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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)

Noiseless case: reduce to graph isomoprhism

Jiaming Xu (Duke) Spectral Graph Matching 2



Graph matching (network alignment)

1

1

2 23

3

4

4

5

5

6

6

7

7

8

89

9

10

10

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)

Noiseless case: reduce to graph isomoprhism

Jiaming Xu (Duke) Spectral Graph Matching 2



Graph matching (network alignment)

1

1

2 23

3

4

4

5

5

6

6

7

7

8

89

9

10

10

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)

Noiseless case: reduce to graph isomoprhism

Jiaming Xu (Duke) Spectral Graph Matching 2



Application 1: Network de-anonymization

Alice

Bob

Charlie

?

?

?

• Successfully de-anonymize Netflix by matching it to IMDB
[Narayanan-Shmatikov ’08]

• Correctly identify 30.8% of node pairings between Twitter and Flickr
[Narayanan-Shmatikov ’09]
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Application 2: Protein-protein interaction network

Kazemi et al. BMC Bioinformatics  (2016) 17:527 Page 6 of 16

proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =
|V1|−1

∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, �π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., �π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i = 2|PWi,1 ∩ π−1(PWi,2)|
|PWi,1| + |PWi,2| . (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if �π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
�π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ = #FPWδ

#PWδ

. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

[Kazemi-Hassani-Grossglauser-Modarres ’16]

Ontology: Discover proteins with similar functions across different
species based on interaction network topology

Jiaming Xu (Duke) Spectral Graph Matching 4



Application 3: Computer vision

objects → graphs (features → nodes, distances → edges)
match objects by matching graphs

A fundamental problem in computer vision with applications in 3D
reconstruction, object tracking, shape matching, image classification,
autonomous driving, ...

Jiaming Xu (Duke) Spectral Graph Matching 5



Two key challenges

• Statistical: two graphs may not be the same
• Computational: # of possible node mappings is n! (100! ≈ 10158)
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Beyond computational intractability

• NP-hard for matching two general graphs

• However, real networks are not arbitrary and have latent structures

Focus of this talk

Statistical models for graph matching: correlated random graphs

• Focus on correlated Erdős-Rényi graphs model [Pedarsani-Grossglauser ’11]

• Performance of our algorithm is proven to be universal

Jiaming Xu (Duke) Spectral Graph Matching 7
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Correlated Erdős-Rényi graphs model
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G1 and G2 differ by a fraction δ , 1− s of edges, under the correct node
mapping
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Prior results: Information-theoretic limits

q: edge probability δ = 1− s: fraction of errors (differed edges)

Theorem (Cullina-Kiyavash ’18)

For q < 1/2, exact recovery of π∗ is information-theoretically possible if
and only if

nqs− log n→ +∞

Interpretation: Intersection graph G1 ∧G∗2 ∼ G(n, qs) is connected

Computationally:

• Noiseless s = 1(δ = 0): optimal condition is attained in linear-time
[Bollobás ’82, Czajka-Pandurangan ’08]

• Noisy case s < 1(δ > 0): little is known for efficient algorithms

Jiaming Xu (Duke) Spectral Graph Matching 9
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Main result

q: edge probability δ = 1− s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. ’19)

Exact recovery is achieved efficiently by a new spectral method whp if

nq & (log n)48+ε and δ . (log n)−(8+ε)

• Dense graphs q = Θ(1): improvement to δ . (log n)
−(4+ε)

• Previous spectral methods require δ ≤ n−Ω(1)

• Match the best known guarantee for polynomial-time algorithms
[Ding-Ma-Wu-X.’18] (using degree profile)

• nlogn time algorithm [Barak-Chou-Lei-Schramm-Sheng ’18] for nq ≥ nε and
constant δ (using rare small subgraphs)

• Polynomial-time recovery for constant δ is open

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability δ = 1− s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. ’19)

Exact recovery is achieved efficiently by a new spectral method whp if

nq & (log n)48+ε and δ . (log n)−(8+ε)

• Dense graphs q = Θ(1): improvement to δ . (log n)
−(4+ε)

• Previous spectral methods require δ ≤ n−Ω(1)

• Match the best known guarantee for polynomial-time algorithms
[Ding-Ma-Wu-X.’18] (using degree profile)

• nlogn time algorithm [Barak-Chou-Lei-Schramm-Sheng ’18] for nq ≥ nε and
constant δ (using rare small subgraphs)

• Polynomial-time recovery for constant δ is open

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability δ = 1− s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. ’19)

Exact recovery is achieved efficiently by a new spectral method whp if

nq & (log n)48+ε and δ . (log n)−(8+ε)

• Dense graphs q = Θ(1): improvement to δ . (log n)
−(4+ε)

• Previous spectral methods require δ ≤ n−Ω(1)

• Match the best known guarantee for polynomial-time algorithms
[Ding-Ma-Wu-X.’18] (using degree profile)

• nlogn time algorithm [Barak-Chou-Lei-Schramm-Sheng ’18] for nq ≥ nε and
constant δ (using rare small subgraphs)

• Polynomial-time recovery for constant δ is open

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability δ = 1− s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. ’19)

Exact recovery is achieved efficiently by a new spectral method whp if

nq & (log n)48+ε and δ . (log n)−(8+ε)

• Dense graphs q = Θ(1): improvement to δ . (log n)
−(4+ε)

• Previous spectral methods require δ ≤ n−Ω(1)

• Match the best known guarantee for polynomial-time algorithms
[Ding-Ma-Wu-X.’18] (using degree profile)

• nlogn time algorithm [Barak-Chou-Lei-Schramm-Sheng ’18] for nq ≥ nε and
constant δ (using rare small subgraphs)

• Polynomial-time recovery for constant δ is open

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability δ = 1− s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. ’19)

Exact recovery is achieved efficiently by a new spectral method whp if

nq & (log n)48+ε and δ . (log n)−(8+ε)

• Dense graphs q = Θ(1): improvement to δ . (log n)
−(4+ε)

• Previous spectral methods require δ ≤ n−Ω(1)

• Match the best known guarantee for polynomial-time algorithms
[Ding-Ma-Wu-X.’18] (using degree profile)

• nlogn time algorithm [Barak-Chou-Lei-Schramm-Sheng ’18] for nq ≥ nε and
constant δ (using rare small subgraphs)

• Polynomial-time recovery for constant δ is open

Jiaming Xu (Duke) Spectral Graph Matching 10



Main result

q: edge probability δ = 1− s: fraction of errors (differed edges)

Theorem (Fan-Mao-Wu-X. ’19)

Exact recovery is achieved efficiently by a new spectral method whp if

nq & (log n)48+ε and δ . (log n)−(8+ε)

• Dense graphs q = Θ(1): improvement to δ . (log n)
−(4+ε)

• Previous spectral methods require δ ≤ n−Ω(1)

• Match the best known guarantee for polynomial-time algorithms
[Ding-Ma-Wu-X.’18] (using degree profile)

• nlogn time algorithm [Barak-Chou-Lei-Schramm-Sheng ’18] for nq ≥ nε and
constant δ (using rare small subgraphs)

• Polynomial-time recovery for constant δ is open

Jiaming Xu (Duke) Spectral Graph Matching 10



Outline

1 A new spectral algorithm

2 Analysis of our algorithm

3 Experimental results

4 Concluding remarks
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Spectral methods and applications

Estimate hidden structure using leading eigenvectors of data matrix A

• Planted clique [Alon-Krivelevich-Sudakov ’98]

• Planted partition/Stochastic block model [Mcsherry ’98] [Massoulié ’13]

[Bordenave-Lelarge-Massoulié ’15]

• Clustering [von-Luxburg-Bousquet-Belkin ’05]

• Graphon estimation [Chatterjee ’15]

• Matrix completion [Keshavan-Montanari-Oh ’09]

• Ranking [Negahban-Oh-Shah ’17]

Common rationale: A is approximately low-rank with large eigen-gap

Jiaming Xu (Duke) Spectral Graph Matching 12
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Analyzing spectral methods: an example

A =

p

p

p

q

q + A− E[A]Planted partition:

−3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

K(p−q)
σ

 

 

semi−circle law

• Davis-Kahan and variants: Leading eigenvectors of A ≈ those of E [A],
if eigen-gap & ‖A− E [A] ‖2

• However, adjacency matrix of Erdős-Rényi graph has full rank and
vanishing eigen-gaps
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Spectral graph matching paradigm

k `

?

A =

n∑
i=1

λiuiu
>
i B =

n∑
j=1

µjvjv
>
j

λ1 ≥ · · · ≥ λn µ1 ≥ · · · ≥ µn

1 Construct a similarity matrix X based on (λi, ui) and (µj , vj)

2 Project X to permutation by linear assignment: Π̂ ∈ arg max 〈X,Π〉

Jiaming Xu (Duke) Spectral Graph Matching 14



Failure of previous spectral methods

• Low-rank methods: Aligning the leading eigenvectors

X = s1u1v
>
1 , s1 ∈ {±1}

Similar ideas used in IsoRank [Singh-Xu-Berger ’08] and EigenAlign
[Feizi-Quon-Mendoza-Medard-Kellis-Jadbabaie ’19]

• Full-rank methods: [Umeyama ’88]

X =

n∑
i=1

siuiv
>
i , si ∈ {±1}

• All perform well with no noise, but are extremely fragile with noise

• A and B have full rank and vanishing eigen-gaps ⇒ decorrelation of
ui and vi

Jiaming Xu (Duke) Spectral Graph Matching 15



Eigenvector correlation decay

Isomorphic Erdős-Rényi graphs: 500 vertices, edge probability 1
2

〈u100, vj〉2 for j ∈ {80, . . . , 120}, averaged across 1000 simulations

Jiaming Xu (Duke) Spectral Graph Matching 16



Eigenvector correlation decay

Erdős-Rényi graphs with δ = 0.1% differed edges

〈u100, vj〉2 for j ∈ {80, . . . , 120}, averaged across 1000 simulations
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Eigenvector correlation decay

Erdős-Rényi graphs with δ = 0.5% differed edges

〈u100, vj〉2 for j ∈ {80, . . . , 120}, averaged across 1000 simulations
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Eigenvector correlation decay

Erdős-Rényi graphs with δ = 1% differed edges

〈u100, vj〉2 for j ∈ {80, . . . , 120}, averaged across 1000 simulations
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Eigenvector correlation decay

Erdős-Rényi graphs with δ = 3% differed edges

〈u100, vj〉2 for j ∈ {80, . . . , 120}, averaged across 1000 simulations
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Eigenvector correlation decay

Erdős-Rényi graphs with δ = 5% differed edges

〈u100, vj〉2 for j ∈ {80, . . . , 120}, averaged across 1000 simulations

Jiaming Xu (Duke) Spectral Graph Matching 21



A new spectral method: GRAMPA

GRAph Matching by Pairwise eigen-Alignments:

X =

n∑
i,j=1

η

(λi − µj)2 + η2︸ ︷︷ ︸
Cauchy kernel applied to λi and µj

× uiu
>
i Jvjv

>
j︸ ︷︷ ︸

“Alignment” between ui and vj

Here η is a regularization parameter, and J the all-one matrix

• All pairs matter: Cauchy weight kernel is inspired by the eigenvector
correlation decay [Bourgade-Yau ’17], [Benigni ’17]:

n · E
[
〈ui, vj〉2

]
≈ δ

(λi − µj)2 + Cδ2

• Unlike previous spectral methods, GRAMPA is invariant to the choices of
signs for ui and vj
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GRAMPA as regularized quadratic programming relaxation

• Graph matching as a quadratic assignment problem (QAP):

arg min
Π∈Sn

‖A−ΠBΠ>‖2F = arg min
Π∈Sn

‖AΠ−ΠB‖2F

• A popular quadratic programming relaxation [Zaslavskiy-Bach-Vert ’09],
[Aflalo-Bronstein-Kimmel ’15], [Lyzinski-Fishkind-Fiori-Vogelstein-Priebe-Sapiro ’15]

arg min
X≥0: X1=1, X>1=1

‖AX −XB‖2F (QP-DS)

• The GRAMPA similarity matrix X is (a multiple of)

arg min
X: 1>X1=n

‖AX −XB‖2F + η2‖X‖2F

This further relaxes the DS constraint and adds a ridge regularizer
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Outline

1 A new spectral algorithm

2 Analysis of our algorithm
I Diagonal dominance in “population version”
I Universality proof via resolvent representation and local laws

3 Experimental results

4 Concluding remarks
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Diagonal dominance in population version

Question: Is X “close” to true permutation matrix Π∗?

Consider the “popoulation version” of the regularized QP:

X = arg min
X: 1>X1=n

E
[
‖AX −XB‖2F

]
+ η2‖X‖2F

Assume Π∗ = I and A← A−E[A]√
nq(1−q)

and B ← B−E[B]√
nq(1−q)

:

X = εI + (1− ε)J
n
, ε ≈ 2(1− δ)

n(2δ + η2)

• X is close to J
n (center of the Birkhoff polytope)

• Same analysis holds for tighter QP-DS, suggesting X is not a
permutation (shown by [Lyzinski-Fishkind-Fiori-Vogelstein-Priebe-Sapiro ’15])

• X is diagonally dominant: diagonals are 2(1−δ)
2δ+η2 times off-diagonals
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Diagonal dominance of the GRAMPA similarity matrix
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Universality: Correlated Wigner model

Standardized weighted adjacency matrices A,B where (Aij , Bij) are
independent pairs satisfying

E[Aij ] = E[Bij ] = 0, E[A2
ij ] = E[B2

ij ] =
1

n
, E[AijBij ] =

1− δ
n

Jiaming Xu (Duke) Spectral Graph Matching 27



Key proof technique: Resolvent and local laws

RA(z) , (A− zI)−1 =
∑
i

1

λi − z
uiu
>
i , z ∈ C\R

Denote Wigner’s semicircle density and its Stieltjes transform by

ρ(x) =
1

2π

√
4− x2 · 1{|x| ≤ 2} and m(z) =

∫
1

x− z
ρ(x)dx

• Empirical eigenvalue density of A converges to ρ

lim
n→∞

1

n
TrRA(z) = m(z)

• RA(z) ≈ m(z)I entrywise [Erdos-Knowles-Yau-Yin ’13]:

(RA(z))ij ≈ m(z) · 1{i = j}
• Using similar techniques, we prove row-sum and total sum bounds:∑

j

(RA(z))ij . polylog(n)
∑
i,j

(RA(z))ij ≈ n ·m(z)
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Universality proof step 1: Resolvent representation

Lemma (Fan-Mao-Wu-X. ’19)

X ,
n∑

i,j=1

η

(λi − µj)2 + η2
uiu
>
i 11

>vjv
>
j

=
1

2π
Re

∮
Γ
RA(z)11>RB(z + iη)dz

z ∈ Γ

−3 3

η/2

−η/2

Re

Im

Γ encloses λ1, . . . , λn but not µ1 − iη, . . . , µn − iη
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Step 2: Leave-one-out relation

X11 =
1

2π
Re

∮
Γ

[
e>1 RA(z)1

] [
1>RB(z + iη)e1

]
︸ ︷︷ ︸

correlated 1st row sums

dz

•
A =

(
a11 a>1
a1 A(1)

)
RA(z) =

(
RA,11 RA,1∗
RA,∗1 RA,∗∗

)
• By the Schur-complement formula

RA,1∗(z) = −RA,11(z) · a>1 (A(1) − zI)−1

= −RA,11(z) · a>1 RA(1)(z)

• Writing a similar expression for B, we get

X11 ≈
1

2π
Re

∮
Γ

m(z)m(z + iη)
[
a>1 RA(1)(z)11>RB(1)(z + iη)b1

]
dz

• The vectors (a1, b1) are correlated, and independent of (A(1), B(1))
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Step 2: Leave-one-out relation

X11 =
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2π
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Γ

[
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1>RB(z + iη)e1

]
︸ ︷︷ ︸

correlated 1st row sums

dz

•
A =

(
a11 a>1
a1 A(1)

)
RA(z) =

(
RA,11 RA,1∗
RA,∗1 RA,∗∗

)
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Step 3: Separating signal from noise

Diagonal entries: Apply concentration of the bilinear form

X11 ≈
1

2π
Re a>1

[∮
Γ
m(z)m(z + iη)RA(1)(z)11>RB(1)(z + iη)dz

]
b1

︸ ︷︷ ︸
≈ 1−δ

n
Tr[

∮
Γ m(z)m(z+iη)R

A(1) (z)JR
B(1) (z+iη)dz]

Off-diagonal entries:

X12 ≈
1

2π
Re a>1

[∮
Γ
m(z)m(z + iη)RA(12)(z)11>RB(12)(z + iη)dz

]
b2︸ ︷︷ ︸

. (logn)2+ε

n ‖∮Γm(z)m(z+iη)R
A(12) (z)JR

B(12) (z+iη)dz‖
F

Here (a1, b2) are independent, so the conditional mean is 0
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Step 4: Proof of diagonal dominance

• Diagonal entries:

X11 ≈
1− δ
2π

Re
1

n
Tr

[∮
Γ

m(z)m(z + iη)RA(1)(z)JRB(1)(z + iη)dz

]
≈ 1− δ

2π
Re

1

iη

∮
Γ

m(z)m(z + iη) (m(z + iη)−m(z)) dz +

√
δ

η2

≈ 1− δ
η

+

√
δ

η2

• Off-diagonal entries

X12 .
(log n)2+ε

n

∥∥∥∥∮
Γ

m(z)m(z + iη)RA(12)(z)JRB(12)(z + iη)dz

∥∥∥∥
F

.
(log n)2+ε

√
η

• Applying this and a union bound for every Xk` shows that X is diagonally
dominant when √

δ . η . (log n)−(4+2ε)
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1 A new spectral algorithm

2 Analysis of our algorithm

3 Experimental results

4 Concluding remarks

Jiaming Xu (Duke) Spectral Graph Matching 33



Spectral algorithms on Erdős-Rényi graphs
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Competitive methods on Erdős-Rényi graphs
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GRAMPA is ∼ 100–1000x faster and scalable to larger networks
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Real network: Autonomous systems network

• A network of autonomous systems observed on 9 days between
March 2001 and May 2001 (10K nodes, 22K-23K edges)

• Edges are added and deleted over time
• Goal: match 9 networks on 9 days to the network on day 1
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Concluding remarks

• Develop a new spectral graph matching algorithm

X =

n∑
i,j=1

η

(λi − µj)2 + η2
uiu
>
i Jvjv

>
j

• Efficiently matches two graphs with average degree ≥ polylog(n)
and fraction of differred edges ≤ 1/polylog(n)

• Universality proof using resolvent representation and local laws

• Also establish a similar result for a tighter QP relaxation

arg max
X: X1=1

‖AX −XB‖2F + η2‖X‖2F
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