
All-Something-Nothing Phase Transitions
in Planted Subgraph Recovery

Jiaming Xu

The Fuqua School of Business
Duke University

Joint work with
Julia Gaudio (Northwestern), Colin Sandon (EPFL), Dana Yang (Cornell)

October 16, 2023

INFORMS Annual Meeting

The Planted subgraph recovery problem

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

••

••

••••

••

••

••

••••

••

••

••
••

••
•• ••

••

••

••

••

••
••••

••

••

••

••

••

••

••
••

•• ••
••

••
••
••

••

••

••

••

••

••

••

••

••

••

••
••

••

••

••

••

••

••

••

••

••

••
••

•• ••

••

••

••••

••

••

••

••

••

••

••
••

••

••

••
•• ••

• A hidden subgraph H∗

• A background graph
G0 ∼ G(n, p)

• Observe union graph
G = H∗ ∪ G0

• Goal: recover H∗ from G

The Planted subgraph recovery problem

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• A hidden subgraph H∗

• A background graph
G0 ∼ G(n, p)

• Observe union graph
G = H∗ ∪ G0

• Goal: recover H∗ from G

The Planted subgraph recovery problem

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• A hidden subgraph H∗

• A background graph
G0 ∼ G(n, p)

• Observe union graph
G = H∗ ∪ G0

• Goal: recover H∗ from G

The Planted subgraph recovery problem

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• A hidden subgraph H∗

• A background graph
G0 ∼ G(n, p)

• Observe union graph
G = H∗ ∪ G0

• Goal: recover H∗ from G

Encompasses many planted problems...

• Planted clique model

• Planted tree model [Massoulié-Stephan-Towsley ’18]

• Planted Hamiltonian cycle (TSP) model
[Bagaria-Ding-Tse-Wu-X.’18]

• Planted k-NN graph model [Ding-Wu-X.-Yang ’19]

• Planted matching [Chertkov-Kroc-Krzakala-Vergassola-Zdeborová ’10]

• ...

Fruitful venue for studying statistical and computational aspects of
network inference

Encompasses many planted problems...

• Planted clique model

• Planted tree model [Massoulié-Stephan-Towsley ’18]

• Planted Hamiltonian cycle (TSP) model
[Bagaria-Ding-Tse-Wu-X.’18]

• Planted k-NN graph model [Ding-Wu-X.-Yang ’19]

• Planted matching [Chertkov-Kroc-Krzakala-Vergassola-Zdeborová ’10]

• ...

Fruitful venue for studying statistical and computational aspects of
network inference

Peculiar “All-or-Nothing” phase transitions

For both planted k-clique and k-tree model:

1

limn→∞ overlap(Ĥ,H∗)

0
k

k∗

Partial recovery

impossible

“Nothing”

Almost exact recovery

possible

“All”

overlap(H,H∗) ≜
|H ∩ H∗|
|H∗|

k∗ =

{
2 log2(n) planted clique in G0 ∼ G(n, 1/2)
log1/λ(n) planted tree in G0 ∼ G(n, λ/n)

coincides with the first-moment threshold k1M in G0,

at which the expected # of copies in G0 equals 1

Peculiar “All-or-Nothing” phase transitions

For both planted k-clique and k-tree model:

1

limn→∞ overlap(Ĥ,H∗)

0
k

k∗

Partial recovery

impossible

“Nothing”

Almost exact recovery

possible

“All”

overlap(H,H∗) ≜
|H ∩ H∗|
|H∗|

k∗ =

{
2 log2(n) planted clique in G0 ∼ G(n, 1/2)
log1/λ(n) planted tree in G0 ∼ G(n, λ/n)

coincides with the first-moment threshold k1M in G0,

at which the expected # of copies in G0 equals 1

“All-or-Nothing” phase transitions are prevalent

Theorem (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

The planted subgraph recovery model exhibits AoN at p1M , if

• H is sufficiently dense and balanced:

e(H) ≫ v(H) log v(H) and
e(H)

v(H)
≥ e(J)

v(J)
, ∀J ⊂ H

• H is sufficiently small and strictly balanced for c > 0:

e(H) + v(H) ≤ c log n

3 log log n
and

e(H)− c

v(H)
≥ e(J)− c

v(J)
,∀J ⊂ H

AoN was also established for many other models: sparse linear
regression, sparse tensor PCA, group testing, graph alignment, ...

“All-or-Nothing” phase transitions are prevalent

Theorem (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

The planted subgraph recovery model exhibits AoN at p1M , if

• H is sufficiently dense and balanced:

e(H) ≫ v(H) log v(H) and
e(H)

v(H)
≥ e(J)

v(J)
, ∀J ⊂ H

• H is sufficiently small and strictly balanced for c > 0:

e(H) + v(H) ≤ c log n

3 log log n
and

e(H)− c

v(H)
≥ e(J)− c

v(J)
, ∀J ⊂ H

AoN was also established for many other models: sparse linear
regression, sparse tensor PCA, group testing, graph alignment, ...

“All-or-Nothing” phase transitions are prevalent

Theorem (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

The planted subgraph recovery model exhibits AoN at p1M , if

• H is sufficiently dense and balanced:

e(H) ≫ v(H) log v(H) and
e(H)

v(H)
≥ e(J)

v(J)
, ∀J ⊂ H

• H is sufficiently small and strictly balanced for c > 0:

e(H) + v(H) ≤ c log n

3 log log n
and

e(H)− c

v(H)
≥ e(J)− c

v(J)
, ∀J ⊂ H

AoN was also established for many other models: sparse linear
regression, sparse tensor PCA, group testing, graph alignment, ...

Focus of this talk

Question

Is AoN universal in planted subgraph recovery?

Consider large, sparse, and balanced graphs

Focus of this talk

Question

Is AoN universal in planted subgraph recovery?

Consider large, sparse, and balanced graphs

Planted factor model [Sicuro-Zdeborová ’20]

H is uniformly chosen from all labeled k-factors (spanning
k-regular graphs) for a fixed constant k :

• k = 1: perfect matching
• k = 2: disjoint union of cycles (including Hamiltonian cycles)

Planted matching model with n = 1000 and λ = 1.5

Planted factor model [Sicuro-Zdeborová ’20]

H is uniformly chosen from all labeled k-factors (spanning
k-regular graphs) for a fixed constant k :

• k = 1: perfect matching
• k = 2: disjoint union of cycles (including Hamiltonian cycles)

Planted matching model with n = 1000 and λ = 1.5

Planted matching model with n = 1000 and λ = 1.5

Planted factor model [Sicuro-Zdeborová ’20]

H is uniformly chosen from all labeled k-factors (spanning
k-regular graphs) for a fixed constant k :

• k = 1: perfect matching
• k = 2: disjoint union of cycles (including Hamiltonian cycles)

Planted matching model with n = 1000 and λ = 1.5

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G :

µG (H) =
1

|H(G)|
1{H∈H(G)},

where H(G) is the set of k-factors in G .

• Recall λ is the average degree in the background graph G0

• When λ = 0, µG is a delta mass on H∗

• As λ increases, we expect to observe more k-factors in G

• But, how µG exactly behaves?

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G :

µG (H) =
1

|H(G)|
1{H∈H(G)},

where H(G) is the set of k-factors in G .

• Recall λ is the average degree in the background graph G0

• When λ = 0, µG is a delta mass on H∗

• As λ increases, we expect to observe more k-factors in G

• But, how µG exactly behaves?

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G :

µG (H) =
1

|H(G)|
1{H∈H(G)},

where H(G) is the set of k-factors in G .

• Recall λ is the average degree in the background graph G0

• When λ = 0, µG is a delta mass on H∗

• As λ increases, we expect to observe more k-factors in G

• But, how µG exactly behaves?

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G :

µG (H) =
1

|H(G)|
1{H∈H(G)},

where H(G) is the set of k-factors in G .

• Recall λ is the average degree in the background graph G0

• When λ = 0, µG is a delta mass on H∗

• As λ increases, we expect to observe more k-factors in G

• But, how µG exactly behaves?

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G :

µG (H) =
1

|H(G)|
1{H∈H(G)},

where H(G) is the set of k-factors in G .

• Recall λ is the average degree in the background graph G0

• When λ = 0, µG is a delta mass on H∗

• As λ increases, we expect to observe more k-factors in G

• But, how µG exactly behaves?

Our result [Gaudio-Sandon-X.-Yang ’23]

λ
o(1)Exact

H∗

1/kAlmost exact

All

H∗

ω(1)

Something

H∗

Nothing

H∗

λ1M λc

1 H∗ is the unique k-factor in G

2 overlap(H,H∗) → 1 for all H ∈ H(G)

3 overlap(H,H∗) ∈ [Ω(1), 1− Ω(1)] for almost all H ∈ H(G)

4 overlap(H,H∗) → 0 for almost all H ∈ H(G)

λ1M = e(k!)2/k/k and λc = log n + (k − 1) log log n + ω(1)

Our result [Gaudio-Sandon-X.-Yang ’23]

λ
o(1)Exact

H∗

1/kAlmost exact

All

H∗

ω(1)

Something

H∗

Nothing

H∗

λ1M λc

1 H∗ is the unique k-factor in G

2 overlap(H,H∗) → 1 for all H ∈ H(G)

3 overlap(H,H∗) ∈ [Ω(1), 1− Ω(1)] for almost all H ∈ H(G)

4 overlap(H,H∗) → 0 for almost all H ∈ H(G)

λ1M = e(k!)2/k/k and λc = log n + (k − 1) log log n + ω(1)

Our result [Gaudio-Sandon-X.-Yang ’23]

λ
o(1)Exact

H∗

1/kAlmost exact

All

H∗

ω(1)

Something

H∗

Nothing

H∗

λ1M λc

1 H∗ is the unique k-factor in G

2 overlap(H,H∗) → 1 for all H ∈ H(G)

3 overlap(H,H∗) ∈ [Ω(1), 1− Ω(1)] for almost all H ∈ H(G)

λ = 1/k is sharp threshold for almost exact recovery: resolves
conjecture in [Sicuro-Zdeborová ’20]

4 overlap(H,H∗) → 0 for almost all H ∈ H(G)

λ1M = e(k!)2/k/k and λc = log n + (k − 1) log log n + ω(1)

Our result [Gaudio-Sandon-X.-Yang ’23]

λ
o(1)Exact

H∗

1/kAlmost exact

All

H∗

ω(1)

Something

H∗

Nothing

H∗

λ1M λc

1 H∗ is the unique k-factor in G

2 overlap(H,H∗) → 1 for all H ∈ H(G)

3 overlap(H,H∗) ∈ [Ω(1), 1− Ω(1)] for almost all H ∈ H(G)

4 overlap(H,H∗) → 0 for almost all H ∈ H(G)

λ1M = e(k!)2/k/k and λc = log n + (k − 1) log log n + ω(1)

Our result [Gaudio-Sandon-X.-Yang ’23]

λ
o(1)Exact

H∗

1/kAlmost exact

All

H∗

ω(1)

Something

H∗

Nothing

H∗

λ1M λc

1 H∗ is the unique k-factor in G

2 overlap(H,H∗) → 1 for all H ∈ H(G)

3 overlap(H,H∗) ∈ [Ω(1), 1− Ω(1)] for almost all H ∈ H(G)

4 overlap(H,H∗) → 0 for almost all H ∈ H(G)

λ1M = e(k!)2/k/k and λc = log n + (k − 1) log log n + ω(1)

Proof sketch

• All phase:
▶ λ = o(1): overlap(H,H∗) = 1
▶ λ ≤ 1/k: overlap(H,H∗) → 1

• Something phase: 1/k < λ ≤ O(1):
▶ overlap(H,H∗) ≤ 1− Ω(1)
▶ overlap(H,H∗) ≥ Ω(1)

• Nothing phase: λ = ω(1):
▶ overlap(H,H∗) → 0

Proof sketch

• All phase:
▶ λ = o(1): overlap(H,H∗) = 1 (first-moment method)
▶ λ ≤ 1/k: overlap(H,H∗) → 1 (first-moment method)

• Something phase: 1/k < λ ≤ O(1):
▶ overlap(H,H∗) ≤ 1− Ω(1)
▶ overlap(H,H∗) ≥ Ω(1)

• Nothing phase: λ = ω(1):
▶ overlap(H,H∗) → 0

Proof sketch

• All phase:
▶ λ = o(1): overlap(H,H∗) = 1 (first-moment method)
▶ λ ≤ 1/k: overlap(H,H∗) → 1 (first-moment method)

• Something phase: 1/k < λ ≤ O(1):
▶ overlap(H,H∗) ≤ 1− Ω(1)
▶ overlap(H,H∗) ≥ Ω(1) (∃Θ(n) isolated nodes in G0)

• Nothing phase: λ = ω(1):
▶ overlap(H,H∗) → 0

Proof sketch

• All phase:
▶ λ = o(1): overlap(H,H∗) = 1 (first-moment method)
▶ λ ≤ 1/k: overlap(H,H∗) → 1 (first-moment method)

• Something phase: 1/k < λ ≤ O(1):
▶ overlap(H,H∗) ≤ 1− Ω(1) −→ Focus
▶ overlap(H,H∗) ≥ Ω(1) (∃Θ(n) isolated nodes in G0)

• Nothing phase: λ = ω(1):
▶ overlap(H,H∗) → 0 −→ Focus

Analyzing posterior distribution

Recall: posterior distribution is uniform over k-factors in G :

µG (H) =
1

|H(G)|
1{H∈H(G)},

where H(G) is the set of k-factors in G

H∗t

• Upper bound number of k-factors
in G near H∗

• Lower bound number of k-factors
in G far away from H∗

• |Hnear(G)| ≪ |Hfar(G)| ⇒
overlap(H,H∗) ≤ 1− t
▶ Something phase: t = Ω(1)
▶ Nothing phase: t = 1− o(1)

Analyzing posterior distribution

Recall: posterior distribution is uniform over k-factors in G :

µG (H) =
1

|H(G)|
1{H∈H(G)},

where H(G) is the set of k-factors in G

H∗t

• Upper bound number of k-factors
in G near H∗

• Lower bound number of k-factors
in G far away from H∗

• |Hnear(G)| ≪ |Hfar(G)| ⇒
overlap(H,H∗) ≤ 1− t
▶ Something phase: t = Ω(1)
▶ Nothing phase: t = 1− o(1)

Analyzing posterior distribution

Recall: posterior distribution is uniform over k-factors in G :

µG (H) =
1

|H(G)|
1{H∈H(G)},

where H(G) is the set of k-factors in G

H∗t

• Upper bound number of k-factors
in G near H∗

• Lower bound number of k-factors
in G far away from H∗

• |Hnear(G)| ≪ |Hfar(G)| ⇒
overlap(H,H∗) ≤ 1− t
▶ Something phase: t = Ω(1)
▶ Nothing phase: t = 1− o(1)

Analyzing posterior distribution

Recall: posterior distribution is uniform over k-factors in G :

µG (H) =
1

|H(G)|
1{H∈H(G)},

where H(G) is the set of k-factors in G

H∗t

• Upper bound number of k-factors
in G near H∗

• Lower bound number of k-factors
in G far away from H∗

• |Hnear(G)| ≪ |Hfar(G)| ⇒
overlap(H,H∗) ≤ 1− t
▶ Something phase: t = Ω(1)
▶ Nothing phase: t = 1− o(1)

Conclusion

λ
o(1)Exact

H∗

1/kAlmost exact

All

H∗

ω(1)

Something

H∗

Nothing

H∗

λ1M λc

Open problems:

1 Characterize the overlap as a function of λ in something phase

2 Planted k-factor model for growing k ≡ k(n)

3 What causes “something” phase to emerge/disappear?
▶ For dense or small subgraphs, we observe AoN
▶ For sparse, large subgraphs, we observe ASN

Conclusion

λ
o(1)Exact

H∗

1/kAlmost exact

All

H∗

ω(1)

Something

H∗

Nothing

H∗

λ1M λc

Open problems:

1 Characterize the overlap as a function of λ in something phase

2 Planted k-factor model for growing k ≡ k(n)

3 What causes “something” phase to emerge/disappear?
▶ For dense or small subgraphs, we observe AoN
▶ For sparse, large subgraphs, we observe ASN

Backup Slides

Upper bound: Enumerating k-factors near H∗

For k-factor H, H△H∗ = disjoint union of alternating Eulerian
circuits

As a consequence,

|{k-factor H : |H∆H∗| = 2t}| ≤
(
kn/2

t

)
(2t − 1)!! ≤ (kn)t

⇒ E[|{k-factor H : |H∆H∗| = 2t,H ⊂ G}|] ≤ (kn)t
(
λ

n

)t

= (kλ)t

Upper bound: Enumerating k-factors near H∗

For k-factor H, H△H∗ = disjoint union of alternating Eulerian
circuits

As a consequence,

|{k-factor H : |H∆H∗| = 2t}| ≤
(
kn/2

t

)
(2t − 1)!! ≤ (kn)t

⇒ E[|{k-factor H : |H∆H∗| = 2t,H ⊂ G}|] ≤ (kn)t
(
λ

n

)t

= (kλ)t

A generic, non-constructive lower bound

• Let P and Q denote the distribution of the planted k-factor
model and G(n, λ/n), respectively

• Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

For any ϵ > 0,

P {|H(G)| ≥ ϵEQ|H(G)|} ≥ 1− ϵ

Proof: P(G)/Q(G) = |H(G)|/EQ|H(G)| and change of measure

• When λk = ω(1), EQ|H(G)| ≫ |Hnear (G)| and suffices for
proving overlap(H,H∗) → 0 in “Nothing” phase

• When λk = O(1), EQ|H(G)| ≪ |Hnear (G)| and falls short for
proving overlap(H,H∗) ≤ 1− Ω(1) in “Something” phase

−→ need a tighter lower bound

A generic, non-constructive lower bound

• Let P and Q denote the distribution of the planted k-factor
model and G(n, λ/n), respectively

• Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

For any ϵ > 0,

P {|H(G)| ≥ ϵEQ|H(G)|} ≥ 1− ϵ

Proof: P(G)/Q(G) = |H(G)|/EQ|H(G)| and change of measure

• When λk = ω(1), EQ|H(G)| ≫ |Hnear (G)| and suffices for
proving overlap(H,H∗) → 0 in “Nothing” phase

• When λk = O(1), EQ|H(G)| ≪ |Hnear (G)| and falls short for
proving overlap(H,H∗) ≤ 1− Ω(1) in “Something” phase

−→ need a tighter lower bound

A generic, non-constructive lower bound

• Let P and Q denote the distribution of the planted k-factor
model and G(n, λ/n), respectively

• Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

For any ϵ > 0,

P {|H(G)| ≥ ϵEQ|H(G)|} ≥ 1− ϵ

Proof: P(G)/Q(G) = |H(G)|/EQ|H(G)| and change of measure

• When λk = ω(1), EQ|H(G)| ≫ |Hnear (G)| and suffices for
proving overlap(H,H∗) → 0 in “Nothing” phase

• When λk = O(1), EQ|H(G)| ≪ |Hnear (G)| and falls short for
proving overlap(H,H∗) ≤ 1− Ω(1) in “Something” phase

−→ need a tighter lower bound

A generic, non-constructive lower bound

• Let P and Q denote the distribution of the planted k-factor
model and G(n, λ/n), respectively

• Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

For any ϵ > 0,

P {|H(G)| ≥ ϵEQ|H(G)|} ≥ 1− ϵ

Proof: P(G)/Q(G) = |H(G)|/EQ|H(G)| and change of measure

• When λk = ω(1), EQ|H(G)| ≫ |Hnear (G)| and suffices for
proving overlap(H,H∗) → 0 in “Nothing” phase

• When λk = O(1), EQ|H(G)| ≪ |Hnear (G)| and falls short for
proving overlap(H,H∗) ≤ 1− Ω(1) in “Something” phase

−→ need a tighter lower bound

A generic, non-constructive lower bound

• Let P and Q denote the distribution of the planted k-factor
model and G(n, λ/n), respectively

• Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

For any ϵ > 0,

P {|H(G)| ≥ ϵEQ|H(G)|} ≥ 1− ϵ

Proof: P(G)/Q(G) = |H(G)|/EQ|H(G)| and change of measure

• When λk = ω(1), EQ|H(G)| ≫ |Hnear (G)| and suffices for
proving overlap(H,H∗) → 0 in “Nothing” phase

• When λk = O(1), EQ|H(G)| ≪ |Hnear (G)| and falls short for
proving overlap(H,H∗) ≤ 1− Ω(1) in “Something” phase
−→ need a tighter lower bound

Constructing k-factors far away from H∗

Goal: Find exponentially many long alternating Eulerian circuits
(AEC) in G

• long AEC are rare;

but there are many possibilities to consider

• Natural second-moment argument doesn’t work due to
excessive correlation between long AEC.

Key idea: Sprinkling

1 Reserve a small fraction of vertices

2 Greedily construct many disjoint short alternating paths using
non-reserved vertices

3 Connect the paths into long alternating cycles via reserved
vertices

Inspired by [Aldous ’98, Ding ’13, Ding-Wu-X.-Yang ’21]

Constructing k-factors far away from H∗

Goal: Find exponentially many long alternating Eulerian circuits
(AEC) in G

• long AEC are rare; but there are many possibilities to consider

• Natural second-moment argument doesn’t work due to
excessive correlation between long AEC.

Key idea: Sprinkling

1 Reserve a small fraction of vertices

2 Greedily construct many disjoint short alternating paths using
non-reserved vertices

3 Connect the paths into long alternating cycles via reserved
vertices

Inspired by [Aldous ’98, Ding ’13, Ding-Wu-X.-Yang ’21]

Constructing k-factors far away from H∗

Goal: Find exponentially many long alternating Eulerian circuits
(AEC) in G

• long AEC are rare; but there are many possibilities to consider

• Natural second-moment argument doesn’t work due to
excessive correlation between long AEC.

Key idea: Sprinkling

1 Reserve a small fraction of vertices

2 Greedily construct many disjoint short alternating paths using
non-reserved vertices

3 Connect the paths into long alternating cycles via reserved
vertices

Inspired by [Aldous ’98, Ding ’13, Ding-Wu-X.-Yang ’21]

Constructing k-factors far away from H∗

Goal: Find exponentially many long alternating Eulerian circuits
(AEC) in G

• long AEC are rare; but there are many possibilities to consider

• Natural second-moment argument doesn’t work due to
excessive correlation between long AEC.

Key idea: Sprinkling

1 Reserve a small fraction of vertices

2 Greedily construct many disjoint short alternating paths using
non-reserved vertices

3 Connect the paths into long alternating cycles via reserved
vertices

Inspired by [Aldous ’98, Ding ’13, Ding-Wu-X.-Yang ’21]

Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V of γn planted edges for some small γ > 0.

1 Stage 1 (path construction): Find Θ(n) disjoint short
(constant length) alternating paths, using vertices in V c .

2 Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V .

Caution: need to ensure alternating colors in sprinkling

Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V of γn planted edges for some small γ > 0.

1 Stage 1 (path construction): Find Θ(n) disjoint short
(constant length) alternating paths, using vertices in V c .

2 Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V .

Caution: need to ensure alternating colors in sprinkling

Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V of γn planted edges for some small γ > 0.

1 Stage 1 (path construction): Find Θ(n) disjoint short
(constant length) alternating paths, using vertices in V c .

2 Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V .

Caution: need to ensure alternating colors in sprinkling

Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V of γn planted edges for some small γ > 0.

1 Stage 1 (path construction): Find Θ(n) disjoint short
(constant length) alternating paths, using vertices in V c .

2 Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V .

Caution: need to ensure alternating colors in sprinkling

Path construction via neighborhood exploration process

Pick a planted edge (ui , vi), grow a left tree starting from ui ,
remove the inspected vertices, and then grow the right tree from vi

ui vi

Li Ri

An illustration for k = 1. For k > 1, need to branch out all k red edges

When λk > 1, the branching processes survive with constant
probability. Thus the BFS returns K = Ω(n) two-sided trees with
many leaf nodes.

Path construction via neighborhood exploration process

Pick a planted edge (ui , vi), grow a left tree starting from ui ,
remove the inspected vertices, and then grow the right tree from vi

ui vi

Li Ri

An illustration for k = 1. For k > 1, need to branch out all k red edges

When λk > 1, the branching processes survive with constant
probability. Thus the BFS returns K = Ω(n) two-sided trees with
many leaf nodes.

