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Matchmaking [DeGroot-Feder-Goel ’71]
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Matchmaking: Toy example
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The broken sample problem
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Problem goes by many names

• Record linkage

• Data matching

• Feature matching

• Database alignment

• Data de-anonymization

• Identity Fragmentation/Identity resolution

• Shuffled/uncoupled regression

• . . .
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Applications: Record linkage/Data matching

Matching medical records or census records in two databases that refer
to the same entity [Fellegi-Sunter ’69]
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Applications: Identity fragmentation

Consumers constantly explore Internet via multiple devices with different
identifiers ⇒ fragmented view of exposures and user behaviors

Detecting/linking same users based on their browsing logs on different
devices ⇒ key to the success of marketing and advertising [Lin-Misra

Marketing Science ’22]
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Applications: Data de-anonymization

Collecting and disseminating datasets can expose customers to serious
privacy breaches, even if datasets are anonymized and sanitized

Successfully de-anonymize users by linking Netflix records and IMDB
records [Narayanan-Shmatikov ’08]
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Applications: Particle tracking

Track mobile objects (birds in flocks, motile cells, or particles in fluid)
from video frames taken at certain rate

x(t) x(t+∆t)

?

Picture courtesy of Gabriele Sicuro

Match objects in two consecutive frames based on their positional
vectors; the noises are determined by the density and mobility of objects
and the acquisition rate of frames [Chertkov-Kroc-Krzakala-Vergassola-Zdeborová

’10, Semerjian-Sicuro-Zdeborová ’20, Moharrami-Moore-X ’21, Kunisky-Niels-Weed ’21,

Ding-Wu-X-Yang ’23,...]
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Applications: Feature matching

Align multi-views of objects to generate panoramic views or 3D models

Detect and match important features in two images [Szeliski ’22]
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The broken sample model

• π∗ is a random uniform
permutation on [n]

• (Xπ∗(i), Yi)
i.i.d.∼ PX,Y for

i ∈ [n]

• Observe (Xi)
n
i=1 and

(Yi)
n
i=1

Goal:

• Estimation: Recover π∗ [Dai-Cullina-Kiyavash ’19,’20, Kunisky-Niles-Weed ’22,

Wang-Wu-X-Yolou ’22]

• Detection: Test correlated against independence model
(PX,Y versus PX ⊗ PY )
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Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel ’71, Bai-Hsing ’05)

H0 : (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ N⊗d

([
0
0

]
,

[
1, 0
0, 1

])
H1 : (Xπ∗(1), Y1), . . . , (Xπ∗(n), Yn)

i.i.d.∼ N⊗d

([
0
0

]
,

[
1, ρ
ρ, 1

])

H0 or H1?
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• Marginally, both Xi’s and Yi’s are i.i.d. standard Gaussian random
vectors in Rd

• The inherent correlation under H1 is obscured by latent matching π∗

• Tests need to be permutation invariant

• What is the minimum ρ needed for achieving vanishing testing error
as n→ ∞?

• Recent works consider high dimensions [Dai-Cullina-Kiyavash ’19,’20,

Kunisky-Niles-Weed ’22, Wang-Wu-X-Yolou ’22, K-Nazer ’22, Elimelech-Huleihel ’23]
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Optimal test

• Optimal Type-I+II error equals 1− TV(P0,P1), attained by LRT

L(X,Y) ≜
P1(X,Y)

P0(X,Y)
=

1

n!

∑
π∈Sn

n∏
i=1

K(Xπ(i), Yi),

where K(x, y) = dPXY
dPX⊗dPY

(x, y).
This is hard to compute (equivalent to permanent) or to analyze.

• Our goal: Strong detection

TV(P0,P1) → 1, n→ ∞

• Key questions: What are the optimal detection thresholds? Can we
achieve them in poly-time?
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Two key quantities

• χ2-information:

Iχ2(X;Y ) ≜ χ2(PXY ∥PX ⊗ PY ) = varPX⊗PY
[K(X,Y )],

where K(x, y) = dPXY
dPX⊗dPY

(x, y).

• Maximal correlation [Hirschfeld, Gebelein, Samanov, Rényi]:

ρ(X;Y ) ≜ sup
f,g

{corr(f(X), g(Y ))}

• Interpretation: Define a linear operator K

(Kf)(x) ≜ E[f(Y )|X = x] =

∫
K(x, y)f(y)dPY (y).

Then Iχ2(X;Y ) is the squared HS norm of K and ρ(X;Y ) is the
second largest singular value of K
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Main result: fixed distributions

Theorem

Fix PX,Y . Strong detection is possible iff Iχ2(X;Y ) = ∞ or
ρ(X;Y ) = 1.

Remarks

• Negative result shown by [Bai-Hsing ’05], who also conjectured the
positive result.

• Achievable, in theory, by computationally efficient tests in the sense
that, for any ϵ, there exists an algorithm with run time Oϵ(n) with
test error ≤ ϵ.
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Proof of impossibility

Goal: Assuming Iχ2(X;Y ) <∞ and ρ(X;Y ) < 1, show that

χ2(P1∥P0) + 1 = E0

[
L2(X,Y)

]
= O(1).

• The operator (Kf)(x) = E[f(Y )|X = x] is Hilbert-Schmidt and
admits a spectral decomposition (SVD):

K(x, y) =
∞∑
k=0

λkψk(x)ϕk(y)

▶ 1 = λ0 > λ1 ≥ · · · ≥ 0,
▶ Iχ2(X;Y ) =

∑
k≥1 λ

2
k, ρ(X;Y ) = λ1

▶ {ψk} is an orthonormal basis for L2(PX)
▶ {ϕk} is an orthonormal basis for L2(PY ).

• A beautiful argument of [Bai-Hsing ’05] shows

χ2(P1∥P0) + 1 →
∑
k≥1

1

1− λ2k
, n→ ∞.
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Positive result [Jiao-Wu-X ’24]

Goal: ρ(X;Y ) = 1 or Iχ2(X;Y ) = ∞ =⇒ strong detection. Instead of
analyzing LRT, we construct explicit tests.

• Suppose ρ(X;Y ) = 1. Then

T =
1√
n

n∑
i=1

ψ1(Xi)− ϕ1(Yi) →

{
N(0, 2) under H0

δ0 under H1

• Next, assume Iχ2(X;Y ) = ∞.
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Sufficient statistics

• Observation: empirical distributions

P̂X =
1

n

n∑
i=1

δXi , P̂Y =
1

n

n∑
i=1

δYi

are sufficient statistics

• For real-valued data, the empirical CDFs have Gaussian fluctuations:

F̂X(t) =
1

n

n∑
i=1

1{Xi ≤ t} ≈ FX(t) +
1√
n
BX(t)

F̂Y (t) =
1

n

n∑
i=1

1{Yi ≤ t} ≈ FY (t) +
1√
n
BY (t),

where (BX , BY ) are independent Brownian bridges under H0 and
correlated Brownian bridges under H1

• This motivates tests based on histograms [Ding-Ma-Wu-X ’18]
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Test based on histograms

• Variational representation of divergence [Gelfand-Yaglom-Perez ’56]:

Iχ2(X;Y ) = sup Iχ2(XP ;YP ′)

with sup taken over all finite partitions P = (A1, . . . , Am) and
P ′ = (B1, . . . , Bm) of X and Y spaces respectively, and XP , YP ′

are the quantized version.

• Since Iχ2(X;Y ) = ∞, we fix a partition s.t. Iχ2(XP ;YP ′) ≫ 1.
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Test based on histograms

• Centered histograms:

U =

(√
1

n

n∑
i=1

(1{Xi ∈ Aj} − PX(Aj))

)
j=1,...,m

,

V =

(√
1

n

n∑
i=1

(1{Yi ∈ Bj} − PY (Bj))

)
j=1,...,m

• Gaussian limits: (U, V )
n→∞−−−→ N(0,Σi) under Hi, i = 0, 1, where

Σ0 =

[
∗ 0
0 ∗

]
Σ1 =

[
∗ ∗∗
∗∗ ∗

]
are simultaneously diagonalizable, with eigenvalues determined by
singular values λk,m of the discretized operator
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Reduce to testing two Gaussians

Test N(0,Σ0) vs N(0,Σ1):

• Optimal test: quadratic classifier (QDA) T = (u⊤, v⊤)(Σ†
0−Σ†

1) (
u
v )

• Optimal error satisfies a dimension-free bound [Hajék,1958]:

1− TV ≲ SKL−1/4

The symmetric KL divergence can be found to be

SKL(N(0,Σ0), N(0,Σ1)) =
∑
k

λ2k,m
1− λ2k,m

• By construction,
Iχ2(XP ;YP ′) =

∑
λ2k,m ≫ 1 =⇒ SKL ≫ 1 =⇒ 1− TV ≪ 1.
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1− TV ≲ SKL−1/4

The symmetric KL divergence can be found to be

SKL(N(0,Σ0), N(0,Σ1)) =
∑
k

λ2k,m
1− λ2k,m

• By construction,
Iχ2(XP ;YP ′) =

∑
λ2k,m ≫ 1 =⇒ SKL ≫ 1 =⇒ 1− TV ≪ 1.

Jiaming Xu (Duke) Broken sample problems 22



Reduce to testing two Gaussians

Test N(0,Σ0) vs N(0,Σ1):

• Optimal test: quadratic classifier (QDA) T = (u⊤, v⊤)(Σ†
0−Σ†

1) (
u
v )

• Optimal error satisfies a dimension-free bound [Hajék,1958]:
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Main result: varying distributions

Theorem

Let PXY be a general distribution which may depend on n. Under extra
condition on E0[K

3(X,Y )], strong detection is possible iff
Iχ2(X;Y ) → ∞ or ρ(X;Y ) → 1.

Remarks

• Negative result applies the same argument of [Bai-Hsing ’05]

• Positive results by analyzing non-asymptotical tests based on
histograms or eigenfunctions.
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Example: detecting correlated Gaussians

Consider PX,Y = N(( 00 ), (
1 ρ
ρ 1 ))

⊗d and K(x, y) = dPXY
dPX⊗dPY

(x, y)

• K is Mehler kernel, diagonalized by Hermite polynomials:

K(x, y) =

d∏
j=1

∞∑
k=0

ρ2kHk(xj)Hk(yj)

• Iχ2(X;Y ) = (1− ρ2)−d and ρ(X;Y ) = ρ.

• Strong detection is possible iff (1− ρ2)−d → ∞:
▶ Low dimensions d = O(1): ρ2 → 1 (near perfect correlation)
▶ High dimensions d→ ∞: ρ2d→ ∞ (vanishing correlation works)

• This resolves the detection limit and improves over SOTA [K-Nazer

’22, Elimelech-Huleihel ’23]

Possible Impossible

d→ ∞ ρ2 = ω(1/d) ρ2 < 1/d

d = O(1) ρ2 = 1− o(n−
2

d−1 ) ρ2 < ρ∗(d)
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Comparison with recovery

Gaussian Threshold

Detection (1− ρ2)−d → ∞

Almost exact recovery (1− ρ2)−d ≥ n2

Exact recovery (1− ρ2)−d ≥ n4

• Exact and almost exact recovery of π∗ are achieved by maximum
likelihood [Dai-Cullina-Kiyavash ’19,’20, Kunisky-Niles-Weed ’22, Wang-Wu-X-Yolou

’22]:

min
π

n∑
i=1

∥Xπ(i) − Yi∥2

▶ This is a linear assignment problem and can be solved in poly-time!
▶ Optimal objective = squared Wasserstein-2 distance between

empirical distributions of Xi’s and Yi’s

• There is no theory for recovery for general distributions.
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Concluding remarks

• Broken sample problems provide rich venues for theoretical study of
statistical vs computational limits with many open problems

• They are deeply connected to assignment problems and optimal
transport theory

• Many interesting variants (e.g., partially shuffled data) and
connections: geometric matching, database alignment, particle
tracking, uncoupled isotonic regression, ranking, data seriation

• Numerous applications in diverse fields

References

• Simiao Jiao, Yihong Wu, & Jiaming Xu. The broken sample
problem revisited: Proof of a conjecture by Bai-Hsing and
high-dimensional extensions, Draft.
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Example: detecting correlated Gaussians

• Applying QDA to sample means is optimal:

T = 2(1− ρ)⟨X,Y ⟩ − ρ∥X − Y ∥22

where X = 1√
n
(X1 + . . .+Xn) and Y = 1√

n
(Y1 + . . .+ Yn).

• Further simplification:
▶ Low dimensions: T = ∥X − Y ∥22.
▶ High dimensions: T = ⟨X,Y ⟩, previously considered by [K-Nazer ’22]
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Bai-Hsing’s argument

Let Nℓ denote the number of ℓ-cycles in the cycle decomposition of a
random permutation π.
Example: n = 6 and π = (1)(23)(456):

π:
1

2

3

4

56

N1 = 1, N2 = 1, and N3 = 1
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Bai-Hsing’s argument

E0L
2(X,Y)

= Eπ,X,Y

n∏
i=1

K(Xi, Yi)K(Xi, Yπ(i))

= Eπ,X,Y

n∏
i=1

∑
λkψk(Xi)ϕk(Yi)

∑
λkψk(Xi)ϕk(Yπ(i))

= Eπ,Y

n∏
i=1

∑
λ2kϕk(Yi)ϕk(Yπ(i)) {ψk} ON

= Eπ

n∏
ℓ=1

(∑
λ2ℓk

)Nℓ

{ϕk} ON

To bound this we can apply Poisson approximation: Nℓ ≈ Pois(1/ℓ)
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Bai-Hsing’s argument

Let f(z) =
∏∞

k=0(1− zλ2k)
−1 and 1 < r < 1/λ21:

E

 n∏
ℓ=1

( ∞∑
k=0

λ2ℓk

)Nℓ
 = [zn]f(z) (n-th coefficient in power series)

(Cauchy’s integral thm) =
1

2πi

∮
|z|=r

1

zn+1
f(z)dz − lim

z→1
(z − 1)f(z)

= o(1) +
∞∏
k=1

(1− λ2k)
−1, as n→ ∞
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