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An example: Facebook friendship network

Simmons College network: 1137 students; 24257 undirected friend links
[Traud-Mucha-Porter '12]
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Apply our community detection algorithm

Xu (Simons Insti



Sort adjacency matrix according to clustering result
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Clustering result has strong correlation with graduation year

Color: clustering result Color: graduation year




Clustering result has strong correlation with graduation year

Color: clustering result Color: graduation year

Our method misclassifies 12% of nodes
SCORE [Jin '15] and Regularized Spectral [Zhang-Levina-Zhu '14]
misclassify 24% of nodes
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Outline of the talk

® Models and previous work
® Our algorithm

© Theoretical guarantee

O Empirical performance

©® Conclusions
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Stochastic block model [Holland-Laskey-Leinhardt '83]
Planted partition model [Condon-Karp 01']
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Stochastic block model [Holland-Laskey-Leinhardt '83]

Planted partition model [Condon-Karp 01']
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Stochastic block model [Holland-Laskey-Leinhardt '83]

Planted partition model [Condon-Karp 01']
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Main restriction of SBM

e All nodes in the same community are statistically equivalent

e Degrees are often highly inhomogeneous across nodes
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Main restriction of SBM

e All nodes in the same community are statistically equivalent

e Degrees are often highly inhomogeneous across nodes

Political blog network [Adamic and Glance '05] [Karrer-Newman '11]:
Max degree 351, mean degree 27

Fit SBM
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Main restriction of SBM

e All nodes in the same community are statistically equivalent

e Degrees are often highly inhomogeneous across nodes

Political blog network [Adamic and Glance '05] [Karrer-Newman '11]:
Max degree 351, mean degree 27

Fit SBM True partition
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Degree-corrected SBM [Karrer-Newman '11]

Extended PPM [Dasgupta-Hopcoft-McSherry '04]

Degree heterogeneity parameter 8 = (6;,...,6,) € R}
e n nodes partitioned into k£ groups
p 0;0; ifiand jin the same group

e i ~ j independently w.p.
g P Y {q 0;0; otherwise
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Degree-corrected SBM [Karrer-Newman '11]

Extended PPM [Dasgupta-Hopcoft-McSherry '04]

Degree heterogeneity parameter 8 = (6;,...,6,) € R}
e n nodes partitioned into k groups
. p 0;0; ifiand jin the same group
e i ~ j independently w.p. )
q 0;0; otherwise

Main challenges

e @ is unknown

° Hmin = minlgign 01 could be small
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Existing community detection algorithms for DCSBM

e Likelihood or modularity maximization

e Spectral methods
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Existing community detection algorithms for DCSBM

e Likelihood or modularity maximization

> @ Statistically efficient
[Zhao-Levia-Zhu '12] [Amini-Chen-Bickel-Levina '13]

> Computationally intractable

> @ Efficient algorithms in restricted settings
[Amini-Chen-Bickel-Levina '13] [Le-Levia-Vershynin '15]

e Spectral methods
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Existing community detection algorithms for DCSBM

e Likelihood or modularity maximization

> @ Statistically efficient
[Zhao-Levia-Zhu '12] [Amini-Chen-Bickel-Levina '13]

> Computationally intractable

> @ Efficient algorithms in restricted settings
[Amini-Chen-Bickel-Levina '13] [Le-Levia-Vershynin '15]

e Spectral methods

> @ Statistically efficient
[Qin-Rohe "13] [Jin '15] [Lei-Rinaldo '15]...

> Computationally efficient
> @ Inconsistent in sparse graphs [Krzakala et al. '13]
> @ Sensitive to outliers [Cai-Li '15]
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SDP relaxations of MLE under SBM

o @ Optimal recovery [Hajek-Wu-X. '14], [Bandeira '15]...
° @ Robust to adversaries [Feige-Kilian '01] [Cai-Li '15]

° @ Consistent in sparse graphs
[Guedon-Vershynin '15] [Sen-Montanari '15]

° @ Computationally efficient [Javanmard-Montanari-Ricci- Tersenghi '15]
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SDP relaxations of MLE under SBM

o @ Optimal recovery [Hajek-Wu-X. '14], [Bandeira '15]...
° @ Robust to adversaries [Feige-Kilian '01] [Cai-Li '15]

° @ Consistent in sparse graphs
[Guedon-Vershynin '15] [Sen-Montanari '15]

° @ Computationally efficient [Javanmard-Montanari-Ricci- Tersenghi '15]

Does SDP relaxation also work well under DCSBM? )

Jiaming Xu (Simons Institute) Convexified Modularity Maximization for DCSBM



Convexified modularity maximization algorithm )i




Modularity maximization

e Modularity maximization (close to MLE under DCSBM)

[Newman '06]
d;d;
II}?X E (Alj — 722_ (711> Y;'j
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Modularity maximization

e Modularity maximization (close to MLE under DCSBM)

[Newman '06]
d;d;

max (Az] — ) Y;'j
Y 1lij<n 2. di

A problem: fails to identify small communities
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Modularity maximization

e Modularity maximization (close to MLE under DCSBM)

[Newman '06]
d;d;

max (Az] — > Y;'j
Y 1lij<n 2. di

A problem: fails to identify small communities

e Generalized modularity maximization
[Reichartd-Bornholdt '06] [Lancichinetti-Fortunato '11]:

Aij — Ndid;) Yij
max D> (A — Adidy) Yy,

1<i,j<n
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SDP relaxations of modularity maximization

Generalized modularity maximization

Jiaming Xu (Simons Institute) Convexified Modularity Maximization for DCSBM



SDP relaxations of modularity maximization

Generalized modularity maximization

SDP relaxations

max (Y, A—\dd")

st. Y =0
Yi,=1 lE[n]
o<y <J
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Weighted k-median clustering

Step 1: Defined weighted feature vectors
W = Ydiag {d}
Step 2: Clustering rows of W
min Y Y dil|Wie — zelh
1<t<ki€Cy

—

s.t. xy C Rows(W)
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Weighted k-median clustering

Step 1: Defined weighted feature vectors
W = Ydiag {d}

Step 2: Clustering rows of W

min Y Y di|[Wie — el
1<t<ki€Cy
sit. xp C Rows(ﬁ\f)
Remarks
e New feature: weighing by degrees

e Exists polynomial-time %—factor approximation algorithm
[Charikar-Guha-Tardos-Shmoys '99]
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Theoretical guarantee

Focus on DCSBM with Ziec,; 0;=g



Why we expect SDP to work?

SDP shall succeed if no noise

Y* = argmax (Y,E[A] — AE[d]E[d]")
s.t. SDP constraints
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Why we expect SDP to work?

SDP shall succeed if no noise Density gap condition

P+ 3q 3p+q
4
c=[p+ (k—1)q*g?

<lc<

Y* = argmax (Y,E[A] — AE[d]E[d]")
s.t. SDP constraints
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Why we expect SDP to work?

SDP shall succeed if no noise Density gap condition

P+ 3q 3p+q
4
c=[p+ (k—1)q*g?

Y* = argmax (Y,E[A] — AE[d]E[d]")
s.t. SDP constraints

<lc<

Signal-noise decomposition

(Y —Y* A-Mdd")=(Y —~Y* E[A] - AE[d]E[d]") + noise part
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Approximate and exact recovery

Assume the density gap condition holds

Theorem (Approximate recovery)

Let S denotes the set of misclassified nodes.

—Z ZNn/g—i—k:\/_

913 (P —q)g
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Approximate and exact recovery

Assume the density gap condition holds

Theorem (Approximate recovery)

Let S denotes the set of misclassified nodes.

—Z ZNn/g—i—k:\/_

9= (p—a)g

Theorem (Exact recovery)

With high probability Y = Y*, if

pglogn

(p—a)g 2 vng+

Gmin
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Experiment on synthetic networks

ii.d. .
Setup: 6;"=" power law with exponent «
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k=4and ¢=0.3p

CMM with A =1/, d; (Solid)
SCORE [Jin '15] (Dashed)
Regularized Spectral [Zhang-Levina-Zhu '14] (Markers)
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Experiment on Caltech friendship network
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Color: clustering result of CMM Color: Dorm partition

CMM | SCORE | ReguarlizedSpectral
mis. frac. | 21% 31% 32%

ization fol



Conclusion

Convexified modularity maximization
o @ Statistically and computationally efficient
° @ Provably works well even in sparse graphs

° @ Good empirical performance
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Conclusion

Convexified modularity maximization
o @ Statistically and computationally efficient
° @ Provably works well even in sparse graphs

° @ Good empirical performance
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