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• Face significant operational challenges: which to match and when?


• Lyft discontinued shared rides in May 2023


“The problem with shared trips is that they take people out of their way”


- David Risher, CEO of Lyft


• Uber continues to expand UberX Share, as part of effort to achieve zero-emissions 
by 2030


“UberX share is deigned to operate with positive unit economics for Uber, while 
offering a lower-cost alternative to consumers… our newest billion-dollar gross 
bookings product in the coming quarters.”


- Dara Khosrowshahi, CEO of Uber


Motivating example: On-demand car-pooling
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Some numbers from United States:

• 100,000 patients needing a life-saving organ transplant (>50% is for kidney) 
• The median waiting time for a transplant is 5+ years. 


• Numerous patients have willing and able living donors (e.g., a spouse or sibling) but 
are incompatible with them, either because of blood type or tissue type (Human 
Leukocyte Antigens or “HLA”) incompatibilities.


• Key operational challenge: which to match and when? 

Motivating example: Kidney exchange
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Central challenge in dynamic matching

Matching efficiency vs. Waiting time

Question: How to design an algorithm that attains high matching efficiency while 
incurring small waiting time?


• Practically simple 


• Interpretable 


• Provably optimal



λ1⟹
λ2⟹
λ3⟹

λn⟹

Match type

⋅⋅⋅ ⋅⋅⋅

Agent type

Agents who arrived in the system 

only leave the system


 after they are matched.

At each time slot  

 One agent of a type arrives in the system 
 Realize zero or one match type

t
⟹
⟹

Model setup on multi-way dynamic matching

⟹ rd

⟹ r1

⟹ r2

Reward

⟹ r3
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Static Planning (Fluid) Solution

• Consider the static planning:


• Let  denote the static planning solution


• Can we just match based on ?


x*
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where  denotes the 
matching matrix s.t.  
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M
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i m

 is the reward of match rm m

 is the arrival rate vectorλ



Failure of Static Planning with dynamic arrivals
• Consider the following simple example
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Failure of Static Planning with dynamic arrivals
• Consider the following simple example


• Type-1 agents only get served with rate # of waiting type-1 agents grow to 
infinity


• Flaw of Averages: “plans based on average conditions are wrong on average” 


matching are independent of states and cannot adapt to stochastic arrivals 
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Our solution: use a “signal” to guide matching
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Shadow price as a signal

max
x ∑

m

rmxm

s . t . Mx = λ
xm ≥ 0,∀m

min
p ∑

i

λipi

s . t . (M⊤p)m ≥ rm, ∀m

Primal problem Dual problem

• Let  denote the optimal dual solution, also known as shadow price [Kantorovich, 
Koopmans 40’s, … ]


• A higher shadow price  means type-  agent resource is scarcer

p*

p*i i

 is the shadow price for 
type-  agent
pi

i

sum of shadow prices for 
agent types in match m
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Back to the example 

λ1=0.4
⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

x* = [0,0.4,0.2]

min
p

0.4p1 + 0.6p2

s . t . p1 ≥ 0.1
p1 + p2 ≥ 1.0
p2 ≥ 0.1

⟹ p* = [0.9,0.1]
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p1

p1

p2

p2

Agent type 1 is 
more precious
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⟹

λ2=0.6
⟹

Match typeAgent type

⟹ r1 = 0.1

⟹ r2 = 1.0

Reward

⟹ r3 = 0.1

• If we have many type-1 agents waiting to be matched, it “costs” less to match 
them, so we should decrease its shadow price


• More formally, let  denote the # of type-  agents waiting to be matched 


where  is time-varying price elasticity.


• As time progresses, fluctuation of stochastic arrivals are amortized, and less 
adjustment needed  decreases in 

δi(t) i

ηt

⟹ ηt t

pi(t) = p*i − ηt × δi(t)



• At each time slot :


• Find


 


t

Our policy (arrival rates  are known)λ

 Schedule match  that has maximal reduced reward, i.e., 

 

⟺ m

arg max
m

rm − ∑
i∈𝒜(m)

pi(t)

x(t) = arg max
x∈𝒳 ∑

m

rmxm − p(t)T Mx
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• At each time slot :


• Find


 


• Update the inventory of each agent based on  and the arrival :


• Update the shadow price for each agent type:


t

x(t) A(t)

pi(t + 1) = p*i − ηt × δi(t)

Our policy (arrival rates  are known)λ

 Schedule match  that has maximal reduced reward, i.e., 

 

⟺ m

arg max
m

rm − ∑
i∈𝒜(m)

pi(t)

δ(t) = δ(t − 1) − Mx(t) + A(t)

x(t) = arg max
x∈𝒳 ∑

m

rmxm − p(t)T Mx

 is time-varying price 
elasticity
ηt

 is the inventory of agent δi(t) i

 is the optimal dual solutionp*i

Note: If the scheduled match  
cannot be realized at time slot , we 
will realize it in the future based on 
the first-come-first-serve policy

m
t



• Plug in the estimate of  s.t.
p*

What if arrival rates  are unknown or changing?λ

pi(t + 1) = p*i − ηt × δi(t)



• Plug in the estimate of  s.t.


      where  denotes the optimal dual under the empirical arrival rate :


p*

̂p(t) ̂λ(t)

What if arrival rates  are unknown or changing?λ

pi(t + 1) = p*i − ηt × δi(t)

̂p(t) ∈ arg min
p ∑

i

̂λi(t)pi

s . t . (M⊤p)m ≥ rm, ∀m

̂pi(t)



• Plug in the estimate of  s.t.


      where  denotes the optimal dual under the empirical arrival rate :


• The rest of the algorithm is exactly the same as before

p*

̂p(t) ̂λ(t)

What if arrival rates  are unknown or changing?λ

pi(t + 1) = p*i − ηt × δi(t)

̂p(t) ∈ arg min
p ∑

i

̂λi(t)pi

s . t . (M⊤p)m ≥ rm, ∀m

̂pi(t)
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Our policy achieves constant regret

Non-degeneracy assumption: For all optimal dual  remains unchanged∥ ̂λ − λ∥2 ≤ ϵ, p*

M⊤p ≥ r

D(p) ≜ λ⊤p

p*

Local polyhedral property: slope at  is always bounded below by p* ϵ

D(p) − D(p*) ≥ ϵ∥p − p*∥2



Our policy achieves constant regret

•  and  represent the cumulative rewards under the hindsight optimal policy and 
our policy, respectively 
R*t Rπ

t
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Theorem [Wei-Xu-Yu ’23] 
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𝔼 [R*t − Rπ
t ] ≤

O ( 1
ϵ )  known λ

O ( 1
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Our policy achieves constant regret

•  and  represent the cumulative rewards under the hindsight optimal policy and 
our policy, respectively 


• We can also show the expected total waiting times satisfy the same bounds


•  regret is the best possible [Kerimov-Ashlagi-Gurvich’ 22a]


• If  (optimal dual is not unique), the regret at all time is  [Wei-Xu-Yu’ 

23], where the lower bound is [Kerimov-Ashlagi-Gurvich’ 22a]. 
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Theorem [Wei-Xu-Yu ’23] 


Choose  to be decreasing so that . Then our primal-dual policy  achieves 





ηt ∑t ηt < ∞ π

sup
0≤t≤T

𝔼 [R*t − Rπ
t ] ≤

O ( 1
ϵ )  known λ

O ( 1
ϵ2 )  unknown λ

Regret does not 
grow with T



Comparison to state of the art



Comparison to state of the art

Known  Arrival Rates 

O ( 1
ϵ )

• [Kerimov-Ashlagi-Gurvich’ 22a, 22b]: 
Optimal Basis (greedy/ batching)

• [Gupta’ 21]: Optimal Basis (SoS)

Impossible



Comparison to state of the art

Known  Arrival Rates Unknown Arrival Rates 

O ( 1
ϵ )

o (T )

• [Kerimov-Ashlagi-Gurvich’ 22a, 22b]: 
Optimal Basis (greedy/ batching)

• [Gupta’ 21]: Optimal Basis (SoS)

• [Nazari-Stolyar’ 18]: Primal-dual policy

Impossible



Comparison to state of the art

Known  Arrival Rates Unknown Arrival Rates 

O ( 1
ϵ )

o (T )

• [Kerimov-Ashlagi-Gurvich’ 22a, 22b]: 
Optimal Basis (greedy/ batching)

• [Gupta’ 21]: Optimal Basis (SoS)

• [Nazari-Stolyar’ 18]: Primal-dual policy

O ( 1
ϵ2 )

• [Wei-Xu-Yu’ 23]: Our new primal-dual policy

Impossible

• [Wei-Xu-Yu’ 23]: Our new primal-dual policy



Comparison to state of the art

Known  Arrival Rates Unknown Arrival Rates 

O ( 1
ϵ )
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• [Kerimov-Ashlagi-Gurvich’ 22a, 22b]: 
Optimal Basis (greedy/ batching)

• [Gupta’ 21]: Optimal Basis (SoS)

• [Nazari-Stolyar’ 18]: Primal-dual policy

• [Wei-Xu-Yu’ 23]: Our new primal-dual policyO ( 1
ϵ2 )

• [Wei-Xu-Yu’ 23]: Our new primal-dual policy

Impossible

• Our new primal-dual policy:


• Fairness: allows any match type to be 
used; 


• Constant regret: suitable for unknown 


• Best-performance in numerical experiments 
(regret & waiting time)


• Practically simple with intuitive 
interpretation in terms of shadow prices

λ
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• Regret decomposition at time :


       


• Choose  ensures that 


• Show 

t

𝔼[R*t − Rπ
t ] ≲

t

∑
s=1

ηs + 𝔼[∥δ(t)∥] +
t

∑
s=1

ℙ[ ̂ps ≠ p*]

ηs = s−2 ∑1≤s≤t ηs < ∞

𝔼 [∥δ(t + 1)∥2|ℱt] ≤ ∥δ(t)∥2 − ϵ
2 ⟹ 𝔼[∥δ(t)∥] = O (ϵ−1)

Proof ideas (Lyapunov drift method)

Lyapunov drift analysis + 
local polyhedral property 
[Huang-Neely ’09]

Coupling with bounded 
reflective random walk 
[Gupta’ 21]
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• Regret decomposition at time :


       


• Choose  ensures that 


• Show 


• 


t

𝔼[R*t − Rπ
t ] ≲

t

∑
s=1

ηs + 𝔼[∥δ(t)∥] +
t

∑
s=1

ℙ[ ̂ps ≠ p*]

ηs = s−2 ∑1≤s≤t ηs < ∞

𝔼 [∥δ(t + 1)∥2|ℱt] ≤ ∥δ(t)∥2 − ϵ
2 ⟹ 𝔼[∥δ(t)∥] = O (ϵ−1)

∑t
s=1 ℙ[ ̂p(s) ≠ p*] ≤ ∑t

s=1 ℙ[∥ ̂λ(s) − λ∥ ≥ ϵ] ≤ ∑t
s=1 exp(−sϵ2/8) ≤ O (ϵ−2)

Proof ideas (Lyapunov drift method)

Non-degeneracy assumption Hoeffding’s inequality

Loss due to dynamic 
adjustment of 
shadow prices

Loss due to 
backlogged agents

Loss due to shadow 
price errors



Numerical experiments
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Summary
• A new primal-dual policy for dynamic matching:


• First constant-regret policy with unknown λ


• Does not confine matching decisions to the optimal basis


• With known λ, our policy matches the regret bound in the literature


• Best performance in numerical experiments and practically simple 


• Results can be extended to other dynamic resource allocation problems


• Some interesting problems:


• Matching models with infinite agent types/abandonment;


• Matching models with possible agent declines; 


• Fairness in dynamic matching; 


• Primal-dual policies for other reward collection problems

Reference:


Y. Wei, J. Xu, & S. H. Yu, Constant Regret Primal-Dual Policy for Multi-Way Dynamic 
Matching, under revision, Management Science, SSRN.4357216
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• Consider the fluid formulation:


• Key: primal-dual algorithm by updating , and select the action has maximum 
reduced reward, where  is the associated dual variable of .
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• Negative drift:
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• Negative drift:


If , we have


•   By a coupling argument with bounded reflective random walk following [Gupta’ 21], 

∥δ(t)∥ >
3B
ϵ

Bounding the inventory

𝔼 [∥δ(t + 1)∥2|ℱt] ≤ ∥δ(t)∥2 −
ϵ
2

.

𝔼 [∥δ(t)∥2] = O (ϵ−1) ∀t .
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