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Abstract. Suppose that (X;,Y;),i = 1,2,...,n, are iid. random vectors with uniform
marginals and a certain joint distribution F,, where p is a parameter with p = p, cor-
responds to the independence case. However, the X’s and Y’s are observed separately so
that the pairing information is missing. Can p be consistently estimated? This is an exten-
sion of a problem considered in DeGroot and Goel (1980) which focused on the bivariate
normal distribution with p being the correlation. In this paper we show that consistent dis-
crimination between two distinct parameter values p; and p, is impossible if the density
[, of F, is square integrable and the second largest singular value of the linear operator
h — fol folx, Yh(x)dx, h € L*[0,1], is strictly less than 1 for p = p; and p,. We also
consider this result from the perspective of a bivariate empirical process which contains
information equivalent to that of the broken sample.
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Problem goes by many names

® Record linkage

® Data matching

® Feature matching

® Database alignment

® Data de-anonymization

e |dentity Fragmentation/Identity resolution

¢ Shuffled/uncoupled regression
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Applications: Record linkage/Data matching

Database A Database B
[ ] [ ]
Name: Bernd Meyer Name: Bernt Meyer
DOB: 02/12/1969 ? DOB: 12.02.1969
Address:  Ritterstrafie 9 = Address:  RitterstralRe 9-13
04109 Leipzig E’ 04109 Leipzig @

Matching medical records or census records in two databases that refer
to the same entity [Fellegi-Sunter '69]
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Applications: Identity fragmentation

Consumers constantly explore Internet via multiple devices with different
identifiers = fragmented view of exposures and user behaviors

m s

A

Detecting/linking same users based on their browsing logs on different
devices = key to the success of marketing and advertising [Lin-Misra
Marketing Science '22]
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Applications: Data de-anonymization

Collecting and disseminating datasets can expose customers to serious
privacy breaches, even if datasets are anonymized and sanitized

NETFLIX B g

Movie ratings Movie ratings
® CO @ O ® O O O
@ O C O

O 0 @ O O o e

Successfully de-anonymize users by linking Netflix records and IMDB

Subscriber

records [Narayanan-Shmatikov '08]
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Applications: Particle tracking

Track mobile objects (birds in flocks, motile cells, or particles in fluid)
from video frames taken at certain rate

e . . , - '.' .
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x(t) x(t + At)

Picture courtesy of Gabriele Sicuro
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Applications: Particle tracking

Track mobile objects (birds in flocks, motile cells, or particles in fluid)
from video frames taken at certain rate
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Applications: Particle tracking

Track mobile objects (birds in flocks, motile cells, or particles in fluid)
from video frames taken at certain rate
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Picture courtesy of Gabriele Sicuro

Match objects in two consecutive frames based on their positional
vectors; the noises are determined by the density and mobility of objects
and the acquisition rate of frames [Chertkov-Kroc-Krzakala-Vergassola-Zdeborova
'10, Semerjian-Sicuro-Zdeborova '20, Moharrami-Moore-X '21, Kunisky-Niels-Weed '21,
Ding-Wu-X-Yang '23,...]
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Applications: Feature matching

Align multi-views of objects to generate panoramic views or 3D models

Detect and match important features in two images [Szeliski '22]
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The broken sample model

® 71 is a random uniform
permutation on [n]
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The broken sample model

® 71 is a random uniform
permutation on [n]

° (Xw*(i),Yi)i'fig'Px,y for

i € [n]
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The broken sample model

® 71 is a random uniform
permutation on [n]

L4 (X,T*(i),Y;)i'fi'\Sj'PX7y for
i € [n]
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The broken sample model

® 71 is a random uniform
permutation on [n]

° (Xw*(i),Yi)i'fi*fj'Px,y for

i € [n]
® Observe (X;);; and
(Yi)iza
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The broken sample model

® 71 is a random uniform
permutation on [n]

L4 (Xﬂ.*(i),Y;)i'fig'PX7y for
i € [n]

® Observe (X;);; and
(Yi)iza

Goal:

® Estimation: Recover 7* [Dai-Cullina-Kiyavash '19,’20, Kunisky-Niles-Weed '22,
Wang-Wu-X-Yolou '22]

® Detection: Test correlated against independence model
(PX,Y versus Py ® Py)
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Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

HQ or Hl?
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Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

el 0] 1,
Hy (X (1), Y1), -y (X ), Yo ) = N1 <[0} : {p ﬂ)

® Marginally, both X;'s and Y;'s are i.i.d. standard Gaussian random
vectors in R?
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Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

Ho s (60,10, (6 Yo REve ([0 5])

el 0] 1,
Hy (X (1), Y1), -y (X ), Yo ) = N1 <[0} : {p ﬂ)

® Marginally, both X;'s and Y;'s are i.i.d. standard Gaussian random
vectors in R?

® The inherent correlation under H; is obscured by latent matching 7*
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Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

Ho: (X1, Y. (X, Yp) S N0 <[8] | [(1)(1)D

el 0] 1,
Hy (X (1), Y1), -y (X ), Yo ) = N1 <[0} : {p ﬂ)

® Marginally, both X;'s and Y;'s are i.i.d. standard Gaussian random
vectors in R?
® The inherent correlation under H; is obscured by latent matching 7*

® Tests need to be permutation invariant
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Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

Ho: (X1, Y. (X, Yp) S N0 <[8] | [(1)(1)D

el 0] 1,
Hy (X (1), Y1), -y (X ), Yo ) = N1 <[0} : {p ﬂ)

Marginally, both X;'s and Y;'s are i.i.d. standard Gaussian random
vectors in R?
The inherent correlation under H; is obscured by latent matching 7*

Tests need to be permutation invariant
What is the minimum p needed for achieving vanishing testing error
as n — oo?
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Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

Ho s (60,10, (6 Yo REve ([0 5])

el 0] 1,
Hy (X (1), Y1), -y (X ), Yo ) = N1 <[0} : {p ﬂ)

® Marginally, both X;'s and Y;'s are i.i.d. standard Gaussian random
vectors in R?

® The inherent correlation under H; is obscured by latent matching 7*
® Tests need to be permutation invariant

® What is the minimum p needed for achieving vanishing testing error
as n — oo’

® Recent works consider high dimensions [Dai-Cullina-Kiyavash '19,'20,
Kunisky-Niles-Weed '22, Wang-Wu-X-Yolou '22, K-Nazer '22, Elimelech-Huleihel '23]
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Optimal test

e Optimal Type-1+Il error equals 1 — TV (Py, Py), attained by LRT

L(X,Y) 4 g( = Z HK

TESy i=1
dpP
where K (z,y) = g5 245 (2,9).
This is hard to compute (equivalent to permanent) or to analyze.
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dpP
where K (z,y) = g5 245 (2,9).
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TV(P(),]PI) —1, n—o0

Jiaming Xu (Duke) Broken sample problems 14



Optimal test

e Optimal Type-1+Il error equals 1 — TV (Py, Py), attained by LRT

L(X,Y) 4 g( = Z HK

TESy i=1

where K (z,y) = zﬂ?ﬁ%(x ).

This is hard to compute (equivalent to permanent) or to analyze.
® Qur goal: Strong detection

TV(P(),]PI) —1, n—o0

o Key questions: What are the optimal detection thresholds? Can we
achieve them in poly-time?
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Two key quantities

® y’-information:

La(X;Y) 2 *(Pxy||[Px ® Py) = varpeep, [K(X,Y)],

where K (x,y) = Um‘iﬁ%(.ﬁ,y).
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Two key quantities

® y’-information:

La(X;Y) £ X*(Pxy|[Px ® Py) = varpegp, [K(X,Y)),
where K (z,y) = Um‘iﬁ%(.ﬁ,y).
® Maximal correlation [Hirschfeld, Gebelein, Samanov, Rényil:

p(X;Y) £ s]yp{corr(f(X)vg(Y))}
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Two key quantities

® y’-information:

La(X;Y) £ X*(Pxy|[Px ® Py) = varpegp, [K(X,Y)),
where K (z,y) = Um‘iﬁ%(.ﬁ,y).
® Maximal correlation [Hirschfeld, Gebelein, Samanov, Rényil:

p(X;Y) £ s]yp{corr(f(X)vg(Y))}

® |Interpretation: Define a linear operator K

(K f)(x) £ E[f(Y)|X = 2] = / K(2.y) (4)dPy (y).

Then I,2(X;Y) is the squared HS norm of K and p(X;Y) is the
second largest singular value of K
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Main result: fixed distributions

Fix Pxy. Strong detection is possible iff I,2(X;Y) = oo or
p(X;Y) =1
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Main result: fixed distributions

Fix Pxy. Strong detection is possible iff I,2(X;Y) = oo or
p(X;Y) =1

Remarks
® Negative result shown by [Bai-Hsing '05], who also conjectured the
positive result.

® Achievable, in theory, by computationally efficient tests in the sense
that, for any e, there exists an algorithm with run time O.(n) with

test error < €.
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Proof of impossibility

Goal: Assuming I,2(X;Y) < oo and p(X;Y) < 1, show that
(P1||Po) + 1 =Eg [L*(X,Y)] = O(1).
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Proof of impossibility

Goal: Assuming I,2(X;Y) < oo and p(X;Y) < 1, show that
(P1||Po) + 1 =Eg [L*(X,Y)] = O(1).

® The operator (K f)(z) = E[f(Y)|X = z] is Hilbert-Schmidt and
admits a spectral decomposition (SVD):

K(z,y) =Y Mtoe(z)dr(y)
k=0

> I=X>N2=--20,

> [2(X;Y) = Zk21 )‘iv p(X;Y) =X\

» {4} is an orthonormal basis for Ly(Px)
» {¢i} is an orthonormal basis for La(Py ).
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Proof of impossibility

Goal: Assuming I,2(X;Y) < oo and p(X;Y) < 1, show that
(P1||Po) + 1 =Eg [L*(X,Y)] = O(1).

® The operator (K f)(z) = E[f(Y)|X = z] is Hilbert-Schmidt and
admits a spectral decomposition (SVD):

2,y) =Y Meoi(a)dr(y)
k=0

> I=X>N2=--20,

> [2(X;Y) = Zk21 )‘iv p(X;Y) =X\

» {4} is an orthonormal basis for Ly(Px)
» {¢i} is an orthonormal basis for La(Py ).

® A beautiful argument of [Bai-Hsing '05] shows

Y2(Py||Pg) + 1 — Z
k>1

)\2, n — 0.
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Positive result [Jiao-Wu-X '24]

Goal: p(X;Y) =1or [,2(X;Y) =00 = strong detection. Instead of
analyzing LRT, we construct explicit tests.
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Positive result [Jiao-Wu-X '24]

Goal: p(X;Y) =1or [,2(X;Y) =00 = strong detection. Instead of
analyzing LRT, we construct explicit tests.

® Suppose p(X;Y) = 1. Then

" N(0,2) under Hy
T=— X;) — ¢1(Y;) —
ﬁ;wl( ) =A%) {50 under H;
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Positive result [Jiao-Wu-X '24]

Goal: p(X;Y) =1or [,2(X;Y) =00 = strong detection. Instead of
analyzing LRT, we construct explicit tests.

® Suppose p(X;Y) = 1. Then

" N(0,2) under Hy
T=— X;) — ¢1(Y;) —
ﬁ;wl( ) =A%) {50 under H;

® Next, assume [,2(X;Y) = co.
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Sufficient statistics

® Observation: empirical distributions

1 « 1 ¢
Px=3 dx, Pr=23 by,
=1 1=1

are sufficient statistics
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Sufficient statistics

® Observation: empirical distributions

1 « 1 ¢
Px=3 dx, Pr=23 by,
=1 =1

are sufficient statistics

® For real-valued data, the empirical CDFs have Gaussian fluctuations:

1 — 1
Fx(t)= =) 1{X; <t} ~ Fx(t) + —=Bx(t)
X n; X \/ﬁ X

Fy(t) = ;zl 1Y < 6}~ Br(t) + =By (D).

where (Bx, By) are independent Brownian bridges under Hy and
correlated Brownian bridges under H;
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Sufficient statistics

® Observation: empirical distributions

1 « 1 ¢
Px=3 dx, Pr=23 by,
=1 =1

are sufficient statistics

® For real-valued data, the empirical CDFs have Gaussian fluctuations:

1 — 1
Fx(t)= =) 1{X; <t} ~ Fx(t) + —=Bx(t)
X n; X \/ﬁ X

Fy(t) = ;zl 1Y < 6}~ Br(t) + =By (D).

where (Bx, By) are independent Brownian bridges under Hy and
correlated Brownian bridges under H;

® This motivates tests based on histograms [Ding-Ma-Wu-X 18]
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Test based on histograms

® Variational representation of divergence [Gelfand-Yaglom-Perez '56]:
L2 (X;Y) = sup L2 (Xp; Ypr)

with sup taken over all finite partitions P = (A, ..., A;) and
P’ = (Bi,...,Bn) of X and Y spaces respectively, and Xp, Yp/
are the quantized version.

® Since 1,2(X;Y) = oo, we fix a partition s.t. I,2(Xp; Yps) > 1.
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o Centered histograms:
U= (ﬁ > (1x €4 - PX<AJ»>>> o
= (ﬁ > apren) - PY<Bj>>)

Jj=1,....m

j=1,....m
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Test based on histograms

® Centered histograms:
U= (ﬁZ(l{XieAj}—PX(Aj)O ’
V= (ﬁzﬂ: (1{Y; € B;} - Py(Bj)))

Jj=1,..., m
n— 00

® Gaussian limits: (U,V) —— N(0,%;) under H;, i = 0,1, where

* 0 * ok
are simultaneously diagonalizable, with eigenvalues determined by
singular values )y ,,, of the discretized operator

j=1,..., m
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Reduce to testing two Gaussians

Test N(O, 20) VS N(O, 21)2
e Optimal test: quadratic classifier (QDA) T' = (uT,vT)(Eg - ED (%)
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Reduce to testing two Gaussians

Test N(O, 20) VS N(O, 21)2
e Optimal test: quadratic classifier (QDA) T' = (uT,vT)(Eg - ED (%)
e Optimal error satisfies a dimension-free bound [Hajék,1958]:

1—-TV < SKL™V4
The symmetric KL divergence can be found to be

2
)\k,m

SKL(N(0,50), N(0,51)) = 3 -5~
k,m

k
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Reduce to testing two Gaussians

Test N(O, 20) VS N(O, 21)2
e Optimal test: quadratic classifier (QDA) T' = (uT,vT)(Eg - ED (%)
e Optimal error satisfies a dimension-free bound [Hajék,1958]:

1—-TV < SKL™V4
The symmetric KL divergence can be found to be

2
)\k,m

SKL(N(0, %), N(0,1)) = Y -2
k,m

k

® By construction,
Lo(Xp;Yp) =X, >1 = SKL>1 = 1-TV<1,

N
N
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Main result: varying distributions

Let Pxy be a general distribution which may depend on n. Under extra
condition on Eo[K3(X,Y))], strong detection is possible iff
L2 (X;Y) = 00 or p(X;Y) — 1.

Remarks
® Negative result applies the same argument of [Bai-Hsing '05]

® Positive results by analyzing non-asymptotical tests based on
histograms or eigenfunctions.
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Example: detecting correlated Gaussians

Consider Px,y = N((§),(,7))%% and K(z,y) = 7555 (x,y)

® K is Mehler kernel, diagonalized by Hermite polynomials:

d oo
K(z,y) =[] " Hi(x;) Hi(y;)

j=1k=0

* [2(X;Y)=(1-p*)%and p(X;Y) = p.
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Example: detecting correlated Gaussians

Consider Px,y = N((§),(,7))%% and K(z,y) = 7555 (x,y)

® K is Mehler kernel, diagonalized by Hermite polynomials:

d oo
K(z,y) =[] " Hi(x;) Hi(y;)

j=1k=0

* [2(X;Y)=(1-p*)%and p(X;Y) = p.

e Strong detection is possible iff (1 — p?)~¢ — oc:
> Low dimensions d = O(1): p* — 1 (near perfect correlation)

> High dimensions d — oo: p?d — oo (vanishing correlation works)
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Example: detecting correlated Gaussians

Consider Px,y = N((§),(,7))%% and K(z,y) = 7555 (x,y)

® K is Mehler kernel, diagonalized by Hermite polynomials:

d oo
K(z,y) HZP%Hk (z5) H ()

j=1k=0

* [2(X;Y)=(1-p*)%and p(X;Y) = p.
e Strong detection is possible iff (1 — p?)~¢ — oc:

> Low dimensions d = O(1): p* — 1 (near perfect correlation)
> High dimensions d — oo: p?d — oo (vanishing correlation works)

® This resolves the detection limit and improves over SOTA [K-Nazer
'22, Elimelech-Huleihel '23]

Possible Impossible
d — o p? = w(l1/d) p? < 1/d

d=0(1) | p> =1-o(n"™1) | p* < p*(d)
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Comparison with recovery

Gaussian Threshold
Detection (1—-p*)"9 = o0
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Gaussian Threshold
Detection (1—-p*)"9 = o0
Almost exact recovery

Exact recovery
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Comparison with recovery

Gaussian Threshold
Detection (1—-p*)"9 = o0
Almost exact recovery | (1 — p?)~% > n?
Exact recovery (1—p*)~7>nt
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Comparison with recovery

Gaussian Threshold
Detection (1—-p*)"9 = o0
Almost exact recovery | (1 — p?)~% > n?
Exact recovery (1—p*)~7>nt

® Exact and almost exact recovery of 7* are achieved by maximum
likelihood [Dai-Cullina-Kiyavash '19,'20, Kunisky-Niles-Weed '22, Wang-Wu-X-Yolou
'22]:

n
min Y [| X — Vil
=1
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Comparison with recovery

Gaussian Threshold
Detection (1—-p*)"9 = o0
Almost exact recovery | (1 — p?)~% > n?
Exact recovery (1—p*)~7>nt

® Exact and almost exact recovery of 7* are achieved by maximum
likelihood [Dai-Cullina-Kiyavash '19,'20, Kunisky-Niles-Weed '22, Wang-Wu-X-Yolou
'22]:

n
H;inz 1 Xy — Yil?
=1

» This is a linear assignment problem and can be solved in poly-time!
» Optimal objective = squared Wasserstein-2 distance between
empirical distributions of X;'s and Y;'s
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Comparison with recovery

Gaussian Threshold
Detection (1—-p*)"9 = o0
Almost exact recovery | (1 — p?)~% > n?
Exact recovery (1—p*)~7>nt

® Exact and almost exact recovery of 7* are achieved by maximum
likelihood [Dai-Cullina-Kiyavash '19,'20, Kunisky-Niles-Weed '22, Wang-Wu-X-Yolou
'22]:

n
: 2
H;IHZ | X — Yill
=1
» This is a linear assignment problem and can be solved in poly-time!

» Optimal objective = squared Wasserstein-2 distance between
empirical distributions of X;'s and Y;'s

® There is no theory for recovery for general distributions.
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Concluding remarks

® Broken sample problems provide rich venues for theoretical study of
statistical vs computational limits with many open problems

® They are deeply connected to assignment problems and optimal
transport theory

® Many interesting variants (e.g., partially shuffled data) and
connections: geometric matching, database alignment, particle
tracking, uncoupled isotonic regression, ranking, data seriation

® Numerous applications in diverse fields
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Concluding remarks

® Broken sample problems provide rich venues for theoretical study of
statistical vs computational limits with many open problems

® They are deeply connected to assignment problems and optimal
transport theory

® Many interesting variants (e.g., partially shuffled data) and
connections: geometric matching, database alignment, particle
tracking, uncoupled isotonic regression, ranking, data seriation

® Numerous applications in diverse fields
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Example: detecting correlated Gaussians

® Applying QDA to sample means is optimal:
T=2(1-p)(X,Y) - p|X Y3

where X = ﬁ(X1+...+Xn) and Y = ﬁ(Yl—l—...jLYn).
® Further simplification:

> Low dimensions: 7' = || X — Y||3.

» High dimensions: T'= (X,Y), previously considered by [K-Nazer '22]
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Bai-Hsing's argument

Let Ny denote the number of /-cycles in the cycle decomposition of a
random permutation .
Example: n =6 and 7 = (1)(23)(456):

4

m?QQs

N1:1,N2:1,andN3:1

6
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Bai-Hsing's argument

EoL*(X,Y)

n
=E:xyvy H K(X3, i) K(Xi, Yr))
i=1

Jiaming Xu (Duke) Broken sample problems 29



Bai-Hsing's argument

EoL*(X,Y)

n
=E:xyvy H K(X3, i) K(Xi, Yr))
i=1

= Erxy [[ D Mtn(X)on(Yi) Y Metn(Xi) i (Vo)
=1
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Bai-Hsing's argument

EoL*(X,Y)

n
=E:xyvy H K(X3, i) K(Xi, Yr))
i=1

= Erxy [[ D Mtn(X)on(Yi) Y Metn(Xi) i (Vo)
=1

= Ery [ D MY or(Vag) {x} ON
=1
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Bai-Hsing's argument

EoL*(X,Y)

n
=E:xyvy H K(X3, i) K(Xi, Yr))
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Bai-Hsing's argument

EoL*(X,Y)

n
=E:xyvy H K(X3, i) K(Xi, Yr))
i=1

= Erxy [[ D Mtn(X)on(Yi) Y Metn(Xi) i (Vo)
=1

=Ery [[ D Mon(¥)en(Ya) {tx} ON
=1
~E () {64} ON
/=1

To bound this we can apply Poisson approximation: Ny & Pois(1//)
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Bai-Hsing's argument

Let f(2) =Tl —2A3)"tand 1 <r < 1/A%:
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Let f(2) =Tl —2A3)"tand 1 <r < 1/A%:

n o) Ne
E H (Z )\zé) = [2"]f(z) (n-th coefficient in power series)

{=1 \k=0
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E H (Z )\zé) = [2"]f(z) (n-th coefficient in power series)

1 1
(Cauchy's integral thm) = s Wf(z)dz — il_}n%(z —1)f(2)
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n o) Ne
E H (Z )\%) = [2"]f(z) (n-th coefficient in power series)

" 1 1 :
(Cauchy's integral thm) = s Wf(z)dz — il_}n%(z —1)f(2)

|2|=r
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k=1
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