

The Broken Sample Problem revisited

Jiaming Xu

The Fuqua School of Business
Duke University

Joint work with
Simiao Jiao (Duke) and Yihong Wu (Yale)

Allerton Conference 2024

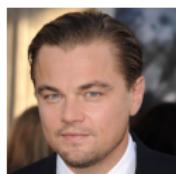
The Annals of Mathematical Statistics
1971, Vol. 42, No. 2, 578–593

MATCHMAKING¹

BY MORRIS H. DEGROOT, PAUL I. FEDER, AND PREM K. GOEL

Carnegie–Mellon University and Yale University

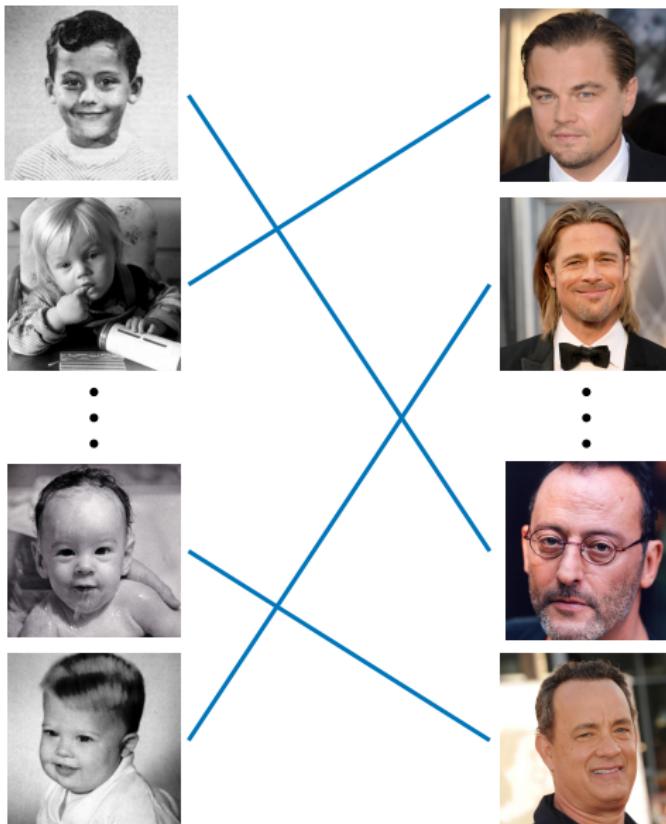
Matchmaking: Toy example



•
•
•

•
•
•

Matchmaking: Toy example



The broken sample problem

Probab. Theory Relat. Fields 131, 528–552 (2005)
Digital Object Identifier (DOI) 10.1007/s00440-004-0384-5

Zhidong Bai · Tailen Hsing

The broken sample problem

Dedicated to Professor Xiru Chen on His 70th Birthday

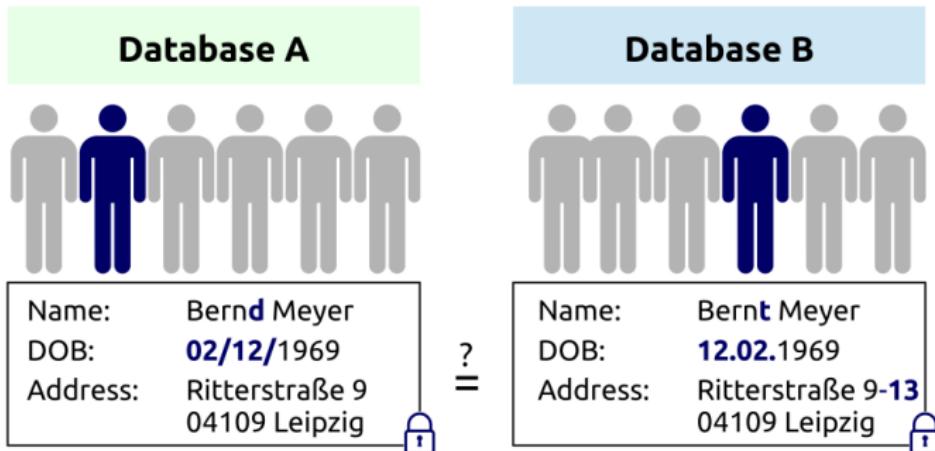
Received: 20 February 2002 / Revised version: 16 June 2004
Published online: 12 September 2004 – © Springer-Verlag 2004

Abstract. Suppose that $(X_i, Y_i), i = 1, 2, \dots, n$, are iid. random vectors with uniform marginals and a certain joint distribution F_ρ , where ρ is a parameter with $\rho = \rho_o$ corresponds to the independence case. However, the X 's and Y 's are observed separately so that the pairing information is missing. Can ρ be consistently estimated? This is an extension of a problem considered in DeGroot and Goel (1980) which focused on the bivariate normal distribution with ρ being the correlation. In this paper we show that consistent discrimination between two distinct parameter values ρ_1 and ρ_2 is impossible if the density f_ρ of F_ρ is square integrable and the second largest singular value of the linear operator $h \rightarrow \int_0^1 f_\rho(x, \cdot)h(x)dx$, $h \in L^2[0, 1]$, is strictly less than 1 for $\rho = \rho_1$ and ρ_2 . We also consider this result from the perspective of a bivariate empirical process which contains information equivalent to that of the broken sample.

Problem goes by many names

- Record linkage
- Data matching
- Feature matching
- Database alignment
- Data de-anonymization
- Identity Fragmentation/Identity resolution
- Shuffled/uncoupled regression
- ...

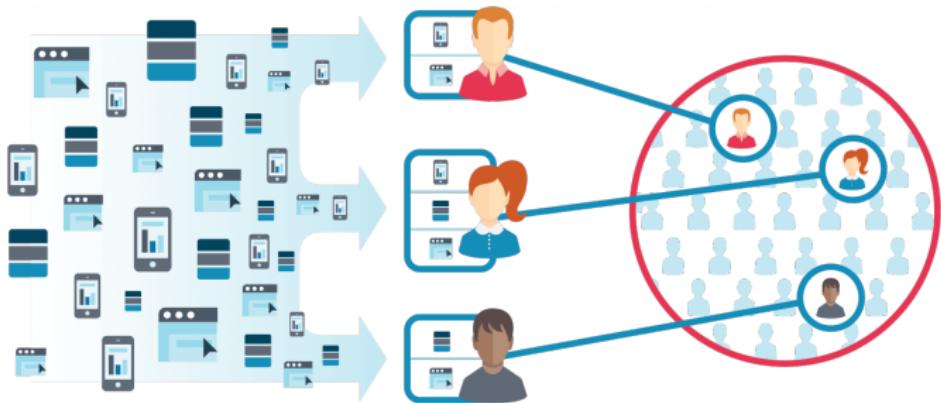
Applications: Record linkage/Data matching



Matching medical records or census records in two databases that refer to the same entity [\[Fellegi-Sunter '69\]](#)

Applications: Identity fragmentation

Consumers constantly explore Internet via multiple devices with different identifiers \Rightarrow fragmented view of exposures and user behaviors

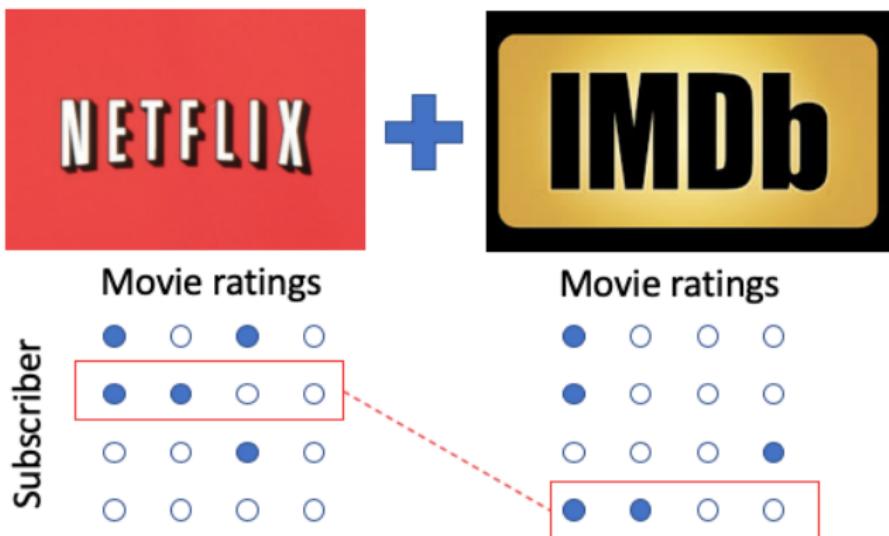


Detecting/linking same users based on their browsing logs on different devices \Rightarrow key to the success of marketing and advertising [Lin-Misra

Marketing Science '22]

Applications: Data de-anonymization

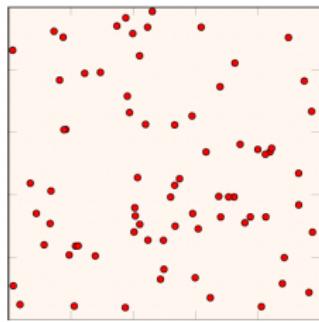
Collecting and disseminating datasets can expose customers to serious privacy breaches, even if datasets are anonymized and sanitized



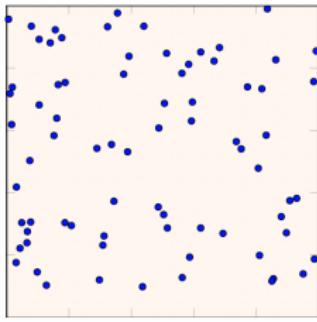
Successfully de-anonymize users by linking Netflix records and IMDB records [Narayanan-Shmatikov '08]

Applications: Particle tracking

Track mobile objects (birds in flocks, motile cells, or particles in fluid)
from video frames taken at certain rate



$x(t)$

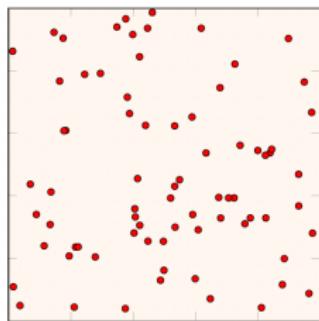


$x(t + \Delta t)$

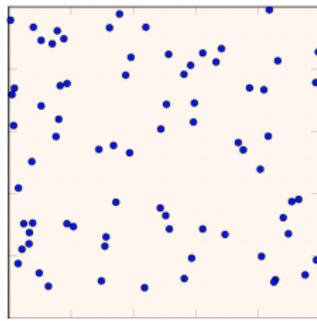
Picture courtesy of Gabriele Sicuro

Applications: Particle tracking

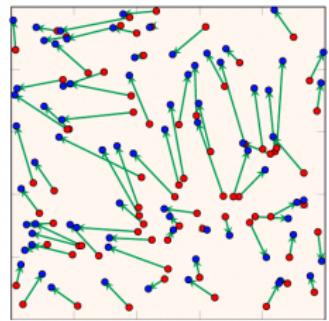
Track mobile objects (birds in flocks, motile cells, or particles in fluid)
from video frames taken at certain rate



$x(t)$



$x(t + \Delta t)$

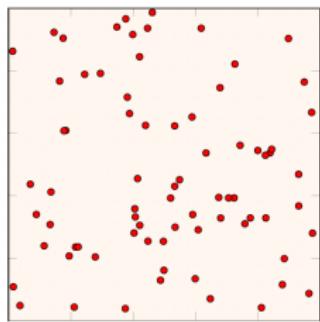


?

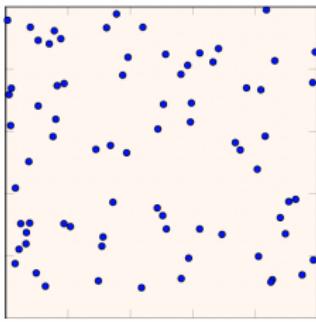
Picture courtesy of Gabriele Sicuro

Applications: Particle tracking

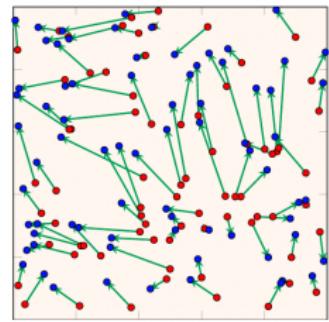
Track mobile objects (birds in flocks, motile cells, or particles in fluid) from video frames taken at certain rate



$x(t)$



$x(t + \Delta t)$



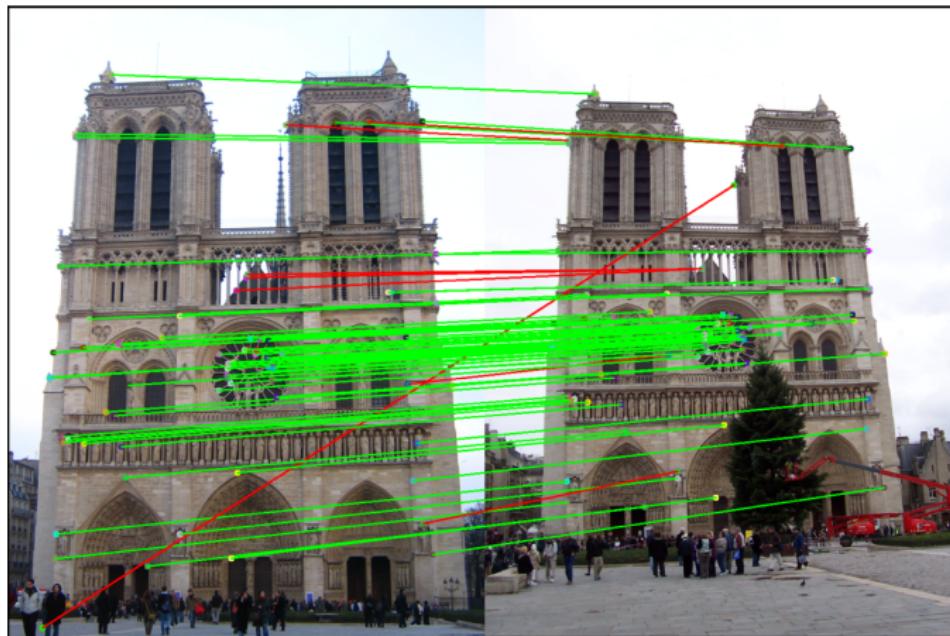
?

Picture courtesy of Gabriele Sicuro

Match objects in two consecutive frames based on their positional vectors; the noises are determined by the density and mobility of objects and the acquisition rate of frames [Chertkov-Kroc-Krzakala-Vergassola-Zdeborová '10, Semerjian-Sicuro-Zdeborová '20, Moharrami-Moore-X '21, Kunisky-Niels-Weed '21, Ding-Wu-X-Yang '23,...]

Applications: Feature matching

Align multi-views of objects to generate panoramic views or 3D models



Detect and match important features in two images [Szeliski '22]

The broken sample model

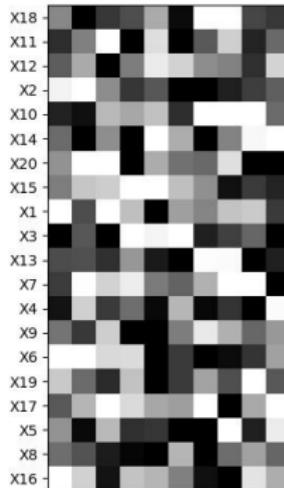
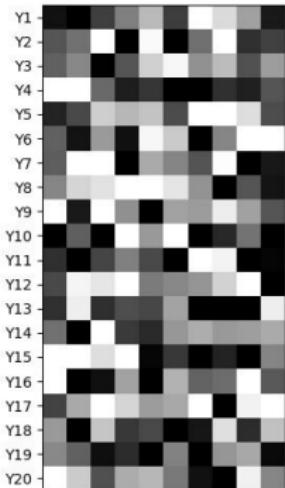
- π^* is a random uniform permutation on $[n]$

The broken sample model

- π^* is a random uniform permutation on $[n]$
- $(X_{\pi^*(i)}, Y_i) \stackrel{\text{i.i.d.}}{\sim} P_{X,Y}$ for $i \in [n]$

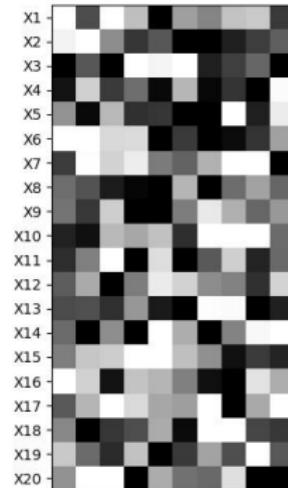
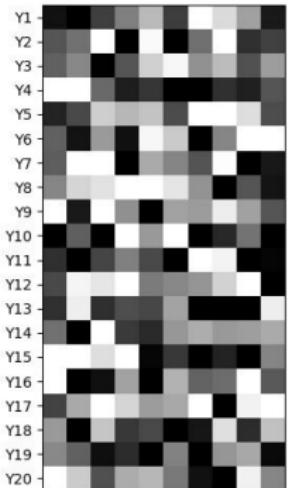
The broken sample model

- π^* is a random uniform permutation on $[n]$
- $(X_{\pi^*(i)}, Y_i) \stackrel{\text{i.i.d.}}{\sim} P_{X,Y}$ for $i \in [n]$



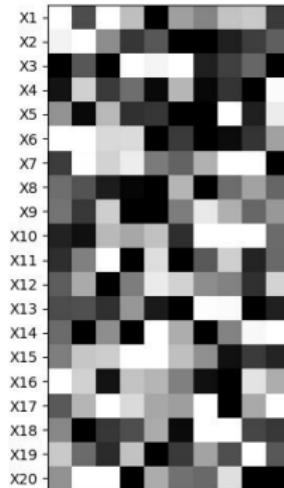
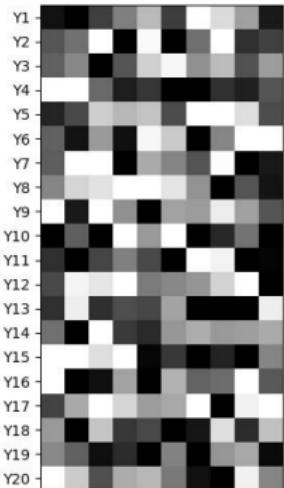
The broken sample model

- π^* is a random uniform permutation on $[n]$
- $(X_{\pi^*(i)}, Y_i) \stackrel{\text{i.i.d.}}{\sim} P_{X,Y}$ for $i \in [n]$
- Observe $(X_i)_{i=1}^n$ and $(Y_i)_{i=1}^n$



The broken sample model

- π^* is a random uniform permutation on $[n]$
- $(X_{\pi^*(i)}, Y_i) \stackrel{\text{i.i.d.}}{\sim} P_{X,Y}$ for $i \in [n]$
- Observe $(X_i)_{i=1}^n$ and $(Y_i)_{i=1}^n$



Goal:

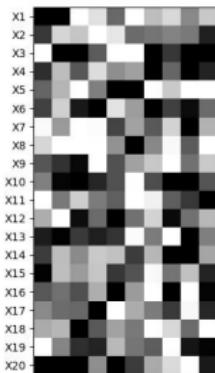
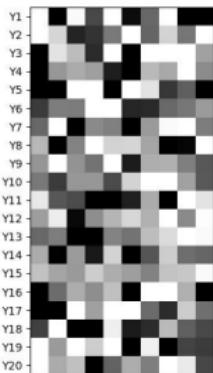
- Estimation: Recover π^* [Dai-Cullina-Kiyavash '19, '20, Kunisky-Niles-Weed '22, Wang-Wu-X-Yolou '22]
- Detection: Test correlated against independence model $(P_{X,Y} \text{ versus } P_X \otimes P_Y)$

Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

$$H_0 : (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, 0 \\ 0, 1 \end{bmatrix} \right)$$

$$H_1 : (X_{\pi^*(1)}, Y_1), \dots, (X_{\pi^*(n)}, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, \rho \\ \rho, 1 \end{bmatrix} \right)$$



H_0 or H_1 ?

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

$$H_0 : (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, 0 \\ 0, 1 \end{bmatrix} \right)$$

$$H_1 : (X_{\pi^*(1)}, Y_1), \dots, (X_{\pi^*(n)}, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, \rho \\ \rho, 1 \end{bmatrix} \right)$$

Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

$$H_0 : (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, 0 \\ 0, 1 \end{bmatrix} \right)$$

$$H_1 : (X_{\pi^*(1)}, Y_1), \dots, (X_{\pi^*(n)}, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, \rho \\ \rho, 1 \end{bmatrix} \right)$$

- Marginally, both X_i 's and Y_i 's are i.i.d. standard Gaussian random vectors in \mathbb{R}^d

Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

$$H_0 : (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, 0 \\ 0, 1 \end{bmatrix} \right)$$

$$H_1 : (X_{\pi^*(1)}, Y_1), \dots, (X_{\pi^*(n)}, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, \rho \\ \rho, 1 \end{bmatrix} \right)$$

- Marginally, both X_i 's and Y_i 's are i.i.d. standard Gaussian random vectors in \mathbb{R}^d
- The inherent correlation under H_1 is obscured by latent matching π^*

Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

$$H_0 : (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, 0 \\ 0, 1 \end{bmatrix} \right)$$

$$H_1 : (X_{\pi^*(1)}, Y_1), \dots, (X_{\pi^*(n)}, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, \rho \\ \rho, 1 \end{bmatrix} \right)$$

- Marginally, both X_i 's and Y_i 's are i.i.d. standard Gaussian random vectors in \mathbb{R}^d
- The inherent correlation under H_1 is obscured by latent matching π^*
- Tests need to be permutation invariant

Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

$$H_0 : (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, 0 \\ 0, 1 \end{bmatrix} \right)$$

$$H_1 : (X_{\pi^*(1)}, Y_1), \dots, (X_{\pi^*(n)}, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, \rho \\ \rho, 1 \end{bmatrix} \right)$$

- Marginally, both X_i 's and Y_i 's are i.i.d. standard Gaussian random vectors in \mathbb{R}^d
- The inherent correlation under H_1 is obscured by latent matching π^*
- Tests need to be permutation invariant
- What is the minimum ρ needed for achieving vanishing testing error as $n \rightarrow \infty$?

Example: Detecting correlated Gaussian databases

Definition (DeGroot-Feder-Goel '71, Bai-Hsing '05)

$$H_0 : (X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, 0 \\ 0, 1 \end{bmatrix} \right)$$

$$H_1 : (X_{\pi^*(1)}, Y_1), \dots, (X_{\pi^*(n)}, Y_n) \stackrel{\text{i.i.d.}}{\sim} N^{\otimes d} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1, \rho \\ \rho, 1 \end{bmatrix} \right)$$

- Marginally, both X_i 's and Y_i 's are i.i.d. standard Gaussian random vectors in \mathbb{R}^d
- The inherent correlation under H_1 is obscured by latent matching π^*
- Tests need to be permutation invariant
- What is the minimum ρ needed for achieving vanishing testing error as $n \rightarrow \infty$?
- Recent works consider high dimensions [\[Dai-Cullina-Kiyavash '19, '20, Kunisky-Niles-Weed '22, Wang-Wu-X-Yolou '22, K-Nazer '22, Elimelech-Huleihel '23\]](#)

- Optimal Type-I+II error equals $1 - \text{TV}(\mathbb{P}_0, \mathbb{P}_1)$, attained by LRT

$$L(\mathbf{X}, \mathbf{Y}) \triangleq \frac{\mathbb{P}_1(\mathbf{X}, \mathbf{Y})}{\mathbb{P}_0(\mathbf{X}, \mathbf{Y})} = \frac{1}{n!} \sum_{\pi \in S_n} \prod_{i=1}^n K(X_{\pi(i)}, Y_i),$$

where $K(x, y) = \frac{dP_{XY}}{dP_X \otimes dP_Y}(x, y)$.

This is hard to compute (equivalent to permanent) or to analyze.

- Optimal Type-I+II error equals $1 - \text{TV}(\mathbb{P}_0, \mathbb{P}_1)$, attained by LRT

$$L(\mathbf{X}, \mathbf{Y}) \triangleq \frac{\mathbb{P}_1(\mathbf{X}, \mathbf{Y})}{\mathbb{P}_0(\mathbf{X}, \mathbf{Y})} = \frac{1}{n!} \sum_{\pi \in S_n} \prod_{i=1}^n K(X_{\pi(i)}, Y_i),$$

where $K(x, y) = \frac{dP_{XY}}{dP_X \otimes dP_Y}(x, y)$.

This is hard to compute (equivalent to permanent) or to analyze.

- Our goal: **Strong detection**

$$\text{TV}(\mathbb{P}_0, \mathbb{P}_1) \rightarrow 1, \quad n \rightarrow \infty$$

- Optimal Type-I+II error equals $1 - \text{TV}(\mathbb{P}_0, \mathbb{P}_1)$, attained by LRT

$$L(\mathbf{X}, \mathbf{Y}) \triangleq \frac{\mathbb{P}_1(\mathbf{X}, \mathbf{Y})}{\mathbb{P}_0(\mathbf{X}, \mathbf{Y})} = \frac{1}{n!} \sum_{\pi \in S_n} \prod_{i=1}^n K(X_{\pi(i)}, Y_i),$$

where $K(x, y) = \frac{dP_{XY}}{dP_X \otimes dP_Y}(x, y)$.

This is hard to compute (equivalent to permanent) or to analyze.

- Our goal: **Strong detection**

$$\text{TV}(\mathbb{P}_0, \mathbb{P}_1) \rightarrow 1, \quad n \rightarrow \infty$$

- Key questions: What are the optimal detection thresholds? Can we achieve them in poly-time?

Two key quantities

- χ^2 -information:

$$I_{\chi^2}(X; Y) \triangleq \chi^2(P_{XY} \| P_X \otimes P_Y) = \text{var}_{P_X \otimes P_Y}[K(X, Y)],$$

where $K(x, y) = \frac{dP_{XY}}{dP_X \otimes dP_Y}(x, y)$.

Two key quantities

- χ^2 -information:

$$I_{\chi^2}(X; Y) \triangleq \chi^2(P_{XY} \| P_X \otimes P_Y) = \text{var}_{P_X \otimes P_Y}[K(X, Y)],$$

where $K(x, y) = \frac{dP_{XY}}{dP_X \otimes dP_Y}(x, y)$.

- Maximal correlation [Hirschfeld, Gebelein, Samanov, Rényi]:

$$\rho(X; Y) \triangleq \sup_{f,g} \{\text{corr}(f(X), g(Y))\}$$

Two key quantities

- χ^2 -information:

$$I_{\chi^2}(X;Y) \triangleq \chi^2(P_{XY} \| P_X \otimes P_Y) = \text{var}_{P_X \otimes P_Y}[K(X, Y)],$$

where $K(x, y) = \frac{dP_{XY}}{dP_X \otimes dP_Y}(x, y)$.

- Maximal correlation [Hirschfeld, Gebelein, Samanov, Rényi]:

$$\rho(X;Y) \triangleq \sup_{f,g} \{\text{corr}(f(X), g(Y))\}$$

- Interpretation: Define a linear operator K

$$(Kf)(x) \triangleq \mathbb{E}[f(Y)|X = x] = \int K(x, y) f(y) dP_Y(y).$$

Then $I_{\chi^2}(X;Y)$ is the squared HS norm of K and $\rho(X;Y)$ is the second largest singular value of K

Theorem

Fix $P_{X,Y}$. Strong detection is possible iff $I_{\chi^2}(X;Y) = \infty$ or $\rho(X;Y) = 1$.

Theorem

Fix $P_{X,Y}$. Strong detection is possible iff $I_{\chi^2}(X;Y) = \infty$ or $\rho(X;Y) = 1$.

Remarks

- Negative result shown by [\[Bai-Hsing '05\]](#), who also conjectured the positive result.
- Achievable, in theory, by computationally efficient tests in the sense that, for any ϵ , there exists an algorithm with run time $O_\epsilon(n)$ with test error $\leq \epsilon$.

Proof of impossibility

Goal: Assuming $I_{\chi^2}(X; Y) < \infty$ and $\rho(X; Y) < 1$, show that

$$\chi^2(\mathbb{P}_1 \parallel \mathbb{P}_0) + 1 = \mathbb{E}_0 [L^2(\mathbf{X}, \mathbf{Y})] = O(1).$$

Proof of impossibility

Goal: Assuming $I_{\chi^2}(X; Y) < \infty$ and $\rho(X; Y) < 1$, show that

$$\chi^2(\mathbb{P}_1 \parallel \mathbb{P}_0) + 1 = \mathbb{E}_0 [L^2(\mathbf{X}, \mathbf{Y})] = O(1).$$

- The operator $(Kf)(x) = \mathbb{E}[f(Y)|X = x]$ is Hilbert-Schmidt and admits a spectral decomposition (SVD):

$$K(x, y) = \sum_{k=0}^{\infty} \lambda_k \psi_k(x) \phi_k(y)$$

- ▶ $1 = \lambda_0 > \lambda_1 \geq \dots \geq 0$,
- ▶ $I_{\chi^2}(X; Y) = \sum_{k \geq 1} \lambda_k^2$, $\rho(X; Y) = \lambda_1$
- ▶ $\{\psi_k\}$ is an orthonormal basis for $L_2(P_X)$
- ▶ $\{\phi_k\}$ is an orthonormal basis for $L_2(P_Y)$.

Proof of impossibility

Goal: Assuming $I_{\chi^2}(X; Y) < \infty$ and $\rho(X; Y) < 1$, show that

$$\chi^2(\mathbb{P}_1 \parallel \mathbb{P}_0) + 1 = \mathbb{E}_0 [L^2(\mathbf{X}, \mathbf{Y})] = O(1).$$

- The operator $(Kf)(x) = \mathbb{E}[f(Y)|X = x]$ is Hilbert-Schmidt and admits a spectral decomposition (SVD):

$$K(x, y) = \sum_{k=0}^{\infty} \lambda_k \psi_k(x) \phi_k(y)$$

- ▶ $1 = \lambda_0 > \lambda_1 \geq \dots \geq 0$,
- ▶ $I_{\chi^2}(X; Y) = \sum_{k \geq 1} \lambda_k^2$, $\rho(X; Y) = \lambda_1$
- ▶ $\{\psi_k\}$ is an orthonormal basis for $L_2(P_X)$
- ▶ $\{\phi_k\}$ is an orthonormal basis for $L_2(P_Y)$.
- A beautiful argument of [\[Bai-Hsing '05\]](#) shows

$$\chi^2(\mathbb{P}_1 \parallel \mathbb{P}_0) + 1 \rightarrow \sum_{k \geq 1} \frac{1}{1 - \lambda_k^2}, \quad n \rightarrow \infty.$$

Goal: $\rho(X; Y) = 1$ or $I_{\chi^2}(X; Y) = \infty \implies$ strong detection. Instead of analyzing LRT, we construct explicit tests.

Goal: $\rho(X; Y) = 1$ or $I_{\chi^2}(X; Y) = \infty \implies$ strong detection. Instead of analyzing LRT, we construct explicit tests.

- Suppose $\rho(X; Y) = 1$. Then

$$T = \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_1(X_i) - \phi_1(Y_i) \rightarrow \begin{cases} N(0, 2) & \text{under } H_0 \\ \delta_0 & \text{under } H_1 \end{cases}$$

Goal: $\rho(X; Y) = 1$ or $I_{\chi^2}(X; Y) = \infty \implies$ strong detection. Instead of analyzing LRT, we construct explicit tests.

- Suppose $\rho(X; Y) = 1$. Then

$$T = \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_1(X_i) - \phi_1(Y_i) \rightarrow \begin{cases} N(0, 2) & \text{under } H_0 \\ \delta_0 & \text{under } H_1 \end{cases}$$

- Next, assume $I_{\chi^2}(X; Y) = \infty$.

- Observation: empirical distributions

$$\hat{P}_X = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \quad \hat{P}_Y = \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$$

are sufficient statistics

- Observation: **empirical distributions**

$$\hat{P}_X = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \quad \hat{P}_Y = \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$$

are sufficient statistics

- For real-valued data, the empirical CDFs have Gaussian fluctuations:

$$\hat{F}_X(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{X_i \leq t\} \approx F_X(t) + \frac{1}{\sqrt{n}} B_X(t)$$

$$\hat{F}_Y(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{Y_i \leq t\} \approx F_Y(t) + \frac{1}{\sqrt{n}} B_Y(t),$$

where (B_X, B_Y) are **independent** Brownian bridges under H_0 and **correlated** Brownian bridges under H_1

Sufficient statistics

- Observation: **empirical distributions**

$$\hat{P}_X = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \quad \hat{P}_Y = \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$$

are sufficient statistics

- For real-valued data, the empirical CDFs have Gaussian fluctuations:

$$\hat{F}_X(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{X_i \leq t\} \approx F_X(t) + \frac{1}{\sqrt{n}} B_X(t)$$

$$\hat{F}_Y(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{Y_i \leq t\} \approx F_Y(t) + \frac{1}{\sqrt{n}} B_Y(t),$$

where (B_X, B_Y) are **independent** Brownian bridges under H_0 and **correlated** Brownian bridges under H_1

- This motivates tests based on histograms [Ding-Ma-Wu-X '18]

- Variational representation of divergence [Gelfand-Yaglom-Perez '56]:

$$I_{\chi^2}(X; Y) = \sup I_{\chi^2}(X_{\mathcal{P}}; Y_{\mathcal{P}'})$$

with \sup taken over all **finite partitions** $\mathcal{P} = (A_1, \dots, A_m)$ and $\mathcal{P}' = (B_1, \dots, B_m)$ of X and Y spaces respectively, and $X_{\mathcal{P}}, Y_{\mathcal{P}'}$ are the quantized version.

- Since $I_{\chi^2}(X; Y) = \infty$, we fix a partition s.t. $I_{\chi^2}(X_{\mathcal{P}}; Y_{\mathcal{P}'}) \gg 1$.

- Centered histograms:

$$U = \left(\sqrt{\frac{1}{n}} \sum_{i=1}^n (\mathbf{1}\{X_i \in A_j\} - P_X(A_j)) \right)_{j=1,\dots,m},$$
$$V = \left(\sqrt{\frac{1}{n}} \sum_{i=1}^n (\mathbf{1}\{Y_i \in B_j\} - P_Y(B_j)) \right)_{j=1,\dots,m}$$

Test based on histograms

- Centered histograms:

$$U = \left(\sqrt{\frac{1}{n}} \sum_{i=1}^n (\mathbf{1}\{X_i \in A_j\} - P_X(A_j)) \right)_{j=1,\dots,m},$$
$$V = \left(\sqrt{\frac{1}{n}} \sum_{i=1}^n (\mathbf{1}\{Y_i \in B_j\} - P_Y(B_j)) \right)_{j=1,\dots,m}$$

- Gaussian limits: $(U, V) \xrightarrow{n \rightarrow \infty} N(0, \Sigma_i)$ under H_i , $i = 0, 1$, where

$$\Sigma_0 = \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix} \quad \Sigma_1 = \begin{bmatrix} * & ** \\ ** & * \end{bmatrix}$$

are simultaneously diagonalizable, with eigenvalues determined by singular values $\lambda_{k,m}$ of the discretized operator

Reduce to testing two Gaussians

Test $N(0, \Sigma_0)$ vs $N(0, \Sigma_1)$:

- Optimal test: **quadratic classifier (QDA)** $T = (u^\top, v^\top)(\Sigma_0^\dagger - \Sigma_1^\dagger) \begin{pmatrix} u \\ v \end{pmatrix}$

Test $N(0, \Sigma_0)$ vs $N(0, \Sigma_1)$:

- Optimal test: **quadratic classifier (QDA)** $T = (u^\top, v^\top)(\Sigma_0^\dagger - \Sigma_1^\dagger) \begin{pmatrix} u \\ v \end{pmatrix}$
- Optimal error satisfies a **dimension-free bound** [Hajék, 1958]:

$$1 - \text{TV} \lesssim \text{SKL}^{-1/4}$$

The **symmetric KL divergence** can be found to be

$$\text{SKL}(N(0, \Sigma_0), N(0, \Sigma_1)) = \sum_k \frac{\lambda_{k,m}^2}{1 - \lambda_{k,m}^2}$$

Test $N(0, \Sigma_0)$ vs $N(0, \Sigma_1)$:

- Optimal test: **quadratic classifier (QDA)** $T = (u^\top, v^\top)(\Sigma_0^\dagger - \Sigma_1^\dagger) \begin{pmatrix} u \\ v \end{pmatrix}$
- Optimal error satisfies a **dimension-free bound** [Hajék, 1958]:

$$1 - \text{TV} \lesssim \text{SKL}^{-1/4}$$

The **symmetric KL divergence** can be found to be

$$\text{SKL}(N(0, \Sigma_0), N(0, \Sigma_1)) = \sum_k \frac{\lambda_{k,m}^2}{1 - \lambda_{k,m}^2}$$

- By construction,
 $I_{\chi^2}(X_{\mathcal{P}}; Y_{\mathcal{P}'}) = \sum \lambda_{k,m}^2 \gg 1 \implies \text{SKL} \gg 1 \implies 1 - \text{TV} \ll 1.$

Theorem

Let P_{XY} be a general distribution which may depend on n . Under extra condition on $\mathbb{E}_0[K^3(X, Y)]$, strong detection is possible iff $I_{\chi^2}(X; Y) \rightarrow \infty$ or $\rho(X; Y) \rightarrow 1$.

Remarks

- Negative result applies the same argument of [\[Bai-Hsing '05\]](#)
- Positive results by analyzing non-asymptotical tests based on histograms or eigenfunctions.

Example: detecting correlated Gaussians

Consider $P_{X,Y} = N((\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}), (\begin{smallmatrix} 1 & \rho \\ \rho & 1 \end{smallmatrix}))^{\otimes d}$ and $K(x, y) = \frac{dP_{XY}}{dP_X \otimes dP_Y}(x, y)$

- K is Mehler kernel, diagonalized by Hermite polynomials:

$$K(x, y) = \prod_{j=1}^d \sum_{k=0}^{\infty} \rho^{2k} H_k(x_j) H_k(y_j)$$

- $I_{\chi^2}(X; Y) = (1 - \rho^2)^{-d}$ and $\rho(X; Y) = \rho$.

Example: detecting correlated Gaussians

Consider $P_{X,Y} = N((\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}), (\begin{smallmatrix} 1 & \rho \\ \rho & 1 \end{smallmatrix}))^{\otimes d}$ and $K(x, y) = \frac{dP_{XY}}{dP_X \otimes dP_Y}(x, y)$

- K is Mehler kernel, diagonalized by Hermite polynomials:

$$K(x, y) = \prod_{j=1}^d \sum_{k=0}^{\infty} \rho^{2k} H_k(x_j) H_k(y_j)$$

- $I_{\chi^2}(X; Y) = (1 - \rho^2)^{-d}$ and $\rho(X; Y) = \rho$.
- Strong detection is possible iff $(1 - \rho^2)^{-d} \rightarrow \infty$:
 - ▶ Low dimensions $d = O(1)$: $\rho^2 \rightarrow 1$ (near perfect correlation)
 - ▶ High dimensions $d \rightarrow \infty$: $\rho^2 d \rightarrow \infty$ (vanishing correlation works)

Example: detecting correlated Gaussians

Consider $P_{X,Y} = N((\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}), (\begin{smallmatrix} 1 & \rho \\ \rho & 1 \end{smallmatrix}))^{\otimes d}$ and $K(x, y) = \frac{dP_{XY}}{dP_X \otimes dP_Y}(x, y)$

- K is Mehler kernel, diagonalized by Hermite polynomials:

$$K(x, y) = \prod_{j=1}^d \sum_{k=0}^{\infty} \rho^{2k} H_k(x_j) H_k(y_j)$$

- $I_{\chi^2}(X; Y) = (1 - \rho^2)^{-d}$ and $\rho(X; Y) = \rho$.
- Strong detection is possible iff $(1 - \rho^2)^{-d} \rightarrow \infty$:
 - ▶ Low dimensions $d = O(1)$: $\rho^2 \rightarrow 1$ (near perfect correlation)
 - ▶ High dimensions $d \rightarrow \infty$: $\rho^2 d \rightarrow \infty$ (vanishing correlation works)
- This resolves the detection limit and improves over SOTA [K-Nazer '22, Elimelech-Huleihel '23]

	Possible	Impossible
$d \rightarrow \infty$	$\rho^2 = \omega(1/d)$	$\rho^2 < 1/d$
$d = O(1)$	$\rho^2 = 1 - o(n^{-\frac{2}{d-1}})$	$\rho^2 < \rho^*(d)$

Comparison with recovery

Gaussian	Threshold
Detection	$(1 - \rho^2)^{-d} \rightarrow \infty$

Comparison with recovery

Gaussian	Threshold
Detection	$(1 - \rho^2)^{-d} \rightarrow \infty$
Almost exact recovery	
Exact recovery	

Comparison with recovery

Gaussian	Threshold
Detection	$(1 - \rho^2)^{-d} \rightarrow \infty$
Almost exact recovery	$(1 - \rho^2)^{-d} \geq n^2$
Exact recovery	$(1 - \rho^2)^{-d} \geq n^4$

Comparison with recovery

Gaussian	Threshold
Detection	$(1 - \rho^2)^{-d} \rightarrow \infty$
Almost exact recovery	$(1 - \rho^2)^{-d} \geq n^2$
Exact recovery	$(1 - \rho^2)^{-d} \geq n^4$

- Exact and almost exact recovery of π^* are achieved by maximum likelihood [Dai-Cullina-Kiyavash '19,'20, Kunisky-Niles-Weed '22, Wang-Wu-X-Yolou '22]:

$$\min_{\pi} \sum_{i=1}^n \|X_{\pi(i)} - Y_i\|^2$$

Comparison with recovery

Gaussian	Threshold
Detection	$(1 - \rho^2)^{-d} \rightarrow \infty$
Almost exact recovery	$(1 - \rho^2)^{-d} \geq n^2$
Exact recovery	$(1 - \rho^2)^{-d} \geq n^4$

- Exact and almost exact recovery of π^* are achieved by maximum likelihood [Dai-Cullina-Kiyavash '19,'20, Kunisky-Niles-Weed '22, Wang-Wu-X-Yolou '22]:

$$\min_{\pi} \sum_{i=1}^n \|X_{\pi(i)} - Y_i\|^2$$

- ▶ This is a **linear assignment problem** and can be solved in poly-time!
- ▶ Optimal objective = squared Wasserstein-2 distance between empirical distributions of X_i 's and Y_i 's

Comparison with recovery

Gaussian	Threshold
Detection	$(1 - \rho^2)^{-d} \rightarrow \infty$
Almost exact recovery	$(1 - \rho^2)^{-d} \geq n^2$
Exact recovery	$(1 - \rho^2)^{-d} \geq n^4$

- Exact and almost exact recovery of π^* are achieved by maximum likelihood [Dai-Cullina-Kiyavash '19,'20, Kunisky-Niles-Weed '22, Wang-Wu-X-Yolou '22]:

$$\min_{\pi} \sum_{i=1}^n \|X_{\pi(i)} - Y_i\|^2$$

- ▶ This is a **linear assignment problem** and can be solved in poly-time!
- ▶ Optimal objective = squared Wasserstein-2 distance between empirical distributions of X_i 's and Y_i 's
- There is no theory for recovery for general distributions.

- Broken sample problems provide rich venues for theoretical study of statistical vs computational limits with many open problems
- They are deeply connected to assignment problems and optimal transport theory
- Many interesting variants (e.g., partially shuffled data) and connections: geometric matching, database alignment, particle tracking, uncoupled isotonic regression, ranking, data seriation
- Numerous applications in diverse fields

- Broken sample problems provide rich venues for theoretical study of statistical vs computational limits with many open problems
- They are deeply connected to assignment problems and optimal transport theory
- Many interesting variants (e.g., partially shuffled data) and connections: geometric matching, database alignment, particle tracking, uncoupled isotonic regression, ranking, data seriation
- Numerous applications in diverse fields

References

- Simiao Jiao, Yihong Wu, & Jiaming Xu. *The broken sample problem revisited: Proof of a conjecture by Bai-Hsing and high-dimensional extensions, Draft.*

Example: detecting correlated Gaussians

- Applying QDA to sample means is optimal:

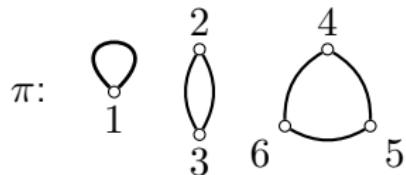
$$T = 2(1 - \rho)\langle \bar{X}, \bar{Y} \rangle - \rho\|\bar{X} - \bar{Y}\|_2^2$$

where $\bar{X} = \frac{1}{\sqrt{n}}(X_1 + \dots + X_n)$ and $\bar{Y} = \frac{1}{\sqrt{n}}(Y_1 + \dots + Y_n)$.

- Further simplification:
 - ▶ Low dimensions: $T = \|\bar{X} - \bar{Y}\|_2^2$.
 - ▶ High dimensions: $T = \langle \bar{X}, \bar{Y} \rangle$, previously considered by [\[K-Nazer '22\]](#)

Let N_ℓ denote the number of ℓ -cycles in the cycle decomposition of a random permutation π .

Example: $n = 6$ and $\pi = (1)(23)(456)$:



$$N_1 = 1, N_2 = 1, \text{ and } N_3 = 1$$

$$\begin{aligned} & \mathbb{E}_0 L^2(\mathbf{X}, \mathbf{Y}) \\ &= \mathbb{E}_{\pi, \mathbf{X}, \mathbf{Y}} \prod_{i=1}^n K(X_i, Y_i) K(X_i, Y_{\pi(i)}) \end{aligned}$$

$$\begin{aligned} & \mathbb{E}_0 L^2(\mathbf{X}, \mathbf{Y}) \\ &= \mathbb{E}_{\pi, \mathbf{X}, \mathbf{Y}} \prod_{i=1}^n K(X_i, Y_i) K(X_i, Y_{\pi(i)}) \\ &= \mathbb{E}_{\pi, \mathbf{X}, \mathbf{Y}} \prod_{i=1}^n \sum \lambda_k \psi_k(X_i) \phi_k(Y_i) \sum \lambda_k \psi_k(X_i) \phi_k(Y_{\pi(i)}) \end{aligned}$$

$$\begin{aligned} & \mathbb{E}_0 L^2(\mathbf{X}, \mathbf{Y}) \\ &= \mathbb{E}_{\pi, \mathbf{X}, \mathbf{Y}} \prod_{i=1}^n K(X_i, Y_i) K(X_i, Y_{\pi(i)}) \\ &= \mathbb{E}_{\pi, \mathbf{X}, \mathbf{Y}} \prod_{i=1}^n \sum \lambda_k \psi_k(X_i) \phi_k(Y_i) \sum \lambda_k \psi_k(X_i) \phi_k(Y_{\pi(i)}) \\ &= \mathbb{E}_{\pi, \mathbf{Y}} \prod_{i=1}^n \sum \lambda_k^2 \phi_k(Y_i) \phi_k(Y_{\pi(i)}) \quad \{\psi_k\} \text{ ON} \end{aligned}$$

$$\begin{aligned} & \mathbb{E}_0 L^2(\mathbf{X}, \mathbf{Y}) \\ &= \mathbb{E}_{\pi, \mathbf{X}, \mathbf{Y}} \prod_{i=1}^n K(X_i, Y_i) K(X_i, Y_{\pi(i)}) \\ &= \mathbb{E}_{\pi, \mathbf{X}, \mathbf{Y}} \prod_{i=1}^n \sum \lambda_k \psi_k(X_i) \phi_k(Y_i) \sum \lambda_k \psi_k(X_i) \phi_k(Y_{\pi(i)}) \\ &= \mathbb{E}_{\pi, \mathbf{Y}} \prod_{i=1}^n \sum \lambda_k^2 \phi_k(Y_i) \phi_k(Y_{\pi(i)}) \quad \{\psi_k\} \text{ ON} \\ &= \mathbb{E}_{\pi} \prod_{\ell=1}^n \left(\sum \lambda_k^{2\ell} \right)^{N_{\ell}} \quad \{\phi_k\} \text{ ON} \end{aligned}$$

$$\begin{aligned} & \mathbb{E}_0 L^2(\mathbf{X}, \mathbf{Y}) \\ &= \mathbb{E}_{\pi, \mathbf{X}, \mathbf{Y}} \prod_{i=1}^n K(X_i, Y_i) K(X_i, Y_{\pi(i)}) \\ &= \mathbb{E}_{\pi, \mathbf{X}, \mathbf{Y}} \prod_{i=1}^n \sum \lambda_k \psi_k(X_i) \phi_k(Y_i) \sum \lambda_k \psi_k(X_i) \phi_k(Y_{\pi(i)}) \\ &= \mathbb{E}_{\pi, \mathbf{Y}} \prod_{i=1}^n \sum \lambda_k^2 \phi_k(Y_i) \phi_k(Y_{\pi(i)}) & \{\psi_k\} \text{ ON} \\ &= \mathbb{E}_{\pi} \prod_{\ell=1}^n \left(\sum \lambda_k^{2\ell} \right)^{N_{\ell}} & \{\phi_k\} \text{ ON} \end{aligned}$$

To bound this we can apply **Poisson approximation**: $N_{\ell} \approx \text{Pois}(1/\ell)$

Let $f(z) = \prod_{k=0}^{\infty} (1 - z\lambda_k^2)^{-1}$ and $1 < r < 1/\lambda_1^2$:

Let $f(z) = \prod_{k=0}^{\infty} (1 - z\lambda_k^2)^{-1}$ and $1 < r < 1/\lambda_1^2$:

Let $f(z) = \prod_{k=0}^{\infty} (1 - z\lambda_k^2)^{-1}$ and $1 < r < 1/\lambda_1^2$:

$$\mathbb{E} \left[\prod_{\ell=1}^n \left(\sum_{k=0}^{\infty} \lambda_k^{2\ell} \right)^{N_{\ell}} \right] = [z^n] f(z) \text{ (n-th coefficient in power series)}$$

Let $f(z) = \prod_{k=0}^{\infty} (1 - z\lambda_k^2)^{-1}$ and $1 < r < 1/\lambda_1^2$:

$$\mathbb{E} \left[\prod_{\ell=1}^n \left(\sum_{k=0}^{\infty} \lambda_k^{2\ell} \right)^{N_{\ell}} \right] = [z^n] f(z) \quad (\text{n-th coefficient in power series})$$

$$(\text{Cauchy's integral thm}) = \frac{1}{2\pi i} \oint_{|z|=r} \frac{1}{z^{n+1}} f(z) dz - \lim_{z \rightarrow 1} (z-1) f(z)$$

Let $f(z) = \prod_{k=0}^{\infty} (1 - z\lambda_k^2)^{-1}$ and $1 < r < 1/\lambda_1^2$:

$$\mathbb{E} \left[\prod_{\ell=1}^n \left(\sum_{k=0}^{\infty} \lambda_k^{2\ell} \right)^{N_{\ell}} \right] = [z^n] f(z) \quad (\text{n-th coefficient in power series})$$

$$\begin{aligned} \text{(Cauchy's integral thm)} &= \frac{1}{2\pi\mathbf{i}} \oint_{|z|=r} \frac{1}{z^{n+1}} f(z) dz - \lim_{z \rightarrow 1} (z-1) f(z) \\ &= o(1) + \prod_{k=1}^{\infty} (1 - \lambda_k^2)^{-1}, \quad \text{as } n \rightarrow \infty \end{aligned}$$