All-Something-Nothing Phase Transitions

in Planted Subgraph Recovery

Jiaming Xu

The Fuqua School of Business
Duke University

Joint work with
Julia Gaudio (Northwestern), Colin Sandon (EPFL), Dana Yang (Cornell)

October 16, 2023
INFORMS Annual Meeting

T
=
a
[
A
a0
o)
3
n
c
9]
o
©
=
<C
°

=
Q2
0
(©)
el
o
>
o
(D]
>
(©)
O
(]
—
=
o
[0}
—
Y0}
0
=
0
o)
[}
-
c
b
(a1
(D)
=
_I

)

p

(

~G

Go

T
=
a
[
A
a0
o)
3
n
c
9]
o
©
=
<
°

® A background graph
n?

A vV\\\ W
AN \\.l,
/4\\»\'/

=

)

S
Q2
0

(@]

=

o

>

(-

(D]

>

(@)

O

(]

—
4=

o

T

—

a0
0

=}

(7]
e

[}
e

c
o
(o

(D)
J=
_I

)

p
U Go

(

® A background graph
n?
® QObserve union graph

~G
= H*

Go
G

T
=
a
[
A
a0
o)
3
n
c
9]
o
©
=
<
°

A vV\\\ W
AN \\.l,
/4\\»\'/

=

)

S
Q2
0

(@]

=

o

>

(-

(D]

>

(@)

O

(]

—
4=

o

T

—

a0
0

=}

(7]
e

[}
e

c
o
(o

(D)
J=
_I

)

p

U Go
recover H* from G

(

® A background graph
~ g n,

® Observe union graph
= H*

Go
G
® Goal:

T
=
a
4]
A
a0
o)
3
(2]
c
9]
o
©
=
<C
°

WP
A \\v 7R ‘
&m@\\ g
/]
4

\V‘o N

=
Q2
0
(©)
el
o
>
C
(D]
>
(©)
O
(]
—
=
o
[0}
—
Y0}
0
=
0
o)
[}
-
c
Ay
(a1
(D)
=
_I

Encompasses many planted problems...

Planted clique model

Planted tree model [Massouli¢-Stephan-Towsley '18]

Planted Hamiltonian cycle (TSP) model
[Bagaria-Ding-Tse-Wu-X.'18]

Planted k-NN graph model [Ding-Wu-X.-Yang '19]

Planted matching [Chertkov-Kroc-Krzakala-Vergassola-Zdeborova '10]

Encompasses many planted problems...

Planted clique model

Planted tree model [Massouli¢-Stephan-Towsley '18]

Planted Hamiltonian cycle (TSP) model
[Bagaria-Ding-Tse-Wu-X.'18]

Planted k-NN graph model [Ding-Wu-X.-Yang '19]

Planted matching [Chertkov-Kroc-Krzakala-Vergassola-Zdeborova '10]

Fruitful venue for studying statistical and computational aspects of
network inference

Peculiar “All-or-Nothing” phase transitions

For both planted k-clique and k-tree model:

lim,, o0 ovcrlap(ﬁ, H*)a

1
Partial recovery E Almost exact recovery
impossible E possible
“Nothing” : “ALL”
: > J;
0 k*

HnNH*
overlap(H, H*) = ||Ir_}*||

Peculiar “All-or-Nothing” phase transitions

For both planted k-clique and k-tree model:

lim,, o0 ovcrlap(ﬁ, H*)a

1
Partial recovery E Almost exact recovery
impossible E possible
“Nothing” : Al
0 = >k
*
overlap(H, H*) L M
’ |H*|

i 2log,(n) planted clique in Gy ~ G(n,1/2)
logy/5(n) planted tree in Go ~ G(n, A/n)

coincides with the first-moment threshold kip in Go,

at which the expected # of copies in Gy equals 1

“All-or-Nothing” phase transitions are prevalent

Theorem (Mossel-Niles-Weed-Sohn-Sun-Zadik '23)
The planted subgraph recovery model exhibits AoN at pyp, if

® H js sufficiently dense and balanced:

e(H) _ e(J)
e(H) > v(H)logv(H) and ——=% (H) Z0) ,VJCH

“All-or-Nothing” phase transitions are prevalent

Theorem (Mossel-Niles-Weed-Sohn-Sun-Zadik '23)
The planted subgraph recovery model exhibits AoN at pyp, if

® H js sufficiently dense and balanced:

e(H) _ e(J)
e(H) > v(H)logv(H) and ——=% (H) Z0) ,VJCH

e H is sufficiently small and strictly balanced for ¢ > 0:

e(H) + v(H) < clogn e(H)—c>e(J)—c

~ 3loglogn an v(H) — v(J) VI CH

“All-or-Nothing” phase transitions are prevalent

Theorem (Mossel-Niles-Weed-Sohn-Sun-Zadik '23)
The planted subgraph recovery model exhibits AoN at pyp, if

® H js sufficiently dense and balanced:

e(H) _ e(J)
e(H) > v(H)logv(H) and ——=% (H) Z 50y ,VJCH

e H is sufficiently small and strictly balanced for ¢ > 0:

e(H) + v(H) < clogn e(H)—c>e(J)—c

~ 3loglogn an v(H) — v(J) VI CH

AoN was also established for many other models: sparse linear
regression, sparse tensor PCA, group testing, graph alignment, ...

Focus of this talk

Is AoN universal in planted subgraph recovery?

Focus of this talk

Is AoN universal in planted subgraph recovery?

Consider large, sparse, and balanced graphs

Planted factor model [Sicuro-Zdeborova '20]

H is uniformly chosen from all labeled k-factors (spanning
k-regular graphs) for a fixed constant k:

® k = 1: perfect matching

e k = 2: disjoint union of cycles (including Hamiltonian cycles)

Planted factor model [Sicuro-Zdeborova '20]

H is uniformly chosen from all labeled k-factors (spanning
k-regular graphs) for a fixed constant k:

® k = 1: perfect matching

® k = 2: disjoint union of cycles (including Hamiltonian cycles)

Planted matching model with n = 1000 and A = 1.5

Planted factor model [Sicuro-Zdeborova '20]

H is uniformly chosen from all labeled k-factors (spanning
k-regular graphs) for a fixed constant k:

® k = 1: perfect matching

e k = 2: disjoint union of cycles (including Hamiltonian cycles)

Planted matching model with n = 1000 and A = 1.5

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G:

1
pe(H) = ml{HeH(c)},

where #H(G) is the set of k-factors in G.

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G:

1
pe(H) = ml{HeH(c)},

where #H(G) is the set of k-factors in G.

® Recall X is the average degree in the background graph Gg

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G:

1
pe(H) = ml{HeH(c)},

where #H(G) is the set of k-factors in G.

® Recall X is the average degree in the background graph Gg
® When A =0, ug is a delta mass on H*

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G:
G HeH(G)}>

where #H(G) is the set of k-factors in G.
® Recall X is the average degree in the background graph Gg

® When A =0, ug is a delta mass on H*

® As)\ increases, we expect to observe more k-factors in G

Posterior distribution under planted factor model

The posterior distribution is uniform over all labeled k-factors in G:

1
pe(H) = ml{HeH(c)},

where #H(G) is the set of k-factors in G.

® Recall X is the average degree in the background graph Gg
® When A =0, ug is a delta mass on H*
® As)\ increases, we expect to observe more k-factors in G

® But, how ¢ exactly behaves?

Our result [Gaudio-Sandon-X.-Yang '23]

T A
Exact o(1)

@ H* is the unique k-factor in G

Our result [Gaudio-Sandon-X.-Yang '23]

All |
1 i A
Exact o(1) Almost exact 1/k

@ H* is the unique k-factor in G
@® overlap(H, H*) — 1 for all H € H(G)

Our result [Gaudio-Sandon-X.-Yang '23]

All Something E

i
Exact o(1) Almost exact 1/k w(1)

@ H* is the unique k-factor in G
@® overlap(H, H*) — 1 for all H € H(G)
® overlap(H, H*) € [Q(1),1 — Q(1)] for almost all H € H(G)

A = 1/k is sharp threshold for almost exact recovery: resolves
conjecture in [Sicuro-Zdeborova '20]

Our result [Gaudio-Sandon-X.-Yang '23]

All Something ! Nothing

i
Exact o(1) Almost exact 1/k w(1)

OICNCORC

@ H* is the unique k-factor in G

@® overlap(H, H*) — 1 for all H € H(G)

® overlap(H, H*) € [Q(1),1 — Q(1)] for almost all H € H(G)
O® overlap(H, H*) — 0 for almost all H € H(G)

Our result [Gaudio-Sandon-X.-Yang '23]

All Something ! Nothing

|
Exact o(1) Almost exact 1/k Aim w(l) Ac

OICNCORC

@ H* is the unique k-factor in G
@® overlap(H, H*) — 1 for all H € H(G)
® overlap(H, H*) € [Q(1),1 — Q(1)] for almost all H € H(G)
9 overIap(H7 H*) — 0 for almost all H € H(G)
= e(k")?/k/k and \c = log n + (k — 1) loglog n + w(1)

Proof sketch

® All phase:
> X =o(1): overlap(H,H*) =1
> X\ <1/k: overlap(H, H*) — 1
® Something phase: 1/k < A < O(1):
> overlap(H, H*) <1-Q(1)
> overlap(H, H*) > Q(1)
® Nothing phase: A\ = w(1):
> overlap(H, H*) — 0

Proof sketch

® All phase:
» X\ =o(1): overlap(H, H*) = 1 (first-moment method)
>)\ <1/k: overlap(H, H*) — 1 (first-moment method)
® Something phase: 1/k < A < O(1):
> overlap(H, H*) <1-Q(1)
> overlap(H, H*) > Q(1)
® Nothing phase: A\ = w(1):
> overlap(H, H*) — 0

Proof sketch

® All phase:

» X\ =o(1): overlap(H, H*) = 1 (first-moment method)

>)\ <1/k: overlap(H, H*) — 1 (first-moment method)
® Something phase: 1/k < A < O(1):

> overlap(H, H*) <1-Q(1)

» overlap(H, H*) > Q(1) (3©(n) isolated nodes in Gy)
® Nothing phase: A\ = w(1):

> overlap(H, H*) — 0

Proof sketch

® All phase:

» X\ =o(1): overlap(H, H*) = 1 (first-moment method)

>)\ <1/k: overlap(H, H*) — 1 (first-moment method)
® Something phase: 1/k < A < O(1):

> overlap(H, H*) <1 - Q(1) — Focus

» overlap(H, H*) > Q(1) (3©(n) isolated nodes in Gy)
® Nothing phase: A\ = w(1):

» overlap(H, H*) — 0 — Focus

Analyzing posterior distribution

Recall: posterior distribution is uniform over k-factors in G:

1
ne(H) = WI{HE’H(G)}v

where #H(G) is the set of k-factors in G

Analyzing posterior distribution

Recall: posterior distribution is uniform over k-factors in G:

1
ne(H) = ml{HeH(G)p

where #H(G) is the set of k-factors in G

® Upper bound number of k-factors
in G near H*

Analyzing posterior distribution

Recall: posterior distribution is uniform over k-factors in G:

1
ne(H) = ml{HeH(G)p

where #H(G) is the set of k-factors in G

® Upper bound number of k-factors
in G near H*

® [ower bound number of k-factors
in G far away from H*

Analyzing posterior distribution

Recall: posterior distribution is uniform over k-factors in G:

1
ne(H) = ml{HeH(G)p

where #H(G) is the set of k-factors in G

® Upper bound number of k-factors
in G near H*

® Lower bound number of k-factors
in G far away from H*
L ‘,Hll\'&ll'(G)‘ < |/Hfar(G)’ =
overlap(H,H*) <1-—t
» Something phase: t = Q(1)
> Nothing phase: t =1 — o(1)

Conclusion

: Something : Nothing
; A
I | I
Exact o(1) Almost exact 1/k A1m w(l)\c

OICH©

All

Conclusion

Al Something | Nothing

Exact o(1) Almost exact 1/k 1M w(1) Ac

OICHCRE

Open problems:

A

@ Characterize the overlap as a function of X\ in something phase
@® Planted k-factor model for growing k = k(n)

©® What causes “something” phase to emerge/disappear?

» For dense or small subgraphs, we observe AoN
» For sparse, large subgraphs, we observe ASN

Backup Slides

Upper bound: Enumerating k-factors near H*

For k-factor H, HAH* = disjoint union of alternating Eulerian
circuits

Upper bound: Enumerating k-factors near H*

For k-factor H, HAH* = disjoint union of alternating Eulerian
circuits

As a consequence,

[{k-factor H : [HAH*| = 2t}| < (k”t/2> (2t — 1)1 < (kn)t

t
= E[|{k-factor H : |HAH*| = 2t,H C G}|] < (kn)* (i) = (k)

A generic, non-constructive lower bound

® |Let P and QQ denote the distribution of the planted k-factor
model and G(n, \/n), respectively

¢ Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik '23)
For any ¢ > 0,

P{[H(G)| = eEq|H(G)[} > 1 ¢

A generic, non-constructive lower bound

® |Let P and QQ denote the distribution of the planted k-factor
model and G(n, \/n), respectively

¢ Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik '23)
For any ¢ > 0,

P{IH(G)| = eEq|H(G)[} = 1 —€
Proof: P(G)/Q(G) = |H(G)|/Eg|H(G)| and change of measure

A generic, non-constructive lower bound

® |Let P and QQ denote the distribution of the planted k-factor
model and G(n, \/n), respectively

¢ Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik '23)
For any ¢ > 0,

P{IH(G)| = eEq|H(G)[} = 1 —€
Proof: P(G)/Q(G) = |H(G)|/Eg|H(G)| and change of measure

® When Ak = w(1), Eq|H(G)| > |#.2r(G)| and suffices for
proving overlap(H, H*) — 0 in “Nothing” phase

A generic, non-constructive lower bound

® |Let P and QQ denote the distribution of the planted k-factor
model and G(n, \/n), respectively

¢ Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik '23)
For any ¢ > 0,

P{IH(G)| = eEq|H(G)[} = 1 —€
Proof: P(G)/Q(G) = |H(G)|/Eg|H(G)| and change of measure

® When Ak = w(1), Eq|H(G)| > |#.2r(G)| and suffices for
proving overlap(H, H*) — 0 in “Nothing” phase

® When Ak = O(1), Eg|H(G)| < [H.,.cor(G)| and falls short for
proving overlap(H, H*) <1 — (1) in “"Something” phase

A generic, non-constructive lower bound

® |Let P and QQ denote the distribution of the planted k-factor
model and G(n, \/n), respectively

¢ Recall H(G) is the set of k-factors in G

Lemma (Mossel-Niles-Weed-Sohn-Sun-Zadik '23)
For any ¢ > 0,

P{IH(G)| = eEq|H(G)[} = 1 —€
Proof: P(G)/Q(G) = |H(G)|/Eg|H(G)| and change of measure

® When Ak = w(1), Eq|H(G)| > |#.2r(G)| and suffices for
proving overlap(H, H*) — 0 in “Nothing” phase

® When Ak = O(1), Eg|H(G)| < [H.,.cor(G)| and falls short for
proving overlap(H, H*) <1 — (1) in “"Something” phase
— need a tighter lower bound

Constructing k-factors far away from H*

Goal: Find exponentially many long alternating Eulerian circuits
(AEC) in G

® long AEC are rare;

Constructing k-factors far away from H*

Goal: Find exponentially many long alternating Eulerian circuits
(AEC) in G

® long AEC are rare; but there are many possibilities to consider

Constructing k-factors far away from H*

Goal: Find exponentially many long alternating Eulerian circuits
(AEC) in G

® long AEC are rare; but there are many possibilities to consider

® Natural second-moment argument doesn’t work due to
excessive correlation between long AEC.

Constructing k-factors far away from H*

Goal: Find exponentially many long alternating Eulerian circuits
(AEC) in G

® long AEC are rare; but there are many possibilities to consider

® Natural second-moment argument doesn’t work due to
excessive correlation between long AEC.

Key idea: Sprinkling

@ Reserve a small fraction of vertices

® Greedily construct many disjoint short alternating paths using
non-reserved vertices

© Connect the paths into long alternating cycles via reserved
vertices

Inspired by [Aldous '98, Ding '13, Ding-Wu-X.-Yang '21]

Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V/ of yn planted edges for some small v > 0.

@ Stage 1 (path construction): Find ©(n) disjoint short
(constant length) alternating paths, using vertices in V€.

Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V/ of yn planted edges for some small v > 0.

@ Stage 1 (path construction): Find ©(n) disjoint short
(constant length) alternating paths, using vertices in V€.

@® Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V.

Lot .

......

fe. .
.. .

Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V/ of yn planted edges for some small v > 0.

@ Stage 1 (path construction): Find ©(n) disjoint short
(constant length) alternating paths, using vertices in V€.

@® Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V.

Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V/ of yn planted edges for some small v > 0.

@ Stage 1 (path construction): Find ©(n) disjoint short
(constant length) alternating paths, using vertices in V€.

@® Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V.

Caution: need to ensure alternating colors in sprinkling

Path construction via neighborhood exploration process

Pick a planted edge (u;j, v;), grow a left tree starting from u;,
remove the inspected vertices, and then grow the right tree from v;

An illustration for k = 1. For k > 1, need to branch out all k red edges

Path construction via neighborhood exploration process

Pick a planted edge (u;j, v;), grow a left tree starting from u;,
remove the inspected vertices, and then grow the right tree from v;

An illustration for k = 1. For k > 1, need to branch out all k red edges

When Ak > 1, the branching processes survive with constant
probability. Thus the BFS returns K = Q(n) two-sided trees with
many leaf nodes.

