1. Use L’Hospital’s rule to find the limit of \(\frac{\sin(x)}{x} \) as \(x \to 0 \).

2. Derive the expression of the 1st and 2nd order Taylor expansion of the function \(f(x) = c \exp(-dx^2) \) around the point \(x_0 \). Find an expression for the \(k \)'th order Taylor expression that works for all \(k \).

3. Consider modeling a dataset \(D = \{(x_i, y_i), i=1,...,n\} \) with a line through the origin \(y = mx \), where \(m \) is a parameter. The error \(E_i(m) \) between the line and the \(i \)'th datapoint is \(E_i(m) = |mx_i - y_i| \). Let the objective function \(f(m) \) be the \textit{sum of squared errors} \(f(m) = \sum_{i=1}^{n} E_i^2(m) \). Find the critical points of \(f \). Show that there is one unique point and that it is indeed a local minimum.

4. Prove that if a function \(f(x) \) is differentiable, and its derivative \(f'(x) \) satisfies \(|f'(x)| \leq K \) for all \(x \), then \(f \) satisfies the Lipschitz condition with constant \(K \). Use Rolle’s theorem, which states that if a differentiable function \(g(x) \) attains the same values at points \(a \) and \(b \), then \(g'(x) = 0 \) at some point \(x \in (a,b) \). Give an example of a function that is Lipschitz but is not differentiable.

5. Give pseudocode for a constrained Newton's method that limits the step \(\Delta x_t = -\frac{g(x_t)}{g'(x_t)} \) in order to prevent divergence. The iterates should satisfy \(|g(x_{t+1})| < |g(x_t)| \).