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The Planted subgraph recovery problem
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• A hidden subgraph H∗

• A background graph
G0 ∼ G(n, p)

• Observe union graph
G = H∗ ∪ G0

• Goal: recover H∗ from G
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Encompasses many planted problems...

• Planted clique model

• Planted tree model [Massoulié-Stephan-Towsley ’18]

• Planted Hamiltonian cycle (TSP) model
[Bagaria-Ding-Tse-Wu-X.’18]

• Planted k-NN graph model [Ding-Wu-X.-Yang ’19]

• Planted matching [Chertkov-Kroc-Krzakala-Vergassola-Zdeborová ’10]

• ...

Fruitful venue for studying statistical and computational aspects of
network inference
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Peculiar “All-or-Nothing” phase transitions

For both planted k-clique and k-tree model:

1

limn→∞ overlap(Ĥ,H∗)

0
k

k∗

Partial recovery

impossible

“Nothing”

Almost exact recovery

possible

“All”

overlap(H,H∗) ≜
|H ∩ H∗|
|H∗|

k∗ =

{
2 log2(n) planted clique in G0 ∼ G(n, 1/2)
log1/λ(n) planted tree in G0 ∼ G(n, λ/n)

coincides with the first-moment threshold k1M in G0,

at which the expected # of copies in G0 equals 1
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“All-or-Nothing” phase transitions are prevalent

Theorem (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

The planted subgraph recovery model exhibits AoN at p1M , if

• H is sufficiently dense and balanced:

e(H) ≫ v(H) log v(H) and
e(H)

v(H)
≥ e(J)

v(J)
, ∀J ⊂ H

• H is sufficiently small and strictly balanced for c > 0:

e(H) + v(H) ≤ c log n

3 log log n
and

e(H)− c

v(H)
≥ e(J)− c

v(J)
,∀J ⊂ H

AoN was also established for many other models: sparse linear
regression, sparse tensor PCA, group testing, graph alignment, ...
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Focus of this talk

Question

Is AoN universal in planted subgraph recovery?

Consider large, sparse, and balanced graphs
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Planted factor model [Sicuro-Zdeborová ’20]

H is uniformly chosen from all labeled k-factors (spanning
k-regular graphs) for a fixed constant k :

• k = 1: perfect matching
• k = 2: disjoint union of cycles (including Hamiltonian cycles)

Planted matching model with n = 1000 and λ = 1.5
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Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G :

µG (H) =
1

|H(G )|
1{H∈H(G)},

where H(G ) is the set of k-factors in G .

• Recall λ is the average degree in the background graph G0

• When λ = 0, µG is a delta mass on H∗

• As λ increases, we expect to observe more k-factors in G

• But, how µG exactly behaves?
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Our result [Gaudio-Sandon-X.-Yang ’23]

λ
o(1)Exact

H∗

1/kAlmost exact

All

H∗

ω(1)

Something

H∗

Nothing

H∗

λ1M λc

1 H∗ is the unique k-factor in G

2 overlap(H,H∗) → 1 for all H ∈ H(G )

3 overlap(H,H∗) ∈ [Ω(1), 1− Ω(1)] for almost all H ∈ H(G )

4 overlap(H,H∗) → 0 for almost all H ∈ H(G )

λ1M = e(k!)2/k/k and λc = log n + (k − 1) log log n + ω(1)
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Proof sketch

• All phase:
▶ λ = o(1): overlap(H,H∗) = 1
▶ λ ≤ 1/k: overlap(H,H∗) → 1

• Something phase: 1/k < λ ≤ O(1):
▶ overlap(H,H∗) ≤ 1− Ω(1)
▶ overlap(H,H∗) ≥ Ω(1)

• Nothing phase: λ = ω(1):
▶ overlap(H,H∗) → 0
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Analyzing posterior distribution

Recall: posterior distribution is uniform over k-factors in G :

µG (H) =
1

|H(G )|
1{H∈H(G)},

where H(G ) is the set of k-factors in G

H∗t

• Upper bound number of k-factors
in G near H∗

• Lower bound number of k-factors
in G far away from H∗

• |Hnear(G )| ≪ |Hfar(G )| ⇒
overlap(H,H∗) ≤ 1− t
▶ Something phase: t = Ω(1)
▶ Nothing phase: t = 1− o(1)
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λ
o(1)Exact

H∗

1/kAlmost exact

All

H∗

ω(1)

Something

H∗

Nothing

H∗

λ1M λc

Open problems:

1 Characterize the overlap as a function of λ in something phase

2 Planted k-factor model for growing k ≡ k(n)

3 What causes “something” phase to emerge/disappear?
▶ For dense or small subgraphs, we observe AoN
▶ For sparse, large subgraphs, we observe ASN
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Upper bound: Enumerating k-factors near H∗

For k-factor H, H△H∗ = disjoint union of alternating Eulerian
circuits

As a consequence,

|{k-factor H : |H∆H∗| = 2t}| ≤
(
kn/2

t

)
(2t − 1)!! ≤ (kn)t

⇒ E[|{k-factor H : |H∆H∗| = 2t,H ⊂ G}|] ≤ (kn)t
(
λ

n

)t

= (kλ)t



Upper bound: Enumerating k-factors near H∗

For k-factor H, H△H∗ = disjoint union of alternating Eulerian
circuits

As a consequence,

|{k-factor H : |H∆H∗| = 2t}| ≤
(
kn/2

t

)
(2t − 1)!! ≤ (kn)t

⇒ E[|{k-factor H : |H∆H∗| = 2t,H ⊂ G}|] ≤ (kn)t
(
λ

n

)t

= (kλ)t



A generic, non-constructive lower bound

• Let P and Q denote the distribution of the planted k-factor
model and G(n, λ/n), respectively

• Recall H(G ) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik ’23)

For any ϵ > 0,

P {|H(G )| ≥ ϵEQ|H(G )|} ≥ 1− ϵ

Proof: P(G )/Q(G ) = |H(G )|/EQ|H(G )| and change of measure

• When λk = ω(1), EQ|H(G )| ≫ |Hnear (G )| and suffices for
proving overlap(H,H∗) → 0 in “Nothing” phase

• When λk = O(1), EQ|H(G )| ≪ |Hnear (G )| and falls short for
proving overlap(H,H∗) ≤ 1− Ω(1) in “Something” phase

−→ need a tighter lower bound
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Constructing k-factors far away from H∗

Goal: Find exponentially many long alternating Eulerian circuits
(AEC) in G

• long AEC are rare;

but there are many possibilities to consider

• Natural second-moment argument doesn’t work due to
excessive correlation between long AEC.

Key idea: Sprinkling

1 Reserve a small fraction of vertices

2 Greedily construct many disjoint short alternating paths using
non-reserved vertices

3 Connect the paths into long alternating cycles via reserved
vertices

Inspired by [Aldous ’98, Ding ’13, Ding-Wu-X.-Yang ’21]
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Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V of γn planted edges for some small γ > 0.

1 Stage 1 (path construction): Find Θ(n) disjoint short
(constant length) alternating paths, using vertices in V c .

2 Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V .

Caution: need to ensure alternating colors in sprinkling
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Path construction via neighborhood exploration process

Pick a planted edge (ui , vi ), grow a left tree starting from ui ,
remove the inspected vertices, and then grow the right tree from vi

ui vi

Li Ri

An illustration for k = 1. For k > 1, need to branch out all k red edges

When λk > 1, the branching processes survive with constant
probability. Thus the BFS returns K = Ω(n) two-sided trees with
many leaf nodes.
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