
Joint work: Cheng Mao (GaTech), Yihong Wu (Yale), and Sophie H. Yu (Wharton)

The Fuqua School of Business
Duke University

Jiaming Xu

Recent advances on random graph matching

Stochastic Networks Conference 2024

• Motivation and problem setup

• Information-theoretic limits

• Efficient algorithms

• Concluding remarks

Outline

5

Bob

Charlie
Alice

Josh

?

?
?

?

1

Motivating example in network de-anonymization

1

Motivating example in network de-anonymization

Bob

Charlie
Alice

Josh

?

?
?

?

Motivating example in network de-anonymization

Bob

Charlie
Alice

Josh

Bob

Charlie
Alice

Josh

1

Motivating example in network de-anonymization

• Narayanan and Shmatikov correctly identified a fraction of users between Twitter and
Flickr in 2009.

Bob

Charlie
Alice

Josh

Bob

Charlie
Alice

Josh

1

• Biology [Singh-Xu-Berger ’2008; Kazemi et al. ’2016]

Applications

• Computer Vision [Lähner et al. ’2016; Fan-Mao-Wu-Xu ’2020]

Kazemi et al. BMC Bioinformatics (2016) 17:527 Page 6 of 16

proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =

|V1|−1 ∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, "π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., "π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i =
2|PWi,1 ∩ π−1(PWi,2)|

|PWi,1| + |PWi,2|
. (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if "π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
"π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ =
#FPWδ

#PWδ
. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

2

• Computational: # of possible node mappings is ;

• Statistical: two graphs may be correlated but not exactly the same;
n! (100! ≈ 10158)

3

Real-world challenges

: number of nodesn

• NP-hard for matching two graphs in worst case

• However, real networks are not arbitrary and have latent structures

4

Beyond worst-case intractability

• NP-hard for matching two graphs in worst case

• However, real networks are not arbitrary and have latent structures

• Recent surge of interest on the average-case analysis
• [Cullina-Kiyavash ’16,17]

• [Cullina-Kiyavash-Mittal-Poor ’19, Dai-Cullina-Kiyavash-Grossglauser ’19, Ding-Ma-
Wu-Xu ’18, Barak-Chou-Lei-Schramm-Sheng ’19, Fan-Mao-Wu-Xu ’19a,19b]

• [Ganassali-Massoulié ’20, Hall-Massoulié ’20, Wu-Xu-Yu ’21, Ganassali-Lelarge-
Massoulié ’21, Mao-Rudelson-Tikhomirov ’21a, 21b]

• [Ding-Du ’21, 22, Mao-Wu-Xu-Yu ’22, Ganassali-Massoulié-Semerjian ’22]

• [Ding-Li’ 23, Ding-Du-Li’ 23]

• …

4

Beyond worst-case intractability

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

: number of nodesn

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

: number of nodesn

Each two nodes are connected
with probability q

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

• and are edge-wise correlated () under the hidden node correspondence . A B ρ π

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

π

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

• and are edge-wise correlated () under the hidden node correspondence . A B ρ π

 are i.i.d. pairs of two with correlation (Aij, Bπ(i)π(j)) Bern(q) ρ

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

π

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

• and are edge-wise correlated () under the hidden node correspondence . A B ρ π

 are i.i.d. pairs of two with correlation (Aij, Bπ(i)π(j)) Bern(q) ρ

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

π

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

• and are edge-wise correlated () under the hidden node correspondence . A B ρ π

 are i.i.d. pairs of two with correlation (Aij, Bπ(i)π(j)) Bern(q) ρ

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

π

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

• and are edge-wise correlated () under the hidden node correspondence .

• is the edge correlation.

A B ρ π

ρ

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

π

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

• and are edge-wise correlated () under the hidden node correspondence .

• is the edge correlation.

• is the average degree for and .

A B ρ π

ρ

nq A B

A ∼ 𝒢(n, q) B ∼ 𝒢(n, q)

Correlated Erdős–Rényi graph model[Pedarsani-Grossglauser ’11]

5

• and are edge-wise correlated () under the hidden node correspondence .

• is the edge correlation.

• is the average degree for and .

A B ρ π

ρ

nq A B

Observe and , we want to recover the hidden node correspondence , when .A B π n → ∞

Alternative view: subsampling model

5

G ∼ 𝒢(n,)p

1

2
34

5

6

7
8 9

10

Parent graph edge probability

Alternative view: subsampling model

5

G ∼ 𝒢(n,)p

A* ∼ 𝒢(n, q ≜ ps)

s

1

2
34

5

6

7
8 9

10

1

2

34

5
6

7
89

10

Parent graph edge probability

Edge subsampling
probability

Alternative view: subsampling model

5

G ∼ 𝒢(n,)

B ∼ 𝒢(n, q ≜ ps)

p

A* ∼ 𝒢(n, q ≜ ps)

s

s

1

2
34

5

6

7
8 9

10

1

2

3 4

5

6

7
8

9

10

1

2

34

5
6

7
89

10

Parent graph edge probability

Edge subsampling
probability

Alternative view: subsampling model

5

G ∼ 𝒢(n,)

B ∼ 𝒢(n, q ≜ ps)

p

A* ∼ 𝒢(n, q ≜ ps)

Permute the node labels

By uniformlyπ

A ∼ 𝒢(n, q ≜ ps)

s

s

1

2
34

5

6

7
8 9

10

1

2

3 4

5

6

7
8

9

10

1

2

34

5
6

7
89

10

10

2

43

9
7

6
18

5

Parent graph edge probability

Edge subsampling
probability

Alternative view: subsampling model

5

G ∼ 𝒢(n,)

B ∼ 𝒢(n, q ≜ ps)

p

A* ∼ 𝒢(n, q ≜ ps)

Permute the node labels

By uniformlyπ

A ∼ 𝒢(n, q ≜ ps)

s

s

• and are edge-wise correlated
under the latent permutation with
correlation parameter

•

A B
π

ρ =
s − q
1 − q

A* ∧ B ∼ 𝒢(n, ps2)

1

2
34

5

6

7
8 9

10

1

2

3 4

5

6

7
8

9

10

1

2

34

5
6

7
89

10

10

2

43

9
7

6
18

5

Parent graph edge probability

Edge subsampling
probability

• Motivation and problem setup

• Information-theoretic limits

• Efficient algorithms

• Concluding remarks

Outline

5

MLE: Quadratic Assignment Problem (QAP)

6

• Maximum likelihood estimator:

 QAP)πML = arg max
̂π ∑

i<j

AijB ̂π(i) ̂π(j) (

MLE: Quadratic Assignment Problem (QAP)

6

• Maximum likelihood estimator:

 QAP)

• QAP was introduced by [Koopmans-Beckmann ’57]

πML = arg max
̂π ∑

i<j

AijB ̂π(i) ̂π(j) (

MLE: Quadratic Assignment Problem (QAP)

6

• Maximum likelihood estimator:

 QAP)

• QAP was introduced by [Koopmans-Beckmann ’57]

• It is NP-hard to solve or even approximate.

• How much does have in common with ?

πML = arg max
̂π ∑

i<j

AijB ̂π(i) ̂π(j) (

πML π

overlap (πML, π) ≜
1
n

{i ∈ [n] : πML(i) = π(i)}

Fraction of correctly matched vertices

Sharp recovery threshold: dense Erdös-Rényi graphs
Theorem [Wu-Xu-Yu ’21]

Suppose . Then n−o(1) ≤ p ≤ 1 − Ω(1)

8

If nps2 ≥
(2 + ϵ)log n

log 1
p − 1 + p

⇒ overlap (πML, π) = 1 − o(1) w.h.p.

If nps2 ≤
(2 − ϵ)log n

log 1
p − 1 + p

⇒ overlap (̂π, π) = o(1) w.h.p.∀ ̂π

Sharp recovery threshold: dense Erdös-Rényi graphs
Theorem [Wu-Xu-Yu ’21]

Suppose . Then n−o(1) ≤ p ≤ 1 − Ω(1)

8

If nps2 ≥
(2 + ϵ)log n

log 1
p − 1 + p

⇒ overlap (πML, π) = 1 − o(1) w.h.p.

If nps2 ≤
(2 − ϵ)log n

log 1
p − 1 + p

⇒ overlap (̂π, π) = o(1) w.h.p.∀ ̂π

1

E [overlap (⇡̂, ⇡)]

0
nps2(log(1/p)�1+p)

log n2

Partial recovery

impossible

“Nothing”

Almost exact recovery

possible (MLE)

“All”

Sharp recovery threshold: dense Erdös-Rényi graphs
Theorem [Wu-Xu-Yu ’21]

Suppose . Then n−o(1) ≤ p ≤ 1 − Ω(1)

8

If nps2 ≥
(2 + ϵ)log n

log 1
p − 1 + p

⇒ overlap (πML, π) = 1 − o(1) w.h.p.

If nps2 ≤
(2 − ϵ)log n

log 1
p − 1 + p

⇒ overlap (̂π, π) = o(1) w.h.p.∀ ̂π

• IT Interpretation of threshold

•

• Threshold is at

I(π; A, B) ≈ (n
2) × ps2 (log

1
p

− 1 + p)
H(π) ≈ n log n

I(π; A, B) ≈ H(π)
Mutual info btw two correlated edges

Sharp recovery threshold: sparse Erdös-Rényi graphs
Theorem [Ding-Du ’22]

Suppose for and . Then p = n−α α ∈ (0,1] λ* = γ−1(1/α)

8

If nps2 ≥ λ* + ϵ ⇒ ∃ ̂π s.t. overlap (̂π, π) = Ω(1) w.h.p.
If nps2 ≤ λ* − ϵ ⇒ overlap (̂π, π) = o(1) w.h.p.∀ ̂π

Sharp recovery threshold: sparse Erdös-Rényi graphs
Theorem [Ding-Du ’22]

Suppose for and . Then p = n−α α ∈ (0,1] λ* = γ−1(1/α)

8

If nps2 ≥ λ* + ϵ ⇒ ∃ ̂π s.t. overlap (̂π, π) = Ω(1) w.h.p.
If nps2 ≤ λ* − ϵ ⇒ overlap (̂π, π) = o(1) w.h.p.∀ ̂π

• is given by the densest subgraph problem in Erdös-Rényi
graphs [Hajek ’90, Anantharam-Salez ’16]:
γ : [1,∞) → [1,∞)

𝒢(n, λ/n)

max
∅≠U⊂[n]

|E(U) |
|U |

→ γ(λ)

Sharp recovery threshold: sparse Erdös-Rényi graphs
Theorem [Ding-Du ’22]

Suppose for and . Then p = n−α α ∈ (0,1] λ* = γ−1(1/α)

8

If nps2 ≥ λ* + ϵ ⇒ ∃ ̂π s.t. overlap (̂π, π) = Ω(1) w.h.p.
If nps2 ≤ λ* − ϵ ⇒ overlap (̂π, π) = o(1) w.h.p.∀ ̂π

• is given by the densest subgraph problem in Erdös-Rényi
graphs [Hajek ’90, Anantharam-Salez ’16]:

• The negative result of is proved in [Ganassali-Lelarge-Massoulié ’21]

• Sharpens our previous threshold for MLE [Wu-Xu-Yu ’21]

γ : [1,∞) → [1,∞)
𝒢(n, λ/n)

α = 1

nps2 = Θ(1)

max
∅≠U⊂[n]

|E(U) |
|U |

→ γ(λ)

Sharp recovery threshold: sparse Erdös-Rényi graphs
Theorem [Ding-Du ’22]

Suppose for and . Then p = n−α α ∈ (0,1] λ* = γ−1(1/α)

8

If nps2 ≥ λ* + ϵ ⇒ ∃ ̂π s.t. overlap (̂π, π) = Ω(1) w.h.p.
If nps2 ≤ λ* − ϵ ⇒ overlap (̂π, π) = o(1) w.h.p.∀ ̂π

• is given by the densest subgraph problem in Erdös-Rényi
graphs [Hajek ’90, Anantharam-Salez ’16]:

• The negative result of is proved in [Ganassali-Lelarge-Massoulié ’21]

• Sharpens our previous threshold for MLE [Wu-Xu-Yu ’21]

• “All-or-nothing” phenomenon does not exist, as almost exact recovery (overlap
=) requires [Cullina-Kiyavash-Mittal-Poor ’19]

γ : [1,∞) → [1,∞)
𝒢(n, λ/n)

α = 1

nps2 = Θ(1)

1 − o(1) nps2 → ∞

max
∅≠U⊂[n]

|E(U) |
|U |

→ γ(λ)

Exact recovery threshold
Theorem [Wu-Xu-Yu ’21]

Suppose . Then p ≤ 1 − Ω(1)

8

If nps2 ≥
(1 + ϵ)log n
(1 − p)2

⇒ overlap (πML, π) = 1 w.h.p.

If nps2 ≤
(1 − ϵ)log n
(1 − p)2

⇒ overlap (̂π, π) ≠ 1 w.h.p∀ ̂π

Exact recovery threshold
Theorem [Wu-Xu-Yu ’21]

Suppose . Then p ≤ 1 − Ω(1)

8

If nps2 ≥
(1 + ϵ)log n
(1 − p)2

⇒ overlap (πML, π) = 1 w.h.p.

If nps2 ≤
(1 − ϵ)log n
(1 − p)2

⇒ overlap (̂π, π) ≠ 1 w.h.p∀ ̂π

• : reduces to the connectivity threshold of the intersection graph
 [Cullina-Kiyavash ’16 17]

• : strictly higher than the connectivity threshold

p = o(1)
A* ∧ B ∼ 𝒢(n, ps2)

p = Ω(1)

Summary on information-theoretic thresholds

8

Summary on information-theoretic thresholds

8

Only a vanishing amount of correlation is needed for recovery information-theoretically!

Summary on information-theoretic thresholds

8

Only a vanishing amount of correlation is needed for recovery information-theoretically!

Can we develop a scalable algorithm to recover with a strong statistical guarantee? π

• Motivation and problem setup

• Information-theoretic limits

• Efficient algorithms

• Concluding remarks

Outline

5

7

State of the art (polynomial-time algorithms)

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

7

State of the art (polynomial-time algorithms)

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

7

State of the art (polynomial-time algorithms)

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

State of the art (polynomial-time algorithms)

7

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

State of the art (polynomial-time algorithms)

7

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

State of the art (polynomial-time algorithms)

7

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

State of the art (polynomial-time algorithms)

7

Sparse graphs Dense graphs

Extremely high correlation

[Babai-Erdős-Selkow ’80][Bollobás ’82]
[Czajka-Pandurangan ’07]

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

ρ = 1

State of the art (polynomial-time algorithms)

}

7

Sparse graphs Dense graphs

Extremely high correlation

[Babai-Erdős-Selkow ’80][Bollobás ’82]
[Czajka-Pandurangan ’07]
[Dai-Cullina-Kiyavash-Grossglauser ’18]

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

ρ = 1

ρ = 1 − 1/poly(n)

State of the art (polynomial-time algorithms)

}

7

Sparse graphs Dense graphs

Extremely high correlation

[Babai-Erdős-Selkow ’80][Bollobás ’82]
[Czajka-Pandurangan ’07]
[Dai-Cullina-Kiyavash-Grossglauser ’18]
[Ding-Ma-Wu-Xu ’18]
[Fan-Mao-Wu-Xu ’19]

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

ρ = 1

ρ = 1 − 1/polylog(n)}
ρ = 1 − 1/poly(n)

State of the art (polynomial-time algorithms)

}

7

Sparse graphs Dense graphs

Extremely high correlation

[Babai-Erdős-Selkow ’80][Bollobás ’82]
[Czajka-Pandurangan ’07]
[Dai-Cullina-Kiyavash-Grossglauser ’18]
[Ding-Ma-Wu-Xu ’18]
[Fan-Mao-Wu-Xu ’19]
[Mao-Rudelson-Tikhomirov ’21]

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

ρ = 1

ρ = 1 − 1/polylog(n)

ρ = 1 − 1/polyloglog(n)
}

ρ = 1 − 1/poly(n)

State of the art (polynomial-time algorithms)

}

7

Sparse graphs Dense graphs

Extremely high correlation

[Babai-Erdős-Selkow ’80][Bollobás ’82]
[Czajka-Pandurangan ’07]
[Dai-Cullina-Kiyavash-Grossglauser ’18]
[Ding-Ma-Wu-Xu ’18]
[Fan-Mao-Wu-Xu ’19]
[Mao-Rudelson-Tikhomirov ’21]

 high correlation [Ganassali-Massoulié ’20]
[Ganassali-Massoulié-Lelarge’21]
[Mao-Rudelson-Tikhomirov ’21]

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

ρ = 1

ρ = 1 − 1/polylog(n)

ρ = 1 − 1/polyloglog(n)

ρ = 1 − c

}

}

ρ = 1 − 1/poly(n)

State of the art (polynomial-time algorithms)

}

7

Sparse graphs Dense graphs

Extremely high correlation

[Babai-Erdős-Selkow ’80][Bollobás ’82]
[Czajka-Pandurangan ’07]
[Dai-Cullina-Kiyavash-Grossglauser ’18]
[Ding-Ma-Wu-Xu ’18]
[Fan-Mao-Wu-Xu ’19]
[Mao-Rudelson-Tikhomirov ’21]

 high correlation [Ganassali-Massoulié ’20]
[Ganassali-Massoulié-Lelarge’21]
[Mao-Rudelson-Tikhomirov ’21]

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

ρ = 1

ρ = 1 − 1/polylog(n)

ρ = 1 − 1/polyloglog(n)

ρ = 1 − c

}

}

ρ = 1 − 1/poly(n)

State of the art (polynomial-time algorithms)

}

7

-time recovery when [Barak-Chou-Lei-Schramm-Sheng ’19]nΘ(log n) ρ = o(1)

Sparse graphs Dense graphs

Extremely high correlation

[Babai-Erdős-Selkow ’80][Bollobás ’82]
[Czajka-Pandurangan ’07]
[Dai-Cullina-Kiyavash-Grossglauser ’18]
[Ding-Ma-Wu-Xu ’18]
[Fan-Mao-Wu-Xu ’19]
[Mao-Rudelson-Tikhomirov ’21]

 high correlation [Ganassali-Massoulié ’20]
[Ganassali-Massoulié-Lelarge’21]
[Mao-Rudelson-Tikhomirov ’21]

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ
?

State of the art (polynomial-time algorithms)

ρ = 1

ρ = 1 − 1/polylog(n)

ρ = 1 − 1/polyloglog(n)

ρ = 1 − c}

ρ = 1 − 1/poly(n)
}

}

7

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ
ρ2 > α ≈ 0.338

α ≜ Otter's tree counting constant

State of the art (polynomial-time algorithms)

7

[Mao-Wu-Xu-Yu ’22]

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

Our work fills the gap

[Mao-Wu-Xu-Yu ’22]

ρ2 > α ≈ 0.338
α ≜ Otter's tree counting constant

The number of unlabeled trees with edges
 [Otter ’1948]

N
≈ α−N

State of the art (polynomial-time algorithms)

7

[Mao-Wu-Xu-Yu ’22]

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ
ρ2 > α ≈ 0.338

α ≜ Otter's tree counting constant

A different (local) algorithm is shown to achieve partial recovery in the sparse
regime when [Ganassali-Massoulié-Semerjian ’22]ρ > α

State of the art (polynomial-time algorithms)

7

[Mao-Wu-Xu-Yu ’22]

Sparse graphs Dense graphs

Extremely high correlation

 high correlation

Low correlation

ρ
nq

nq = no(1) nq = nΘ(1)

ρ → 1

 close to 1ρ

Constant ρ

State of the art (polynomial-time algorithms)

7

[Ding-Li ’23] improves to

ρ = arbitrary constant

ρ2 > α ≈ 0.338
α ≜ Otter's tree counting constant

[Mao-Wu-Xu-Yu ’22]

Our results

Our results
Theorem [Mao-Wu-Xu-Yu ’22]

When (), as , our
polynomial-time matching algorithm with probability achieves:

• If , partial recovery (correctly match a positive constant fraction of vertices)

ρ2 > α ≈ 0.338 α ≜ Otter's tree counting constant n → ∞
1 − o(1)

nq ≥ C

8

Our results
Theorem [Mao-Wu-Xu-Yu ’22]

When (), as , our
polynomial-time matching algorithm with probability achieves:

• If , partial recovery (correctly match a positive constant fraction of vertices)

• If , almost exact recovery (correctly match fraction of vertices)

ρ2 > α ≈ 0.338 α ≜ Otter's tree counting constant n → ∞
1 − o(1)

nq ≥ C

nq = ω(1) 1 − o(1)

8

Our results
Theorem [Mao-Wu-Xu-Yu ’22]

When (), as , our
polynomial-time matching algorithm with probability achieves:

• If , partial recovery (correctly match a positive constant fraction of vertices)

• If , almost exact recovery (correctly match fraction of vertices)

• If , exact recovery (correctly match all vertices)

ρ2 > α ≈ 0.338 α ≜ Otter's tree counting constant n → ∞
1 − o(1)

nq ≥ C

nq = ω(1) 1 − o(1)

nq(q + ρ(1 − q)) ≥ (1 + ϵ)log n

8

Our results
Theorem [Mao-Wu-Xu-Yu ’22]

When (), as , our
polynomial-time matching algorithm with probability achieves:

• If , partial recovery (correctly match a positive constant fraction of vertices)

• If , almost exact recovery (correctly match fraction of vertices)

• If , exact recovery (correctly match all vertices)

ρ2 > α ≈ 0.338 α ≜ Otter's tree counting constant n → ∞
1 − o(1)

nq ≥ C

nq = ω(1) 1 − o(1)

nq(q + ρ(1 − q)) ≥ (1 + ϵ)log n

• No mismatching error;

8

• No mismatching error;

• The intersection graph between and under the hidden node correspondence
;

A B π
∼ 𝒢 (n, q(q + ρ(1 − q)))

Our results
Theorem [Mao-Wu-Xu-Yu ’22]

When (), as , our
polynomial-time matching algorithm with probability achieves:

• If , partial recovery (correctly match a positive constant fraction of vertices)

• If , almost exact recovery (correctly match fraction of vertices)

• If , exact recovery (correctly match all vertices)

ρ2 > α ≈ 0.338 α ≜ Otter's tree counting constant n → ∞
1 − o(1)

nq ≥ C

nq = ω(1) 1 − o(1)

nq(q + ρ(1 − q)) ≥ (1 + ϵ)log n

8

• No mismatching error;

• The intersection graph between and under the hidden node correspondence
;

• is the connectivity threshold and information-
theoretically necessary for exact recovery;

A B π
∼ 𝒢 (n, q(q + ρ(1 − q)))

nq(q + ρ(1 − q)) ≥ (1 + ϵ)log n

Our results
Theorem [Mao-Wu-Xu-Yu ’22]

When (), as , our
polynomial-time matching algorithm with probability achieves:

• If , partial recovery (correctly match a positive constant fraction of vertices)

• If , almost exact recovery (correctly match fraction of vertices)

• If , exact recovery (correctly match all vertices)

ρ2 > α ≈ 0.338 α ≜ Otter's tree counting constant n → ∞
1 − o(1)

nq ≥ C

nq = ω(1) 1 − o(1)

nq(q + ρ(1 − q)) ≥ (1 + ϵ)log n

8

Phase transition diagram for exact recovery

9

Let’s focus on the regime when , where is some constant.nq = λ log n λ

100
0

�

⇢

Phase transition diagram for exact recovery
Let’s focus on the regime when , where is some constant.nq = λ log n λ

The curve is the information theoretical limit where [Cullina-

Kiyavash ’16,’17][Wu-Xu-Yu ’21].

ρ = min {1,
1
λ }

9

1 10

1

0
0

impossible

possible

�

⇢

Phase transition diagram for exact recovery
Let’s focus on the regime when , where is some constant.nq = λ log n λ

The curve is the information theoretical limit where [Cullina-

Kiyavash ’16,’17][Wu-Xu-Yu ’21].

ρ = min {1,
1
λ }

9

1 10

1

0
0

impossible

possible

�

⇢

No algorithm
regardless of
computational
efficiency

Phase transition diagram for exact recovery
Let’s focus on the regime when , where is some constant.nq = λ log n λ

9

1 1p
↵

10

p
↵

1

0
0

impossible

polynomial-time possible

possible

�

⇢

(α ≈ 0.338)

Phase transition diagram for exact recovery
Let’s focus on the regime when , where is some constant.nq = λ log n λ

9

1 1p
↵

10

p
↵

1

0
0

impossible

polynomial-time possible

possible

�

⇢

(α ≈ 0.338)

Our condition coincides with the information-theoretic limit when .1 < λ <
1

α

1 1p
↵

10

p
↵

1

0
0

impossible

polynomial-time possible

hard?

�

⇢

Phase transition diagram for exact recovery
Let’s focus on the regime when , where is some constant.nq = λ log n λ

Low-degree polynomial estimators fail when [Ding-Du-Li ’23];

Local algorithms fail when in sparse regime [Ganassali-Massoulié-Semerjian ’22]

ρ < α

ρ < α
9

?Conjectured hard

(α ≈ 0.338)

Meta algorithm

Algorithm

B

1

2

3

4

5

A

1

2

3

4

5

19

Vertex in Vertex signature

1

2

3

4

5A

• Step 1: signature embedding
 Based on the structure of :
 Construct a vertex signature (number or vector) for each vertex in .

A
A

1

Meta algorithm

2

3

4

5

A

s1

s2

s3

s4

s5

20

Vertex in Vertex signature

1

2

3

4

5B ∼ 𝒢(n, q)

1

2

3

4

5

• Step 1: signature embedding
 Based on the structure of :
 Construct a vertex signature (number or vector) for each vertex in .

B
B

t1

t2

t3

t4

t5

B

Meta algorithm

20

Vertex in Vertex signature

1

2

3

4

5

t1

t2

t3

t4

t5

BVertex in Vertex signature

1

2

3

4

5

A

s1

s2

s3

s4

s5

Meta algorithm

21

• Step 2: Similarity score
 For any vertex pair of in and in , compute similarity score based on and .i A j B Φij si tj

We want

• For (true pair), is close to is relatively large;

• For (fake pair), is far from is relatively small;

j = π(i) si tj ⟹ Φij

j ≠ π(i) si tj ⟹ Φij

Meta algorithm

21

Vertex in Vertex signature

1

2

3

4

5

A

s1

s2

s3

s4

s5

• Step 2: Similarity score
 For any vertex pair of in and in , compute similarity score based on and .i A j B Φij si tj

Vertex in Vertex signature

1

2

3

4

5

t1

t2

t3

t4

t5

B

• Step 2: Similarity score
 For any vertex pair of in and in , compute similarity score based on and .i A j B Φij si tj

We want

• For (true pair), is close to is relatively large;

• For (fake pair), is far from is relatively small;

j = π(i) si tj ⟹ Φij

j ≠ π(i) si tj ⟹ Φij

Meta algorithm

21

Vertex in Vertex signature

1

2

3

4

5

A

s1

s2

s3

s4

s5

• Step 2: Similarity score
 For any vertex pair of in and in , compute similarity score based on and .i A j B Φij si tj

How to construct the vertex signature?

Vertex in Vertex signature

1

2

3

4

5

t1

t2

t3

t4

t5

B

• Step 2: Similarity score
 For any vertex pair of in and in , compute similarity score based on and .i A j B Φij si tj

How to construct the vertex signature?

22

B

1

2

3

4

5
A

1

2

3

4

5

How to construct the vertex signature?

Examples of vertex signature:

• Degree

B

1

2

3

4

5
A

1

2

3

4

5

22

How to construct the vertex signature?

B

1

2

3

4

5
A

1

2

3

4

5

Examples of vertex signature:

• Degree

• Degrees of neighbors: only works for [Ding-Ma-Wu-Xu ’18]ρ = 1 − 1/polylog(n)

22

How to construct the vertex signature?

B

1

2

3

4

5
A

1

2

3

4

5

22

Examples of vertex signature:

• Degree

• Degrees of neighbors: only works for [Ding-Ma-Wu-Xu ’18]

• The local tree structure: only works for sparse graphs [Mao-Rudelson-Tikhomirov ’21]
[Ganassali-Massoulié ’20][Ganassali-Massoulié-Lelarge ’21]

ρ = 1 − 1/polylog(n)

How to construct the vertex signature?

B

1

2

3

4

5
A

1

2

3

4

5

22

Examples of vertex signature:

• Degree

• Degrees of neighbors: only works for [Ding-Ma-Wu-Xu ’18]

• The local tree structure: only works for sparse graphs [Mao-Rudelson-Tikhomirov ’21]
[Ganassali-Massoulié ’20][Ganassali-Massoulié-Lelarge ’21]

The above vertex signatures are either sensitive to noise or only work in sparse regime.

ρ = 1 − 1/polylog(n)

Our idea: subgraph count

14

subgraph H

i

A

Subgraph count

• copies of in graph # H A

14

subgraph H

i

A

Subgraph count

• copies of in graph # H A

(copies of appear in)6 H A

14

subgraph H

i

A

Subgraph count

• copies of in graph # H A

(copies of appear in)6 H A

14

subgraph H

i

A

Subgraph count

• copies of in graph # H A

(copies of appear in)6 H A

14

subgraph H

i

A

Subgraph count

• copies of in graph # H A

(copies of appear in)6 H A

14

subgraph H

i

A

Subgraph count

• copies of in graph # H A

(copies of appear in)6 H A

14

subgraph H

i

A

Subgraph count

• copies of in graph # H A

(copies of appear in)6 H A

14

subgraph H

i

A

Subgraph count

• copies of in graph capture some graph information;# H A ⟹

(copies of appear in)6 H A

14

subgraph H

i

A

Subgraph count

• copies of in graph capture some graph information;

• It is very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-
Kashtan ’02]);

H A ⟹

(copies of appear in)6 H A

14

Subgraph count

i

A

subgraph H

• copies of in graph capture some graph information;

• It is very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-
Kashtan ’02]);

• Has been applied to graph matching [Barak-Chou-Lei-Schramm-Sheng ’19]

H A ⟹

14

Subgraph count

ii

A

i

subgraph H

• copies of in graph capture some graph information;

• It is very popular in both theory and practice (motif counting [Milo-Shen-Orr-Itzkovitz-
Kashtan ’02]);

• Has been applied to graph matching [Barak-Chou-Lei-Schramm-Sheng ’19]

• How to capture the vertex information of ?

H A ⟹

i

ii

A

Rooted subgraph count

Root

Rooted subgraph H

23

i

• copies of rooted at in graph , denoted as ;# H i A Wi,H(A)

ii

A

Rooted subgraph count

Root

Rooted subgraph H

23

i

(copies of rooted at node appear in)3 H i A

• copies of rooted at in graph , denoted as ;# H i A Wi,H(A)

ii

A

Rooted subgraph count

Root

Rooted subgraph H

23

i

(copies of rooted at node appear in)3 H i A

• copies of rooted at in graph , denoted as ;# H i A Wi,H(A)

ii

A

Rooted subgraph count

Root

Rooted subgraph H

23

i

(copies of rooted at node appear in)3 H i A

• copies of rooted at in graph , denoted as ; # H i A Wi,H(A)

ii

A

Rooted subgraph count

• copies of rooted at in graph , denoted as ; # H i A Wi,H(A)

Root

Rooted subgraph H

23

i

(copies of rooted at node appear in)

3 H i A

Wi,H(A) = 3

ii

A

Rooted subgraph count

• copies of rooted at in graph , denoted as ;

• Capture some vertex information;

H i A Wi,H(A)

Root

Rooted subgraph H

23

i

(copies of rooted at node appear in)

3 H i A

Wi,H(A) = 3

ii

A

Rooted subgraph count

• copies of rooted at in graph , denoted as ;

• Capture some vertex information;

• Idea: construct a rich family of rooted subgraphs:

H i A Wi,H(A)

Root

Rooted subgraph H

23

i

(copies of rooted at node appear in)

3 H i A

Wi,H(A) = 3

ii

A

Rooted subgraph count

• copies of rooted at in graph , denoted as ;

• Capture some vertex information;

• Idea: construct a rich family of rooted subgraphs:

• Each rooted subgraph captures some information about the vertex;

H i A Wi,H(A)

Root

Rooted subgraph H

23

i

(copies of rooted at node appear in)

3 H i A

Wi,H(A) = 3

ii

A

Rooted subgraph count

• copies of rooted at in graph , denoted as ;

• Capture some vertex information;

• Idea: construct a rich family of rooted subgraphs:

• Each rooted subgraph captures some information about the vertex;

• Combine all the information vertex signature to be more informative.

H i A Wi,H(A)

⟹

Root

Rooted subgraph H

23

i

(copies of rooted at node appear in)

3 H i A

Wi,H(A) = 3

Graph matching via counting rooted subgraphs
Given a family of rooted subgraphs with edges:ℋ N

24

{ },
e.g. N = 4, ℋ =

, ,
⋯

1. For each vertex in , its vertex signature is i A si = (Wi,H(A))H∈ℋ

Graph matching via counting rooted subgraphs
Given a family of rooted subgraphs with edges:ℋ N

{ },
e.g. N = 4, ℋ =

, ,
⋯

24

1. For each vertex in , its vertex signature is i A si = (Wi,H(A))H∈ℋ

Graph matching via counting rooted subgraphs
Given a family of rooted subgraphs with edges:ℋ N

{ },
e.g. N = 4, ℋ =

, ,
⋯

Highly correlated across different H

24

1. For each vertex in , its vertex signature is i A si = (Wi,H())H∈ℋ

Graph matching via counting rooted subgraphs
Given a family of rooted subgraphs with edges:ℋ N

A

{ },
e.g. N = 4, ℋ =

, ,
⋯

24

1. For each vertex in , its vertex signature is i A si = (Wi,H())H∈ℋ

Graph matching via counting rooted subgraphs
Given a family of rooted subgraphs with edges:ℋ N

A

{ },
e.g. N = 4, ℋ =

, ,
⋯

;
Count the weighted copies in
A = A − 𝔼[A]

A
Wi,H(Ā) = ∑

S(i)≅H
∏

e∈E(S)

Āe

24

1. For each vertex in , its vertex signature is i A si = (Wi,H())H∈ℋ

Graph matching via counting rooted signed subgraphs
Given a family of rooted subgraphs with edges:ℋ N

A
rooted “signed”
subgraph count
[Bubeck-Ding-

Eldan-Rácz ’16]

{ },
e.g. N = 4, ℋ =

, ,
⋯

24

;
Count the weighted copies in
A = A − 𝔼[A]

A
Wi,H(Ā) = ∑

S(i)≅H
∏

e∈E(S)

Āe

1. For each vertex in , its vertex signature is i A si = (Wi,H())H∈ℋ

Graph matching via counting rooted signed subgraphs
Given a family of rooted subgraphs with edges:ℋ N

A
Uncorrelated across different H

rooted “signed”
subgraph count

{ },
e.g. N = 4, ℋ =

, ,
⋯

;
Count the weighted copies in
A = A − 𝔼[A]

A

24

1. For each vertex in , its vertex signature is

2. For each vertex in , its vertex signature is

i A si = (Wi,H())H∈ℋ

j B tj = (Wj,H())H∈ℋ

Graph matching via counting rooted signed subgraphs
Given a family of rooted subgraphs with edges:ℋ N

Uncorrelated across different H

B

{ },
e.g. N = 4, ℋ =

, ,
⋯

A

Uncorrelated across different H

rooted “signed”
subgraph count

24

1. For each vertex in , its vertex signature is

2. For each vertex in , its vertex signature is

3. Similarity score:

i A si = (Wi,H())H∈ℋ

j B tj = (Wj,H())H∈ℋ

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) ,

where is the number of automorphism of .aut(H) H

Graph matching via counting rooted signed subgraphs
Given a family of rooted subgraphs with edges:ℋ N

Uncorrelated across different H

Uncorrelated across different H

B

{ },
e.g. N = 4, ℋ =

, ,
⋯

A
rooted “signed”
subgraph count

24

1. For each vertex in , its vertex signature is

2. For each vertex in , its vertex signature is

3. Similarity score:

i A si = (Wi,H())H∈ℋ

j B tj = (Wj,H())H∈ℋ

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) ,

where is the number of automorphism of .aut(H) H

4. Match to if for some threshold .i j Φij ≥ τ τ

Graph matching via counting rooted signed subgraphs
Given a family of rooted subgraphs with edges:ℋ N

Uncorrelated across different H

Uncorrelated across different H

B

{ },
e.g. N = 4, ℋ =

, ,
⋯

A
rooted “signed”
subgraph count

24

1. For each vertex in , its vertex signature is

2. For each vertex in , its vertex signature is

3. Similarity score:

i A si = (Wi,H())H∈ℋ

j B tj = (Wj,H())H∈ℋ

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) ,

where is the number of automorphism of .aut(H) H

4. Match to if for some threshold .i j Φij ≥ τ τ

Graph matching via counting rooted signed subgraphs
Given a family of rooted subgraphs with edges:ℋ N

Uncorrelated across different H

Uncorrelated across different H

B

{ },
e.g. N = 4, ℋ =

, ,
⋯

A
rooted “signed”
subgraph count

24

Polynomials of ’s and ’sAij Bij

b

Desirable properties of similarity scores (Mean)

Fake pair: j ≠ π(i) True pair: j = π(i)

Φij

0 μ

𝔼[Φij] 𝔼[Φiπ(i)]

= =

Mean separation = μ

Correlated iff (true pair)j = π(i)

For each vertex in and in : i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .}

25

b

Desirable properties of similarity scores (Variance)

Fake pair: j ≠ π(i) True pair: j = π(i)

Φij

0 μ

𝔼[Φij] 𝔼[Φiπ(i)]

= =

Mean separation = μ

Correlated iff (true pair)j = π(i)

For each vertex in and in : i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .}

We want: fluctuation of to be relatively small compared to .Φij μ

25

b

Desirable properties of similarity scores (Variance)

Fake pair: j ≠ π(i) True pair: j = π(i)

Φij

0 μ

𝔼[Φij] 𝔼[Φiπ(i)]

= =

Mean separation = μ

Correlated iff (true pair)j = π(i)

For each vertex in and in : i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .}

We want: fluctuation of to be relatively small compared to .Φij μ

25

b

Desirable properties of similarity scores (Variance)

Fake pair: j ≠ π(i) True pair: j = π(i)

Φij

0 μ

𝔼[Φij] 𝔼[Φiπ(i)]

= =

Mean separation = μ

Correlated iff (true pair)j = π(i)

For each vertex in and in : i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .}

We want: fluctuation of to be relatively small compared to .Φij μ

τ

25

b

Desirable properties of similarity scores (Variance)

Fake pair: j ≠ π(i) True pair: j = π(i)

Φij

0 μ

𝔼[Φij] 𝔼[Φiπ(i)]

= =

τ

Which family of (rooted subgraphs) to choose? ℋ

Mean separation = μ

Correlated iff (true pair)j = π(i)

For each vertex in and in : i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .}

We want: fluctuation of to be relatively small compared to .Φij μ

25

Which family of rooted subgraphs to count?

b

Suppose be a family of rooted subgraphs with edges.
For each vertex in and in :

ℋ N
i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

26

Which family of rooted subgraphs to count?

b

Suppose be a family of rooted subgraphs with edges.
For each vertex in and in :

• Wishful thinking: ignoring the cross-correlations of and
 for different subgraphs and :

ℋ N
i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

aut(H)Wi,H(A)Wj,H(B)
aut(I)Wi,I(A)Wj,I(B) H I

Var[Φij]
μ2

≈
1

|ℋ |ρ2N

goal
⟶ 0

26

Which family of rooted subgraphs to count?

b

Suppose be a family of rooted subgraphs with edges.
For each vertex in and in :

• Wishful thinking: ignoring the cross-correlations of and
 for different subgraphs and :

which requires

• The family to be “rich”: grows at least exponentially in ;
• The subgraph to be “large”: grows in ;

ℋ N
i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

aut(H)Wi,H(A)Wj,H(B)
aut(I)Wi,I(A)Wj,I(B) H I

ℋ |ℋ | N
H N n

Var[Φij]
μ2

≈
1

|ℋ |ρ2N

goal
⟶ 0

26

Which family of rooted subgraphs to count?

b

Suppose be a family of rooted subgraphs with edges.
For each vertex in and in :

• Wishful thinking: ignoring the cross-correlations of and
 for different subgraphs and :

which requires

• The family to be “rich”: grows at least exponentially in ;
• The subgraph to be “large”: grows in ;

• We also want to be “simple” to count.

ℋ N
i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

aut(H)Wi,H(A)Wj,H(B)
aut(I)Wi,I(A)Wj,I(B) H I

ℋ |ℋ | N
H N n

H

Var[Φij]
μ2

≈
1

|ℋ |ρ2N

goal
⟶ 0

26

Which family of rooted subgraphs to count?

b

Suppose be a family of rooted subgraphs with edges.
For each vertex in and in :

• Wishful thinking: ignoring the cross-correlations of and
 for different subgraphs and :

which requires

• The family to be “rich”: grows at least exponentially in ;
• The subgraph to be “large”: grows in ;

• We also want to be “simple” to count.

ℋ N
i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

aut(H)Wi,H(A)Wj,H(B)
aut(I)Wi,I(A)Wj,I(B) H I

ℋ |ℋ | N
H N n

H

Var[Φij]
μ2

≈
1

|ℋ |ρ2N

goal
⟶ 0

Trees

26

b

Suppose be a family of rooted trees with edges.
For each vertex in and in :

• Wishful thinking: ignoring the cross-correlations of and
 for different subgraphs and :

which requires

• The family to be “rich”: ;
• The subgraph to be “large”: grows in ;

• We also want to be “simple” to count.

ℋ N
i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

aut(H)Wi,H(A)Wj,H(B)
aut(I)Wi,I(A)Wj,I(B) H I

ℋ |ℋ | = (α + o(1))−N

H N n
H

A family of rooted trees

Var[Φij]
μ2

≈
1

|ℋ |ρ2N

goal
⟶ 0

Trees

26

b

Suppose be a family of rooted trees with edges.
For each vertex in and in :

• Wishful thinking: ignoring the cross-correlations of and
 for different subgraphs and :

which requires

• The family to be “rich”: ;
• The subgraph to be “large”: grows in ;

• We also want to be “simple” to count.

ℋ N
i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

aut(H)Wi,H(A)Wj,H(B)
aut(I)Wi,I(A)Wj,I(B) H I

ℋ |ℋ | = (α + o(1))−N

H N n
H

Var[Φij]
μ2

≈
1

|ℋ |ρ2N
⟶ 0

ρ2 > α

A family of rooted trees

Trees

26

b

Suppose be a family of rooted trees with edges.
For each vertex in and in :

• Wishful thinking: ignoring the cross-correlations of and
 for different subgraphs and :

which requires

• The family to be “rich”: ;
• The subgraph to be “large”: grows in ;

• If is a tree, it is “simple” to count via color coding [Alon-Yuster-Zwick’ 95]

ℋ N
i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

aut(H)Wi,H(A)Wj,H(B)
aut(I)Wi,I(A)Wj,I(B) H I

ℋ |ℋ | = (α + o(1))−N

H N n
H

ρ2 > α
Var[Φij]

μ2
≈

1
|ℋ |ρ2N

⟶ 0

A family of rooted trees

Trees

26

b

Suppose be a family of rooted trees with edges.
For each vertex in and in :

• Wishful thinking: ignoring the cross-correlations of and
 for different subgraphs and :

which requires

• The family to be “rich”: ;
• The subgraph to be “large”: grows in ;

• If is a tree, it is “simple” to count via color coding [Alon-Yuster-Zwick’ 95].

• However, we cannot ignore the cross-correlations.

ℋ N
i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

aut(H)Wi,H(A)Wj,H(B)
aut(I)Wi,I(A)Wj,I(B) H I

ℋ |ℋ | = (α + o(1))−N

H N n
H

Var[Φij]
μ2

≈
1

|ℋ |ρ2N
⟶ 0

ρ2 > α

A family of rooted trees

26

We need to construct a special family of trees.

A special family of rooted trees

27

For each vertex in and in :

We want to construct a special family of trees:

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

A special family of rooted trees
For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

27

A special family of rooted trees
For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

• This special family of trees has to be “rich” enough;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

27

For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

• This special family of trees has to be “rich” enough;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

A special family of rooted trees - Chandeliers

27

Root

For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

• This special family of trees has to be “rich” enough;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

A special family of rooted trees - Chandeliers

27

Root

For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

• This special family of trees has to be “rich” enough;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

A special family of rooted trees - Chandeliers

27

Wire: path with edgesM

Root

For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

• This special family of trees has to be “rich” enough;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

A special family of rooted trees - Chandeliers

27

Wire: path with edgesM

Bulb: rooted subtree with edges
and automorphisms

K
exp(O(K))

Root

For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

• This special family of trees has to be “rich” enough;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

A special family of rooted trees - Chandeliers

27

Wire: path with edgesM

Root

 branchesL

Bulb: rooted subtree with edges
and automorphisms

K
exp(O(K))

A special family of rooted trees - Chandeliers
For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

• This special family of trees has to be “rich” enough;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

27

Wire: path with edgesM

Root

 branchesL
Chandelier has edges where N
N = (M + K)L

Bulb: rooted subtree with edges
and automorphisms

K
exp(O(K))

A special family of rooted trees - Chandeliers

• Let denote the special family of chandeliers with edges. ℋ N

For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

27

Wire: path with edgesM

Root

 branchesL
Chandelier has edges where N
N = (M + K)L

Bulb: rooted subtree with edges
and automorphisms

K
exp(O(K))

Wire: path with edgesM

Root

A special family of rooted trees - Chandeliers

 branchesL
Chandelier has edges where N
N = (M + K)L

• Let denote the special family of chandeliers with edges.

• Pick , we can ensure the richness of : .

ℋ N
K ≫ M ℋ |ℋ | = (α + o(1))−N

For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

27

Bulb: rooted subtree with edges
and automorphisms

K
exp(O(K))

Wire: path with edgesM

Root

A special family of rooted trees - Chandeliers

 branchesL
Chandelier has edges where N
N = (M + K)L

• Let denote the special family of chandeliers with edges.

• Pick , we can ensure the richness of : .

ℋ N
K ≫ M ℋ |ℋ | = (α + o(1))−N

For each vertex in and in :

We want to construct a special family of trees:
• Suppress the undesirable cross-correlations to control ;

i A j B

Φij = ⟨si, tj⟩ = ∑
H∈ℋ

aut(H)Wi,H(A)Wj,H(B) .

Var[Φij]/μ2

27

Bulb: rooted subtree with edges
and automorphisms

K
exp(O(K))

Majority of trees have

automorphisms
[Olsson-Wagner ’22]

exp(O(K))

Let denote a special family of chandeliers:

• Large: The size of chandeliers , where is some small constant.

• Rich: Choose , to ensure .

• Almost as rich as the whole family of all rooted trees.

• Informative: Choose smaller and larger , when graphs are sparser.

ℋ

N = c log n c

K ≫ M |ℋ | = (α + o(1))−N

L M

Summary on properties of Chandeliers

Wire: path with edgesM

Root

 branchesL

Chandelier has edges
where

N
N = (M + K)L

28

Bulb: rooted subtree with edges
and automorphisms

K
exp(O(K))

Summary on efficient algorithms

?

1 1p
↵

10

p
↵

1

0
0

impossible

polynomial-time possible

hard?

�

⇢

Conjectured hard

nq = λ log n

30

Selected references

Efficient algorithms and computational limits:

C. Mao, Y. Wu, J. Xu, & S. H. Yu, Random graph matching at Otter's threshold via
counting chandeliers, STOC 2023, arxiv:2209.12313

L. Ganassali, L. Massoulié, & G. Semerjian, Statistical limits of correlation
detection in trees, to appear in Annals of Applied Probability, arXiv:2209.1373

J. Ding & Z. Li, A polynomial-time iterative algorithm for random graph matching
with non-vanishing correlation, arXiv:2306.00266.

J. Ding, H. Du & Z. Li, Low-degree hardness of detection for correlated Erdős-
Rényi graphs, arXiv:2311.15931

30

Information-theoretic limits:

Y. Wu, J. Xu, & S. H. Yu, Settling the sharp reconstruction thresholds of random
graph matching, IEEE Transactions on Information Theory, arXiv:2102.00082.

J. Ding & H. Du, Matching recovery threshold for correlated random graphs,
Annals of Statistics, arXiv:2205.14650

Open problems and future directions

31

• Rigorous evidences for statistical-computational gaps

• Beyond Erdős–Rényi graphs:

• Random geometric graph matching [Wang-Wu-Xu-Yolou’ 22, …]

• Community recovery and graph matching in correlated stochastic block models
[Racz-Sridhar’ 21, Gaudio-Racz-Sridhar ’22]

• Matching preferential attachment graphs [Korula-Lanttanzi '14] or power-law
graphs [Yu-Xu-Lin ’21]

• Seeded Graph matching with initial “noisy” matched pairs [Kazemi-Hassani-
Grossglausser ’15, Lubars-Srikant ’18, Mossel-Xu ’20, Yu-Xu-Lin ’20]

• Graph matching with node attribute information [Zhang-Wang-Wang-Wang ’20]

• “Robust” graph matching [Ameen-Hajek ’ 23]

• Random graph matching with multiple graphs [Ameen-Hajek ’ 24]

• Database alignment/record linkage problem [Dai-Cullina-Kiyavash ’19, …]

A = (κ(xi, xj)), B = (κ(yi, yj)), where (xπ(i), yi)
iid∼ P

• Maximum likelihood estimator:

 QAP)

Suppose correlated Erdős–Rényi graph model under a hidden node mapping .

The likelihood function is

Then, we have

πMLE = arg max
̂π ∑

i<j

AijB ̂π(i) ̂π(j) (

A, B ∼ ̂π

𝒫(A, B | ̂π) = (q(q + ρ − qρ))∑i<j AijB ̂π(i) ̂π(j)

(q(1 − q)(1 − ρ))∑i<j Aij(1−B ̂π(i) ̂π(j))+∑i<j (1−Aij)B ̂π(i) ̂π(j)

(1 − q(2 − q − ρ + qρ))∑i<j (1−Aij)(1−B ̂π(i) ̂π(j))

∝ ((q + ρ − qρ)(1 − q(2 − q − ρ + qρ))
q(1 − q)2(1 − ρ)2)

∑i<j AijB ̂π(i) ̂π(j)

.

MLEπ = arg max
̂π

𝒫(A, B | ̂π) = arg max ∑
i<j

AijB ̂π(i) ̂π(j) .

MLE: Quadratic Assignment Problem (QAP)

17

Approximately count signed trees via color coding

ii

A

Root

Rooted tree H

−q

1 − q

• Exhaustive search takes times: super poly-time when

• Solution: approximate count in time via color coding [Alon-Yuster-Zwick ’95]

1. Assign random color to each vertex from color set uniformly

nN N → ∞

n2eO(N)

μ [N + 1]

 edgesN

17

ii

A

Root

Rooted tree H

−q

1 − q

• Exhaustive search takes times: super poly-time when

• Solution: approximate count in time via color coding [Alon-Yuster-Zwick ’95]

1. Assign random color to each vertex from color set uniformly

2. Count colorful copies of (all vertices have distinct colors)

nN N → ∞

n2eO(N)

μ [N + 1]

H ⟹ Xi,H(A, μ)

𝔼μ[Xi,H(A, μ)] = rWi,H(A), where r = (N + 1)!/(N + 1)N+1

 edgesN

Approximately count signed trees via color coding

17

ii

A

Root

Rooted tree H

−q

1 − q

• Exhaustive search takes times: super poly-time when

• Solution: approximate count in time via color coding [Alon-Yuster-Zwick ’95]

1. Assign random color to each vertex from color set uniformly

2. Count colorful copies of (all vertices have distinct colors)

 3. Generate independent random colorings so that

nN N → ∞

n2eO(N)

μ [N + 1]

H ⟹ Xi,H(A, μ)

𝔼μ[Xi,H(A, μ)] = rWi,H(A), where r = (N + 1)!/(N + 1)N+1

1/r μt

Wi,H(A) ≈
1/r

∑
t=1

Xi,H(A, μt)

 edgesN

Approximately count signed trees via color coding

Boost almost exact recovery to exact recovery

21

Boost almost exact recovery to exact recovery

i j

̂π

Boost almost exact recovery to exact recovery

1. For each unmatched pair , compute
“common” neighbors under

2. If , match , append it to
, and repeat

(i, j)
N(i, j) ̂π

N(i, j) ≥ γ (i, j)
̂π

Seeded graph matching (SGM)

i j

̂π

21

Boost almost exact recovery to exact recovery

1. For each unmatched pair , compute
“common” neighbors under

2. If , match , append it to
, and repeat

(i, j)
N(i, j) ̂π

N(i, j) ≥ γ (i, j)
̂π

Seeded graph matching (SGM)

i j

̂π

Similar to percolation graph matching [Yarteva-Grossglauser’13, Barak-Chou-Lei-Schramm-
Sheng ’19]

21

Boost almost exact recovery to exact recovery

1. For each unmatched pair , compute
“common” neighbors under

2. If , match , append it to
, and repeat

(i, j)
N(i, j) ̂π

N(i, j) ≥ γ (i, j)
̂π

Seeded graph matching (SGM)

i j

̂π

Theorem [Mao-Wu-X.-Yu ’22]

Suppose and . With probability , given
any input that completely coincides with on at least vertices, SGM with an
appropriate choice of threshold outputs in time .

nq(q + ρ(1 − q)) ≥ (1 + ϵ)log n ρ ≥ ϵ 1 − o(1)
̂π π (1 − ϵ)n

γ π̃ = π O(n3q2)

• Proof: Intersection graph is an expander, so SGM iteratively matches all vertices

Similar to percolation graph matching [Yarteva-Grossglauser’13, Barak-Chou-Lei-Schramm-
Sheng ’19]

21

Color coding

17

Counting signed trees via color coding

ii

A

Root

Rooted tree H

−q

1 − q

• Exhaustive search takes times: super poly-time when nN N → ∞

 edgesN

17

Counting signed trees via color coding

ii

A

Root

Rooted tree H

−q

1 − q

• Exhaustive search takes times: super poly-time when

• Our solution: color coding [Alon-Yuster-Zwick ’95]

nN N → ∞

 edgesN

17

Counting signed trees via color coding

ii

A

Root

Rooted tree H

−q

1 − q

• Exhaustive search takes times: super poly-time when

• Our solution: color coding [Alon-Yuster-Zwick ’95]

1. Assign random color to each vertex from color set uniformly

nN N → ∞

μ [N + 1]

 edgesN

17

Counting signed trees via color coding

ii

A

Root

Rooted tree H

−q

1 − q

• Exhaustive search takes times: super poly-time when

• Our solution: color coding [Alon-Yuster-Zwick ’95]

1. Assign random color to each vertex from color set uniformly

2. Count colorful copies of (all vertices have distinct colors)

nN N → ∞

μ [N + 1]

H ⟹ Xi,H(A, μ)

𝔼μ[Xi,H(A, μ)] = rWi,H(A), where r = (K + 1)!/(K + 1)K+1

 edgesN

17

Counting signed trees via color coding

ii

A

Root

Rooted tree H

−q

1 − q

• Exhaustive search takes times: super poly-time when

• Our solution: color coding [Alon-Yuster-Zwick ’95]

1. Assign random color to each vertex from color set uniformly

2. Count colorful copies of (all vertices have distinct colors)

 3. Generate independent random colorings so that

nN N → ∞

μ [N + 1]

H ⟹ Xi,H(A, μ)

𝔼μ[Xi,H(A, μ)] = rWi,H(A), where r = (K + 1)!/(K + 1)K+1

1/r μt

Wi,H(A) ≈
1/r

∑
t=1

Xi,H(A, μt)

 edgesN

Signed rooted tree count

ii

A

Rooted signed subgraph count

Rooti

Rooted subgraph H

ii

A

Rooted signed subgraph count

Rooti

• Centered adjacency matrices: ; A = A − 𝔼[A]

Rooted subgraph H

ii

Rooted signed subgraph count

• Centered adjacency matrices: ; A = A − 𝔼[A]

Rooti

−q

1 − q

A

Rooted subgraph H

ii

Rooted signed subgraph count

Rooti

−q

1 − q

A

• Centered adjacency matrices: ;

• Count weighted copies of rooted graph in (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Rácz ’16];

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Rooted subgraph H

ii

Rooted signed subgraph count

• Centered adjacency matrices: ;

• Count weighted copies of rooted graph in (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Rácz ’16];

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Rooti

−q

1 − q

A

This copy of has a weight .H (1 − q)2

Rooted subgraph H

ii

Rooted signed subgraph count

• Centered adjacency matrices: ;

• Count weighted copies of rooted graph in (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Rácz ’16];

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Rooti

−q

1 − q

A

This copy of has a weight .H (1 − q)2

Rooted subgraph H

ii

Rooted signed subgraph count

• Centered adjacency matrices: ;

• Count weighted copies of rooted graph in (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Rácz ’16];

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Rooti

−q

1 − q

A

This copy of has a weight .H (1 − q)2

Rooted subgraph H

ii

Rooted signed subgraph count

Rooti

−q

1 − q

A

This copy of has a weight .H (1 − q)(−q)

• Centered adjacency matrices: ;

• Count weighted copies of rooted graph in (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Rácz ’16];

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Rooted subgraph H

ii

Rooted signed subgraph count

Rooti

−q

1 − q

A

This copy of has a weight .H (1 − q)(−q)

• Centered adjacency matrices: ;

• Count weighted copies of rooted graph in (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Rácz ’16];

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Rooted subgraph H

ii

Rooted signed subgraph count

Rooti

−q

1 − q

A

This copy of has a weight .H (1 − q)(−q)

• Centered adjacency matrices: ;

• Count weighted copies of rooted graph in (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Rácz ’16];

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Rooted subgraph H

ii

Rooted signed subgraph count

Rooti

−q

1 − q

A Wi,H(A) = 3(1 − q)2 + 3(1 − q)(−q)

• Centered adjacency matrices: ;

• Count weighted copies of rooted graph in (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Rácz ’16];

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Rooted subgraph H

ii

Rooted signed subgraph count

Rooti

−q

1 − q

A

• Centered adjacency matrices: ;

• Count weighted copies of rooted graph in (rooted signed subgraph
count) [Bubeck-Ding-Eldan-Rácz ’16];

• Crucially, and are uncorrelated for distinct subgraphs and .

A = A − 𝔼[A]

A ⟹ Wi,H(A)

Wi,H(A) Wi,I(A) H I

Rooted subgraph H

