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Network model with planted structure

Question: How to recover latent structure from noisy network data?

Classical examples

• Community detection under Stochastic Block Model

• Recovery of planted clique in Erdős-Rényi graphs
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An expanding zoo of planted subgraph problems...

• Planted bipartite matching [Chertkov-Kroc-Krzakala-Vergassola-Zdeborová ’10,

Moharrami-Moore-X. ’21, Ding-Wu-X.-Yang ’ 23]

• Planted Hamiltonian cycle problem (TSP) [Bagaria-Ding-Tse-Wu-X. ’20]

• Planted trees [Massoulié-Stephan-Towsley ’18]

• Planted k-factors [Sicuro-Zdeborová ’20, Gaudio-Sandon-X.-Yang ’25]

• Planted k-nearest-neighbor graph [Ding-Wu-X.-Yang ’21]

• Planted dense cycles [Mao-Wein-Zhang ’23]

• Planted general subgraphs [Mossel-Niles-Weed-Sohn-Sun-Zadik ’23,

Lee-Pernice-Rajaraman-Zadik ’25]

Many fascinating results on phase transitions, statistical vs.
computational gaps, optimal algorithms; however, characterizing exact
value of asymptotic overlap remains formidable mathematical challenge

Today: Planted spanning tree model → Exact overlap characterization
via local weak convergence theory
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The planted spanning tree model

• A complete graph on n vertices

• A uniform spanning tree T ∗

• Non-negative edge weight

We
ind.∼

{
P e ∈ T ∗

Qn e /∈ T ∗

• Goal: recover T ∗ from W

• Assume P is a fixed distribution and limn→∞ nQ ′
n(0) = 1

• When P = Exp(1/µ) and Qn = Exp(1/n) (mean µ vs n),
min-weight spanning tree Tmin is Maximum Likelihood Estimator

• How much does Tmin have in common with T ∗?
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Main result: Asymptotic overlap

Theorem (Moharrami-Moore-X. ’25)

Let F denote the CDF of planted weight distribution P. Then

lim
n→∞

1

n − 1
E[|Tmin ∩ T ∗|] =

∫ ∞

0
(1− pU(s)pB(s)) dF (s)

where pU(s) and pB(s) are the largest fixed point of

1− pU(s) = exp (−spU(s)− pB(s)) (1− F (s)pU(s))

1− pB(s) = exp (−spU(s)− pB(s))

Remark

• pU(s) and pB(s) are probabilities of certain branching process
growing to infinity

• The fixed-point equations have at most two solutions, one of which
is zero
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Warmup: (un-planted) spanning tree problem

• A complete graph on n vertices

• Weights are i.i.d. Qn with nQ ′
n(0) → 1

• What is the mean weight of the
minimum spanning tree,
w(Tmin) ≜ 1

n−1

∑
e∈Tmin

We?

[Frieze ’85, Aldous-Steele ’04, Addario-Berry’15]

E[w(Tmin)] → ζ(3) ≜
∞∑
i=1

i−3 ≈ 1.202

Proved in several distinct and elegant ways
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Poisson-weighted infinite tree approximation

Treat edge weight as distance and model “local” neighborhood as a tree
[Aldous’00, Aldous-Steele ’04]

Sort iid Qn edge weights W∅,1,W∅,2, . . . from smallest to largest:
n→∞−→ arrival times ξ1, ξ2, . . . of a Poisson process with rate 1

Removing all edges with weights s or greater, we get Galton-Watson tree
with Pois(s) offspring distribution, denoted by PGW(s)
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From the perspective of an edge

Pick an edge and model its local neighborhood as a two-sided infinite tree
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From the perspective of an edge, cont’d

• Suppose e has weight s

• e in MST iff removing all
edges with weight s or
greater, no path exists
between its two endpoints
⇔ at least one side is finite

• After removing all edges
with weight s or greater,
two sides are independent
PGW(s)

Let p(s) = P [PGW(s) is infinite]. Then 1− p(s) = exp(−sp(s)) and

P [e ∈ Tmin] = 1− p2(s)

⇒ E[w(Tmin)] →
1

2

∫ ∞

0
s(1− p2(s))ds = ζ(3)
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Back to planted spanning tree

Question: How does the planted uniform spanning tree look like locally?

Answer: Skeleton tree [Grimmett ’80, Aldous ’91, Aldous-Steele ’04]

• Start with the infinite path
from the root to infinity

• To each vertex in the
infinite path, attach an
independent PGW(1)

Jiaming Xu (Duke) The Planted Spanning Tree Problem 11



Back to planted spanning tree

Question: How does the planted uniform spanning tree look like locally?
Answer: Skeleton tree [Grimmett ’80, Aldous ’91, Aldous-Steele ’04]

• Start with the infinite path
from the root to infinity

• To each vertex in the
infinite path, attach an
independent PGW(1)

Jiaming Xu (Duke) The Planted Spanning Tree Problem 11



Back to planted spanning tree

Question: How does the planted uniform spanning tree look like locally?
Answer: Skeleton tree [Grimmett ’80, Aldous ’91, Aldous-Steele ’04]

• Start with the infinite path
from the root to infinity

• To each vertex in the
infinite path, attach an
independent PGW(1)

Jiaming Xu (Duke) The Planted Spanning Tree Problem 11



Back to planted spanning tree

Question: How does the planted uniform spanning tree look like locally?
Answer: Skeleton tree [Grimmett ’80, Aldous ’91, Aldous-Steele ’04]

• Start with the infinite path
from the root to infinity

• To each vertex in the
infinite path, attach an
independent PGW(1)

Jiaming Xu (Duke) The Planted Spanning Tree Problem 11



Back to planted spanning tree

Question: How does the planted uniform spanning tree look like locally?
Answer: Skeleton tree [Grimmett ’80, Aldous ’91, Aldous-Steele ’04]

• Start with the infinite path
from the root to infinity

• To each vertex in the
infinite path, attach an
independent PGW(1)

Jiaming Xu (Duke) The Planted Spanning Tree Problem 11



Putting together: Planted Poisson-weighted infinite tree

The local view of graph G with planted uniform spanning tree

• The planted (red) edges form skeleton trees

• The unplanted (blue) edges form Poisson-weighted infinite trees
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From the perspective of an edge, redux

Pick an edge and model its local neighborhood as a two-sided infinite tree
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From the perspective of an edge, redux

• Suppose e has weight s

• e in MST iff removing all edges
with weight s or greater, at
least one side is finite.

• pU(s) ≜ P [T−ϕ(s) is infinite]
pB(s) ≜ P [T+ϕ(s) is infinite]
P [e ∈ Tmin] = 1− pU(s)pB(s)

1− pU(s) =

T−i ’s are finite︷ ︸︸ ︷
exp(−spU(s))×

T−k̃ ’s are finite︷ ︸︸ ︷
exp(−pB(s))×

T−0̃ is finite︷ ︸︸ ︷
(1− F (s)pU(s))

1− pB(s) = exp(−spU(s))× exp(−pB(s))

⇒ 1

n − 1
E[|Tmin ∩ T ∗|] →

∫ ∞

0
(1− pU(s)pB(s)) dF (s)
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Proving it: Local weak convergence (Aldous-Steele ’04)

• Planted graph Gn converges to planted Poisson-weighted infinite
trees T∞
▶ Local treelikeness of light edges
▶ Uniform spanning tree converges to skeleton trees [Grimmett ’80]

• MST of Gn converges to minimum spanning forest of T∞ [Aldous ’91]
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Conclusion

• Exactly characterize overlap between MST and the planted one
• Establish local weak convergence of the planted model

Extensions

• Characterize the overlap of MST for planted Hamiltonian path/cycle
model [Bagaria-Ding-Tse-Wu-X. ’20]

• Determine the weight of MST under the planted model, extending
Frieze’s ζ(3) result

• Design an efficient test for planted vs. unplanted models

Open problems

1 Determine the information-theoretically optimal overlap

2 Other planted structures, such as spanning k-regular
graphs [Sicuro-Zdeborová ’21, Gaudio-Sandon-X.-Yang ’25]

Reference
M. Moharrami, C. Moore, & J. X., The planted spanning tree problem.
arXiv: 2502.08790. Conference on Learning Theory 2025
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