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Preferential attachment models

Initial graph G2 consists of two vertices connected by m parallel edges
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Preferential attachment models

At each time ¢, a new vertex t arrives and forms m edges, one at a time,
to existing nodes v € [t — 1]:

P{t — v} x deg(v) + &;
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Preferential attachment models

At each time ¢, a new vertex t arrives and forms m edges, one at a time,
to existing nodes v € [t — 1]:

P{t — v} ox deg(v) + o,

deg(v) is updated after each edge is added

® §; = oo: uniform attachment (ignore degrees)

d¢ = 0: Barabdasi-Albert model [Barabssi-Albert '99]

The smaller §;, the stronger preference for high-degree vertices

® A most popular dynamic graph model: various properties (e.g.
limiting degree distribution) are well-understood [van der Hofstad '16 '24]
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Changepoint detection problem

Definition

HO . 5t =9
Hy : 6 = 014<s, + 5/1¢n<t§n
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Changepoint detection problem

Definition

HO : (St =9
H1 3 5t = 51tSTn + 5/17—n<t§n

® 0 # 4 > —m are two fixed constants
¢ Only final network snapshot is observed (node arrival time unknown)
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Definition
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® §# 4 > —m are two fixed constants
¢ Only final network snapshot is observed (node arrival time unknown)

® Problem gets harder with increasing 7,,: Quickest change detection
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Hy : 6 = 014<s, + 5/1¢n<t§n

d # & > —m are two fixed constants

Only final network snapshot is observed (node arrival time unknown)

Problem gets harder with increasing 7,,: Quickest change detection

Changepoint localization: estimate 7,, under H; [Bhamidi-Jin-Nobel '18]
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Changepoint detection problem

Definition

HO . 5t =9
Hy : 6 = 014<s, + 5/1¢n<t§n

d # & > —m are two fixed constants

Only final network snapshot is observed (node arrival time unknown)

Problem gets harder with increasing 7,,: Quickest change detection

Changepoint localization: estimate 7,, under H; [Bhamidi-Jin-Nobel '18]

Applications: detect structural changes in various settings, such as
communication networks, social networks, financial networks, and
biological networks [Cirkovic-Wang-Zhang '24].
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Looks like a daunting task

Change or no change?
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A simple test based on minimum-degree
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n=1000, m=2,46(t) =0 n=1000, m =2, §(t) =10-1 (t > n —n"8)
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A simple test based on minimum-degree

® Let N,,,(G,,) denote the number of degree-m vertices
® Let pp(0) = limy, 00 2Eq [N (Gy,)] under Ho
e Consider test T'(Gp) = Ny (Grn) — npm ()
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A simple test based on minimum-degree

® Let N,,,(G,,) denote the number of degree-m vertices
® Let pp(0) = limy, 00 2Eq [N (Gy,)] under Ho
e Consider test T'(Gp) = Ny (Grn) — npm ()

Theorem (Bet-Bogerd-Castro-van der Hofstad '23)

Suppose T, = n — cn” for a constant c and v € (0,1). Ify>1/2, by
choosing oy, [\/n slowly tending to infinity,

Po {|T(Gn)| = an} + P1{|T(Gn)| < an} =0
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choosing oy, [\/n slowly tending to infinity,

Po {|T(Gn)| = an} + P1{|T(Gn)| < an} =0

® Intuition: There are ©(1) fraction of degree-m nodes = probability
of attaching to degree-m nodes changes by O(1) after 7, =
E{[T] = ©(nY), while Std[T] = O(y/n)
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A simple test based on minimum-degree

® Let N,,,(G,,) denote the number of degree-m vertices
® Let pp(0) = limy, 00 2Eq [N (Gy,)] under Ho
e Consider test T'(Gp) = Ny (Grn) — npm ()

Theorem (Bet-Bogerd-Castro-van der Hofstad '23)

Suppose T, = n — cn” for a constant c and v € (0,1). Ify>1/2, by
choosing oy, [\/n slowly tending to infinity,

Po {|T(Gn)| = an} + P1{|T(Gn)| < an} =0

® Intuition: There are ©(1) fraction of degree-m nodes = probability
of attaching to degree-m nodes changes by O(1) after 7, =
E{[T] = ©(nY), while Std[T] = O(y/n)

® If § is unknown, can be replaced by a ML estimator

® Can establish weak detection when v =1/2
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Changepoint detection conjecture

Conjecture (Bet-Bogerd-Castro-van der Hofstad '23)

Suppose 1, = n — cn? for a constant ¢ and v < 1/2.
@ All tests based on vertex degrees are powerless.

® All tests are powerless.

® Part 2 of the conjecture is particularly striking, because, if true,
neither degree information nor any higher-level graph structure is
useful for detection when v < 1/2
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Significant progress

Theorem (Kaddouri-Naulet-Gassiat '24)

Suppose 7, = n — A. If A = o(n'/?) for § > 0 or A = o(n'/?/logn) for
6 =0, then

Py(A4,) - 0= P1(A4,) — 0, for all sequences of events A,,

Jiaming Xu (Duke) Changepoint Detection in PA Models



Significant progress

Theorem (Kaddouri-Naulet-Gassiat '24)

Suppose 7, = n — A. If A = o(n'/?) for § > 0 or A = o(n'/?/logn) for
6 =0, then

Po(A4,) - 0= P1(A,) — 0, for all sequences of events A,

® As a consequence, TV(Py,P;) <1 — (1) = strong detection is
impossible

® Does not cover the entire regime A = o(y/n) and the regime 6 < 0
® Does not rule out the possibility of weak detection
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Our resolution

Theorem (Du-Gong-X. '25)

Suppose T, =n — A. If A = o(n'/?), then

TV(]P)(), ]P)l) = 0(1)
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Our resolution

Theorem (Du-Gong-X. '25)

Suppose T, =n — A. If A = o(n'/?), then

TV(]Po, ]P)l) = 0(1)

® As a consequence, all tests are powerless = resolves the changepoint
detection conjecture [Bet-Bogerd-Castro-van der Hofstad '23] in positive

® \We prove a stronger statement: all tests remain powerless even if, in
addition to G,,, the entire network history were observed up to time
n— N for A2< N <n

® As a corollary, we prove no estimator can locate 7, within o(y/n)
with €(1) probability = the estimator in [Bhamidi-Jin-Nobel'18], which
achieves |7, — 7,| = Op(y/n), is order-optimal
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Challenge of directly bounding second-moment

Define the Likelihood ratio

Then

Eg,~p, [L*(Gn)] =1+ 0(1) = TV(Py,P) = o(1)

Jiaming Xu (Duke) Changepoint Detection in PA Models



Challenge of directly bounding second-moment

Define the Likelihood ratio

Then

Eg,~p, [L*(Gn)] =1+ 0(1) = TV(Py,P) = o(1)

® Widely used to prove impossibility of detection in high-dimensional
statistics and network analysis (e.g. community detection)
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Challenge of directly bounding second-moment

Define the Likelihood ratio

Then

Eg,~p, [L*(Gn)] =1+ 0(1) = TV(Py,P) = o(1)

® Widely used to prove impossibility of detection in high-dimensional
statistics and network analysis (e.g. community detection)

® However, since only final network snapshot is observed, L(G,,)
involves an average over compatible network histories, making it
hard to bound its second-moment directly
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Consider an “easier” problem

® To simplify the likelihood ratio, one can make the problem “easier”
by revealing network history

® However, revealing entire network history renders problem too easy...
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Consider an “easier” problem

® To simplify the likelihood ratio, one can make the problem “easier”
by revealing network history

® However, revealing entire network history renders problem too easy...

Theorem (Kaddouri-Naulet-Gassiat '24)

Denote G,, as the entire network history and Py, Py as its law under
Ho, H1, respectively. Then

TV(P1,Py) = 1 — o(1),

if and only if A £ n — 7, = 0.
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Limitation of previous strategy

® Reveal arrival times of all vertices, except for a carefully chosen
subset S of leaf vertices (bolded red vertices shown below):

Figure credit [Kaddouri-Naulet-Gassiat '24]: m =1
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Limitation of previous strategy

® Reveal arrival times of all vertices, except for a carefully chosen
subset S of leaf vertices (bolded red vertices shown below):

Figure credit [Kaddouri-Naulet-Gassiat '24]: m =1

® S needs to contain all vertices arriving after 7,,, which happens w.p.

~(1- A’/n)A =1+ 0(1) when A’A < n
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Limitation of previous strategy

® Reveal arrival times of all vertices, except for a carefully chosen
subset S of leaf vertices (bolded red vertices shown below):

Figure credit [Kaddouri-Naulet-Gassiat '24]: m =1

® S needs to contain all vertices arriving after 7,,, which happens w.p.
~(1- A’/n)A =1+ o0(1) when A’A < n

® For detection to be impossible, also need |S| < A’ > A?
= A< n!/3
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Challenge in the regime n'/? < A < /n

® To prove the impossibility up to A < o(y/n), can only reveal
network history up to 7, =n — A’, where A? < A < n

Figure credit [Kaddouri-Naulet-Gassiat '24]: m = 1

® Vertices arriving after 7, may attach to vertices arrived in 7] + 1, 7,]
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Our proof strategy

@ Interpolation: reduce to analyzing changepoint 7, =n — 1
® Simplified model: reveal network history up to time n — o(n)
©® Bound TV by the second moment of likelihood ratio

@ Use Efron-Stein inequality and coupling
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Step 1: Interpolation

® P, —k: distribution of G, with changepoint at time n — k

]P)O = IP)n,n — IP)n,nfl — Pn,an — Pn,anfl — Pn,an = Pl
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Step 1: Interpolation

® P, —k: distribution of G, with changepoint at time n — k

]P)O = IP)n,n — IP)n,nfl — Pn,an — Pn,anfl — Pn,an = Pl

TV(POaPI) TV( n,ny nan)
A
< ZTV(IP’nm,kH,IPn,n,k) triangle’s inequality
k=1

A

DP

S E TV(Pnfk+1,nfk+1aPnfk+1,nfk)
=1

e Suffices to show
1
TV(Py pr, Pry —1) = 0 <A> , V' en—-A+1,n]

WLOG, focus on n’ = n and 7,, = n — 1 henceforth
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Step 2: Consider an “easier " model

® Reveal the network history up to time M = n — N, denoted by G},
where A2 < N < n
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® Reveal the network history up to time M = n — N, denoted by G},
where A2 < N < n

® Let P and Q denote the joint law of Gj; and G,,, under Hy and
‘H1, respectively

TV(]P)n,na Pn,n—l) = TV(PGn7 QGn)
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where A2 < N < n

® Let P and Q denote the joint law of Gj; and G,,, under Hy and
‘H1, respectively
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® Reveal the network history up to time M = n — N, denoted by G},
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® Let P and Q denote the joint law of Gj; and G,,, under Hy and
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Step 2: Consider an “easier " model

® Reveal the network history up to time M = n — N, denoted by G},
where A2 < N < n

® Let P and Q denote the joint law of Gj; and G,,, under Hy and
‘H1, respectively

TV(]P)n,na Pn,n—l) = TV(PGna QGn)
DP
S TV (IPGTL,@M’ QGn,éM)

Jensen
B, [TV (Pt Qauin)

® Reduce to proving

1 __
TV (pGn\éM’ QGnléM> =0 <A> , VGM
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Step 3: Bound the second moment

T . Qa,. @
e Define likelihood ratio L & PG"# Then
GnlGp

2TV (Pan@M, Qan@M) =Ep, o IL—1]<,/Varp, . [L]
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Step 3: Bound the second moment

T . Qa,. @
e Define likelihood ratio L & PG"# Then
GnlGp

2TV (Pan@M, Qan@M) =Ep, o IL—1]<,/Varp, . [L]

® Enough to show
VarPGn\EM [L] = 0(1/N>7

where recall M =n — N and A2 < N < n

Jiaming Xu (Duke) Changepoint Detection in PA Models



Step 3: Bound the second moment

Let V denote the set of vertices arriving after time M =n — N.
Consider the subgraph of G,, induced by V' and let C(v) denote its
connected component containing v € V.

G[v)

m = 1. connected components are denoted by dashed ellipses
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Step 3: Bound the second moment

Let V denote the set of vertices arriving after time M =n — N.
Consider the subgraph of G,, induced by V' and let C(v) denote its
connected component containing v € V.

G[v)

m = 1: connected components are denoted by dashed ellipses

Key: The connected components can arrive in any relative order
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Step 3: Bound the second moment

Let V denote the set of vertices arriving after time M =n — N.
Consider the subgraph of G,, induced by V' and let C(v) denote its
connected component containing v € V.

G[v)

m = 1. connected components are denoted by dashed ellipses

Then

e el C
L2 S = 22N o) A X,
PGM@M N veV

where (' is bounded constant, ZwEC (v) Aw=1,and ¢ < X, < co.
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Step 4: Efron-Stein inequality and coupling

® Encode PGn|§M using Nm ind. r.v.s {Uy i} m<t<n,i<i<m
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Step 4: Efron-Stein inequality and coupling

® Encode PGn|§M using Nm ind. r.v.s {Uy i} m<t<n,i<i<m
e.g. form =1 and § = 0, recall at every time ¢,
P{t — v} x deg(v)

Equivalently, v is chosen by first sampling from all existing edges
and then picking one of its two endpoints, uniformly at random
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e.g. form =1 and § = 0, recall at every time ¢,
P{t — v} x deg(v)

Equivalently, v is chosen by first sampling from all existing edges
and then picking one of its two endpoints, uniformly at random
= PGn|§M can be encoded by N independent uniform random
variables supported over [2(M — 1)],[2M],...,[2(n — 2)],
respectively
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Step 4: Efron-Stein inequality and coupling

® Encode PGn|§M using Nm ind. r.v.s {Uy i} m<t<n,i<i<m

e.g. form =1 and § = 0, recall at every time ¢,
P{t — v} x deg(v)

Equivalently, v is chosen by first sampling from all existing edges
and then picking one of its two endpoints, uniformly at random
= PGn|§M can be encoded by N independent uniform random
variables supported over [2(M — 1)],[2M],...,[2(n — 2)],
respectively

Similar encoding scheme extends to general m > 1 and § > —m

Jiaming Xu (Duke) Changepoint Detection in PA Models



Step 4: Efron-Stein inequality and coupling

® Encode PGn|éM using Nm ind. r.v.s {Ut,i}M<t§n,1§i§m
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Step 4: Efron-Stein inequality and coupling

® Encode PGn|éM using Nm ind. r.v.s {Ut,i}M<t§n,1§i§m

® letU = (UM+171, Ceey Utﬂ', ey Un,m) and
UG = (Uprina,-- - Ufis+++>Unm), where U/ is an independent
copy of Uy ;. Write LRT L as f(U) and apply Efron-Stein

valt sy 33 E[(f@)- jw)]

M<t<n 1<i<m
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Step 4: Efron-Stein inequality and coupling

® Encode PGn|§M using Nm ind. r.v.s {Ut,i}M<t§n,1§i§m

® letU = (UM+171, Ceey Utﬂ', ey Un,m) and
UG = (Uprina,-- - Ufis+++>Unm), where U/ is an independent
copy of Uy ;. Write LRT L as f(U) and apply Efron-Stein

valt sy 33 E[(f@)- jw)]
M<t<n 1<i<m

® QOur encoding scheme ensures that resampling U; ; can only affect
C(t) (the component containing vertex arrived at time t), so

f) = fUt)| <o (W) .
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Step 4: Efron-Stein inequality and coupling

® Encode PGn|§M using Nm ind. r.v.s {Ut,i}M<t§n,1§i§m

® letU = (UM+171, Ceey Utﬂ', ey Un,m) and
UG = (Uprana, - Ufis+++>Unm), where U/ is an independent
copy of Uy ;. Write LRT L as f(U) and apply Efron-Stein

valt sy 33 E[(f@)- jw)]
M<t<n 1<i<m

® QOur encoding scheme ensures that resampling U; ; can only affect
C(t) (the component containing vertex arrived at time t), so

f) = fUt)| <o (W) .

® Show the growth of C(t) is dominated by a sub-critical branching
process to conclude E[|C(¢)|*] = O(1)
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Concluding remarks

® We show changepoint detection threshold is 7,, = n — o(y/n),
confirming a conjecture of [Bet-Bogerd-Castro-van der Hofstad '23]

® As by-product, we show changepoint localization threshold is also
Tn = n — o(y/n), matching upper bound in [Bhamidi-Jin-Nobel '18]

e Key proof ideas: reduces to bounding TV when changepoint occurs
at n — 1, reveal network history up to n — o(n), and bound the
second-moment of likelihood ratio using Efron-Stein and coupling
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® As by-product, we show changepoint localization threshold is also
Tn = n — o(y/n), matching upper bound in [Bhamidi-Jin-Nobel '18]

e Key proof ideas: reduces to bounding TV when changepoint occurs
at n — 1, reveal network history up to n — o(n), and bound the
second-moment of likelihood ratio using Efron-Stein and coupling

Future directions

® General attachment rule: P (t — v) < f (deg(v))
[Banerjee-Bhamidi-Carmichael '22]

® Changepoint detection in general dynamic graph models

® Other related reconstruction and estimation problems in PA graphs
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