Asset Manager Performance Analysis
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Three benchmarks were used in this project: (1) Equal-weighted return of all stocks in [ —

Repceafe Universe; (2) MSCI EAFE Benchmark (excludes Canada); (3) Mean monthly returns of

the 43 managers. D mmw*v‘rm.-m-m
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We identified the best fitting benchmark by comparing the ‘MSCI* and ‘Equal weighted
returns’ benchmarks against the ‘Managers average return’. Fitting a regression with Manager
average returns on MSCl and Manager average returns on the equal weighted return gives the
best fit having the least standard error of regression(0.053) with the MSCI benchmark,
compared to the model with mean combined return(0.073). A simple line-plot shows that the
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Auto-correlation for the discrete excess returns with the same time series lagged one Histograms of the excess return were plgtted for aII managers ...--'"-” Figure 8 Z-Score of MSCI EAFE Benchmark
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mean observed excess return = 0.207% : :
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Z Figure 7 Skewness & Kurtosis Information by Months

Table 1T Summary of Skewness and Kurtosis Analysis
0 .
5 4 = i =2 & 2 3 2 2 3 2 & 2 excess returns (%) (benchmark = —0.068%) Skewness Excess Kurtosis
Month & Year ——Average —e—Std. of all mgr. Figure 4 Manager's Excess Return Distribution (05/31/2004) Per ME“HEE" Per Month PE" Man ager Per Mnnth
An important result from this analysis was the inherent herding
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are closely ‘boxed’. For most months they are herded around zero ‘ “ H ‘ |
mean. However, we observed that for a few months, the managers d ” TR ¥ fie % 555 (C) Z socre with mean of managers
were herding around a different value than zero. __ Figure 9 Z-Score of Managers' Mean Return

i) Managers are hugging the benchmark. However, we observed
that for several months, the managers were herding around a
different value than zero.

i) Managers are perhaps investing in the same stocks within the /“—JQ CONCLUSION
Repceafe Universe.
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The key finding is that when discrete excess returns are adjusted for number of holdings in portfolio and cross-sectional dispersion of returns we can model the return pattern of
all the managers over a long period of time using a normal distribution.

# of managers = 76 - Managers seem to be herded around the MSCI EAFE Benchmark. For most months close to normally distributed around zero excess returns.

Figure 3 Managers Excess Return against MSCI EAFE Benchmark mean observed excess return = -0.4711 : : : : :
J J J - Herding behavior of managers is not always observed around zero excess return, their returns are occasionally centered and herded above or below the zero.

standard deviation = 0.998
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In Figure 2 and Figure 3, data was sorted in ascending order of average discrete
excess returns. By looking at those graphs there are no identifiable patterns that link
the performance of managers and their auto-correlation. We also sorted the data by
ascending auto-correlation values and did not see any patterns in those graphs either. It
is interesting to note that during the studied period the market benchmark had higher
autocorrelation than almost all of the managers.

A possible explanation is that the managers might be investing in similar stocks. A significant change in prices of these stocks can shift the excess returns values for the managers
we are analyzing away from the zero excess return value.
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Also we find that auto-correlation of a manager’s return does not give us any valuable information about the future returns for that manager.
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We also compared the average discrete excess returns of all the 43 managers for
each month and the monthly standard deviation of returns for the 43 managers. That . excess returns (%) (benchmark = 3.35%)
graph shows no recognizable pattern that indicates high or low returns on average LIGUIES BIVIanagErs gExce SS HETRUISTIDUIONYUo/2 172005)

when the standard deviation is high.
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