Convexified Modularity Maximization for Degree-corrected Stochastic Block Models

Jiaming Xu

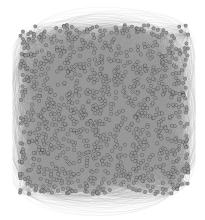
Simons Institute

Joint work with Yudong Chen (Cornell) and Xiaodong Li (UC Davis)

February 3, 2016

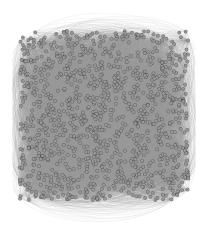
An example: Facebook friendship network

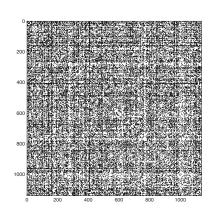
Simmons College network: 1137 students; 24257 undirected friend links [Traud-Mucha-Porter '12]



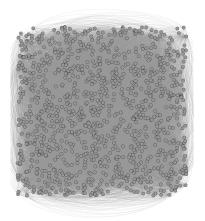
An example: Facebook friendship network

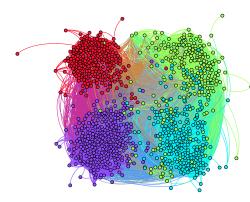
Simmons College network: 1137 students; 24257 undirected friend links [Traud-Mucha-Porter '12]



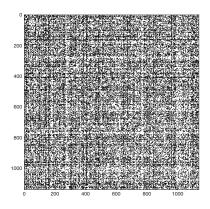


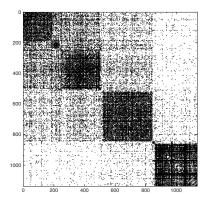
Apply our community detection algorithm



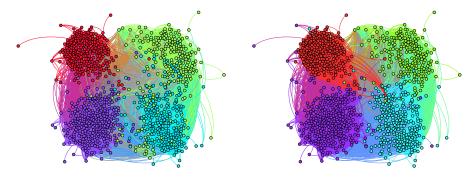


Sort adjacency matrix according to clustering result





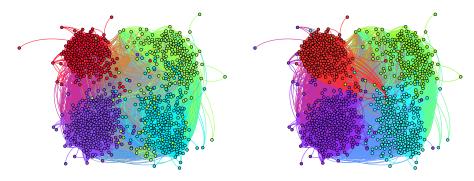
Clustering result has strong correlation with graduation year



Color: clustering result

Color: graduation year

Clustering result has strong correlation with graduation year

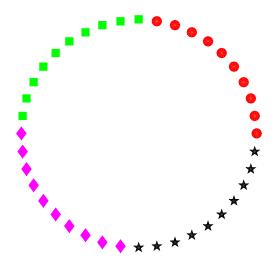


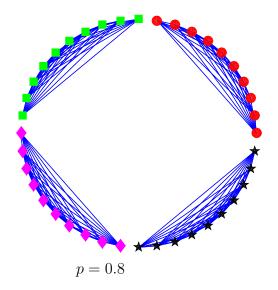
Color: clustering result Color: graduation year

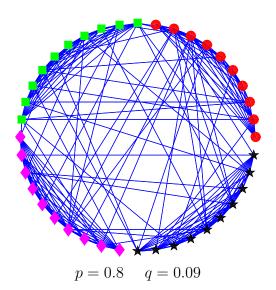
Our method misclassifies 12% of nodes SCORE [Jin '15] and Regularized Spectral [Zhang-Levina-Zhu '14] misclassify 24% of nodes

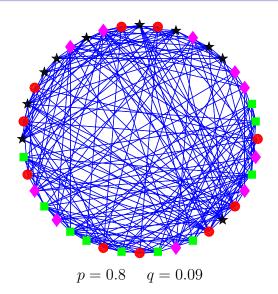
Outline of the talk

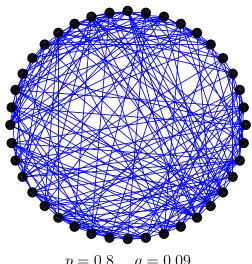
- Models and previous work
- Our algorithm
- 3 Theoretical guarantee
- 4 Empirical performance
- 6 Conclusions











$$p = 0.8$$
 $q = 0.09$

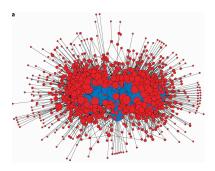
Main restriction of SBM

- All nodes in the same community are statistically equivalent
- Degrees are often highly inhomogeneous across nodes

Main restriction of SBM

- All nodes in the same community are statistically equivalent
- Degrees are often highly inhomogeneous across nodes

Political blog network [Adamic and Glance '05] [Karrer-Newman '11]: Max degree 351, mean degree 27

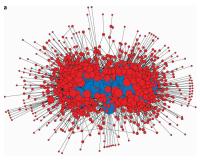


Fit SBM

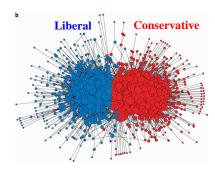
Main restriction of SBM

- All nodes in the same community are statistically equivalent
- Degrees are often highly inhomogeneous across nodes

Political blog network [Adamic and Glance '05] [Karrer-Newman '11]: Max degree 351, mean degree 27



Fit SBM



True partition

Degree-corrected SBM [Karrer-Newman '11] Extended PPM [Dasgupta-Hopcoft-McSherry '04]

Degree heterogeneity parameter $oldsymbol{ heta} = (heta_1, \dots, heta_n) \in \mathbb{R}^n_+$

- n nodes partitioned into k groups
- $i \sim j$ independently w.p. $\begin{cases} p \; \theta_i \theta_j & \text{if } i \text{ and } j \text{ in the same group} \\ q \; \theta_i \theta_j & \text{otherwise} \end{cases}$

Degree-corrected SBM [Karrer-Newman '11] Extended PPM [Dasgupta-Hopcoft-McSherry '04]

Degree heterogeneity parameter $oldsymbol{ heta} = (heta_1, \dots, heta_n) \in \mathbb{R}^n_+$

- ullet n nodes partitioned into k groups
- $i\sim j$ independently w.p. $\begin{cases} p~\theta_i\theta_j & \text{if } i \text{ and } j \text{ in the same group} \\ q~\theta_i\theta_j & \text{otherwise} \end{cases}$

Main challenges

- θ is unknown
- $\theta_{\min} = \min_{1 \le i \le n} \theta_i$ could be small

Existing community detection algorithms for DCSBM

Likelihood or modularity maximization

Spectral methods

Existing community detection algorithms for DCSBM

- Likelihood or modularity maximization
 - Statistically efficient
 [Zhao-Levia-Zhu '12] [Amini-Chen-Bickel-Levina '13]
 - ► Computationally intractable
 - Efficient algorithms in restricted settings
 [Amini-Chen-Bickel-Levina '13] [Le-Levia-Vershynin '15]
- Spectral methods

Existing community detection algorithms for DCSBM

- Likelihood or modularity maximization
 - Statistically efficient
 [Zhao-Levia-Zhu '12] [Amini-Chen-Bickel-Levina '13]
 - ► Computationally intractable
 - Efficient algorithms in restricted settings
 [Amini-Chen-Bickel-Levina '13] [Le-Levia-Vershynin '15]
- Spectral methods
 - Statistically efficient
 [Qin-Rohe '13] [Jin '15] [Lei-Rinaldo '15]...
 - ► Computationally efficient
 - Inconsistent in sparse graphs [Krzakala et al. '13]
 - Sensitive to outliers [Cai-Li '15]

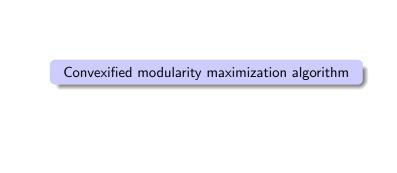
SDP relaxations of MLE under SBM

- Optimal recovery [Hajek-Wu-X. '14], [Bandeira '15]...
- Robust to adversaries [Feige-Kilian '01] [Cai-Li '15]
- Consistent in sparse graphs
 [Guedon-Vershynin '15] [Sen-Montanari '15]
- Computationally efficient [Javanmard-Montanari-Ricci-Tersenghi '15]

SDP relaxations of MLE under SBM

- Optimal recovery [Hajek-Wu-X. '14], [Bandeira '15]...
- Robust to adversaries [Feige-Kilian '01] [Cai-Li '15]
- Consistent in sparse graphs
 [Guedon-Vershynin '15] [Sen-Montanari '15]
- Computationally efficient [Javanmard-Montanari-Ricci-Tersenghi '15]

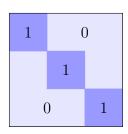
Does SDP relaxation also work well under DCSBM?



Modularity maximization

 Modularity maximization (close to MLE under DCSBM) [Newman '06]

$$\max_{\mathbf{Y}} \sum_{1 \le i, j \le n} \left(A_{ij} - \frac{d_i d_j}{\sum_i d_i} \right) Y_{ij}$$



Modularity maximization

 Modularity maximization (close to MLE under DCSBM) [Newman '06]

$$\max_{\mathbf{Y}} \sum_{1 \le i, j \le n} \left(A_{ij} - \frac{d_i d_j}{\sum_i d_i} \right) Y_{ij}$$

A problem: fails to identify small communities

Modularity maximization

 Modularity maximization (close to MLE under DCSBM) [Newman '06]

$$\max_{\mathbf{Y}} \sum_{1 \le i, j \le n} \left(A_{ij} - \frac{d_i d_j}{\sum_i d_i} \right) Y_{ij}$$

A problem: fails to identify small communities

 Generalized modularity maximization [Reichartd-Bornholdt '06] [Lancichinetti-Fortunato '11]:

$$\max_{\mathbf{Y}} \sum_{1 \leq i, j \leq n} \left(A_{ij} - \frac{\lambda}{\lambda} d_i d_j \right) Y_{ij}$$

SDP relaxations of modularity maximization

Generalized modularity maximization

$$\max_{\mathbf{Y}} \sum_{1 \le i, j \le n} \left(A_{ij} - \frac{\lambda}{\lambda} d_i d_j \right) Y_{ij}$$

SDP relaxations of modularity maximization

Generalized modularity maximization

$$\max_{\mathbf{Y}} \sum_{1 \le i, j \le n} \left(A_{ij} - \frac{\lambda}{\lambda} d_i d_j \right) Y_{ij}$$

SDP relaxations

Weighted k-median clustering

Step 1: Defined weighted feature vectors

$$\widehat{m{W}} = \widehat{m{Y}} \mathsf{diag}\left\{m{d}
ight\}$$

Step 2: Clustering rows of $\widehat{\boldsymbol{W}}$:

$$\min \ \sum_{1 \leq \ell \leq k} \sum_{i \in C_\ell} \frac{d_i}{\|\widehat{\boldsymbol{W}}_{i \bullet} - \boldsymbol{x}_{\boldsymbol{\ell}}\|_1}$$

s.t.
$$oldsymbol{x}_{oldsymbol{\ell}} \subseteq \mathsf{Rows}(\widehat{oldsymbol{W}})$$

Weighted k-median clustering

Step 1: Defined weighted feature vectors

$$\widehat{m{W}} = \widehat{m{Y}} \mathsf{diag}\left\{m{d}
ight\}$$

Step 2: Clustering rows of $\widehat{\boldsymbol{W}}$:

$$\begin{split} &\min \ \sum_{1 \leq \ell \leq k} \sum_{i \in C_\ell} \frac{d_i}{\|\widehat{\boldsymbol{W}}_{i \bullet} - \boldsymbol{x}_\ell\|_1} \\ &\text{s.t.} \ \boldsymbol{x}_\ell \subseteq \mathsf{Rows}(\widehat{\boldsymbol{W}}) \end{split}$$

Remarks

- New feature: weighing by degrees
- Exists polynomial-time $\frac{20}{3}$ -factor approximation algorithm [Charikar-Guha-Tardos-Shmoys '99]

Theoretical guarantee

Focus on DCSBM with $\sum_{i \in C_\ell^*} \theta_i \equiv g$

Why we expect SDP to work?

SDP shall succeed if no noise

$$oldsymbol{Y}^* = rg \max \ \left\langle oldsymbol{Y}, \mathbb{E}\left[oldsymbol{A}
ight] - \lambda \mathbb{E}\left[oldsymbol{d}
ight] \mathbb{E}\left[oldsymbol{d}
ight]^{ op}$$
s.t. SDP constraints

Why we expect SDP to work?

SDP shall succeed if no noise

$$Y^* = \arg \max \langle Y, \mathbb{E}[A] - \lambda \mathbb{E}[d] \mathbb{E}[d]^\top \rangle$$

s.t. SDP constraints

Density gap condition

$$\frac{p+3q}{4} \le \lambda \cdot c < \frac{3p+q}{4}$$
$$c = [p+(k-1)q]^2 g^2$$

Why we expect SDP to work?

SDP shall succeed if no noise

$$\mathbf{Y}^* = \arg\max \ \langle \mathbf{Y}, \mathbb{E} \left[\mathbf{A} \right] - \lambda \mathbb{E} \left[\mathbf{d} \right] \mathbb{E} \left[\mathbf{d} \right]^{\top} \rangle$$

s.t. SDP constraints

Density gap condition

$$\frac{p+3q}{4} \le \lambda \cdot c < \frac{3p+q}{4}$$
$$c = [p+(k-1)q]^2 q^2$$

Signal-noise decomposition

$$\langle \boldsymbol{Y} - \boldsymbol{Y^*}, \boldsymbol{A} - \lambda \boldsymbol{dd}^\top \rangle = \langle \boldsymbol{Y} - \boldsymbol{Y^*}, \mathbb{E}\left[\boldsymbol{A}\right] - \lambda \mathbb{E}\left[\boldsymbol{d}\right] \mathbb{E}\left[\boldsymbol{d}\right]^\top \rangle \ + \ \mathsf{noise} \ \mathsf{part}$$

Approximate and exact recovery

Assume the *density gap condition* holds

Theorem (Approximate recovery)

Let S denotes the set of misclassified nodes.

$$\frac{1}{kg} \sum_{i \in S} \theta_i \lesssim \frac{n/g + k\sqrt{np}}{(p - q)g}$$

Approximate and exact recovery

Assume the density gap condition holds

Theorem (Approximate recovery)

Let S denotes the set of misclassified nodes.

$$\frac{1}{kg} \sum_{i \in S} \theta_i \lesssim \frac{n/g + k\sqrt{np}}{(p - q)g}$$

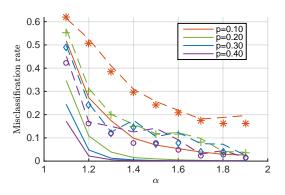
Theorem (Exact recovery)

With high probability $\widehat{Y} = Y^*$, if

$$(p-q)g \gtrsim \sqrt{nq} + \sqrt{rac{pg\log n}{ heta_{\min}}}$$

Experiment on synthetic networks

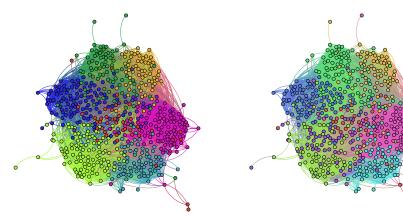
Setup: $\theta_i \overset{\text{i.i.d.}}{\sim}$ power law with exponent α



$$k=4 \ \mathrm{and} \ q=0.3p$$

CMM with $\lambda = 1/\sum_i d_i$ (Solid) SCORE [Jin '15] (Dashed) Regularized Spectral [Zhang-Levina-Zhu '14] (Markers)

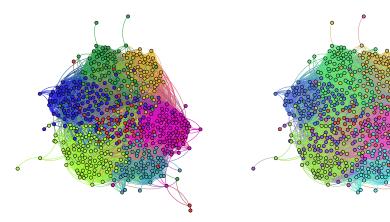
Experiment on Caltech friendship network



Color: clustering result of CMM

Color: Dorm partition

Experiment on Caltech friendship network



Color: clustering result of CMM

Color: Dorm partition

	CMM	SCORE	ReguarlizedSpectral
mis. frac.	21%	31%	32%

Conclusion

Convexified modularity maximization

- Statistically and computationally efficient
- Provably works well even in sparse graphs
- Good empirical performance

Conclusion

Convexified modularity maximization

- Statistically and computationally efficient
- Provably works well even in sparse graphs
- Good empirical performance

Reference

Yudong Chen, Xiaodong Li, and Jiaming Xu, Convexified modularity maximization for degree-corrected stochastic block models. arXiv:1512.08425, Dec. 2015

Code

Available at http://people.orie.cornell.edu/yudong.chen/cmm