
A New Primal-Dual Policy for

Dynamic Matching

Decision Sciences Area, Duke Fuqua

Jiaming Xu

Joint work: Yehua Wei (Duke) and Sophie H. Yu (Wharton)

Overview of my research and teaching interests

Networks

High-dim Statistics
Artificial Intelligence

Stochastic Systems
Operations Research

Social Networks
Recommender Systems
Online Platforms …

Motivating example: On-demand car-pooling

• Rides requesting a ride along a similar route will share the ride and split the cost

Motivating example: On-demand car-pooling

• Rides requesting a ride along a similar route will share the ride and split the cost

Without sharing, passengers pay higher rates and
drivers don’t earn money in between trips

Motivating example: On-demand car-pooling

• Rides requesting a ride along a similar route will share the ride and split the cost

Without sharing, passengers pay higher rates and
drivers don’t earn money in between trips

With sharing, passengers pay low rates and drivers
earn money in between trips

Motivating example: On-demand car-pooling

• Rides requesting a ride along a similar route will share the ride and split the cost

• Uber introduced Uber Pool in 2014

• Lyft introduced Share Saver in 2014

Without sharing, passengers pay higher rates and
drivers don’t earn money in between trips

With sharing, passengers pay low rates and drivers
earn money in between trips

Motivating example: On-demand car-pooling

• Rides requesting a ride along a similar route will share the ride and split the cost

• Uber introduced Uber Pool in 2014

• Lyft introduced Share Saver in 2014

• Great way to reduce congestion and emission while making ride-hailing affordable
to more people

Without sharing, passengers pay higher rates and
drivers don’t earn money in between trips

With sharing, passengers pay low rates and drivers
earn money in between trips

Motivating example: On-demand car-pooling

• Rides requesting a ride along a similar route will share the ride and split the cost

• Uber introduced Uber Pool in 2014

• Lyft introduced Share Saver in 2014

• Great way to reduce congestion and emission while making ride-hailing affordable
to more people

Without sharing, passengers pay higher rates and
drivers don’t earn money in between trips

With sharing, passengers pay low rates and drivers
earn money in between trips

Motivating example: On-demand car-pooling

• Rides requesting a ride along a similar route will share the ride and split the cost

• Uber introduced Uber Pool in 2014

• Lyft introduced Share Saver in 2014

• Great way to reduce congestion and emission while making ride-hailing affordable
to more people

Without sharing, passengers pay higher rates and
drivers don’t earn money in between trips

With sharing, passengers pay low rates and drivers
earn money in between trips

• After pandemic pause, Uber and Lyft revamped the car-pooling services

Motivating example: On-demand car-pooling

• Face significant operational challenges: which to match and when?

Motivating example: On-demand car-pooling

• Face significant operational challenges: which to match and when?

• Lyft discontinued shared rides in May 2023

“The problem with shared trips is that they take people out of their way”

- David Risher, CEO of Lyft

Motivating example: On-demand car-pooling

• Face significant operational challenges: which to match and when?

• Lyft discontinued shared rides in May 2023

“The problem with shared trips is that they take people out of their way”

- David Risher, CEO of Lyft

• Uber continues to expand UberX Share, as part of effort to achieve zero-emissions
by 2030

“UberX share is deigned to operate with positive unit economics for Uber, while
offering a lower-cost alternative to consumers… our newest billion-dollar gross
bookings product in the coming quarters.”

- Dara Khosrowshahi, CEO of Uber

Motivating example: On-demand car-pooling

• Many people suffer from terminal kidney failure and are in dire need of a transplant.
Some numbers from United States:

• 100,000 patients needing a life-saving organ transplant (>50% is for kidney)
• The median waiting time for a transplant is 5+ years.

Motivating example: Kidney exchange

• Many people suffer from terminal kidney failure and are in dire need of a transplant.
Some numbers from United States:

• 100,000 patients needing a life-saving organ transplant (>50% is for kidney)
• The median waiting time for a transplant is 5+ years.

• Numerous patients have willing and able living donors (e.g., a spouse or sibling) but
are incompatible with them, either because of blood type or tissue type (Human
Leukocyte Antigens or “HLA”) incompatibilities.

Motivating example: Kidney exchange

• Many people suffer from terminal kidney failure and are in dire need of a transplant.
Some numbers from United States:

• 100,000 patients needing a life-saving organ transplant (>50% is for kidney)
• The median waiting time for a transplant is 5+ years.

• Numerous patients have willing and able living donors (e.g., a spouse or sibling) but
are incompatible with them, either because of blood type or tissue type (Human
Leukocyte Antigens or “HLA”) incompatibilities.

• Key operational challenge: which to match and when?

Motivating example: Kidney exchange

Central challenge in dynamic matching

Matching efficiency vs. Waiting time

Central challenge in dynamic matching

Matching efficiency vs. Waiting time

Question: How to design an algorithm that attains high matching efficiency while
incurring small waiting time?

• Practically simple

• Interpretable

• Provably optimal

λ1⟹
λ2⟹
λ3⟹

λn⟹

Match type

⋅⋅⋅ ⋅⋅⋅

Agent type

Agents who arrived in the system

only leave the system

 after they are matched.

At each time slot

 One agent of a type arrives in the system
 Realize zero or one match type

t
⟹
⟹

Model setup on multi-way dynamic matching

⟹ rd

⟹ r1

⟹ r2

Reward

⟹ r3

Static Planning (Fluid) Solution

• Consider the static planning:

max
x ∑

m

rmxm

s . t . Mx = λ
xm ≥ 0,∀m

Static Planning (Fluid) Solution

• Consider the static planning:

max
x ∑

m

rmxm

s . t . Mx = λ
xm ≥ 0,∀m

 is the reward of match rm m

Static Planning (Fluid) Solution

• Consider the static planning:

max
x ∑

m

rmxm

s . t . Mx = λ
xm ≥ 0,∀m

where denotes the
matching matrix s.t.
if agent belongs to match

M
Mi,m = 1

i m

 is the reward of match rm m

 is the arrival rate vectorλ

Static Planning (Fluid) Solution

• Consider the static planning:

• Let denote the static planning solution

• Can we just match based on ?

x*

x*

max
x ∑

m

rmxm

s . t . Mx = λ
xm ≥ 0,∀m

where denotes the
matching matrix s.t.
if agent belongs to match

M
Mi,m = 1

i m

 is the reward of match rm m

 is the arrival rate vectorλ

Failure of Static Planning with dynamic arrivals
• Consider the following simple example

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

“Airport to Duke”

“Airport to Durham”

Failure of Static Planning with dynamic arrivals
• Consider the following simple example

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

x* = [0,0.4,0.2]

“Airport to Duke”

“Airport to Durham”

Failure of Static Planning with dynamic arrivals
• Consider the following simple example

• Type-1 agents only get served with rate 0.4

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

x* = [0,0.4,0.2]

“Airport to Duke”

“Airport to Durham”

Failure of Static Planning with dynamic arrivals
• Consider the following simple example

• Type-1 agents only get served with rate # of waiting type-1 agents grow to
infinity

0.4 ⟹

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

x* = [0,0.4,0.2]

“Airport to Duke”

“Airport to Durham”

Failure of Static Planning with dynamic arrivals
• Consider the following simple example

• Type-1 agents only get served with rate # of waiting type-1 agents grow to
infinity

• Flaw of Averages: “plans based on average conditions are wrong on average”

matching are independent of states and cannot adapt to stochastic arrivals

0.4 ⟹

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

x* = [0,0.4,0.2]

“Airport to Duke”

“Airport to Durham”

Our solution: use a “signal” to guide matching

Shadow price as a signal

max
x ∑

m

rmxm

s . t . Mx = λ
xm ≥ 0,∀m

min
p ∑

i

λipi

s . t . (M⊤p)m ≥ rm, ∀m

Primal problem Dual problem is the shadow price for
type- agent
pi

i

sum of shadow prices for
agent types in match m

Shadow price as a signal

max
x ∑

m

rmxm

s . t . Mx = λ
xm ≥ 0,∀m

min
p ∑

i

λipi

s . t . (M⊤p)m ≥ rm, ∀m

Primal problem Dual problem

• Let denote the optimal dual solution, also known as shadow price [Kantorovich,
Koopmans 40’s, …]

•

p*

 is the shadow price for
type- agent
pi

i

sum of shadow prices for
agent types in match m

Shadow price as a signal

max
x ∑

m

rmxm

s . t . Mx = λ
xm ≥ 0,∀m

min
p ∑

i

λipi

s . t . (M⊤p)m ≥ rm, ∀m

Primal problem Dual problem

• Let denote the optimal dual solution, also known as shadow price [Kantorovich,
Koopmans 40’s, …]

• A higher shadow price means type- agent resource is scarcer

p*

p*i i

 is the shadow price for
type- agent
pi

i

sum of shadow prices for
agent types in match m

Back to the example

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

x* = [0,0.4,0.2]

Back to the example

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

x* = [0,0.4,0.2]

min
p

0.4p1 + 0.6p2

s . t . p1 ≥ 0.1
p1 + p2 ≥ 1.0
p2 ≥ 0.1

Dual

p1

p1

p2

p2

Back to the example

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

x* = [0,0.4,0.2]

min
p

0.4p1 + 0.6p2

s . t . p1 ≥ 0.1
p1 + p2 ≥ 1.0
p2 ≥ 0.1

⟹ p* = [0.9,0.1]
Dual

p1

p1

p2

p2

Back to the example

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

x* = [0,0.4,0.2]

min
p

0.4p1 + 0.6p2

s . t . p1 ≥ 0.1
p1 + p2 ≥ 1.0
p2 ≥ 0.1

⟹ p* = [0.9,0.1]
Dual

p1

p1

p2

p2

Agent type 1 is
more precious

How to dynamically adjust shadow price?

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

• If we have many type-1 agents waiting to be matched, it “costs” less to match
them, so we should decrease its shadow price

How to dynamically adjust shadow price?

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

• If we have many type-1 agents waiting to be matched, it “costs” less to match
them, so we should decrease its shadow price

• More formally, let denote the # of type- agents waiting to be matched

where is time-varying price elasticity.

δi(t) i

ηt

pi(t) = p*i − ηt × δi(t)

How to dynamically adjust shadow price?

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

• If we have many type-1 agents waiting to be matched, it “costs” less to match
them, so we should decrease its shadow price

• More formally, let denote the # of type- agents waiting to be matched

where is time-varying price elasticity.

• As time progresses, fluctuation of stochastic arrivals are amortized, and less
adjustment needed decreases in

δi(t) i

ηt

⟹ ηt t

pi(t) = p*i − ηt × δi(t)

• At each time slot :

• Find

t

Our policy (arrival rates are known)λ

 Schedule match that has maximal reduced reward, i.e.,

⟺ m

arg max
m

rm − ∑
i∈𝒜(m)

pi(t)

x(t) = arg max
x∈𝒳 ∑

m

rmxm − p(t)T Mx

• At each time slot :

• Find

• Update the inventory of each agent based on and the arrival :

t

x(t) A(t)

Our policy (arrival rates are known)λ

 Schedule match that has maximal reduced reward, i.e.,

⟺ m

arg max
m

rm − ∑
i∈𝒜(m)

pi(t)

δ(t) = δ(t − 1) − Mx(t) + A(t)

x(t) = arg max
x∈𝒳 ∑

m

rmxm − p(t)T Mx

• At each time slot :

• Find

• Update the inventory of each agent based on and the arrival :

• Update the shadow price for each agent type:

t

x(t) A(t)

pi(t + 1) = p*i − ηt × δi(t)

Our policy (arrival rates are known)λ

 Schedule match that has maximal reduced reward, i.e.,

⟺ m

arg max
m

rm − ∑
i∈𝒜(m)

pi(t)

δ(t) = δ(t − 1) − Mx(t) + A(t)

x(t) = arg max
x∈𝒳 ∑

m

rmxm − p(t)T Mx

 is time-varying price
elasticity
ηt

 is the inventory of agent δi(t) i

 is the optimal dual solutionp*i

• At each time slot :

• Find

• Update the inventory of each agent based on and the arrival :

• Update the shadow price for each agent type:

t

x(t) A(t)

pi(t + 1) = p*i − ηt × δi(t)

Our policy (arrival rates are known)λ

 Schedule match that has maximal reduced reward, i.e.,

⟺ m

arg max
m

rm − ∑
i∈𝒜(m)

pi(t)

δ(t) = δ(t − 1) − Mx(t) + A(t)

x(t) = arg max
x∈𝒳 ∑

m

rmxm − p(t)T Mx

 is time-varying price
elasticity
ηt

 is the inventory of agent δi(t) i

 is the optimal dual solutionp*i

Note: If the scheduled match
cannot be realized at time slot , we
will realize it in the future based on
the first-come-first-serve policy

m
t

• Plug in the estimate of s.t.
p*

What if arrival rates are unknown or changing?λ

pi(t + 1) = p*i − ηt × δi(t)

• Plug in the estimate of s.t.

 where denotes the optimal dual under the empirical arrival rate :

p*

̂p(t) ̂λ(t)

What if arrival rates are unknown or changing?λ

pi(t + 1) = p*i − ηt × δi(t)

̂p(t) ∈ arg min
p ∑

i

̂λi(t)pi

s . t . (M⊤p)m ≥ rm, ∀m

̂pi(t)

• Plug in the estimate of s.t.

 where denotes the optimal dual under the empirical arrival rate :

• The rest of the algorithm is exactly the same as before

p*

̂p(t) ̂λ(t)

What if arrival rates are unknown or changing?λ

pi(t + 1) = p*i − ηt × δi(t)

̂p(t) ∈ arg min
p ∑

i

̂λi(t)pi

s . t . (M⊤p)m ≥ rm, ∀m

̂pi(t)

Our theory

Our policy achieves constant regret

Non-degeneracy assumption: For all optimal dual remains unchanged∥ ̂λ − λ∥2 ≤ ϵ, p*

Our policy achieves constant regret

Non-degeneracy assumption: For all optimal dual remains unchanged∥ ̂λ − λ∥2 ≤ ϵ, p*

M⊤p ≥ r

D(p) ≜ λ⊤p

p*

Our policy achieves constant regret

Non-degeneracy assumption: For all optimal dual remains unchanged∥ ̂λ − λ∥2 ≤ ϵ, p*

M⊤p ≥ r

D(p) ≜ λ⊤p

p*

Local polyhedral property: slope at is always bounded below by p* ϵ

D(p) − D(p*) ≥ ϵ∥p − p*∥2

Our policy achieves constant regret

• and represent the cumulative rewards under the hindsight optimal policy and
our policy, respectively
R*t Rπ

t

Assumption: For all the optimal dual remains unchanged∥ ̂λ − λ∥2 ≤ ϵ, p*

Theorem [Wei-Xu-Yu ’23]

Choose to be decreasing so that . Then our primal-dual policy achieves

ηt ∑t ηt < ∞ π

sup
0≤t≤T

𝔼 [R*t − Rπ
t] ≤

O (1
ϵ) known λ

O (1
ϵ2) unknown λ

Our policy achieves constant regret

• and represent the cumulative rewards under the hindsight optimal policy and
our policy, respectively
R*t Rπ

t

Assumption: For all the optimal dual remains unchanged∥ ̂λ − λ∥2 ≤ ϵ, p*

Theorem [Wei-Xu-Yu ’23]

Choose to be decreasing so that . Then our primal-dual policy achieves

ηt ∑t ηt < ∞ π

sup
0≤t≤T

𝔼 [R*t − Rπ
t] ≤

O (1
ϵ) known λ

O (1
ϵ2) unknown λ

Regret does not
grow with T

Our policy achieves constant regret

• and represent the cumulative rewards under the hindsight optimal policy and
our policy, respectively

• We can also show the expected total waiting times satisfy the same bounds

R*t Rπ
t

Assumption: For all the optimal dual remains unchanged∥ ̂λ − λ∥2 ≤ ϵ, p*

Theorem [Wei-Xu-Yu ’23]

Choose to be decreasing so that . Then our primal-dual policy achieves

ηt ∑t ηt < ∞ π

sup
0≤t≤T

𝔼 [R*t − Rπ
t] ≤

O (1
ϵ) known λ

O (1
ϵ2) unknown λ

Regret does not
grow with T

Our policy achieves constant regret

• and represent the cumulative rewards under the hindsight optimal policy and
our policy, respectively

• We can also show the expected total waiting times satisfy the same bounds

• regret is the best possible [Kerimov-Ashlagi-Gurvich’ 22a]

R*t Rπ
t

O (1/ϵ)

Assumption: For all the optimal dual remains unchanged∥ ̂λ − λ∥2 ≤ ϵ, p*

Theorem [Wei-Xu-Yu ’23]

Choose to be decreasing so that . Then our primal-dual policy achieves

ηt ∑t ηt < ∞ π

sup
0≤t≤T

𝔼 [R*t − Rπ
t] ≤

O (1
ϵ) known λ

O (1
ϵ2) unknown λ

Regret does not
grow with T

Our policy achieves constant regret

• and represent the cumulative rewards under the hindsight optimal policy and
our policy, respectively

• We can also show the expected total waiting times satisfy the same bounds

• regret is the best possible [Kerimov-Ashlagi-Gurvich’ 22a]

• If (optimal dual is not unique), the regret at all time is [Wei-Xu-Yu’

23], where the lower bound is [Kerimov-Ashlagi-Gurvich’ 22a].

R*t Rπ
t

O (1/ϵ)

ϵ = 0 O(T)
Ω(T)

Assumption: For all the optimal dual remains unchanged∥ ̂λ − λ∥2 ≤ ϵ, p*

Theorem [Wei-Xu-Yu ’23]

Choose to be decreasing so that . Then our primal-dual policy achieves

ηt ∑t ηt < ∞ π

sup
0≤t≤T

𝔼 [R*t − Rπ
t] ≤

O (1
ϵ) known λ

O (1
ϵ2) unknown λ

Regret does not
grow with T

Comparison to state of the art

Comparison to state of the art

Known Arrival Rates

O (1
ϵ)

• [Kerimov-Ashlagi-Gurvich’ 22a, 22b]:
Optimal Basis (greedy/ batching)

• [Gupta’ 21]: Optimal Basis (SoS)

Impossible

Comparison to state of the art

Known Arrival Rates Unknown Arrival Rates

O (1
ϵ)

o (T)

• [Kerimov-Ashlagi-Gurvich’ 22a, 22b]:
Optimal Basis (greedy/ batching)

• [Gupta’ 21]: Optimal Basis (SoS)

• [Nazari-Stolyar’ 18]: Primal-dual policy

Impossible

Comparison to state of the art

Known Arrival Rates Unknown Arrival Rates

O (1
ϵ)

o (T)

• [Kerimov-Ashlagi-Gurvich’ 22a, 22b]:
Optimal Basis (greedy/ batching)

• [Gupta’ 21]: Optimal Basis (SoS)

• [Nazari-Stolyar’ 18]: Primal-dual policy

O (1
ϵ2)

• [Wei-Xu-Yu’ 23]: Our new primal-dual policy

Impossible

• [Wei-Xu-Yu’ 23]: Our new primal-dual policy

Comparison to state of the art

Known Arrival Rates Unknown Arrival Rates

O (1
ϵ)

o (T)

• [Kerimov-Ashlagi-Gurvich’ 22a, 22b]:
Optimal Basis (greedy/ batching)

• [Gupta’ 21]: Optimal Basis (SoS)

• [Nazari-Stolyar’ 18]: Primal-dual policy

• [Wei-Xu-Yu’ 23]: Our new primal-dual policyO (1
ϵ2)

• [Wei-Xu-Yu’ 23]: Our new primal-dual policy

Impossible

• Our new primal-dual policy:

• Fairness: allows any match type to be
used;

• Constant regret: suitable for unknown

• Best-performance in numerical experiments
(regret & waiting time)

• Practically simple with intuitive
interpretation in terms of shadow prices

λ

• Regret decomposition at time :

t

𝔼[R*t − Rπ
t] ≲

t

∑
s=1

ηs + 𝔼[∥δ(t)∥] +
t

∑
s=1

ℙ[̂ps ≠ p*]

Proof ideas (Lyapunov drift method)

Loss due to dynamic
adjustment of
shadow prices

Loss due to
backlogged agents

Loss due to shadow
price errors

• Regret decomposition at time :

• Choose ensures that

t

𝔼[R*t − Rπ
t] ≲

t

∑
s=1

ηs + 𝔼[∥δ(t)∥] +
t

∑
s=1

ℙ[̂ps ≠ p*]

ηs = s−2 ∑1≤s≤t ηs < ∞

Proof ideas (Lyapunov drift method)

Loss due to dynamic
adjustment of
shadow prices

Loss due to
backlogged agents

Loss due to shadow
price errors

• Regret decomposition at time :

• Choose ensures that

• Show

t

𝔼[R*t − Rπ
t] ≲

t

∑
s=1

ηs + 𝔼[∥δ(t)∥] +
t

∑
s=1

ℙ[̂ps ≠ p*]

ηs = s−2 ∑1≤s≤t ηs < ∞

𝔼 [∥δ(t + 1)∥2|ℱt] ≤ ∥δ(t)∥2 − ϵ
2 ⟹ 𝔼[∥δ(t)∥] = O (ϵ−1)

Proof ideas (Lyapunov drift method)

Lyapunov drift analysis +
local polyhedral property
[Huang-Neely ’09]

Coupling with bounded
reflective random walk
[Gupta’ 21]

Loss due to dynamic
adjustment of
shadow prices

Loss due to
backlogged agents

Loss due to shadow
price errors

• Regret decomposition at time :

• Choose ensures that

• Show

•

t

𝔼[R*t − Rπ
t] ≲

t

∑
s=1

ηs + 𝔼[∥δ(t)∥] +
t

∑
s=1

ℙ[̂ps ≠ p*]

ηs = s−2 ∑1≤s≤t ηs < ∞

𝔼 [∥δ(t + 1)∥2|ℱt] ≤ ∥δ(t)∥2 − ϵ
2 ⟹ 𝔼[∥δ(t)∥] = O (ϵ−1)

∑t
s=1 ℙ[̂p(s) ≠ p*] ≤ ∑t

s=1 ℙ[∥ ̂λ(s) − λ∥ ≥ ϵ] ≤ ∑t
s=1 exp(−sϵ2/8) ≤ O (ϵ−2)

Proof ideas (Lyapunov drift method)

Non-degeneracy assumption Hoeffding’s inequality

Loss due to dynamic
adjustment of
shadow prices

Loss due to
backlogged agents

Loss due to shadow
price errors

Numerical experiments

Better empirical rewards and waiting times

r1 = 100

λ7 = 64λ λ6 = 32λ λ1 = λ λ2 = 2λ λ3 = 4λ λ4 = 8λ λ5 = 16λ

r4 = 1 r2 = 3 r3 = 2

Better empirical rewards and waiting times

r1 = 100

λ7 = 64λ λ6 = 32λ λ1 = λ λ2 = 2λ λ3 = 4λ λ4 = 8λ λ5 = 16λ

r4 = 1 r2 = 3 r3 = 2

Better empirical rewards and waiting times

r1 = 100

λ7 = 64λ λ6 = 32λ λ1 = λ λ2 = 2λ λ3 = 4λ λ4 = 8λ λ5 = 16λ

r4 = 1 r2 = 3 r3 = 2

Our policy with known arrival rates

Better empirical rewards and waiting times

r1 = 100

λ7 = 64λ λ6 = 32λ λ1 = λ λ2 = 2λ λ3 = 4λ λ4 = 8λ λ5 = 16λ

r4 = 1 r2 = 3 r3 = 2

Our policy with known arrival rates

Our policy with unknown arrival rates

Summary
• A new primal-dual policy for dynamic matching:

• First constant-regret policy with unknown λ

• Does not confine matching decisions to the optimal basis

• With known λ, our policy matches the regret bound in the literature

• Best performance in numerical experiments and practically simple

• Results can be extended to other dynamic resource allocation problems

Summary
• A new primal-dual policy for dynamic matching:

• First constant-regret policy with unknown λ

• Does not confine matching decisions to the optimal basis

• With known λ, our policy matches the regret bound in the literature

• Best performance in numerical experiments and practically simple

• Results can be extended to other dynamic resource allocation problems

• Some interesting problems:

• Matching models with infinite agent types/abandonment;

• Matching models with possible agent declines;

• Fairness in dynamic matching;

• Primal-dual policies for other reward collection problems

Reference:

Y. Wei, J. Xu, & S. H. Yu, Constant Regret Primal-Dual Policy for Multi-Way Dynamic
Matching, under revision, Management Science, SSRN.4357216

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;
B

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

B

λ

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

• After one agent arrives, we need to immediately decides which action we use to
serve the agent:

B

λ

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

• After one agent arrives, we need to immediately decides which action we use to
serve the agent:

• Each action could only serve one type of agent, consumes one or multiple types
of offline resources, and generate reward.

B

λ

ra

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

• After one agent arrives, we need to immediately decides which action we use to
serve the agent:

• Each action could only serve one type of agent, consumes one or multiple types
of offline resources, and generate reward.

• Consider the fluid formulation:

B

λ

ra

max
x ∑

a

raxa

s . t . Mx = λ
Sx ≤ B/T
xa ≥ 0,∀a

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

• After one agent arrives, we need to immediately decides which action we use to
serve the agent:

• Each action could only serve one type of agent, consumes one or multiple types
of offline resources, and generate reward.

• Consider the fluid formulation:

B

λ

ra

max
x ∑

a

raxa

s . t . Mx = λ
Sx ≤ B/T
xa ≥ 0,∀a

 is the reward of action .ra a

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

• After one agent arrives, we need to immediately decides which action we use to
serve the agent:

• Each action could only serve one type of agent, consumes one or multiple types
of offline resources, and generate reward.

• Consider the fluid formulation:

B

λ

ra

max
x ∑

a

raxa

s . t . Mx = λ
Sx ≤ B/T
xa ≥ 0,∀a

where denotes the action
serving matrix s.t. if
action serves agent .

M
Mi,a = 1

a i

 is the reward of action .ra a

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

• After one agent arrives, we need to immediately decides which action we use to
serve the agent:

• Each action could only serve one type of agent, consumes one or multiple types
of offline resources, and generate reward.

• Consider the fluid formulation:

B

λ

ra

max
x ∑

a

raxa

s . t . Mx = λ
Sx ≤ B/T
xa ≥ 0,∀a

 is the agents’ arrival rate vector.λ

where denotes the action
serving matrix s.t. if
action serves agent .

M
Mi,a = 1

a i

 is the reward of action .ra a

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

• After one agent arrives, we need to immediately decides which action we use to
serve the agent:

• Each action could only serve one type of agent, consumes one or multiple types
of offline resources, and generate reward.

• Consider the fluid formulation:

B

λ

ra

max
x ∑

a

raxa

s . t . Mx = λ
Sx ≤ B/T
xa ≥ 0,∀a

13

where denotes the offline resource
consumption matrix s.t. if
action consumes resource .

S
Sj,a = 1

a j

 is the agents’ arrival rate vector.λ

where denotes the action
serving matrix s.t. if
action serves agent .

M
Mi,a = 1

a i

 is the reward of action .ra a

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

• After one agent arrives, we need to immediately decides which action we use to
serve the agent:

• Each action could only serve one type of agent, consumes one or multiple types
of offline resources, and generate reward.

• Consider the fluid formulation:

B

λ

ra

max
x ∑

a

raxa

s . t . Mx = λ
Sx ≤ B/T
xa ≥ 0,∀a

where denotes the offline resource
consumption matrix s.t. if
action consumes resource .

S
Sj,a = 1

a j
 denotes the offline

resource consumption per
period on average.

B/T

 is the agents’ arrival rate vector.λ

where denotes the action
serving matrix s.t. if
action serves agent .

M
Mi,a = 1

a i

 is the reward of action .ra a

15

Resource allocation model [Wei-Xu-Yu 24’]
• Offline resources (available at the beginning) with budget ;

• Online agents arrive dynamically with arrival rate ;

• After one agent arrives, we need to immediately decides which action we use to
serve the agent:

• Each action could only serve one type of agent, consumes one or multiple types
of offline resources, and generate reward.

• Consider the fluid formulation:

• Key: primal-dual algorithm by updating , and select the action has maximum
reduced reward, where is the associated dual variable of .

B

λ

ra

p(t)
p* Sx ≤ B/T

max
x ∑

a

raxa

s . t . Mx = λ
Sx ≤ B/T
xa ≥ 0,∀a

13

where denotes the offline resource
consumption matrix s.t. if
action consumes resource .

S
Sj,a = 1

a j
 denotes the offline

resource consumption per
period on average.

B/T

 is the agents’ arrival rate vector.λ

where denotes the action
serving matrix s.t. if
action serves agent .

M
Mi,a = 1

a i

 is the reward of action .ra a

15

Bounding the inventory

10

• Negative drift:

Bounding the inventory
 is the maximum size of a match in the system.B

𝔼 [∥δ(t + 1)∥2
2 ∣ ℱt] ≤ ∥δ(t)∥2

2 + B − 2η−1
t (D(p(t)) − D(p*))

10

Dual objective function

• Negative drift:

Bounding the inventory
 is the maximum size of a match in the system.B

By the GPG assumption the local polyhedral property.⟺

𝔼 [∥δ(t + 1)∥2
2 ∣ ℱt] ≤ ∥δ(t)∥2

2 + B − 2η−1
t (D(p(t)) − D(p*))

≤ ∥δ(t)∥2
2 + B − 2η−1

t ϵ∥p(t) − p*∥2

10

• Negative drift:

Bounding the inventory
 is the maximum size of a match in the system.B

By the GPG assumption the local polyhedral property.⟺

𝔼 [∥δ(t + 1)∥2
2 ∣ ℱt] ≤ ∥δ(t)∥2

2 + B − 2η−1
t (D(p(t)) − D(p*))

≤ ∥δ(t)∥2
2 + B − 2η−1

t ϵ∥p(t) − p*∥2

= ∥δ(t)∥2
2 + B − 2ϵ∥δ(t)∥2

10

• Negative drift:

If , we have
∥δ(t)∥ >
3B
ϵ

Bounding the inventory

𝔼 [∥δ(t + 1)∥2|ℱt] ≤ ∥δ(t)∥2 −
ϵ
2

.

 is the maximum size of a match in the system.B

By the GPG assumption the local polyhedral property.⟺

10

𝔼 [∥δ(t + 1)∥2
2 ∣ ℱt] ≤ ∥δ(t)∥2

2 + B − 2η−1
t (D(p(t)) − D(p*))

≤ ∥δ(t)∥2
2 + B − 2η−1

t ϵ∥p(t) − p*∥2

= ∥δ(t)∥2
2 + B − 2ϵ∥δ(t)∥2

• Negative drift:

If , we have

• By a coupling argument with bounded reflective random walk following [Gupta’ 21],

∥δ(t)∥ >
3B
ϵ

Bounding the inventory

𝔼 [∥δ(t + 1)∥2|ℱt] ≤ ∥δ(t)∥2 −
ϵ
2

.

𝔼 [∥δ(t)∥2] = O (ϵ−1) ∀t .

 is the maximum size of a match in the system.B

By the GPG assumption the local polyhedral property.⟺

10

𝔼 [∥δ(t + 1)∥2
2 ∣ ℱt] ≤ ∥δ(t)∥2

2 + B − 2η−1
t (D(p(t)) − D(p*))

≤ ∥δ(t)∥2
2 + B − 2η−1

t ϵ∥p(t) − p*∥2

= ∥δ(t)∥2
2 + B − 2ϵ∥δ(t)∥2

