Z-Score Analysis

Z-Score Analysis I

- Excess return was adjusted for market of holdings til and cross-sectional dispersion by calculating Z-scores using the following formula:

 \[
 Z-score = \frac{\text{Excess Return}_{in} - \text{E} \times \text{(Beta)}_{in}}{\text{Standard Deviation} \times \text{Beta}}
 \]

 - **Til:** Then we made new correlations using different managers per group.
 - **Manager-Specific Histogram:** For each individual manager a z-score was grouped into bins and plotted with the bell-shaped curve with mean and standard deviation.
 - **Manager Data:** Discretion returns for each individual manager and the number of stocks that particular manager was handling. We used data for 40 managers in our analysis.

Z-Score Analysis II

- Based on the histograms of total observation for different benchmarks (not normalized), we used a Gaussian histogram to determine the significance of the random pattern over time extended period of time.

- The fitting result tells us that the manager performance distribution is not deviating from normal distribution. However, the high chi-square and adjusted R2 values of the fitting (R2) is strong indication that the distribution of manager performance is close to normal distribution.

Conclusion

- The key finding is that when discrete excess returns are adjusted for number of holdings in portfolio and cross-sectional dispersion of returns we can model the return pattern of all the managers over a long period of time using a normal distribution.
- **Manager-specific:** The manager-specific histograms were grouped into bins and plotted with the bell-shaped curve with mean and standard deviation.
- **Manager data:** Discretion returns for each individual manager and the number of stocks that particular manager was handling.
- **Manager specific:** The analysis was focused on how the managers were handling different assets.

Acknowledgements

- We are indebted to Daniel Eger for his guidance and input on the statistical methods we used to look for patterns in the data. We also acknowledge Joseph Lust for providing us with MATLAB script to convert daily returns to monthly returns.