich as the whole family of all rooted trees.
- Informative: Choose smaller *L* and larger *M*, when graphs are sparser.

Summary on efficient algorithms

Selected references

Information-theoretic limits:

Y. Wu, J. Xu, & S. H. Yu, *Settling the sharp reconstruction thresholds of random graph matching*, IEEE Transactions on Information Theory, arXiv:2102.00082.

J. Ding & H. Du, *Matching recovery threshold for correlated random graphs*, Annals of Statistics, arXiv:2205.14650

Efficient algorithms and computational limits:

C. Mao, Y. Wu, J. Xu, & S. H. Yu, *Random graph matching at Otter's threshold via counting chandeliers*, STOC 2023, arxiv:2209.12313

L. Ganassali, L. Massoulié, & G. Semerjian, *Statistical limits of correlation detection in trees,* to appear in Annals of Applied Probability, arXiv:2209.1373

J. Ding & Z. Li, A polynomial-time iterative algorithm for random graph matching with non-vanishing correlation, arXiv:2306.00266.

J. Ding, H. Du & Z. Li, Low-degree hardness of detection for correlated Erdős-Rényi graphs, arXiv:2311.15931

Open problems and future directions

- Rigorous evidences for statistical-computational gaps
- Beyond Erdős–Rényi graphs:
 - Random geometric graph matching [Wang-Wu-Xu-Yolou' 22, ...]

$$A = \left(\kappa(x_i, x_j)\right), \quad B = \left(\kappa(y_i, y_j)\right), \quad \text{where } (x_{\pi(i)}, y_i) \stackrel{iid}{\sim} P$$

- Community recovery and graph matching in correlated stochastic block models [Racz-Sridhar' 21, Gaudio-Racz-Sridhar '22]
- Matching preferential attachment graphs [Korula-Lanttanzi '14] or power-law graphs [Yu-Xu-Lin '21]
- Seeded Graph matching with initial "noisy" matched pairs [Kazemi-Hassani-Grossglausser '15, Lubars-Srikant '18, Mossel-Xu '20, Yu-Xu-Lin '20]
- Graph matching with node attribute information [Zhang-Wang-Wang-Wang '20]
- "Robust" graph matching [Ameen-Hajek '23]
- Random graph matching with multiple graphs [Ameen-Hajek '24]
- Database alignment/record linkage problem [Dai-Cullina-Kiyavash '19, ...]

MLE: Quadratic Assignment Problem (QAP)

• Maximum likelihood estimator:

$$\pi_{\text{MLE}} = \arg \max_{\hat{\pi}} \sum_{i < j} A_{ij} B_{\hat{\pi}(i)\hat{\pi}(j)} \quad (\text{QAP})$$

Suppose *A*, *B* ~ correlated Erdős–Rényi graph model under a hidden node mapping $\hat{\pi}$. The likelihood function is

$$\begin{aligned} \mathscr{P}(A, B \mid \hat{\pi}) &= (q(q + \rho - q\rho))^{\sum_{i < j} A_{ij} B_{\hat{\pi}(i)\hat{\pi}(j)}} \\ &\qquad \left(q(1 - q)(1 - \rho)\right)^{\sum_{i < j} A_{ij}(1 - B_{\hat{\pi}(i)\hat{\pi}(j)}) + \sum_{i < j} (1 - A_{ij}) B_{\hat{\pi}(i)\hat{\pi}(j)}} \\ &\qquad \left(1 - q(2 - q - \rho + q\rho)\right)^{\sum_{i < j} (1 - A_{ij})(1 - B_{\hat{\pi}(i)\hat{\pi}(j)})} \\ &\propto \left(\frac{(q + \rho - q\rho)(1 - q(2 - q - \rho + q\rho))}{q(1 - q)^2(1 - \rho)^2}\right)^{\sum_{i < j} A_{ij} B_{\hat{\pi}(i)\hat{\pi}(j)}} \end{aligned}$$

Then, we have

$$MLE_{\pi} = \arg \max_{\hat{\pi}} \mathscr{P}(A, B \mid \hat{\pi}) = \arg \max \sum_{i < j} A_{ij} B_{\hat{\pi}(i)\hat{\pi}(j)}.$$

Approximately count signed trees via color coding

- Exhaustive search takes n^N times: super poly-time when $N \to \infty$
- Solution: approximate count in $n^2 e^{O(N)}$ time via color coding [Alon-Yuster-Zwick '95]
 - 1. Assign random color μ to each vertex from color set [N + 1] uniformly

Approximately count signed trees via color coding

- Exhaustive search takes n^N times: super poly-time when $N \to \infty$
- Solution: approximate count in $n^2 e^{O(N)}$ time via color coding [Alon-Yuster-Zwick '95]
 - 1. Assign random color μ to each vertex from color set [N + 1] uniformly
 - 2. Count colorful copies of *H* (all vertices have distinct colors) $\Longrightarrow X_{i,H}(\overline{A},\mu)$ $\mathbb{E}_{\mu}[X_{i,H}(\overline{A},\mu)] = rW_{i,H}(\overline{A}), \text{ where } r = (N+1)!/(N+1)^{N+1}$

Approximately count signed trees via color coding

- Exhaustive search takes n^N times: super poly-time when $N \to \infty$
- Solution: approximate count in $n^2 e^{O(N)}$ time via color coding [Alon-Yuster-Zwick '95]
 - 1. Assign random color μ to each vertex from color set [N + 1] uniformly
 - 2. Count colorful copies of *H* (all vertices have distinct colors) $\Longrightarrow X_{i,H}(\overline{A},\mu)$ $\mathbb{E}_{\mu}[X_{i,H}(\overline{A},\mu)] = rW_{i,H}(\overline{A}), \text{ where } r = (N+1)!/(N+1)^{N+1}$
 - 3. Generate 1/r independent random colorings μ_t so that

$$W_{i,H}(\overline{A}) \approx \sum_{t=1}^{1/r} X_{i,H}(\overline{A}, \mu_t)$$

17

Seeded graph matching (SGM)

- 1. For each unmatched pair (i, j), compute "common" neighbors N(i, j) under $\hat{\pi}$
- 2. If $N(i, j) \ge \gamma$, match (i, j), append it to $\hat{\pi}$, and repeat

Seeded graph matching (SGM)

- 1. For each unmatched pair (i, j), compute "common" neighbors N(i, j) under $\hat{\pi}$
- 2. If $N(i, j) \ge \gamma$, match (i, j), append it to $\hat{\pi}$, and repeat

Similar to percolation graph matching [Yarteva-Grossglauser'13, Barak-Chou-Lei-Schramm-Sheng '19]

Seeded graph matching (SGM)

- 1. For each unmatched pair (i, j), compute "common" neighbors N(i, j) under $\hat{\pi}$
- 2. If $N(i, j) \ge \gamma$, match (i, j), append it to $\hat{\pi}$, and repeat

Similar to percolation graph matching [Yarteva-Grossglauser'13, Barak-Chou-Lei-Schramm-Sheng '19]

Theorem [Mao-Wu-X.-Yu '22]

Suppose $nq(q + \rho(1 - q)) \ge (1 + \epsilon)\log n$ and $\rho \ge \epsilon$. With probability 1 - o(1), given any input $\hat{\pi}$ that completely coincides with π on at least $(1 - \epsilon)n$ vertices, SGM with an appropriate choice of threshold γ outputs $\tilde{\pi} = \pi$ in time $O(n^3q^2)$.

• Proof: Intersection graph is an expander, so SGM iteratively matches all vertices

Color coding

• Exhaustive search takes n^N times: super poly-time when $N \to \infty$

- Exhaustive search takes n^N times: super poly-time when $N \to \infty$
- Our solution: color coding [Alon-Yuster-Zwick '95]

- Exhaustive search takes n^N times: super poly-time when $N \to \infty$
- Our solution: color coding [Alon-Yuster-Zwick '95]
 - 1. Assign random color μ to each vertex from color set [N + 1] uniformly

- Exhaustive search takes n^N times: super poly-time when $N \to \infty$
- Our solution: color coding [Alon-Yuster-Zwick '95]
 - 1. Assign random color μ to each vertex from color set [N + 1] uniformly
 - 2. Count colorful copies of *H* (all vertices have distinct colors) $\Longrightarrow X_{i,H}(\overline{A},\mu)$

$$\mathbb{E}_{\mu}[X_{i,H}(\overline{A},\mu)] = rW_{i,H}(\overline{A}), \text{ where } r = (K+1)!/(K+1)^{K+1}$$

- Exhaustive search takes n^N times: super poly-time when $N \to \infty$
- Our solution: color coding [Alon-Yuster-Zwick '95]
 - 1. Assign random color μ to each vertex from color set [N + 1] uniformly
 - 2. Count colorful copies of *H* (all vertices have distinct colors) $\Longrightarrow X_{i,H}(\overline{A},\mu)$

$$\mathbb{E}_{\mu}[X_{i,H}(\overline{A},\mu)] = rW_{i,H}(\overline{A}), \text{ where } r = (K+1)!/(K+1)^{K+1}$$

3. Generate 1/r independent random colorings μ_t so that

$$W_{i,H}(\overline{A}) \approx \sum_{t=1}^{1/r} X_{i,H}(\overline{A},\mu_t)$$

17

Signed rooted tree count

• Centered adjacency matrices: $\overline{A} = A - \mathbb{E}[A]$;

• Centered adjacency matrices: $\overline{A} = A - \mathbb{E}[A]$;

- Centered adjacency matrices: $\overline{A} = A \mathbb{E}[A]$;
- Count weighted copies of rooted graph in $\overline{A} \implies W_{i,H}(\overline{A})$ (rooted signed subgraph count) [Bubeck-Ding-Eldan-Rácz '16];

- Centered adjacency matrices: $\overline{A} = A \mathbb{E}[A];$
- Count weighted copies of rooted graph in $\overline{A} \implies W_{i,H}(\overline{A})$ (rooted signed subgraph count) [Bubeck-Ding-Eldan-Rácz '16];

- Centered adjacency matrices: $\overline{A} = A \mathbb{E}[A];$
- Count weighted copies of rooted graph in $\overline{A} \implies W_{i,H}(\overline{A})$ (rooted signed subgraph count) [Bubeck-Ding-Eldan-Rácz '16];

- Centered adjacency matrices: $\overline{A} = A \mathbb{E}[A];$
- Count weighted copies of rooted graph in $\overline{A} \implies W_{i,H}(\overline{A})$ (rooted signed subgraph count) [Bubeck-Ding-Eldan-Rácz '16];

- Centered adjacency matrices: $\overline{A} = A \mathbb{E}[A]$;
- Count weighted copies of rooted graph in $\overline{A} \implies W_{i,H}(\overline{A})$ (rooted signed subgraph count) [Bubeck-Ding-Eldan-Rácz '16];

- Centered adjacency matrices: $\overline{A} = A \mathbb{E}[A];$
- Count weighted copies of rooted graph in $\overline{A} \implies W_{i,H}(\overline{A})$ (rooted signed subgraph count) [Bubeck-Ding-Eldan-Rácz '16];

- Centered adjacency matrices: $\overline{A} = A \mathbb{E}[A]$;
- Count weighted copies of rooted graph in $\overline{A} \implies W_{i,H}(\overline{A})$ (rooted signed subgraph count) [Bubeck-Ding-Eldan-Rácz '16];

- Centered adjacency matrices: $\overline{A} = A \mathbb{E}[A];$
- Count weighted copies of rooted graph in $\overline{A} \implies W_{i,H}(\overline{A})$ (rooted signed subgraph count) [Bubeck-Ding-Eldan-Rácz '16];

- Centered adjacency matrices: $\overline{A} = A \mathbb{E}[A];$
- Count weighted copies of rooted graph in $\overline{A} \implies W_{i,H}(\overline{A})$ (rooted signed subgraph count) [Bubeck-Ding-Eldan-Rácz '16];
- Crucially, $W_{i,H}(\overline{A})$ and $W_{i,I}(\overline{A})$ are uncorrelated for distinct subgraphs H and I.