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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)
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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)

Noiseless case: reduce to graph isomoprhism
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Application 1: Network de-anonymization

Linked [ £
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Application 1: Network de-anonymization

Linked [ £

e Successfully de-anonymize Netflix by matching it to IMDB
[Narayanan-Shmatikov '08]

e Correctly identify 30.8% of node pairings between Twitter and Flickr
[Narayanan-Shmatikov '09]
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Application 2: Protein-protein

interaction network
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Human network

Mouse network

[Kazemi-Hassani-Grossglauser-Modarres '16]

Ontology: Discover proteins with similar functions across different
species based on interaction network topology

Jiaming Xu (Duke)
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Application 3: Computer vision

()

objects — graphs (features — nodes, distances — edges)
match objects by matching graphs

A fundamental problem in computer vision with applications in 3D

reconstruction, object tracking, shape matching, image classification,
autonomous driving, ...
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Two key challenges

e Statistical: two graphs may not be the same
e Computational: # of possible node mappings is n! (100! ~ 10'%)
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Beyond computational intractability

e NP-hard for matching two general graphs

e However, real networks are not arbitrary and have latent structures
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Beyond computational intractability

e NP-hard for matching two general graphs

e However, real networks are not arbitrary and have latent structures

Focus of this talk
Statistical models for graph matching: correlated random graphs

e Focus on correlated Erdés-Rényi graphs model [Pedarsani-Grossglauser '11]

e Performance of our algorithm is proven to be universal
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Correlated Erd6s-Rényi graphs model
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Correlated Erdos-Rényi graphs model
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Correlated Erdos-Rényi graphs model

G'1 and G differ by a fraction 0 £ 1—sof edges, under the correct node
mapping
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Prior results: Information-theoretic limits

q: edge probability d =1 — s: fraction of errors (differed edges)

Theorem (Cullina-Kiyavash '18)

For ¢ < 1/2, exact recovery of m* is information-theoretically possible if
and only if
ngs —logn — +oo

Interpretation: Intersection graph G1 A G5 ~ G(n, ¢s) is connected
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Prior results: Information-theoretic limits

q: edge probability d =1 — s: fraction of errors (differed edges)

Theorem (Cullina-Kiyavash '18)

For ¢ < 1/2, exact recovery of m* is information-theoretically possible if
and only if
ngs —logn — +oo

Interpretation: Intersection graph G1 A G5 ~ G(n, ¢s) is connected

Computationally:

e Noiseless s = 1(6 = 0): optimal condition is attained in linear-time
[Bollobés '82, Czajka-Pandurangan '08]

e Noisy case s < 1(0 > 0): little is known for efficient algorithms
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Main result

q: edge probability d =1 — s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. '19)

Exact recovery is achieved efficiently by a new spectral method whp if

ng > (logn)*®*¢  and 4§ < (logn)~ 9

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability d =1 — s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. '19)

Exact recovery is achieved efficiently by a new spectral method whp if

ng > (logn)*®*¢  and 4§ < (logn)~ 9

e Dense graphs ¢ = ©(1): improvement to § < (log n)_(4+€)

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability d =1 — s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. '19)

Exact recovery is achieved efficiently by a new spectral method whp if

ng > (logn)*®*¢  and 4§ < (logn)~ 9

e Dense graphs ¢ = ©(1): improvement to § < (log n)_(4+€)

e Previous spectral methods require § < n~(1)

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability d =1 — s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. '19)

Exact recovery is achieved efficiently by a new spectral method whp if

ng > (logn)*®*¢  and 4§ < (logn)~ 9

e Dense graphs ¢ = ©(1): improvement to § < (log n)_(4+€)

e Previous spectral methods require § < n~(1)

e Match the best known guarantee for polynomial-time algorithms
[Ding-Ma-Wu-X.'18] (using degree profile)

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability d =1 — s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. '19)

Exact recovery is achieved efficiently by a new spectral method whp if

ng > (logn)*®*¢  and 4§ < (logn)~ 9

e Dense graphs ¢ = ©(1): improvement to § < (log n)_(4+€)

e Previous spectral methods require § < n~(1)

e Match the best known guarantee for polynomial-time algorithms
[Ding-Ma-Wu-X.'18] (using degree profile)

e 1'°2" time algorithm [Barak-Chou-Lei-Schramm-Sheng '18] for nq > n¢ and
constant  (using rare small subgraphs)

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability d =1 — s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. '19)

Exact recovery is achieved efficiently by a new spectral method whp if

ng > (logn)*®*¢  and 4§ < (logn)~ 9

e Dense graphs ¢ = ©(1): improvement to § < (log n)_(4+€)

e Previous spectral methods require § < n~(1)

e Match the best known guarantee for polynomial-time algorithms
[Ding-Ma-Wu-X.'18] (using degree profile)

e 1'°2" time algorithm [Barak-Chou-Lei-Schramm-Sheng '18] for nq > n¢ and
constant  (using rare small subgraphs)

e Polynomial-time recovery for constant § is open
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@ A new spectral algorithm
® Analysis of our algorithm
© Experimental results

® Concluding remarks
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Spectral methods and applications

Estimate hidden structure using leading eigenvectors of data matrix A

e Planted clique [Alon-Krivelevich-Sudakov "98]
e Planted partition/Stochastic block model [Mcsherry '98] [Massoulié '13]

[Bordenave-Lelarge-Massoulié '15]
o Clustering [von-Luxburg-Bousquet-Belkin '05]
e Graphon estimation [Chatterjee '15]
e Matrix completion [Keshavan-Montanari-Oh '09]

e Ranking [Negahban-Oh-Shah '17]
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Spectral methods and applications

Estimate hidden structure using leading eigenvectors of data matrix A

e Planted clique [Alon-Krivelevich-Sudakov "98]
e Planted partition/Stochastic block model [Mcsherry '98] [Massoulié '13]

[Bordenave-Lelarge-Massoulié '15]
o Clustering [von-Luxburg-Bousquet-Belkin '05]
e Graphon estimation [Chatterjee '15]
e Matrix completion [Keshavan-Montanari-Oh '09]

e Ranking [Negahban-Oh-Shah '17]

Common rationale: A is approximately low-rank with large eigen-gap
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Analyzing spectral methods: an example

Planted partition: 4 = + A —E[4]
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Analyzing spectral methods: an example

Planted partition: 4 = + A —E[4]

— semi-circle law

e Davis-Kahan and variants: Leading eigenvectors of A & those of E [4],
if eigen-gap 2 [|[A —E[A] [

e However, adjacency matrix of Erdés-Rényi graph has full rank and
vanishing eigen-gaps
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Spectral graph matching paradigm

n
— y ey T
B = E HjU;V;
j=1

@ Construct a similarity matrix X based on (X;, u;) and (5, v;)
® Project X to permutation by linear assignment: Il e arg max (X, IT)
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Failure of previous spectral methods

Low-rank methods: Aligning the leading eigenvectors

X =suv, s € {£1}

Similar ideas used in IsoRank [Singh-Xu-Berger '08] and EigenAlign
[Feizi-Quon-Mendoza-Medard-Kellis- Jadbabaie '19]

Full-rank methods: [Umeyama '88]

n
X = ZSiUz’U;, s; € {£1}
i=1

All perform well with no noise, but are extremely fragile with noise

A and B have full rank and vanishing eigen-gaps = decorrelation of
U; and V;

Jiaming Xu (Duke) Spectral Graph Matching 15



Eigenvector correlation decay

I[somorphic Erdés-Rényi graphs: 500 vertices, edge probability %
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Eigenvector correlation decay

Erdés-Rényi graphs with 6 = 0.1% differed edges
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Eigenvector correlation decay

Erdés-Rényi graphs with 6 = 0.5% differed edges
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Eigenvector correlation decay

Erdés-Rényi graphs with § = 1% differed edges
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Eigenvector correlation decay

Erdés-Rényi graphs with § = 3% differed edges
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Eigenvector correlation decay

Erdés-Rényi graphs with § = 5% differed edges
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A new spectral method: GRAMPA

GRAph Matching by Pairwise eigen-Alignments:

n
X = " X wiu, Jvjvl
(i — 115)% + 7 —
i1 . n —_—
’ —_— “Alignment” between u; and v;
Cauchy kernel applied to A; and p;

Here 7 is a regularization parameter, and J the all-one matrix
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A new spectral method: GRAMPA

GRAph Matching by Pairwise eigen-Alignments:

n
X = " X wiu, Jvjvl
(i — 115)% + 7 —
i1 . n —_—
’ —_— “Alignment” between u; and v;
Cauchy kernel applied to A; and p;

Here 7 is a regularization parameter, and J the all-one matrix

e All pairs matter: Cauchy weight kernel is inspired by the eigenvector
correlation decay [Bourgade-Yau '17], [Benigni '17]:

0
(i — )2 + O

n-E [(u;,v;)?] ~

e Unlike previous spectral methods, GRAMPA is invariant to the choices of
signs for u; and v;
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GRAMPA as regularized quadratic programming relaxation

e Graph matching as a quadratic assignment problem (QAP):

arg mip |4~ BT [} = arg min || AT - B[}
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GRAMPA as regularized quadratic programming relaxation

e Graph matching as a quadratic assignment problem (QAP):
in |A—TIBII"||%2 = in || AII — I1B||?
arg min | I = arg min | |7

e A popular quadratic programming relaxation [Zaslavskiy-Bach-Vert '09],
[Aflalo-Bronstein-Kimmel '15], [Lyzinski-Fishkind-Fiori-Vogelstein-Priebe-Sapiro '15]

e min lAX - XB|% (QP-DS)
X>0: X1=1, X T1=1
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GRAMPA as regularized quadratic programming relaxation

e Graph matching as a quadratic assignment problem (QAP):
arg min |A — IIBII"||% = arg min ||AIl — I1B|/%
IIesS, I1eS,
e A popular quadratic programming relaxation [Zaslavskiy-Bach-Vert '09],
[Aflalo-Bronstein-Kimmel '15], [Lyzinski-Fishkind-Fiori-Vogelstein-Priebe-Sapiro '15]

e min lAX - XB|% (QP-DS)
X>0: X1=1, X T1=1

e The GRAMPA similarity matrix X is (a multiple of)

ar min AX — XB|% + 0’| X%
g min | I3+ 021X 1

This further relaxes the DS constraint and adds a ridge regularizer
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® A new spectral algorithm

® Analysis of our algorithm

» Diagonal dominance in “population version”
» Universality proof via resolvent representation and local laws

© Experimental results

O Concluding remarks
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Diagonal dominance in population version

Question: Is X “close” to true permutation matrix II*7?

Consider the “popoulation version” of the regularized QP:

X =ar min  E[|AX — XB|%] + n?|| X]||?
g min ] 3]+ PIX %
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Diagonal dominance in population version

Question: Is X “close” to true permutation matrix II*7?

Consider the “popoulation version” of the regularized QP:

X=arg min  E[|AX ~ XB}] + )X}
n

X:1TX1=
Assume IT* =T and A + % and B « %:
2(1— )

_ J
X=c+(1-e" ~ 9
I+-al e~ imrra
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Diagonal dominance in population version

Question: Is X “close” to true permutation matrix II*7?

Consider the “popoulation version” of the regularized QP:

X=arg min  E[|AX ~ XB}] + )X}
n

X:1TX1=
Assume IT* =T and A + % and B « %:
— J _ 2(1-9)

X=c+(1-e" ~ 9
I+-al e~ imrra

e X is close to 2 (center of the Birkhoff polytope)
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Diagonal dominance in population version

Question: Is X “close” to true permutation matrix II*7?

Consider the “popoulation version” of the regularized QP:

X=arg min  E[|AX ~ XB}] + )X}
n

X:1TX1=
Assume IT* =T and A + % and B « %:
2(1— )

_ J
X=c+(1-e" ~ 9
I+-al e~ imrra

e X is close to 2 (center of the Birkhoff polytope)

e Same analysis holds for tighter QP-DS, suggesting X is not a
permutation (ShOWh by [Lyzinski-Fishkind-Fiori-Vogelstein-Priebe-Sapiro ’15])
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Diagonal dominance in population version

Question: Is X “close” to true permutation matrix II*7?

Consider the “popoulation version” of the regularized QP:

X =ar min  E[|AX — XB|%] + n?|| X]||?
g min ] 3]+ PIX %

Assume IT* = T and A « A=EM 44q p o BZEIE .

ng(1-q) Vna(l-q)
— J 2(1-19)
X =el+(1—e)" ~ 0
I+-al e~ imrra
e X is close to 2 (center of the Birkhoff polytope)

e Same analysis holds for tighter QP-DS, suggesting X is not a
permutation (ShOWh by [Lyzinski-Fishkind-Fiori-Vogelstein-Priebe-Sapiro ’15])

e X is diagonally dominant: diagonals are 22(514:7;62) times off-diagonals
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Diagonal dominance of the GRAMPA similarity matrix
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Diagonal dominance of the GRAMPA similarity matrix
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Universality: Correlated Wigner model

Standardized weighted adjacency matrices A, B where (A;;, B;;) are
independent pairs satisfying

1 1—96
E[A;] = E[B;j] =0, E[A}] =E[B}]= o E[Ai;Bij] = —
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Key proof technique: Resolvent and local laws

Ra(z) & (A—2I)”

R
)\—z u; z € C\
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Key proof technique: Resolvent and local laws

Ra(z) & (A—21)”

R
)\—z u, z € C\

Denote Wigner's semicircle density and its Stieltjes transform by

p(z) = —V/I—22-1{jz| <2} and m(z):/ L (@)de

2T xr—z
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Denote Wigner's semicircle density and its Stieltjes transform by
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Key proof technique: Resolvent and local laws

Ra(z) & (A—21)”

R
)\—z u, z € C\

Denote Wigner's semicircle density and its Stieltjes transform by

p(z) = —V/I—22-1{jz| <2} and m(z):/ L (@)de

2T xr—z

e Empirical eigenvalue density of A converges to p

. 1
nlgn;o - Tr Ra(z) = m(2)
e RA(z) =~ m(z)I entrywise [Erdos-Knowles-Yau-Yin '13]:

(Ra(2))ij = m(z) - 1{i = j}
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Key proof technique: Resolvent and local laws

Ra(z) & (A—21)”

R
)\—z u, z € C\

Denote Wigner's semicircle density and its Stieltjes transform by

p(z) = —V/I—22-1{jz| <2} and m(z):/ L (@)de

2T xr—z

e Empirical eigenvalue density of A converges to p

lim ! Tr Ra(z) = m(2)

n—oo N

e RA(z) =~ m(z)I entrywise [Erdos-Knowles-Yau-Yin '13]:
(Ra(2))ij = m(z) - 1{i = j}

e Using similar techniques, we prove row-sum and total sum bounds:
Z(RA(Z))U < polylog(n) Z(RA(Z))U ~n-m(z)
J i,j
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Universality proof step 1: Resolvent representation

Lemma (Fan-Mao-Wu-X. '19)

n
n T44T,, ... T
X 2 5 wiu; 11 v,
i i —pg)? 0
1
= %Rej{ RA(2)11T Rp(z + in)dz
T
Alm
n/2 zel
> Re
-3 3
—n/2

I" encloses A1,..., A, but not uy —in, ..., uy, —in
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Step 2: Leave-one-out relation

X1 = % Reé [eIRA(z)l] [ITRB(z + in)el} dz

correlated 1st row sums
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Step 2: Leave-one-out relation

1

X4 =
11 o

Reé [eIRA(z)l] [ITRB(z + in)el} dz

correlated 1st row sums

.
_ (01 o _ (Bann Raas
A= (a1 A(l)) Ralz) = (RA,*l RA,**>
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Step 2: Leave-one-out relation

X1 = % Reé [eIRA(z)l] [ITRB(z + in)el} dz

correlated 1st row sums

T
_ (o _ (Rann Raax
A= (a1 A(l)) Ralz) = (RA,*l RA,**>
e By the Schur-complement formula

RAJ*(Z) = —RA711(Z) . GI(A(l) — zI)_l

= —RA711(Z) . alTRA(n(Z)
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Step 2: Leave-one-out relation

X1 = % Reé [eIRA(z)l] [ITRB(z + in)el} dz

correlated 1st row sums

T
_ (o _ (Rann Raax
A= (a1 A(l)) Ralz) = (RA,*l RA,**>
e By the Schur-complement formula
RAJ*(Z) = —RA711(Z) . GI(A(l) — zI)_l

~ —m(z)-a] Rym)(2)
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Step 2: Leave-one-out relation

X1 = % Reé [eIRA(z)l] [ITRB(z + in)el} dz

correlated 1st row sums

A=) me- (R R)
e By the Schur-complement formula
Raax(2) = —Raq1(z) - a] (A —21)71
~ —m(z) - af Ry (2)

e Writing a similar expression for B, we get

X~ —Ref m(z)m(z +in) [a{ Ry ()11 Rga (2 + in)b | dz
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Step 2: Leave-one-out relation

X1 = % Reé [eIRA(z)l] [ITRB(z + in)el} dz

correlated 1st row sums

A=) me- (R R)
e By the Schur-complement formula
Raax(2) = —Raq1(z) - a] (A —21)71
~ —m(z) - af Ry (2)

e Writing a similar expression for B, we get
Xll ~ — Ref m Z + 17]) {CLIRA(U (Z)].].TRBU) (Z + i’f])bl} dz

e The vectors (ay,b;) are correlated, and independent of (A1), B(1)
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Step 3: Separating signal from noise

Diagonal entries: Apply concentration of the bilinear form

1 .
X~ Py Re a,ir [% m(z)m(z +in)R 41 (z)llTRB(1> (z 4+ in)dz] b1
r
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Step 3: Separating signal from noise

Diagonal entries: Apply concentration of the bilinear form

1 .
X~ Py Re a,;r [% m(z)m(z +in)R 41 (z)llTRB<1> (z 4+ in)dz] b1
r

J/

-~

zln;‘s Tr[fr m(z)m(z+in)R , 1) (2)IR 5(1) (z+i77)dz]
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Step 3: Separating signal from noise

Diagonal entries: Apply concentration of the bilinear form

1 .
X~ Py Re a,;r [% m(z)m(z +in)R 41 (z)llTRB<1> (z 4+ in)dz] b1
r

J/

-~

zln;‘s Tr[fr m(z)m(z+in)R , 1) (2)IR 5(1) (z+i77)dz]
Off-diagonal entries:
1 .
X2 ~ Py Re a] [% m(z)m(z +in) R 402 (2)11" Rgas) (2 + 177)dz} by
-
Here (a1, b2) are independent, so the conditional mean is 0
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Step 3: Separating signal from noise

Diagonal entries: Apply concentration of the bilinear form

1 :
X1~ Py Re a,lT [% m(z)m(z +in)R 41 (z)llTRB<1> (z 4+ in)dz] b1
r

-~

zln;‘s Tr[§r m(z)m(z-{—in)RA(l) (2)IR (1) (z+i77)dz]

Off-diagonal entries:

1
X~ cy Re GI [% m(z)m(z 4+ in)R 4a2) (z)llTRB<12> (z+ in)dz} b
.

ogn 2+ . .
<7(1 gn)7Te Hfl" m(z)m(z+in) R , 12) (2)IR 512 (Z+177)d2||F

~

Here (a1, b2) are independent, so the conditional mean is 0
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Step 4: Proof of diagonal dominance

e Diagonal entries:

1-9 1
X~ e Re - Tr {% m(z)m(z +in)R ) (2)JRg0) (2 + in)dz}
T
1-46. 1 . . Vs
S Re w m(z)m(z +in) (m(z +1in) — m(z))dz + P
N LI
noop
e Off-diagonal entries
1 2+e g
Xi12 S % 7{ m(z)m(z +in)R 4a2) (2)IJRgaz (2 + in)dz
r F
2+e
< (logn)
Vv

e Applying this and a union bound for every X, shows that X is diagonally

dominant when
V6 S S (logn)~4F29)
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@ A new spectral algorithm
® Analysis of our algorithm
© Experimental results

® Concluding remarks
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Spectral algorithms on Erdds-Rényi graphs

09 —6— GRAMPA |
—+—Umeyama’s

0.8 TopEigenVec |-

o7l —— IsoRank |
—E—EigenAlign
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n = 100 vertices, edge probability % noise level o ~ /¢
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Competitive methods on Erdos-Rényi graphs

—O—GRAMPA
-+ —-DegreeProfile
QP-DS

&
)

o
©
T

o
©
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o
3
T

o
(2]
+

o o o
N w »

o
=
T

Fraction of correctly matched vertices
o
(9]

<)
o
ol
-

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Noise level o

n = 500 vertices, edge probability % noise level o ~ /8
GRAMPA is ~ 100-1000x faster and scalable to larger networks
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Real network: Autonomous systems network

e A network of autonomous systems observed on 9 days between
March 2001 and May 2001 (10K nodes, 22K-23K edges)
e Edges are added and deleted over time

e Goal: match 9 networks on 9 days to the network on day 1
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Real network: Autonomous systems network

e A network of autonomous systems observed on 9 days between
March 2001 and May 2001 (10K nodes, 22K-23K edges)

e Edges are added and deleted over time

e Goal: match 9 networks on 9 days to the network on day 1

Fraction of correctly matched vertices
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-+ -DegreeProfile| |
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= --F
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@ A new spectral algorithm
® Analysis of our algorithm
© Experimental results

® Concluding remarks
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Concluding remarks

e Develop a new spectral graph matching algorithm

n
X p—
ij=1
e Efficiently matches two graphs with average degree > polylog(n)
and fraction of differred edges < 1/polylog(n)
e Universality proof using resolvent representation and local laws

e Also establish a similar result for a tighter QP relaxation

arg max [AX — XBHF‘H? ”X”F

n T T
O — )2 it 1000
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Concluding remarks

e Develop a new spectral graph matching algorithm
n
n T T
X = Y UiU; JU;U;
]z::l (N =) 4?0
e Efficiently matches two graphs with average degree > polylog(n)
and fraction of differred edges < 1/polylog(n)
e Universality proof using resolvent representation and local laws

e Also establish a similar result for a tighter QP relaxation

arg _max |[AX — XB|§ + | X|%
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