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Abstract

While bargaining is at the core of economics, economic theories of bargaining have
produced rich, often incompatible predictions, some stipulating that bargaining be effi-
cient and others proving that it cannot be. Using a generalized partnership model with
independent private values that permits a unifying approach, we study how bargain-
ing outcomes depend on ownership, bargaining power, and type distributions. With
two agents and overlapping supports, equal bargaining power is necessary for efficiency,
whereas equal ownership is not. Without overlapping supports, efficiency does not
depend on ownership structure. Bargaining is efficient independent of ownership and
bargaining power if and only if the gap between the supports is sufficiently large, in
which case bargaining never breaks down and incomplete and complete information
bargaining are equivalent. For equal (extremal) bargaining weights, variants of the
k-double auction implement the optimal mechanism for uniform distributions (distri-
butions satisfying regularity). Generalizations include decreasing marginal values and
multiple agents.

Keywords: ex post efficiency, ownership, bargaining power, countervailing power
JEL Classification: D44, D82, L41

∗We are grateful for suggestions and feedback from Will Fuchs, Martin Peitz, Patrick Rey, Vasiliki Skreta,
and seminar participants at the University of Chicago, Melbourne, and Texas, and the 2023 CRESSE-
Lingnan Competition Policy Workshop in Hong Kong. Financial support from the Australian Research
Council Discovery Project Grants DP200103574 and DP250100407 is gratefully acknowledged.

†Department of Economics, Level 4, FBE Building, 111 Barry Street, University of Melbourne, Victoria
3010, Australia. Email: simonl@unimelb.edu.au.

‡Duke University, 100 Fuqua Drive, Durham, NC 27708, USA: Email: marx@duke.edu.



1 Introduction

Bargaining is a central part of everyday life, business, politics and economics. Husbands and
wives haggle over the household budget, parents and children negotiate over screen time,
politicians bargain over pork barrels and war and peace, workers and firms over pay, and
corporate leaders over business deals. The conditions under which bargaining is efficient are
at the core of economic analysis and debates, from the Coase Theorem and the irrelevance of
ownership that it implies to Galbraith’s popular yet controversial concept of countervailing
power to the impossibility results of Vickrey and Myerson and Satterthwaite to the recent
upsurge of empirical studies that, among other things, document that bargaining breakdown
is a systematic feature of negotiations in the real world.1 According to theories of com-
plete information bargaining in the tradition of Nash and Shapley, bargaining is efficient by
assumption while, in a contrast that could hardly be sharper, the Myerson-Satterthwaite
theorem has led some authors to conclude that, with incomplete information, the quest for
efficient bargaining is “fruitless.”2 Lacking a unifying framework, this richness and the often
contradictory sets of assumptions and results can easily have readers wonder what lessons
to draw from the economic literature on bargaining.

In this paper, we study a general model of bargaining that encompasses as special cases
the irrelevance of ownership, the relevance of countervailing power, the impossibility of ex
post efficiency, and (generalized) Nash bargaining. The formal setup is a generalized partner-
ship model that permits heterogeneous bargaining weights, type distributions with shifting
supports, and arbitrary ownership structures. Information is always incomplete and bargain-
ing is modeled as a mechanism that maximizes the weighted sum of the agents’ expected
payoffs, subject to incentive compatibility, interim individual rationality, and a no-deficit
constraint.

Focusing first on the case with two agents, there are always bargaining weights and own-
ership structures such that ex post efficiency is possible. When the distributions’ supports
overlap, ex post efficiency requires equal bargaining weights, but is typically possible for
a large, convex set of ownership structures that exclude extremal ownership. Hence, the
specification with overlapping supports provides a formalization of Galbraith’s hypothesis

1See Galbraith (1952, 1954), Coase (1960), Vickrey (1961), and Myerson and Satterthwaite (1983). For
empirical studies of bargaining, see, e.g., Backus et al. (2019), Backus et al. (2020), Backus et al. (forth.),
Larsen (2021), Larsen et al. (2021), Larsen and Zhang (2022) and Byrne et al. (2022). For skepticism regard-
ing countervailing power, see, for example, Stigler (1954, p. 13), who lamented the lack of explanation for
“why bilateral oligopoly should in general eliminate, and not merely redistribute, monopoly gains.” Steptoe
(1993) summarizes its popular appeal by noting that the notion of buyer power is sometimes embraced by
courts as if it had “talismanic power.”

2Ausubel et al. (2002, p. 1934).
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that countervailing power is of “substantial, and perhaps central, importance,” (Galbraith,
1954, p. 1), and it provides a set of instances in which the Coasian irrelevance of ownership
does not apply. Because ex post efficiency is not possible with overlapping supports and
extremal ownership, where the agent who owns the good is the seller and the other agent
is the buyer, overlapping supports and extremal ownership corresponds to the impossibility
result of Myerson and Satterthwaite. If the supports do not overlap, then ownership does not
matter for ex post efficiency, but if the gap between the supports is small, then bargaining
weights must still be sufficiently similar for bargaining to be efficient. Thus, nonoverlapping
supports provide a partial foundation for the Coasian irrelevance and the Coase Theorem,
partial only because even though ownership is immaterial, bargaining power, if too skewed,
can still be an impediment to efficiency. If the gap between the two supports is sufficiently
large, then the Coase Theorem applies, that is, bargaining is efficient irrespective of the
ownership structure and bargaining weights. If this is the case, there is no scope for counter-
vailing power to increase social surplus and the incomplete information bargaining outcomes
are the same as those under (generalized) Nash bargaining—bargaining weights only affect
the distribution of surplus, not its size.

Bargaining between two agents is naturally said to break down if the two agents do not
trade. Adhering to this terminology, the above results have the empirical implication that
bargaining is not ex post efficient if bargaining breakdown occurs with positive probability.3

The reasons are simple yet still slightly subtle. With nonoverlapping supports, under ex post
efficiency the agent with the weak distribution always sells its share to the other agent. With
overlapping supports and interior ownership, under ex post efficiency the agent with the low
type should sell its share to the agent with the high type. Because two types being the same
is a probability zero event, trade should occur with probability one. Last, with overlapping
supports and extremal ownership, trade would not occur under ex post efficiency if the owner
has the higher type, which means that, in principle, ex post efficiency is compatible with
bargaining breakdown. However, as noted, overlapping supports and extremal ownership
are incompatible with ex post efficiency. With nonoverlapping supports, the only reason
for bargaining breakdown in our setting would be the exertion of bargaining power in the
presence of extremal ownership.

To justify and rationalize the complete information approach to bargaining, which may be
deemed advantageous in terms of tractability, a researcher may want to argue that, maybe,
in the application at hand there is very little private information. The framework we study

3It may appear appropriate to add the qualification that, in the case of nonoverlapping supports, the
agent with the stronger distribution is not the sole owners. But if that is the case, it is difficult to see what
the two agents would bargain over in the first place.
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here provides a way of formalizing and conceptualizing this otherwise vague or vacuous
notion4—there is little private information if the gap between the supports is sufficiently
large. In practice, this would correspond to a situation in which, say, a downstream firm’s
value for a supplier’s input is always well above the supplier’s cost and the downstream firm
has no scope for internal production, which may be descriptive of the healthcare industry
and insurers and hospitals. In contrast, in settings in which bargaining breakdown is a real-
world phenomenon, such as in certain retail and media markets, a model with incomplete
information that accommodates bargaining breakdown would seem more appropriate.5

The analysis extends directly to settings with many agents. This contrasts with complete
information bargaining models, which, in the case of Nash bargaining, do not extend or, in
the case of the Shapley value, become quickly computationally intractable. For extremal
ownership and two agents, we also analyze a variant with decreasing marginal values, which
is relevant for some applications. Among other things, we show that the buyer-optimal
and the seller-optimal mechanisms can be implemented with the powerful agent posting a
nonlinear tariff after its its type is realized, giving the powerless agent the discretion to
determine the quantity traded.

As mentioned, bargaining is central to economics, from the Coase Theorem (Coase, 1960)
to the concept of countervailing power (Galbraith, 1952, 1954; Stigler, 1954), the theory of
the firm (Grossman and Hart, 1986; Hart and Moore, 1990), recent merger cases (see e.g.
Lee et al., 2021), and empirical studies such as Backus et al. (2020), Larsen (2021), Larsen
and Zhang (2022), Larsen et al. (2021), Backus et al. (forth.) and, Byrne et al. (2022).
Our paper contributes to the literature on bargaining, including the strands of literature on
complete information bargaining in the tradition of Nash (1950) and Shapley (1951) and
those on incomplete information bargaining along the lines of Vickrey (1961) and Myerson
and Satterthwaite (1983), by providing and analyzing a unifying framework.6 In particular,
we take the same as-if approach as Ausubel et al. (2002), Loertscher and Marx (2022), and
Choné et al. (forth.), which models incomplete information bargaining as intermediated by
a mechanism designer, and analyze a general partnership model (Cramton et al., 1987) that
permits heterogeneous distributions and supports and unequal bargaining weights.

4For example, the impossibility theorem of Myerson and Satterthwaite (1983) holds for any positive
densities whose supports overlap, no matter how skewed these are.

5For healthcare, see e.g. Ho and Lee (2017). Bargaining breakdown in retail markets is documented by
Van der Maelen et al. (2017). For bargaining breakdown in media markets, see e.g. Frieden et al. (2020)
or the FCC press release on “FCC Begins Proceeding to Empower Consumers During Cable & Satellite TV
Blackouts,” January 17, 2024, https://docs.fcc.gov/public/attachments/DOC-399876A1.pdf.

6There is also a strand of literature on one-to-many bargaining—such as between a developer and land
owners—with complete information in which the principal lacks commitment power; see, for example, Xiao
(2018) or Uyanik and Yengin (2023).
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Methodologically, the paper contributes to the mechanism design literature by combining
the methods that Myerson (1981), Myerson and Satterthwaite (1983), and Williams (1987)
developed for settings with one-sided and two-sided private information to partnership mod-
els, which exhibit countervailing incentives, such as Lu and Robert (2001), Loertscher and
Wasser (2019), and Loertscher and Marx (2023).7 Studying informed-principal problems,
Mylovanov and Tröger (2014) solve for the mechanism that is optimal for a one agent in a
bilateral partnership problem. The mechanism that maximizes one agent’s expected payoff is
encompassed as a special case of our analysis, which sidesteps the informed-principal aspect
of the problem by assuming that the mechanism is designed and run by an intermediary.8

The partnership framework analyzed here is a generalization of the settings with one-sided
and two-sided private information in Loertscher and Marx (2019, 2022).

The remainder of this paper is organized as follows. Section 2 lays out the setup with
two agents. Section 3 illustrates the key forces at work while Section 4 provides the in-depth
analysis of bargaining among two partners. Extensions to decreasing marginal values and
more than two agents are analyzed in Section 5. Section 6 concludes the paper.

2 Setup

Let N denote the set of agents whose cardinality is denoted by n. Up to Section 5.2, we
assume that N = {1, 2}. However, we will often use the generic notation N as this paves
the way toward the generalization in Section 5.2. There is one unit of productive resources.
Agent i’s ownership share is denoted ri and satisfies ri ∈ [0, 1]. Moreover, the productive
resources are entirely owned by the agents, that is,

∑
i∈N ri = 1. Each agent i has a constant

marginal value of θi for up to one unit of the productive resource, where θi is agent i’s private
information, which is an independent draw from its type distribution Fi with support [θi, θi]
and positive density fi on its support. Type distributions are common knowledge. Agent
i’s bargaining (or welfare) weight is denoted 𝑤i ∈ [0, 1], with at least one agent having a
positive weight. For the case with n = 2, we let r ≡ r1, so that 2’s ownership is 1− r, and,
normalizing the bargaining weights by dividing by 𝑤1 + 𝑤2, we use 𝑤 to denote agent 1’s
weight, with the implication that agent 2’s weight is 1− 𝑤.

Incomplete information bargaining among the agents is modeled as being intermediated
by a possibly fictitious designer that chooses a bargaining mechanism. Specifically, a direct
mechanism is given as ⟨Q,M⟩, where Q : ×i∈N [θi, θi] → [0, 1]n satisfying

∑
i∈N Qi(θ) = 1 is

7Focusing on ex post efficiency, Loertscher and Marx (2024) study variants of partnership models, some-
times also referred to as “asset market models,” in which agents’ types can be multi-dimensional, while Liu
et al. (forth.) provide an empirical application of an asset market model.

8Away from extremal bargaining weights, the informed-principal problem does not appear well defined.
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the allocation rule and M : ×i∈N [θi, θi] → Rn is the payment rule. The mechanism is called
direct because it asks every agent to report its type. Given ⟨Q,M⟩ and assuming truthful
reporting by agents other than agent i, the interim expected allocation and payment of agent
i when its report is θi are qi(θi) ≡ Eθ−i

[Qi(θ)] and mi(θi) ≡ Eθ−i
[Mi(θ)]. When its type is θi,

its allocation is Qi and its payment is Mi, agent i’s payoff from the mechanism is θiQi−Mi.

Because the payoffs are linear, agent i’s expected payoff given an expected allocation qi and
expected payment mi is simply θiqi −mi. Given ownership share ri and type θi, the value
of i’s outside option is riθi. A prominent allocation rule is the ex post efficient allocation
rule, which we denote by Qe(θ). This allocation rule is such that Qe

i (θ) = 1 if and only
if θi > maxθ−i and Qe

i (θ) = 0 otherwise. (Ties have probability zero and can be broken
arbitrarily.) We denote by qei (θi) ≡ Eθ−i

[Qe
i (θ)] agent i’s interim expected allocation under

the efficient allocation rule.
The mechanism ⟨Q,M⟩ satisfies (Bayes Nash) incentive compatibility (IC) if for i ∈ N

and all θi, θ̂i ∈ [θi, θi],
θiqi(θi)−mi(θi) ≥ θiqi(θ̂i)−mi(θ̂i).

It satisfies interim individual rationality (IR) if for all i ∈ N and all θi ∈ [θi, θi],

θiqi(θi)−mi(θi) ≥ riθi.

An immediate implication of IC is that the interim expected allocation qi(·) is nondecreasing.9

By the revelation principle, the focus on direct mechanisms that satisfy IC and IR is
without loss of generality. The problem of the designer is to choose ⟨Q,M⟩ to maximize the
weighted sum of the agents’ ex ante expected payoffs:

max
Q,M

Eθ

[∑
i∈N

𝑤i

(
θiQi(θ)−Mi(θ)

)]
, (1)

subject to IC and IR and a no-deficit constraint, which is to say that the designer does not
pour any money into the exchange.

The description of the incomplete information bargaining mechanism is now almost com-
plete. The cases that remain to be addressed are those in which the mechanism designer
runs a budget surplus after solving the constrained maximization problem with the objec-
tive in (1) when multiple agents have the maximal bargaining weight. For these cases, the
mechanism needs to determine how that budget surplus is shared among those agents. To

9To see this, writing IC for agent i with a true type of θ̂i that could report θi, we have θ̂iqi(θi)−mi(θi) ≤
θ̂iqi(θ̂i) −mi(θ̂i). Subtracting this inequality from the one in the text yields (θi − θ̂i)(qi(θi) − qi(θ̂i)) ≥ 0,
which implies that qi(·) must be nondecreasing.
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this end, let η = (ηi)i∈N with ηi ∈ [0, 1],
∑

i∈N ηi = 1, and ηi = 0 if 𝑤i < maxw. Then in
case the budget surplus is positive, agent i obtains the share ηi of this surplus. Notice that if
n = 2 and 𝑤 = 1/2, then η ≡ η1 can be interpreted as agent 1’s generalized Nash bargaining
weight when agents 1 and 2 bargain over the budget surplus.10

The mechanism design setup will make use of the virtual type functions

ΨS
i (θ) ≡ θ +

Fi(θ)

fi(θ)
and ΨB

i (θ) ≡ θ − 1− Fi(θ)

fi(θ)
,

where ΨS
i and ΨB

i are referred to as agent i’s virtual cost and virtual value functions, respec-
tively. We assume that all Fi are such that ΨS

i and ΨB
i are increasing, which is the Myersonian

regularity condition (Myerson, 1981).11 To capture differential productive strengths between
the agents in a simple, tractable way, we assume in the two-agent case that [θ1, θ1] = [0, 1]

and [θ2, θ2] = [θ, θ + 1] for some θ ≥ 0. Further, we assume that changes in θ merely shift
the support of 2’s distribution while keeping the distribution on the support fixed. That is,
denoting by F P

2 (θ) with support [0, 1] the primitive distribution whose virtual type functions
we denote by ΨS,P

2 (θ) and ΨB,P
2 (θ), we have, for θ ∈ [θ, θ+1], F2(θ) = F P

2 (θ−θ). This implies,
in particular, that for θ ∈ [θ, θ + 1], ΨS

2 (θ) = ΨS,P
2 (θ − θ) + θ and ΨB

2 (θ) = ΨB,P
2 (θ − θ) + θ.

Many results generalize beyond this specification. However, the comparative statics results
with respect to θ and the interpretation of changes in θ as reflecting productivity differentials
are easily and conveniently captured with this shifting-support model.

This setup generalizes prior literature by simultaneously allowing for unequal bargaining
(or welfare) weights 𝑤i, nonextremal ownership, that is, ri ∈ (0, 1), and heterogeneous
distributions. For example, Myerson and Satterthwaite (1983), Cramton et al. (1987), Che
(2006), Figueroa and Skreta (2012), Makowski and Mezzetti (1993), Loertscher and Wasser
(2019), Gresik and Satterthwaite (1989), Lu and Robert (2001), and Liu et al. (forth.) assume
equal weights. Williams (1987) and Loertscher and Marx (2022) allow for unequal bargaining
weights but assume extremal resource ownership so that each agent is either ex ante known
to be a buyer or a seller.12 Loertscher and Marx (2024) allow for nonextremal ownership

10To see this, letting S > 0 be the budget surplus and assuming that the two agents’ outside options when
they Nash bargain over the division of the budget surplus are 0, the generalized Nash solution maximizes
pη(S − p)1−η over p ∈ [0, S], yielding p∗ = ηS as the maximizer.

11The virtual value function ΨB
i captures the marginal revenue associated with agent i. To see this,

consider a seller with cost c that makes a take-it-or-leave-it price offer p to agent i. The seller’s problem is
maxp∈[θi,θi]

(1 − Fi(p))(p − c). The first-order condition is −fi(p)(ΨB
i (p) − c) = 0, which by the standard

“marginal revenue equals marginal cost” condition means that ΨB
i (p) is the marginal revenue associated with

i’s demand. An analogous argument shows that ΨS
i captures the marginal cost associated with Fi.

12Specifically, normalizing the total resources to 1, the setup in Loertscher and Marx (2022) allows for
each agent’s maximum demand to be some ki ∈ (0, 1] and its ownership to be ri ∈ {0, ki}, while Williams
(1987) studies a setting with two agents in which k1 = k2 = 1 and r1 = 1.
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and multi-dimensional types but assume equal weights.

3 Illustration

We first provide a brief illustration of the incomplete information bargaining mechanism
between two agents, focusing on the case in which both agents draw their types from [0, 1],
i.e., θ = 0, and limiting attention to bargaining weights that are either extremal or equal,
i.e., 𝑤 ∈ {0, 1

2
, 1}. We consider the possibility of resource ownership that is extremal, i.e., one

agent is a buyer and the other is a seller, and the case of a “partnership model” in which each
agent owns some resources. For extremal ownership, the optimal mechanisms are known
from the literature, in particular Myerson (1981), Myerson and Satterthwaite (1983, MS
hereafter), and Williams (1987). For partnership models, we illustrate the allocation rule of
the optimal mechanisms, which will be derived in Section 4.

Extremal bargaining weights

Consider first the case in which agent 1 has all the bargaining power, that is, 𝑤 = 1, and
restrict attention to take-it-or-leave-it offers, which can be shown to be optimal.13 If r = 1

and agent 1’s type is θ1, then agent 1’s problem is to choose its take-it-or-leave-it sale price
p ∈ [0, 1] to maximize (1−F2(p))(p−θ1). The first-order condition is 0 = −f2(p)(ΨB

2 (p)−θ1).
As stated above, we assume that ΨB

i is increasing, which holds, for example, for the uniform
distribution on [0, 1], in which case ΨB

i (θ) = 2θ − 1. An increasing virtual value function
implies that the first-order condition is sufficient for characterizing a maximum. The optimal
sale price that agent 1 sets is thus p = ΨB

2
−1
(θ1). For the uniform distribution, this is 1+θ1

2
,

as illustrated in Figure 1(a).
Conversely, when r = 0, agent 1 is a buyer and chooses the buyer price p to maximize

(θ1−p)F2(p). The first-order condition is 0 = f2(p)(θ1−ΨS
2 (p)). Because ΨS

i is also assumed
to be increasing, the first-order condition is sufficient for a maximum. For example, for
the uniform distribution on [0, 1], ΨS

i (θ) = 2θ. Consequently, the optimal buy price is
p = ΨS

2
−1
(θ1), which for the uniform distribution on [0, 1] is θ1

2
, as illustrated in Figure 1(b).

Consider now the case with shared ownership, i.e., r ∈ (0, 1). In this case, the mechanism
that maximizes agent 1’s ex ante expected payoff, subject to IC and IR, is, in a sense, a
combination of the optimal mechanisms for r ∈ {0, 1}. For small values of θ1, say for

13This potentially brings to mind the issue of informed-principal problems. Although this setting satisfies
the conditions of Mylovanov and Tröger (2014) under which the optimal mechanism of the informed principal
coincides with the optimal mechanism of a designer whose value is known, our main model sidesteps these
issues by assuming that all agents participate in a mechanism. Take-it-or-leave-it offers being optimal then
means the mechanism’s allocation rule corresponds to that resulting from optimal take-it-or-leave-it offers.

8



(a) r = 1: optimal sell price

θ1

θ2

Q2=1
r=1

(b) r = 0: optimal buy price

θ1

θ2

Q2=1
r=0

(c) r = 0.9: combination

θ1

θ2

Q2=1

r=0.9

Figure 1: Agent 1 has all the bargaining power: allocation rules and prices of the mechanism that maximizes
the expected payoff of agent 1 when agent 1 is a seller (r = 1, panel (a)), when agent 1 is a buyer (r = 0,
panel (b)), and with shared ownership (r = 0.9, panel (c)). Assumes uniformly distributed types on [0, 1].

θ1 ≤ z for some z ∈ (0, 1), the allocation rule gives all of the resources to agent 2 whenever
θ2 ≥ ΨS

2
−1
(θ1), that is, according to the line depicted in Figure 1(b); and for θ1 > z, the

allocation rule gives all of the resources to 2 whenever θ2 ≥ ΨB
2
−1
(θ1), which is the line

depicted in Figure 1(a). This blended allocation rule is shown Figure 1(c).
We can pin down the value of the cutoff point z using the IR constraint. The allocation

rule implies that for θ2 ∈ [ΨS
2
−1
(z),ΨB

2
−1
(z)], agent 2 is allocated the resources if and only

if θ1 ≤ z, and nothing otherwise. Consequently, the interim expected allocation of agent 2

for θ2 ∈ [ΨS
2
−1
(z),ΨB

2
−1
(z)] is F1(z). For example, for F1 and F2 uniform on [0, 1], we have

[ΨS
2
−1
(z),ΨB

2
−1
(z)] = [z/2, (z + 1)/2] and F1(z) = z. As will be shown, an agent’s expected

gain from an incentive compatible mechanism is minimized when its interim allocation is
equal to its ownership share, provided such an interim allocation exists.14 This means that
for z = 1 − r, all types ω2 of agent 2 that are elements of [z/2, (z + 1)/2]|z=1−r = [(1 −
r)/2, (2 − r)/2] are worst-off. Their expected payoffs from participating in the mechanism
are (1− r)ω2 − r

∫ 1−r

0
θ1/2dθ1 + (1− r)

∫
1−r1

(1 + θ1)/2dθ1 = (1− r)ω2 +
3
4
r(1− r) because

with probability 1− r, these types get to consume the good and (1− r)
∫ 1

1−r
(1 + θ1)/2dθ1 −

r
∫ 1−r

0
θ1/2dθ1 =

3
4
r(1−r) is the expected net payment they receive. Because (1−r)ω2 is the

value of the outside option of an agent of type ω2, agent 1 can tax the amount T = 3
4
r(1− r)

from every type of agent 2, for example, via an upfront fee.

Equal bargaining weights

Next, we turn to the polar opposite of extreme bargaining weights and describe the optimal
mechanisms for 𝑤 = 1/2. As shown by MS, for r = 1 and uniformly distributed types on
[0, 1], the optimal mechanism allocates the resources to agent 2 if and only if θ2 ≥ 1/4 + θ1,
which is depicted in Figure 2(a). This is the allocation rule of the second-best mechanism,

14In the context of ex post efficiency, this was first observed by Cramton et al. (1987). It extends to any
incentive compatible mechanism.
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that is, the mechanism that maximizes equally weighted social surplus, subject to IC, IR,
and a no-deficit constraint for the designer.15 Because ex post efficiency is not possible with
r = 1, it differs from the ex post efficient allocation rule displayed in Figure 2(b). As shown
by Cramton et al. (1987, CGK hereafter), ex post efficiency is possible, subject to the same
constraints, when r is sufficiently symmetric. For example, for uniformly distributed types
on [0, 1], ex post efficiency is possible if and only if r ∈ [0.21, 0.79].

(a) r = 1: MS
second best

θ1

θ2

Q2=1
r=1

(b) r = 0.5: CGK
ex post efficient

θ1

θ2

Q2=1
r=0.5

(c) r = 0.9: partnership
second best

θ1

θ2

Q2=1
r=0.9

Figure 2: Equal bargaining power: panel (a) displays the allocation rule of the second-best mechanism derived
for r = 1 by MS; panel (b) displays the ex post efficient allocation rule for r = 0.5, which is implementable
without running a deficit as shown by CGK; and panel (c) displays the allocation rule of the second-best
mechanism for the partnership model for r = 0.9, in which case ex post efficiency is not possible. Assumes
uniformly distributed types on [0, 1].

This also means that for uniformly distributed types and, say, r = 0.9, neither is ex post
efficiency possible nor is the second-best mechanism of MS necessarily optimal. As we show,
the second-best mechanism for shared ownership when ex post efficiency is not possible takes
the form shown in Figure 2(c). It is, perhaps intuitively, a combination of the ex post efficient
allocation rule in Figure 2(b) and a parallel inward shift of the allocation rule of second-best
mechanism of MS in Figure 2(a). The bunching intervals, consisting of the vertical segment
for agent 2 and the flat segment for agent 1, occur at θ1 = 1− r as in the mechanism that is
optimal for agent 1, which ensures that agent 2’s interim expected allocation in the bunching
interval is equal to its ownership share 1− r, and at θ2 = r, which in turn ensures that agent
1’s interim expected allocation is r when its type is in the bunching interval. These bunching
intervals thus corresponds to the types who are worst-off, which are the types for whom the
IR constraint will bind.

Both with extremal and with shared ownership, the second-best mechanism allocates
based on a comparison of weighted virtual type functions

ΨK
i,α(θ) ≡ αθ + (1− α)ΨK

i (θ) (2)

15The case of r = 0 is simply the mirror image of the case with r = 1 and has the allocation rule that
leaves the resources with agent 2 if and only if θ2 ≥ −1/4 + θ1.
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for K ∈ {B, S} and α ∈ (0, 1), which are analogues to the weighted marginal revenue
functions used in Ramsey pricing.16 The larger is α, the closer is the weighted virtual type
ΨK

i,α(θ) to the actual type θ.
For r = 1, the second-best allocation rule gives the resources to agent 2 if and only if

θ2 ≥ ΨB
2,α

−1
(ΨS

1,α(θ1)), where α is such that the no-deficit constraint is satisfied with equality.
For uniformly distributed types on [0, 1], as shown by MS, satisfying the no-deficit constraint
requires α = 2/3, which implies that ΨB

2,α
−1
(ΨS

1,α(θ1)) = 1/4 + θ1.
With shared ownership, r ∈ (0, 1), as in Figure 2(c), the second-best mechanism is based

on a comparison of ΨS
1,α(θ1) and ΨS

2,α(θ2) for small values of θ1 and θ2, and a comparison
of ΨB

1,α(θ1) and ΨB
2,α(θ2) for large values of θ1 and θ2. When the distributions are identical,

these comparisons are equivalent to comparing θ1 and θ2, which is why the allocation rule
is ex post efficient for small and large types in Figure 2(c). For intermediate types, the
allocation rule gives the resources to agent 2 if and only if θ2 ≥ ΨB

2,α
−1
(ΨS

1,α(θ1)), just like for
r = 1, except that the value of α is closer to 1, and hence the distortion away from efficiency
is smaller—shared ownership relaxes the no-deficit constraint.

In the remainder of the paper, we provide generalizations of these insights and mechan-
ics to heterogeneous distributions and supports, arbitrary ownership shares and bargaining
weights, and to any number of agents. Before turning to that, we briefly discuss implementa-
tion of the incomplete information bargaining mechanism using variants of k-double-auctions.

k-double-auctions

So-called k-double-auctions (k-DA), first analyzed by Chatterjee and Samuelson (1983) as
bargaining mechanisms between a buyer and seller, have played a prominent role in the
literature to date. In a k-DA involving a buyer and a seller, both agents submit bids and,
given a bid bS by the seller and a bid bB by the buyer, the object changes hands if and
only if bB ≥ bS, with the transaction price being kbS + (1 − k)bB with k ∈ [0, 1]. Thus,
a take-it-or-leave-it offer by the seller (buyer) corresponds to a k-DA with k = 1 (k = 0).
As noted above, for r ∈ {0, 1} and 𝑤 = 1, the optimal mechanism can be implemented
with agent 1 making a take-it-or-leave-it price offer to agent 2, which is thus a form of
a k-DA. For r = 1 and uniformly distributed types, MS observe that the 1/2-DA has an
equilibrium that implements the second-best mechanism. In this equilibrium, agents 1 and
2 bid β1(θ1) =

1
4
+ 2

3
θ1 and β2(θ2) =

1
12

+ 2
3
θ2, respectively.17

16The way that the weights are defined here differs from how they were used by, say, MS who would write
ΨK

i,a(θ) = (1 − a)θ + aΨK
i (θ) for a weight a. That is, α here is 1 − a there. The formulation here, which is

the same as in Loertscher and Marx (2022), is more convenient for heterogeneous bargaining weights.
17For r = 1 and uniformly distributed types, Williams (1987) observes that this extends in the sense that

for any 𝑤 ∈ [0, 1], there is a k(𝑤) ∈ [0, 1] such that the k(𝑤)-DA implements the optimal mechanism.
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For shared ownership of r = 1/2, CGK show that ex post efficiency is implemented by
a 1/2-DA, in which the agent with the higher bid pays a per-unit price of b1+b2

2
to purchase

the quantity of 1/2 owned by other agent, where bi is agent i’s bid. Their results also imply
that for r = 1/2 and uniformly distributed types each agent i bids in equilibrium according
to βi(θ) =

1
6
+ 2

3
θ. This implies that βi(1/2) = 1/2, i.e., an agent of type θ = 1/2 = r = 1−r

bids its type. This means that when of type 1/2, an agent never regrets trading ex post
because the price that it is paid when selling is, with probability 1, bigger than 1/2, and the
price that it pays when buying is, with probability 1, less than 1/2. For θ > 1/2, an agent
will never regret buying because the price that it pays will always be lower than θ, while for
θ < 1/2, it will never regret selling because the price that it receives is larger than θ. But
there may be regret, that is, the individual rationality constraint may be violated ex post
when selling (buying) for θ > 1/2 (θ < 1/2). However, the interim individual rationality
constraint that ui(θ) ≥ 0 is satisfied for all θ ∈ [0, 1]. It is tightest when θ = 1/2, but ui(1/2)
remains positive.18 In addition, an agent’s interim expected allocation at the worst-off type
is equal to 1/2, which is the agent’s resource ownership in this example. As mentioned, the
fact that agent i’s interim expected net payoff is minimized at a type whose interim expected
allocation is ri is a general phenomenon.

To implement optimal mechanisms away from ex post efficiency with shared ownership
r ∈ (0, 1), one can use appropriately adjusted variants of the k-DA. These variants continue
to allocate the resources to the high bidder, and at a per-unit price defined by k times agent
1’s bid plus 1−k times agent 2’s bid; however, additional payments not related to the amount
traded are required to maintain IC and IR. For additional details, see Online Appendix D.

4 Bilateral bargaining

We now turn to the formal derivation of the optimal mechanisms for the setting with n = 2.
Agent i’s interim expected net payoff from participating in the mechanism when its type is
θ and it reports its type truthfully, with “net” meaning net of the outside option riθ, is

ui(θ) ≡ θ(qi(θ)− ri)−mi(θ). (3)

18To see this, observe first that the expectation of agent j’s bid conditional on agent i buying is E[βj(θj) |
θj ≤ θi] =

1
6+

1
3θi, implying that the expected buy price, conditional on buying, is βi(θi)+E[βj(θj)|θj≤θi]

4 = 1
12+

1
4θi. Likewise, the expected value of agent j’s bid conditional on being higher than agent i’s is E[βj(θj) | θj >
θi] =

1
2 +

1
3θi, implying that the expected sell price, conditional on selling, is βi(θi)+E[βj(θj)|θj>θi]

4 = 1
6 +

1
4θi.

This means that in equilibrium agent i with type θ has interim expected net payoff (net of its outside option
of θ/2) of ui(θ) =

(
θ − βi(θ)+E[βj(θj)|θj≤θ]

4

)
θ+

βi(θ)+E[βj(θj)|θj>θ]

4 (1− θ)− θ
2 = 1

6 +
θ2

2 − θ
2 . This is minimized

at θ = 1/2, at which point it equals 1/24.
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As noted in and around footnote 9, IC implies that qi(·) is nondecreasing. Further, by IC,
ui(θ) = maxθ̂∈[θi,θi] θ(qi(θ̂)−ri)−mi(θ̂), which by the envelope theorem (see e.g., Milgrom and
Segal, 2002) implies that ui(θ) is differentiable almost everywhere, satisfying u′i(θ) = qi(θ)−ri
wherever ui is differentiable, and for all θ, θ′ ∈ [θi, θi],

ui(θ) = ui(θ
′) +

∫ θ

θ′
(qi(y)− ri)dy. (4)

The relationship in (4) is customarily referred to as payoff equivalence theorem because it
states that, up to a constant, which in (4) is ui(θ′), agent i’s interim expected (net) payoff
is pinned down by the allocation rule. Equating the expression in (4) with the definition of
ui(θ) in (3) and solving for mi(θ) yields

mi(θ) = θ(qi(θ)− ri)− ui(θ
′)−

∫ θ

θ′
(qi(y)− ri)dy.

Using Eθ[Mi(θ)] = Eθi [mi(θi)] =
∫ θi
θi
mi(θi)dFi(θi) and changing the order of integration in

the resulting double integral yields

Eθ[Mi(θ)] = Eθ

[
Ψi(θi, θ

′)Qi(θ)
]
− θ′ri − ui(θ

′), (5)

where Ψi(θi, θ
′) the overall virtual type function with critical type x defined as

Ψi(θ, x) ≡

 ΨS
i (θ) if θ ∈ [θi, x),

ΨB
i (θ) if θ ∈ [x, θi],

(6)

with x = θ′.19 Observe that Eθ[Ψi(θ, x)] = x.20

Note next that if, given Q, there exists a ω ∈ [θi, θi] such that qi(ωi) = ri, then ωi

is a worst-off type of agent i, that is, ωi ∈ argminθ∈[θi,θi]
ui(θ). To see this, recall that

u′i(θ) = qi(θ)−ri. Because qi is nondecreasing, u′i(ωi) = 0 characterizes the global minimum.
This means that an agent’s worst-off type varies nontrivially with the allocation rule. For
example, for [θi, θi] = [0, 1], ωi = r2i if qi(θ) = θ1/2 and ωi = r1/2 if qi(θ) = θ2. This nontrivial
endogeneity of the worst-off types to the allocation rule constitutes a major complication
for the designer’s problem because it means that the worst-off types (for whom the IR
constraints will bind) depend on the allocation rule that the designer chooses, and so the

19See also Lemmas B.1 and B.2 in the Online Appendix for more detailed derivations.
20Integrating by parts reveals that E[ΨS

i (θ) | θ ≤ x] = x and E[ΨB
i (θ) | θ ≥ x] = x, implying

that
∫ x

θi
ΨS

i (θ)dFi(θ) = Fi(x)x and
∫ θi

x
ΨB

i (θ)dFi(θ) = x(1−Fi(x)), and therefore E[Ψi(θ, x)] = x as claimed.
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optimal allocation rule will, in turn, depend on the worst-off types.21 Lemma B.2 in the
Online Appendix provides a complete characterization of i’s set of worst-off types given Q,
denoted Ωi(Q), accounting for the possibility that the induced qi need not intersect with ri.

As in standard mechanism design problems, even though the worst-off type depends on
the allocation rule, it is convenient to express Eθ[Mi(θ)] relative to a worst-off type of agent
i rather than an arbitrary type θ′ because this is a type for which the IR constraint will be
tightest. Thus, we can write

Eθ[Mi(θ)] = Eθ

[
Ψi(θi, ωi)Qi(θ)

]
− ωiri − ui(ωi).

Given worst-off type ωi ∈ Ωi(Q) for agent i, the IR constraint amounts to the requirement
that ui(ωi) ≥ 0, and the no-deficit constraint requires that

∑
i∈N Eθ[Mi(θ)] ≥ 0. The

associated Lagrangian is then

L =
∑
i∈N

𝑤iEθ[θiQi(θ)−Mi(θ)] + ρ
∑
i∈N

Eθ[Mi(θ)] +
∑
i∈N

µiui(ωi),

where ρ is the Lagrange multiplier on the no-deficit constraint and µi ≥ 0 is the multiplier
on agent i’s IR constraint. Defining, in analogy to (2), agent i’s weighted virtual type with
weight α ∈ [0, 1] by

Ψi,α(θ, x) ≡ αθi + (1− α)Ψi(θ, x), (7)

the Lagrangian can conveniently be written as

L = ρEθ

[∑
i∈N

(Qi(θ)− ri)Ψi,
𝑤i
ρ
(θi, ωi)

]
+
∑
i∈N

(𝑤i − ρ+ µi)ui(ωi) +
∑
i∈N

ri𝑤iEθi [θi].

Observe that if ρ < maxw, then the solution is unbounded because then L would be max-
imized by giving an agent with the maximum weight an infinite amount of money. Conse-
quently, any solution satisfies ρ ≥ w (see Online Appendix B.2).

The standard approach in mechanism design problems in which the ωi do not depend on
the allocation rule would be to maximize Eθ

[∑
i∈N (Qi(θ)− ri)Ψi,

𝑤i
ρ
(θi, ωi)

]
pointwise over

Q. Leaving temporarily aside the problem that ωi and thus ui(ωi) vary with Q, pointwise
maximization would mean allocating the resources to the agent with the highest weighted
virtual type Ψi,

𝑤i
ρ
(θ, ωi). However, if agent i has an interior worst-off type ωi ∈ (θi, θi) and

21This is different for a mechanism design problem like an auction setting where by IC alone there is
always one type—the lowest—that is worst-off. For example, if the seller’s cost is 0 and types are uniformly
distributed on [0, 1], then the worst-off type is 0 in an efficient auction. In an optimal auction, the set of
worst-off types is [0, 1/2] because seller’s optimal reserve is 1/2. Evidently, type 0 is still a worst-off type.
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the weight in its virtual type is less than 1, i.e., 𝑤i

ρ
∈ [0, 1), then Ψi,

𝑤i
ρ
(θ, ωi) is nonmonotone

with a downward discontinuity at ωi, resulting in a violation of the monotonicity constraint
of the allocation rule imposed by IC. Thus, in this case, the solution involves the ironing of
agent i’s weighted virtual type function as in Myerson (1981). The resources are allocated
to the agent with the highest ironed weighted virtual type, which for agent i is denoted by
Ψi,

𝑤i
ρ
(θ, ωi).

The deeper problem, then, is that the interdependence of Q and ω = (ωi)i∈N raises the
question of whether the standard mechanism design methodology, whereby the objective is,
first, maximized over monotone allocation rules and the payment rule is then derived based on
the optimal allocation rule and the payoff equivalence theorem, is applicable. Fortunately, the
answer is affirmative. As observed by Loertscher and Wasser (2019), the optimal mechanism
in a partnership model is characterized by a saddle point (Q∗,ω∗).22 Specifically, Q∗ is
a monotone allocation rule that maximizes Eθ

[∑
i∈N (Qi(θ) − ri)Ψi,

𝑤i
ρ
(θi, ω

∗
i )
]

and ω∗ is a
minimizer of Eθ

[∑
i∈N (Q∗

i (θ)− ri)Ψi,
𝑤i
ρ
(θi, xi)

]
over x = (xi)i∈N with xi ∈ [θi, θi].

To complete the characterization of the bargaining mechanism, we must also satisfy the
no-deficit constraint. This is always possible because by choosing Qi(θ) = ri for all i and all
θ, the designer obtains revenue of 0. Moreover, in the limit as ρ goes to infinity, the allocation
rule approaches that for the mechanism that maximizes the designer’s expected revenue. As
just observed, the designer’s maximized expected revenue must be nonnegative, and it is
positive whenever the problem—parameterized by r and θ—is such that there is a positive
measure of types with mutually beneficial trades. By the continuity and monotonicity of the
problem, this then guarantees that there is a smallest value of ρ that satisfies the no-deficit
constraint.

We summarize in the following proposition:

Proposition 1. The incomplete information bilateral bargaining allocation rule assigns the
resources to the agent with the maximum ironed weighted virtual type, maxi∈N Ψi,

𝑤i
ρ
(θi, ωi),

with ρ equal to the smallest feasible value such that the no-deficit constraint is satisfied.

Proof. See Online Appendix B.

To provide intuition for Proposition 1, consider the case with 𝑤 = 1 and r ∈ (0, 1) and
assume, first, that player 1 simply makes a take-it-or-leave-it offer p with the interpretation
that 2 can choose whether to buy 1’s share r, paying rp, or wants to sell its share 1− r, in

22They assumed equal weights and identical supports, that is, 𝑤i = 𝑤 and [θi, θi] = [0, 1] for all i ∈ N .
As we show in Online Appendix B.2, these insights extend to heterogeneous weights and supports.
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which case 2 receives (1− r)p. The optimization problem for 1 is

max
p∈[θ,θ+1]

(1− r)(θ1 − p)F2(p) + r(p− θ1)(1− F2(p)),

whose maximizer p∗(θ1, r) satisfies

θ1 = (1− r)ΨS
2 (p

∗(θ1, r)) + rΨB
2 (p

∗(θ1, r)).

This is intuitive because it corresponds to the convex combination of the optimal take-it-
or-leave-it offers if 1 is a buyer (r = 0) and if 1 is a seller (r = 1). Because ΨS

2 and ΨB
2

are increasing, the right-hand side is increasing and p∗(θ1, r) is well defined. If F2 is the
uniform distribution on [0, 1], then p∗(θ1, r) =

θ1+r
2

.23 Even though take-it-or-leave-it offers
are optimal for r ∈ {0, 1}, they are, by Proposition 1, not optimal for r ∈ (0, 1). The issue
is that these leave too much money on the table.

To see this, assume that F1 and F2 are both uniform on [0, 1]. The expected utility of
agent 2’s worst-off type, ω2, given the pricing rule p∗(θ1, r), is (1− r)ω2−

∫ 1−r

0
p∗(θ1, r)dθ1+

(1− r)
∫ 1

1−r
p∗(θ1, r)dθ1 = (1− r)ω2 +

1
4
r(1− r) because with probability 1− r, agent 2 gets

to consume the good when its type is ω2. Because (1− r)ω2 is the value of agent 2’s outside
option when its type is ω2, it follows that, given the pricing rule p∗(θ1, r), agent 2 can be
charged the tax 1

4
r(1− r) without violating its IC and IR constraints. Naturally, if the price

is lower than p∗(θ, r) when θ1 < 1 − r and larger than that for θ1 > 1 − r, then agent 2’s
utility when of type ω2 increases, which means that the tax can be increased. Supposing
that agent 1 sets the price p∗(θ1, r −∆S) for θ1 < 1 − r and p∗(θ1, r + ∆B) for θ1 > 1 − r,
where ∆S,∆B ≥ 0, the tax becomes T (∆S,∆B) = 1

4
r(1 − r)(1 + 2(∆S + ∆B)), which is

increasing in ∆S and ∆B. So the question is how large ∆S and ∆B should be. When agent
1’s type is θ1 < 1− r, maximizing agent 1’s payoff

(1− r)(θ1 − p∗(θ1, r −∆S))F2(p
∗(θ1, r −∆S)) (8)

+ r(p∗(θ1, r −∆S)− θ1)(1− F2(p
∗(θ1, r −∆S))) + T (∆S,∆B)

over ∆S yields the maximizer ∆S = r(1− r), while maximizing

(1− r)(θ1 − p∗(θ1, r +∆B))F2(p
∗(θ1, r +∆B)) (9)

+ r(p∗(θ1, r +∆B)− θ1)(1− F2(p
∗(θ1, r +∆B))) + T (∆S,∆B)

23It is interesting to note that p∗(θ1, r) would be the optimal price set by agent 1 in a Texas shootout,
which is a mechanism for dissolving a partnership, whereby “one owner names a price and the other owner
is compelled to either purchase the first owner’s shares or sell his own shares at the named price” (Brooks
et al., 2010, p. 649).
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over ∆B yields the maximizer ∆B = r(1− r). The resulting pricing rule does not correspond
to the optimal allocation rule.24 However, the maximizers of the ex ante expected utility of
1 over ∆S and ∆B are indeed ∆∗

S = r and ∆∗
B = 1 − r, resulting in the optimal allocation

rule. Observe also that T (∆∗
S,∆

∗
B) =

3
4
r(1 − r), which is the same as what was derived in

Section 3.

(a) p∗(θ1, r)

1-r
θ1

θ2

θ1

2

1 + θ1

2
ρ*(θ1,r)=

θ1 + r

2

(b) p∗(θ1, r−∆S), p
∗(θ1, r+∆B)

1-r
θ1

θ2

ΔS

ΔB

ρ*(θ1,r+ΔB)ρ*(θ1,r+ΔS)

(c) ∆∗
S = r and ∆∗

B = 1− r

1-r
θ1

θ2

ΔS=r

ΔB=1-r

Figure 3: By choosing ∆S > 0 and ∆B > 0, the utility of the worst-off type and therefore the tax that can
be extracted increases. The optimal choices are ∆∗

S = r and ∆∗
B = 1− r.

With the general description of the incomplete information bargaining mechanism in
hand, we can now explore how bargaining outcomes depend on 𝑤, θ, and r. We begin with
the analysis of when bargaining is ex post efficient. From Myerson and Satterthwaite (1983),
we know that ex post efficiency is not possible for 𝑤 = 1/2 and r ∈ {0, 1} provided that
θ < 1. That is, there is no mechanism with the ex post efficient allocation that satisfies IC
and IR and that does not run deficit.

4.1 Ex post efficiency

As mentioned, whether bargaining is efficient is a core question for economics and a central,
sometimes controversial, issue in the literature on bargaining. There is thus ample motivation
to begin the analysis of incomplete information bargaining with the question of whether or
when incomplete information can be ex post efficient.

The partnership literature has, in large part, focused on the question of identifying for
which ownership structures, if any, ex post efficiency is possible. For example, CGK show
that with identical distributions, the set of ex post efficiency permitting ownership structures

24The issue is that maximizing the expected payoff for a given type θ1 below (above) 1 − r neglects the
externality that further price reductions (increases) have on all other types. Maximizing ex ante expected
utility accounts for these externalities and results in the optimal allocation rule. Put differently, if every type
θ1 < 1− r recognizes that all other types less than 1− r decrease their prices by ∆S , this is as if the impact
on the tax increased to ∆S/(1 − r), and analogously for types larger than 1 − r, their impact increases to
∆B/r. Indeed, if in (8) and (9) the expression T (∆S ,∆B) is replaced by T (∆S/(1 − r),∆B/r), then the
respective maximizers become ∆∗

S = r and ∆∗
B = 1− r.
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is nonempty, convex, and symmetric. As mentioned, for the uniform distribution on [0, 1]

and n = 2, ex post efficiency is possible for all r ∈ (0.21, 0.79). This raises the question
of whether a similar property obtains for bargaining weights. Given that ours is the first
paper to analyze incomplete information bargaining in a partnership model with different
bargaining weights, this is an open question.25 As we show next, the answer to the question
of whether bargaining weights have the same or similar properties as property rights is quite
generally no. In particular, we will see that for θ ≤ 1, 𝑤 = 1/2 is necessary for ex post
efficiency, whereas typically a large set of r permits ex post efficiency.

Let E(θ) ≡ {(r,𝑤) ∈ [0, 1]2 | ex post efficiency is possible} denote the set of ownership
structures and bargaining weights such that ex post efficiency is possible, which in principle
could be empty. Let

We(θ) ≡ {𝑤 | ∃r ∈ [0, 1] s.t. ex post efficiency is possible}

and
Re(θ) ≡ {r | ∃𝑤 ∈ [0, 1] s.t. ex post efficiency is possible}

denote the (also possibly empty) sets of ex post permitting bargaining weights and ownership
structures under which ex post efficiency is possible. By construction, E(θ) = We(θ)∪Re(θ).
We also use We

0(θ) ≡ {𝑤 | ∃r ∈ (0, 1] s.t. ex post efficiency is possible}, which is the set of
ex post efficiency permitting bargaining weights when agent 1 has a positive ownership share,
that is, r > 0. This set is relevant when θ > 1 because then the initial allocation is already
ex post efficient if r = 0.

The threshold value
θ∗ ≡ max{ΨS

1 (1), 1−ΨB,P
2 (0)}

for θ delineates the cases in which 𝑤 has effects on the allocative efficiency of bargaining and
when it does not. Notice that θ∗ > 1 because ΨS

1 (1) > 1 and ΨB,P
2 (0) < 0. Observe also

that ΨS
1 (1) is agent 1’s highest possible virtual cost, while the lowest virtual value of agent

2 is ΨB
2 (θ). Because for θ ∈ [θ, θ + 1], we have ΨB

2 (θ) = ΨB,P
2 (θ − θ) + θ, it follows that

ΨB
2 (θ) = ΨB,P

2 (0)+θ holds. Consequently, for θ ≥ ΨS
1 (1), agent 2 will always buy all r shares

that agent 1 owns if agent 2 has all the bargaining power, and if θ ≥ 1−ΨB,P
2 (0), then agent

1 will always sell all of r if agent 1 has all the bargaining power. It is then not hard to see

25As mentioned, Mylovanov and Tröger (2014) derive the mechanism that is optimal for one agent in a
partnership model with interior ownership, that is, in our notation for 𝑤 = 1 and r ∈ (0, 1). But as they
study informed-principal problems, they do not vary 𝑤. Rent extraction in partnership and asset market
models by the designer has been studied by Loertscher and Wasser (2019), Lu and Robert (2001), and
Loertscher and Marx (2023), but that problem is distinct from that of varying the bargaining weights among
the agents and investigating when ex post efficiency is possible.
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that for θ ≥ θ∗, the allocation will be ex post efficient for all r ∈ [0, 1] and all 𝑤 ∈ [0, 1]. For
example, if F1 and F P

2 are both uniform, then we have ΨS
1 (1) = 2 = 1− ΨB,P

2 (0), implying
that θ∗ = 2. In general, however, there is no reason why ΨS

1 (1) should be the same as
1−ΨB,P

2 (0) even if F1 = F P
2 .

Proposition 2. For any θ ≥ 0, the sets We(θ) and Re(θ) are nonempty and convex. More-
over,

(i) We(θ) = {1/2} for θ ≤ 1;

(ii) We
0(θ) ⊂ [0, 1] for θ ∈ (1, θ∗) and We

0(θ) ⊂ We
0(θ

′) for θ′ > θ;

(iii) We(θ) = [0, 1] for θ ≥ θ∗;

(iv) Re(θ) ⊂ (0, 1) for θ ∈ [0, 1) and limθ↑1Re(θ) = {0};
(v) Re(θ) = [0, 1] for θ ≥ 1.

Proof. See Appendix A.

Figure 4 illustrates Proposition 2. The left panel depicts Re(θ) and the right panel depicts
We

0(θ) as functions of θ for the case in which F1 and F P
2 are uniform.26 If ΨS

1 (1) ̸= 1−ΨB,P
2 (0)

were the case, then 0 (or 1) would be elements of We
0(θ) for some θ < θ∗, while 1 (0) would

be in We
0(θ) only for θ ≥ θ∗.

(a) Ex post efficiency permitting set Re(θ)
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(b) Ex post efficiency permitting set We
0(θ)
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w

Figure 4: Ex post efficiency permitting ownership structures and bargaining weights. Assumes uniformly
distributed types for agent 1 on [0, 1] and for agent 2 on [θ, 1 + θ].

Proposition 2 implies that for θ ≥ θ∗, incomplete information bargaining is ex post ef-
ficient for all (r,𝑤) ∈ [0, 1]2. Thus, θ ≥ θ∗ corresponds to cases in which the predictions
of incomplete information bargaining coincide with properties typically imposed in bargain-
ing with complete information. Productivity differentials of the size θ∗ or larger, therefore,

26Related to panel (b), as we show in Proposition 7, for θ ≥ 1 and r > 0, ex post efficiency is possible
if and only if 1 +

(
1 − 𝑤

max{𝑤,1−𝑤}
)

1
f1(1)

≤ θ −
(
1 − 1−𝑤

max{𝑤,1−𝑤}
)

1
f2(1)

, which, for the uniform distribution,

amounts to 2−θ
3−θ ≤ 𝑤 ≤ 1

3−θ for θ ∈ [1, 2].
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capture situations in which there is, loosely speaking, “little” private information insofar as
private information is no impediment to efficient bargaining. It also corresponds to situations
in which neither the assignment of property rights nor bargaining power affects whether bar-
gaining is efficient. That is, for θ ≥ θ∗, there are no countervailing power effects, contrasting
with what Galbraith (1952) stipulated. Moreover, for all θ > 1, the assignment of property
rights is irrelevant, which is in line with the Coase Theorem. A qualification regarding the
equivalence of complete and incomplete information bargaining for θ ≥ θ∗ applies when,
at an ex ante stage, the agents make noncontractible investments that improve their type
distributions. With incomplete information, efficient bargaining implies efficient investment
whereas with complete information, hold-up from bargaining induces inefficient investments
as in the theory of the firm in the tradition of Grossman and Hart (1986) and Hart and
Moore (1990).27

In contrast, for θ < θ∗, sufficiently equal bargaining weights are necessary for ex post
efficiency and, indeed, for θ ≤ 1, ex post efficiency is not possible without equal bargaining
weights. In contrast, the ownership structure is immaterial for ex post efficiency for θ > 1,
and the ex post permitting set of ownership structures is multi-valued for θ < 1. Thus,
specifications with θ < θ∗ provide a formalization of Galbraith’s hypothesis that equaliza-
tion of bargaining power may be a first-order issue. For θ < θ∗, bargaining power matters
for the size as well as for the distribution of surplus.28 The notion of countervailing power,
introduced by Galbraith (1952), has widespread appeal but has been difficult to conceptu-
alize in models with complete information without restricting the contracting space.29 In a
labor market context, equalization of bargaining weights between agents and workers may
be achieved by allowing the workers to form unions. In healthcare, doctors may increase
their bargaining power vis-à-vis insurance companies by giving up their independence and
becoming employees of large hospital chains.30

27For formalizations of this point, see, for example, Milgrom (2004), Krähmer and Strausz (2007), and
Liu et al. (forth.).

28This generalizes to a setup with interior ownership the insight from Loertscher and Marx (2022) that
the incomplete information framework has the property that bargaining weights do not only affect the
distribution but also the size of expected surplus.

29It features prominently in antitrust practice. For example, OECD (2011, pp. 50–51) and OECD (2007,
pp. 58–59) raise the possibility of a role for collective negotiation and group boycotts in counterbalancing the
market power of providers of payment card services. In other examples, the U.S. DOJ and FTC recognize
the potential benefits from allowing physician network joint ventures in their 1996 “Statement of Antitrust
Enforcement Policy in Health Care.” Krueger (2018) discusses the benefits to workers of market features
that boost worker bargaining power and counterbalance monopsony power. As another case in point, the
Australian competition authority “has identified a range of market failures resulting from ... strong bargaining
power imbalance and information asymmetry ... which ultimately cause inefficiencies” (ACCC Dairy Inquiry,
2018, p. xii).

30See, for example, “Doctors Say Dealing With Health Insurers Is Only Getting Worse,” Wall Street
Journal , December 12, 2024.
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The intuition for why 𝑤 = 1/2 is necessary for ex post efficiency if θ < 1 —part (i) of
Proposition 2—is simple. Away from equal weights, the incomplete information bargaining
mechanism discriminates against the agent with the smaller weight because, by Proposition
1, the allocation prioritizes agents on the basis of the weighted (ironed) virtual types. For
θ ≤ 1, with unequal bargaining weights, this prioritization differs from prioritizing agents on
the basis of their true types. As the gap between the supports [1, θ] with θ > 1 increases,
unequal bargaining weights lead to less and eventually to no discrimination in the allocation
rule, which is the intuition for parts (ii) and (iii) of Proposition 2. That Re(θ) is a nonempty,
convex subset of (0, 1) for θ ∈ [0, 1) follows from the fact that if r is such that, under ex post
efficiency, both agents have the same worst-off types, then revenue under ex post efficiency
subject to IR is maximized and positive.31 By continuity of this revenue function, ex post
efficiency is then also possible for a convex set of ownership structures around the revenue-
maximizing one. As θ approaches 1 from below, the only way that both agents can have
the same worst-off type is that their worst-off types are equal to 1, which requires r = 0

(in which case revenue under ex post efficiency is simply 0). This explains (iv). Part (v)
follows because when θ ≥ 1, ex post efficiency can easily be achieved, for example, with a
posted-price mechanism with a price between 1 and θ.

4.2 Bargaining payoffs

We now look at bargaining more generally, that is, without restricting attention to ex post
efficiency, by studying how the agents’ expected net payoffs depend on the productivity
differential, the ownership structure, and the bargaining weights. Given r, 𝑤, and θ, the
allocation rules of the optimal mechanisms are as given by Proposition 1. These are nuanced
variations of the allocation rules depicted in Figures 1 and 2.

Figure 5 illustrates the effects of varying θ on the optimal allocation rules for 𝑤 = 1/2.
Increasing θ reduces the allocative distortions arising from the exertion of bargaining power.
As an illustration, assume F P

2 is the uniform distribution and 𝑤 = 1, i.e., agent 1 has all the
bargaining power. Then given θ ≥ 0, we have ΨB

2 (θ2) = 2θ2 − (1 + θ) and ΨS
2 (θ2) = 2θ2 − θ,

implying that ΨB
2
−1
(x) = x+θ+1

2
for x ∈ [θ − 1, θ + 1] and ΨS

2
−1
(x) = x+θ

2
for x ∈ [θ, 2 + θ].

Because the derivative of these functions with respect to θ is less than 1, the probability
that there is trade under the mechanism that is optimal for agent 1 increases for any given
θ1 and any r ∈ [0, 1]. Conversely, and even simpler, the probability that there is trade for

31This insight is the driving force for why, in CGK (who assume identical distributions), the set of ex
post efficiency permitting ownership structures is symmetric around equal ownership. Generalizations of this
insight to asymmetric distributions with identical supports were obtained by Che (2006) and Figueroa and
Skreta (2012). The proof of Proposition 1 shows that it extends to different supports.
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any given θ1 also increases in θ when 𝑤 = 0 because ΨB
1 (θ1) and ΨS

1 (θ1) are independent of
θ and the probability that θ2 exceeds ΨB

1 (θ1) and ΨS
1 (θ1) increases in θ.

Away from extremal bargaining weights, increasing θ has the additional, beneficial effect
of making the budget constraint less tight. For example, for 𝑤 = 1/2, r = 1, and θ = 0,
the second-best mechanism has Q2 = 1 if and only if θ2 ≥ θ + θ1 + 1/4, while for θ = 1/4,
the second-best mechanism has Q2 = 1 if and only if θ2 ≥ θ + θ1 + 1/16.32 Thus, the
strengthening of agent’s 2’s distribution increases the range of values for agent 2 such that
agent 2 is allocated the resource for any given type of agent 1. Figure 5 illustrates that these
comparative statics effects of θ on the second-best allocation rule extend to r ∈ (0, 1).

(a) θ = 0

0 1
θ1θ=0

1
θ2

Q2=1
r=0.9

(b) θ = 0.25

0 1
θ1θ=0.25

1.25
θ2

Q2=1
r=0.9

Figure 5: Allocation rule with equal bargaining weights. Assumes uniformly distributed types.

Let Ui(r,𝑤) ≡ Eθi [ui(θi)] denote agent i’s expected net payoff given r and 𝑤. The
expected net payoffs are the natural objects of interest because they allow us to disentangle
the effects of, say, changing r on the performance of the bargaining mechanism from the
direct, automatic effects that changes of r have on the agents’ utilities via the value of their
outside options. Denote by Uir(r,𝑤) and Ui𝑤(r,𝑤) the derivatives of Ui with respect to r

and 𝑤, respectively.

Proposition 3. For i, j ∈ N with i ̸= j, we have:

(i) Uir(r, 1/2) = Ujr(r, 1/2);

(ii) Uir(r, 1) = −Ujr(r, 0); and

(iii) Ui𝑤(r,𝑤) = −Uj𝑤(r,𝑤) > 0 for all 𝑤 if r /∈ Re(θ) and for 𝑤 ̸= 1/2 if r ∈ Re(θ).

Moreover, we have:

(iv) U1r(r, 1), U2r(r, 0) > 0 for r sufficiently close to 0 and F1 = F2;

(v) U1r(r, 1), U2r(r, 0) < 0 for r sufficiently close to 1 and F1 = F2;

(vi) U1r(r, 0), U2r(r, 1) > 0 for r sufficiently close to 1; and
32In the incomplete information bargaining mechanism in this case, ρ = 1.5, ω1 = 1, and ω2 = 0.25.
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(vii) U1r(r, 0), U2r(r, 1) < 0 for r sufficiently close to 0.

Proof. See Appendix A.

In part (iii) of Proposition 3, the derivatives are 0 if r permits ex post efficiency and
𝑤 ̸= 1/2. (At 𝑤 = 1/2, the functions Ui(r,𝑤) are not differentiable in 𝑤.) Parts (iv) and (v)
reflect that an agent with all the bargaining weight prefers nonextremal ownership, assuming
sufficiently symmetric distributions. As indicated in parts (vi) and (vii), the expected net
payoff of the agent with no bargaining weight moves in the opposite direction.

The results of Proposition 3 can be illustrated by examining the frontiers for the agents’
expected net payoffs. The frontier for a given r is defined by the maximum expected net
payoffs that can be achieved for that r and some 𝑤 ∈ [0, 1]. With overlapping supports,
the frontier point for a given (r,𝑤) is uniquely defined by (U1(r,𝑤), U2(r,𝑤)), and each
bargaining weight 𝑤 is associated with a unique point on the frontier for a given r, as is
illustrated in Figure 6 for the case of uniformly distributed types. As Figure 6 shows, a
larger value of agent 1’s bargaining weight results in a larger expected net payoff for agent
1 and a smaller expected net payoff for agent 2. But, importantly, the figure also shows the
efficiency loss associated with unequal bargaining weights: the farther is 𝑤 from 1/2, the
smaller is

∑
i∈N Ui(r,𝑤).

(a) θ = 0
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(b) θ = 0.25

r = 0
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Figure 6: Frontiers for expected net payoffs. Assumes that agent 1’s types are uniformly distributed on
[0, 1] and that agent 2’s types are uniformly distributed on [θ, 1 + θ], with θ as indicated above each panel.
Negatively sloped diagonals reflect expected net payoffs under ex post efficiency, Eθ[u

e
1(θ1) + ue2(θ2)], which

depends on r in the case of heterogeneous distributions.

Figure 6(a) displays the case of identical supports. The case of r = 0 and 𝑤 = 1/2, i.e.,
one seller and one buyer with equal bargaining weights, corresponds to the payoffs associated
with the second-best mechanism derived Myerson and Satterthwaite (1983), which is labeled
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with “MS” in the figure. Varying 𝑤 from 0 to 1 while keeping r = 0 maps out the frontier for
extremal ownership, which was derived by Williams (1987) and is thus labeled “Williams”.
Reflecting the impossibility of ex post efficiency with extremal ownership, the entire Williams
frontier lies below the ex post efficient frontier, which in Figure 6(a) is given by the line with
slope −1 connecting the points (1/6, 0) and (0, 1/6).

Once r increases to 0.21, ex post efficiency becomes possible with equal bargaining weights
(labeled “CGK” in the figure). This corresponds to the range [0.21, 0.79] of initial ownership
shares for which efficient partnership dissolution is possible in Cramton et al. (1987) when
there are two partners with uniformly distributed types on [0, 1]. As r increases to 0.5 (by
symmetry we need only consider r ∈ [0, 0.5]), the payoff frontier continues to move closer
to the ex post efficient frontier, but still only actually touches the frontier for 𝑤 = 1/2.
Without the incomplete information bargaining mechanism from Proposition 1, only the
Williams frontier and the points with 𝑤 = 1/2 and r ∈ [0.21, 0.79] were known.

In Figure 6(b), the supports of the agents’ type distributions are only partially overlap-
ping, with θ = 0.25. In that case, the sum of the expected net payoffs (or, equivalently,
the expected gains from trade) under ex post efficiency depends on the ownership structure
because the total expected net payoff varies with r when the means of the agents’ type dis-
tributions differ. This explains the presence of three different ex post efficiency dashed lines
in the figure. As the figure shows, ex post efficiency is possible when bargaining weights are
equal for r sufficiently close to 1/2, but ex post efficiency is not possible, even with equal
bargaining weights, for r = 0 and r = 0.05.

A difference arises with nonoverlapping supports because it is then no longer the case
that each bargaining weight 𝑤 is associated with a unique point on the frontier for a given
r. When ex post efficiency is possible for bargaining weights other than 𝑤 = 1/2, then the
ex post efficient portion of the frontier is defined by two points corresponding to the ex post
efficient expected net payoffs for 𝑤 < 1/2 and those for 𝑤 > 1/2, as well as the line segment
in between, which represents the expected net payoffs that can be achieved when 𝑤 = 1/2.
A range of possible expected net payoffs is possible when 𝑤 = 1/2, corresponding to the
different possible allocations between the two agents of the expected budget surplus under
ex post efficiency when IR binds for the agents’ worst-off types, denoted by Πe(θ, r). Recall
that we denote by η ∈ [0, 1] the share of Πe(θ, r) obtained by agent 1, or, alternatively, one
can view η as the probability that Πe(θ, r) is allocated to agent 1 and 1−η as the probability
that it is allocated to agent 2. Frontiers for nonoverlapping supports are illustrated in Figure
7 for uniformly distributed types. As shown in Figure 7(a), for θ = 1.5, ex post efficiency
is possible for 𝑤 ∈ [1/3, 2/3], but not for more extreme values of 𝑤, and as shown in Figure
7(b), for θ = 2, ex post efficiency is achieved for all 𝑤 ∈ [0, 1], in line with Proposition 2.
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Figure 7: Frontiers for expected net payoffs. Assumes that agent 1’s types are uniformly distributed on
[0, 1] and that agent 2’s types are uniformly distributed on [θ, 1 + θ], with θ as indicated above each panel.
Negatively sloped diagonals reflect expected net payoffs under ex post efficiency, E[ue1(θ1) + ue2(θ2)]. When
𝑤 = 1/2, a range of outcomes are possible, as parameterized by η ∈ [0, 1].

While our figures assume uniformly distributed types, the result that the expected net
payoff frontiers are concave holds generally, as shown in the following proposition:

Proposition 4. For any ownership r, the frontier of expected net payoffs as 𝑤 varies over
[0, 1] is concave to the origin; away from ex post efficiency, the slope of the frontier is
−𝑤/(1− 𝑤); at ex post efficiency, it is −1.

Proof. See Appendix A.

Proposition 4 generalizes Loertscher and Marx (2022, Prop. 4) to a partnership setup.
It follows from Proposition 4 that movement toward the equalization of bargaining weights
along the expected net payoff frontier weakly increases social surplus. And, from Proposition
2, for θ ∈ [0, 1), ex post efficiency is only achieved for full equalization of the bargaining
weights.

Nonlinear effects of the outside option

In Nash bargaining, an agent’s payoff is linear in its outside option—with outside options oi
for agents i = {1, 2} and total surplus to divide of S, agent i’s Nash bargaining payoff, net
of its outside option, is 1

2
(S− o1 − o2). In contrast, with incomplete information bargaining,

this relation is no longer linear even though the expected value of agent i’s outside option,
riEθi [θi], is linear in ri. An agent’s outside option affects the agent’s worst-off type, which
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enters both into the IR constraint and into the determination of the second-best allocation
rule. These effects render the relation nonlinear.

As an illustration, Figure 8(a) shows the frontiers for agents’ expected net payoffs for dif-
ferent resource ownership, where the frontiers are traced out by varying agent 1’s bargaining
weight from zero to one. As shown in that figure, agents prefer to have higher bargaining
power rather than lower bargaining power, all else equal. We can also trace out an agents’
expected net payoff for a given bargaining weight varying the resource ownership, as shown
in Figure 8, which highlights that the effects of changes in an agent’s outside option vary
with the bargaining weights. Figure 8(a) shows the frontiers of expected net payoffs for given
bargaining weights as ownership varies, and Figure 8(b) shows agent 1’s expected net payoff
for given bargaining weights as its ownership varies.

(a) Effects of the outside option
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(b) Expected net payoff as r varies

w = 1

w = 1/2

w = 0

0. 0.2 0.4 0.6 0.8 1.
r0.

0.04

0.08

0.12

0.16

[u1(θ1)]

Figure 8: Frontiers for expected net payoffs (panel a) and agent 1’s expected net payoff (panel b) as r varies
for given 𝑤. The negatively sloped diagonal in panel (a) is the ex post efficient frontier. For 𝑤 = 1/2 and
r ∈ [0.21, 0.79], ex post efficiency is achieved. Assumes that agents’ types are uniformly distributed on [0, 1].

4.3 Agents’ preferences

For θ ≥ θ∗, neither bargaining weights nor ownership shares affect the efficiency of bargaining
because, as with complete information, bargaining is always efficient. This raises the question
of what effects bargaining weights and ownership have on agents’ payoffs. For example, if
θ ≥ θ∗, are the two instruments perfect substitutes? To address these and related questions,
we now investigate what preferences the agents have over r and 𝑤. To this end, define the
agents’ expected payoffs (including their outside options) as V1(r,𝑤) ≡ U1(r,𝑤) + rEθ1 [θ1]

and V2(r,𝑤) ≡ U2(r,𝑤) + (1− r)Eθ2 [θ2].
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Given (r,𝑤), in some cases the agents would, prior to types being realized, benefit if they
could commit to adjustments to r and/or 𝑤. Specifically, we can define the “better than set”
for agent i, Bi(r,𝑤) ≡ {(r′,𝑤′) | Vi(r′,𝑤′) > Vi(r,𝑤)}. Then, given (r,𝑤), there is scope for
mutually beneficial adjustments to ownership and bargaining weights if B1(r,𝑤) and B2(r,𝑤)

have a nonempty intersection.
As illustrated in Figure 9(a), For θ ≥ θ∗, there is no scope for mutually beneficial ad-

justments because the outcome is always ex post efficient and so any changes are zero sum,
simply transferring payoffs between the agents—as shown in the figure, agent 1 generally
benefits from higher r and higher 𝑤 (agent 1’s better-than set extends to the upper-right
corner), while the opposite is true for agent 2 (agent 2’s better-than set extends to the lower-
left corner), and there is a jump in an agent’s payoff as its bargaining weight exceeds that
of the other agent. However, for cases in which ex post efficiency is not achieved, mutually
beneficial adjustments are possible. For example, for θ = 1.5, if we take as the initial point
(r,𝑤) = (0.5, 0), then there is overlap in the better-than sets, as shown in Figure 9(b). But,
given the inefficiency of the outcome associated with the initial point, there are social sur-
plus benefits to having more equal bargaining weights. Thus, there are bargaining weights
in (0, 1) and associated ownership close to r = 0.5 such that both agents are better off.

(a) Bi(0.5, 0.5) for θ = 2
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(b) Bi(0.5, 0) for θ = 1.5
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Figure 9: Better than sets Bi(r,𝑤) for expected payoffs. Assumes uniformly distributed types. The initial
point is indicated with a red dot.

For analogous reasons, there is no scope for mutually beneficial adjustments if 𝑤 = 0.5

and r is such that ex post efficiency is possible with equal bargaining weights, but otherwise,
there can be scope for mutually beneficial adjustments.

5 Extensions

We now analyze two extensions. We first replace the assumption of constant marginal values
by that of decreasing marginal values in the form of quadratic utility, which allows us to
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capture cases in which trade is not necessarily zero-one and tariffs are nonlinear. Then
we extend the model to multiple agents and analyze ownership structures and bargaining
weights that permit ex post efficiency while assuming, again, constant marginal values.

5.1 Decreasing marginal values

The model with constant marginal values has the bang-bang property that, with probability
1, the optimal allocation to agent i is either 0 or 1. To enrich the model, we now consider
a setting with two agents and quadratic utility in which each agent’s consumption utility
when of type θ and when allocated q ∈ [0, 1] units is U(θ, q) = θq − 1

2
q2.33 For example,

as noted by Liu et al. (forth.), emission permit usage does typically not take a bang-bang
form, suggesting that for some applications the constant marginal values model is not the
empirically most compelling one.

For simplicity, we assume extremal ownership and set r = 1 here. We also assume that
the two distributions have identical supports , which we set equal to [0, 1]. With constant
marginal values θ = 0 is without loss of generality within the domain of problems with
identical supports. However, with decreasing marginal values, this is not the case. The
maximizer of U(θi, Q) being Q = θi means that the problem is not always subject to scarcity,
which drives some of the results that follow. Moreover, with a free disposal constraint, no
agent i can be induced to consume more than θi, which will affect, in particular, the results
for the buyer-optimal mechanism.

As we will show, given weights 𝑤1 = 𝑤 and 𝑤2 = 1 − 𝑤 and ρ ≥ max{𝑤, 1 − 𝑤}, the
allocation rule of the optimal mechanism maximizes:34

∑
i∈N

U(Ψi,
𝑤i
ρ
(θi), Qi) =

∑
i∈N

(
Qi

(
Ψi,

𝑤i
ρ
(θi)−

1

2
Qi

))
, (10)

subject to the feasibility constraint
∑

i∈N Qi ≤ 1 and the free-disposal constraint Qi ≤ θi.
The ex post efficient allocation rule Qe(θ) maximizes

∑
i∈N U(θi, Qi). Thus, for

∑
i∈N θi ≤

1, Qe(θ) = (θ1, θ2), and otherwise, Qe(θ) = (Q, 1−Q), where

Q = arg max
Q∈[0,1]

U(θ1, Q) + U(θ2, 1−Q) =
1 + θ1 − θ2

2
.

33See also Choné et al. (forth.), who in an extension of their procurement problem analyze a setting in
which the suppliers’ consumption utility is quadratic.

34With quadratic utility, the agents are no longer risk neutral, so in principle nondegenerate lotteries could
be used to alleviate the incentive constraints. However, along with our assumption of increasing virtual values
and virtual costs and with the assumption of continuous densities, quadratic utility satisfies the sufficient
conditions derived by Maskin and Riley (1989, Prop. 5) for the optimal mechanism to be deterministic in
the sense that, conditional on a type profile θ, the allocation is deterministic.

28



Because the problem is not necessarily subject to scarcity, i.e., the constraint
∑

i∈N Qe
i ≤ 1

can be slack, in which case revenue ex post is positive—the buyer can be charged without
requiring payments to the seller—it is not clear whether in general ex post efficiency is
impossible. However, for example for the case in which both distributions are uniform on
[0, 1], ex post efficiency is not possible.35 If ex post efficiency is not possible, then the
second-best allocation rule maximizes the objective in (10) with 𝑤1 = 𝑤2 = 1/2 < ρ, where
the inequality follows from the impossibility of ex post efficiency. In contrast to the case
of constant marginal values, where even in the second-best mechanism, the allocation is
equal to the ex post efficient allocation whenever there is trade with r = 1, the second-best
allocation rule can differ from ex post efficiency for almost all type profiles with decreasing
marginal values as shown in the following proposition and corollary.

Proposition 5. With decreasing marginal values and r = 1, if ex post efficiency is not
possible, then the second-best allocation rule differs from Qe(θ) for all but a zero-measure
set of types if F1(x)

f1(x)
≤ 1−F2(x)

f2(x)
for all x ∈ [0, 1/2].

Proof. See Appendix A.

Because for r = 1 and uniformly distributed types, the ex post efficient mechanism runs
a deficit, Proposition 5 has the following corollary:

Corollary 1. With decreasing marginal values, r = 1, and uniform distributions, the second-
best allocation rule differs from Qe(θ) for all but a zero-measure set of types.

Extremal bargaining weights

If the seller has all the bargaining weight (𝑤 = 1), then the allocation rule is the pointwise op-
timizer of Q1

(
θ1 − 1

2
Q1

)
+Q2

(
ΨB

2 (θ2)− 1
2
Q2

)
, accounting for the possibility of virtual types

being outside [0, 1] and for free disposal. And if the buyer has all the bargaining weight (𝑤 =

0), then the allocation rule is the pointwise optimizer of Q1

(
ΨS

1 (θ1)− 1
2
Q1

)
+Q2

(
θ2 − 1

2
Q2

)
,

accounting for constraints. Consequently, when the seller has all the bargaining weight,
i.e., 𝑤 = 1, if θ1 + ΨB

2 (θ2) ≤ 1, then Q1(θ) = θ1 and Q2(θ) = max{0,ΨB
2 (θ2)}, while if

θ1 +ΨB
2 (θ2) > 1, then agent 1 is allocated QS(θ) defined as

QS(θ) = arg max
Q∈[0,min{θ1,1}]

U(θ1, Q) + U(ΨB
2 (θ2), 1−Q) = min{θ1, 1,

1

2
(1 + θ1 −ΨB

2 (θ2))},

35In this case, the expected budget surplus under binding IR for agents’ worst-off types, i.e., u1(ω1) = 0
and u2(ω2) = 0, is Πe = Eθ

[∑
i∈N Qi(θ)(Ψi(θi, ωi) − 1

2Qi(θ))
]
−
∑

i∈N
(
riωi − 1

2r
2
i

)
. Computing this, we

get Πe = 7
16 − 1

2 = − 1
16 .
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and agent 2 is allocated max{0,min{ΨB
2 (θ2), 1 − QS(θ)}} = 1 − QS(θ). In contrast, when

the buyer has all the bargaining weight, i.e., 𝑤 = 0, if ΨS
1 (θ1) + θ2 ≤ 1, then Q1(θ) =

min{θ1,ΨS
1 (θ1)} = θ1 and Q2(θ) = θ2, while if ΨS

1 (θ1) + θ2 > 1, then agent 1 is allocated
QB(θ) defined as

QB(θ) = arg max
Q∈[0,min{θ1,1}]

U(ΨS
1 (θ1), Q) + U(θ2, 1−Q) = min{θ1, 1,

1

2
(1− θ2 +ΨS

1 (θ1))},

while agent 2 is allocated 1−QB(θ), disposing of any excess beyond θ2. Note that because
ΨS

1 (θ1) > θ1 for all θ1 > 0, the free disposal constraint that requires Q1 ≤ θ1 will be binding.

(a) Seller optimal, θ = 0

0 1
θ10

Ψ2
B-1

(0)

1
θ2

(θ1,0)

(θ1,Ψ2
B(θ2))

(QS(θ),1-QS(θ))

↑ Q1

↑ Q2

(b) Buyer optimal, θ = 0

0 1
θ10

1
θ2

(θ1,θ2)

(QB(θ),1-QB(θ))

↑ Q1

↑ Q2

Figure 10: Seller-optimal and buyer-optimal allocation rules (Q1, Q2) for quadratic utility, with representa-
tive contour lines indicated. Assumes uniformly distributed types on [0, 1].

Figure 10 illustrates these allocation rules for the case of uniformly distributed types.
Relative to ex post efficiency, the allocation rule of the buyer-optimal mechanism is less
distorted than that of the seller-optimal mechanism in the following sense. Under the seller-
optimal mechanism, the allocation is never ex post efficient, whereas under the buyer-optimal
mechanism, it is ex post efficient as along as θ1 + θ2 ≤ 1. This arises because the free
disposal constraint prevents the buyer from over-allocating to the seller, relative to efficiency
when θ1 + θ2 ≤ 1, whereas the seller never wants to over-allocate to the buyer relative to
efficiency, so the free disposal constraint plays no role. Straightforward calculations also
show that social surplus is larger under the buyer-optimal mechanism than under the seller-
optimal mechanism for any θ such that θ2 ∈ (1 − θ1, 1 − θ1/2). Only for θ2 > 1 − θ1

is social surplus under the buyer-optimal mechanism smaller than under the seller-optimal
mechanism because Qe(θ) < QS(θ) < θ1. As this suggests, with quadratic utility and
uniformly distributed types on [0, 1], buyer power is less harmful than seller power,36 i.e.,

36With quadratic utility and uniformly distributed types on [0, 1], expected social surplus under the seller-
optimal mechanism is 0.2760 and under the buyer-optimal mechanism it is 0.2917. For comparison, under
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monopoly power is worse for social surplus than monopsony power.37 This contrasts with
the model with constant marginal values and uniform distributions, where social surplus is
the same with buyer power as it is with seller power.

It should, however, be noted that results above depend on the assumptions about sup-
ports, even keeping the distributions fixed as uniform. For example, if the support of both
agents’ distributions is [0, 1], then every seller type other than the one with θ1 = 1 is overen-
dowed with the good, and so the seller’s free-disposal constraint typically binds. In contrast,
if both distributions are uniform on [1, 2], then the allocation rule of the seller-optimal mech-
anism would be Q1(θ) = 1 and Q2(θ) = 0 if θ2 < 1+θ1

2
and Q1(θ) = QS(θ) and Q2(θ) =

1−QS(θ) otherwise. The allocation for the buyer-optimal mechanism would be Q1(θ) = 1

and Q2(θ) = 0 if θ2 < 2θ1 − 2 and otherwise Q1(θ) = QB(θ) and Q2(θ) = 1 − QB(θ).
In this case, expected social surplus is once again the same under the seller-optimal and
buyer-optimal mechanisms.

Optimal nonlinear tariffs

As noted, with constant marginal values and extremal ownership, the seller-optimal and
buyer-optimal mechanisms can be implemented with a take-it-or-leave-it price offer from the
agent with all the bargaining weight. We now show that this property extends to the model
with decreasing marginal values, where the agent with all the bargaining weight can offer
any nonlinear tariff it wishes.

We begin with the case with 𝑤 = 1, in which case the seller of type θ1 offers the seller-
optimal tariff tS(q; θ1) to agent 2. Agent 2 then chooses the quantity q and pays tS(q; θ1) to
agent 1, where tS(q; θ1) is given by:

tS(q; θ1) ≡


∫ q

0
(ΨB−1

2 (x)− x)dx if q ∈ [0, 1− θ1],∫ 1−θ1
0

(ΨB−1

2 (x)− x)dx+
∫ q

1−θ1
(ΨB

2
−1
(2x+ θ1 − 1)− x)dx if q ∈ (1− θ1, 1−QS(θ1, 1)],

∞ otherwise.

It is easy to see that given tS(q; θ1) agent 2 optimally chooses q = ΨB
2 (θ2) when θ2 ∈

ex post efficiency, expected social surplus is 0.3125.
37One can show that these result extends to standard monopoly and monopsony settings the following

sense. Suppose that there is a continuum of agents with mass 1 and types that are uniformly distributed on
[0, 1]. In the monopoly case, the agents are buyers, and in the monopsony case, they are sellers endowed with
1 unit each. Assume that the monopoly’s weakly increasing marginal cost for the Qth unit with Q ∈ [0, 1] is
MC(Q) satisfying MC(0) = 0 and the monopsony’s weakly decreasing willingness to pay for the Qth unit
is 1 −MC(Q). Then, with constant marginal values, monopoly and monopsony are equivalent insofar as
they induce the same quantity traded and the same deadweight loss. In contrast, with quadratic utility, the
deadweight loss under monopsony is smaller than that under monopoly. In particular, the monopsony may
optimally allocate efficiently whereas the monopoly never does.
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[0,ΨB
2
−1
(1−θ1)] and q = 1−QS(θ1, θ2) when θ2 > ΨB

2
−1
(1−θ1).38 Thus, the buyer’s optimal

choice of q given tS implements the seller-optimal allocation. Figure 11(a) illustrates this
payment schedule. For F2 uniform, tS(q; θ1) = 1

4
q(2 − q) for q ≤ 1 − θ1 and tS(q; θ1) =

1
4
(1 + 2θ1q + θ21) for q ∈ (1− θ1, 1−QS(θ1, 1)]. This nonlinear tariff is concave in q, that is,

it involves quantity discounts.

(a) Seller-optimal payment schedule

tS(q;1/4)

0. 0.2 0.4 0.6 0.8 1.
q0.

0.05

0.1

0.15

0.2

0.25

(b) Buyer-optimal payment schedule

tB(q;3/4)

0.2 0.4 0.6 0.8 1.
q

-0.01

0.

0.01

0.02

0.03

Figure 11: The seller-optimal payment schedule in panel (a) assumes r = 1, 𝑤 = 1, and uniformly distributed
types on [0, 1]. The schedule is offered by agent 1 to agent 2, who chooses the quantity q to buy at price
tS(q; θ1). The buyer-optimal payment schedule in panel (b) assumes r = 1, 𝑤 = 0, and F1(θ) = θ2 with both
agents having type support [0, 1]. The schedule is offered by agent 2 to agent 1, who chooses the quantity q
to sell at price tB(q; θ2).

Analogously, when 𝑤 = 0, the buyer-optimal mechanism can be implemented through a
nonlinear tariff tB(q; θ2) that agent 2 with type θ2 offers to agent 1, with the understanding
that agent 1 chooses the quantity q to sell to agent 2 in exchange for the payment tB(q; θ2).
If, given θ2, the quantity QB(θ1, θ2) is equal to θ1 for all values of θ1 (as is the case when
F1 is the uniform distribution), then the buyer-optimal allocation always has Q1(θ) = θ1,
which can be implemented by agent 2 offering to pay zero and agent 1 optimally choosing to
“sell” 1− θ1 units to agent 2. Agent 1 is willing to hand over those units to agent 2 without
payment because it would simply dispose of them otherwise. Agent 2 then consumes the
minimum of what it receives and θ2.

In contrast, if for a given θ2 we have QB(θ1, θ2) < θ1 for some θ1 such that ΨS
1 (θ1)+ θ2 >

1, then agent 1’s quantity will sometimes be less than θ1. For example, this arises with
F1(θ) = θ2, θ2 > 1/2, and θ1 > 2(1− θ2). Then the buyer-optimal allocation is(1

2
(1− θ2 +ΨS

1 (θ1)),
1

2
(1 + θ2 −ΨS

1 (θ1))
)
,

38Agent 2 maximizes qθ2− 1
2q

2− t(q; θ1) over q. For q ∈ [0, 1−θ1], the first-order condition is q = ΨB
2 (θ2),

and for larger q, the first-order condition is q = 1
2 (1 − θ1 + ΨB

2 (θ2)) = 1 − QS(θ1, θ2). Note that for
θ2 > ΨB

2
−1

(1− θ1), Q
S(θ1, θ2) = 1 + θ1/2− θ2.
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which allocates less than θ1 to agent 1 and less than θ2 to agent 2. In this case, a nontrivial
payment schedule is required. Defining the threshold type τ(θ2) to be the value of θ1 that
satisfies 1

2
(1 − θ2 + ΨS

1 (θ1)) = θ1 for a given θ2, then for θ1 ≤ τ(θ2), the buyer-optimal
allocation for agent 1 is θ1, but for θ1 > τ(θ2), the buyer-optimal allocation for agent 1 is
QB(θ1, θ2) < θ1. The buyer-optimal allocation is implemented with the following payment
schedule, which is the amount paid by agent 2 to agent 1 as a function of the quantity q that
agent 1 chooses to sell to agent 2:

tB(q; θ2) ≡

 K(θ2)−
∫ 1−q

τ(θ2)

(
ΨS

1
−1
(2x− 1 + θ2)− x

)
dx if q ∈ [0, 1− τ(θ2)),

K(θ2) if q ∈ [1− τ(θ2), 1],

where K(θ2) is defined below. Given this schedule, agent 1 chooses the quantity q to sell (and
the quantity 1− q to retain) to maximize θ1min{θ1, 1− q}−1/2(min{θ1, 1− q})2+ tB(q; θ2),
whose first-order condition for 1 − q < θ1 is q = 1

2

(
1 + θ2 −ΨS

1 (θ1)
)
= 1 − QB(θ1, θ2),

ensuring the buyer-optimal allocation. Defining K(θ2) so that agent 1’s worst-off type, i.e.,
θ1 = θ1 has payoff θ1 − 1

2
θ
2

1, which is agent 1’s outside option, completes the specification
of the payment schedule.39 The payment schedule is illustrated in Figure 11 for the case of
F1(θ) = θ2 on [0, 1]. As shown there, agent 1 is paid by agent 2 when it sells a sufficiently
large quantity to agent 2, but would have to pay agent 2 if it chose not to sell anything.

5.2 Multilateral bargaining

We now show how incomplete information bargaining extends to more than two agents. In
the interest of space, our focus here is on conditions that permit ex post efficiency, thereby
mirroring the analysis in Section 4.1, even though the analysis away from ex post efficiency
extends as well.

We let N = NU ∪ ND consist of agents i ∈ NU and agents j ∈ ND. For all i, j ∈ N
we allow for Fi ̸= Fj. For all i ∈ NU , the support of Fi is [0, 1], while for j ∈ ND, Fj has
the support [θ, θ + 1], with Fj(θ) = F P

j (θ − θ) for θ ∈ [θ, θ + 1], where F P
j is j’s primitive

distribution with support [0, 1]. That is, we continue to adhere to the shifting-support
model. All distributions exhibit increasing virtual values and virtual costs. Let nU ≡ |NU |,
nD ≡ |ND|, and n = nU + nD. As in Section 4, we assume constant marginal values and
that the agents own the entire resources, that is,

∑
i∈N ri = 1 and ri ≥ 0 for all i ∈ N . As

in the bilateral setting, we denote by Re(θ) the set of ownership structures that permit ex

39The payment K(θ2) is defined by QB(θ1, θ2)−1/2QB(θ1, θ2)
2+K(θ2)−

∫ QB(θ1,θ2)

τ̂(θ2)
(ΨS

1
−1

(2x−1+θ2)−

x)dx = θ1 − 1
2θ

2

1.
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post efficiency.
As shown in Appendix B, the result of Proposition 1 extends to the case of n > 2. That

is, the incomplete information bargaining allocation rule assigns the resources to an agent
with the maximum ironed weighted virtual type, maxi∈N Ψi,

𝑤i
ρ
(θi, ωi), with ρ equal to the

smallest feasible value such that the no-deficit constraint is satisfied. However, in contrast
to the case of n = 2, in some cases with n > 2, there is positive probability of having more
than one agent with the maximum ironed weighted virtual type, so one must address the
possibility of ties. In the event of such a tie, the mechanism randomizes over the tied agents
with randomization probabilities that satisfy the condition that the type associated with
agent i’s ironing parameter is worst-off for agent i.40

We begin by considering the case of nD = 1 and nU ≥ 2. In a setting with nD = 1,
we let ∆U denote the set of nU -dimensional vectors x such that (x, 1 −

∑nU

i=1 xi) ∈ ∆, i.e.,
∆U ≡ {x ∈ [0, 1]nU |

∑nU

i=1 xi ≤ 1}. Further, we let

Re
U(θ) ≡ {rU ∈ ∆U | (rU , 1−

∑nU

i=1 rU,i) ∈ Re(θ)}.

With these definitions, the result of Proposition 2 that the set of ex post efficiency
permitting ownership structures converges as θ approaches 1 from below to the singleton set
in which the agent with support [θ, 1+ θ] owns all the resources generalizes to a setting with
nU ≥ 2 agents with support [0, 1] and one agent with support [θ, 1 + θ] by essentially the
same logic. And for θ ≥ 1, again, any ownership structure permits ex post efficiency.

Proposition 6. Assume equal bargaining weights, nU ≥ 2, and nD = 1. The set Re
U(θ)

satisfies: for θ ∈ [0, 1), Re
U(θ) is nonempty with Re

U ⊂ [0, 1)nU\{0} and limθ↑1Re
U(θ) = {0};

and for θ ≥ 1, Re
U(θ) = ∆U .

Further, we can characterize bargaining weights that permit ex post efficiency. With
nD ≥ 2, for ex post efficiency to be possible, all agents in ND must have the same bargaining
weight, and we provide conditions under with the bargaining weights of agents in NU are
constrained to be equal to or close to those of the agents in ND. For the purposes of stating
Proposition 7, we define 𝑤U ≡ maxj∈NU s.t. rj>0 𝑤j, which is the maximum bargaining weight
among the agents in NU that have positive ownership.

Proposition 7. Ex post efficiency requires that: (i) all agents in ND have the same bargain-
ing weight 𝑤D; (ii) for θ ∈ [0, 1), any agent i ∈ NU has 𝑤i = 𝑤D; (iii) for θ ≥ 1, any agent

40See Appendix B, for a proof of existence of the incomplete information bargaining mechanism and
details of the requirements for tie-breaking rules.
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i ∈ NU with ri > 0 has
max{𝑤U ,𝑤D} − 𝑤i

max{𝑤U ,𝑤D}
≤ (θ − 1) fi(1).

Further, for θ ≥ 1, if nD = 1, then ex post efficiency is possible if and only if any agent
i ∈ NU with ri > 0 has

1 +
(
1− 𝑤i

max{𝑤i,𝑤D}

) 1

fi(1)
≤ θ −

(
1− 𝑤D

max{𝑤i,𝑤D}

) 1

fD(θ)
,

where we use D as the index for the agent in ND.

Proof. See Online Appendix C.2.

As Proposition 7 shows, for overlapping supports, ex post efficiency requires that all
agents have the same bargaining weight, consistent with Proposition 2 for the case of only
two agents. For nonoverlapping supports, it is still the case that for ex post efficiency all
agents with support [θ, θ + 1] must have the same bargaining weight. But, in that case, the
bargaining weights of the agents with support [0, 1] can differ, as long as they do not differ
too much from each other and from the common bargaining weight of the agents with the
higher support.

Turning to the case of nD = 2 and nU = 1, Figure 12 illustrates the result of Makowski
and Mezzetti (1993) that for θ ∈ (0, 1) sufficiently large, ex post efficiency is possible even if
the agent in NU owns all the resources. This is illustrated by the top vertex in the triangle
being included in the ex post efficiency permitting set for θ = 0.8 in panel (a) and for θ
approaching 1 in panel (b).

Figure 12(a) shows that a shift of resources from an agent in NU to an agent in ND can
cause ex post efficiency to no longer be possible. For example, starting from the boundary
at the tip of the right corner white triangle in Figure 12(a), shifting resources to agent 1
would cause ex post efficiency to no longer be possible (moves the ownership structure into
the white corner triangle). Thus, it may be advantageous to have some inefficient sellers to
balance the market power of the agents in ND.

Related to Figure 12(b), note that when θ ≥ 1 and r3 = 0, the setup is essentially that
of Cramton et al. (1987) with two symmetric partners and we have the usual CGK problem
that ex post efficiency is not possible. This is reflected in the figure by the fact that the
intersection of the orange θ → 1 region with the bottom edge of the triangle, where the agent
3 has zero resources, spans (0.21, 0.79, 0) to (0.79, 0.21, 0), but does not include the bottom
corners.
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(a) Agents 1 and 2 in ND; agent 3 in NU

(1,0,0)(0,1,0)

(0,0,1)

θ=0

θ=0.8

(b) Agents 1 and 2 in ND; agent 3 in NU

(1,0,0)(0,1,0)

(0,0,1)

θ=0

θ→1

(0.21, 0.79, 0) (0.79, 0.21, 0)

Figure 12: Ex post efficiency permitting set with equal bargaining weights. Assumes that agents 1 and 2 are
in ND and agent 3 is in NU and that types are uniformly distributed on the respective supports.

6 Conclusions

We analyze a unifying model of bargaining using an independent private values setting in
which information is always incomplete. Our framework provides conditions under which
complete and incomplete information bargaining are equivalent. If these conditions are met,
then bargaining is always efficient, that is, neither bargaining power nor ownership affects
whether the outcome is ex post efficient. This is a formalization or conceptualization of the
notion of “little private information” sometimes invoked to justify the complete information
approach to bargaining, which may have advantages in terms of tractability. (As discussed,
a caveat regarding the equivalence applies for problems involving investment, where incom-
plete and complete information bargaining continue to diverge because there is hold-up with
complete information and not with incomplete information.) While ownership structures
can affect whether bargaining is efficient, they are, loosely speaking, less important than
bargaining power insofar as, typically, there are many ownership structures that permit ex
post efficiency, whereas with overlapping supports, ex post efficiency is only possible with
equal bargaining power.
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A Appendix: Proofs

Proof of Proposition 2. We begin with some preliminary discussion and results. Given
θ and r, let Πe(θ, r) denote that the expected budget surplus under ex post efficiency when
agents’ IR constraints are satisfied with equality for their worst-off types. It then follows
that ex post efficiency is possible if and only if Πe(θ; r) ≥ 0, where Πe can be characterized
as follows:

Lemma A.1. With two agents, if θ̂
e

i (r) is agent i’s worst-off type under ex post efficiency,
then (dropping the argument on θ̂i for readability)

Πe(θ, r) = Eθ1

[
Ψ1(θ1, θ̂

e

1)q
e
1(θ1)

]
+ Eθ2

[
Ψ2(θ2, θ̂

e

2)q
e
2(θ2)

]
− rθ̂

e

1 − (1− r)θ̂
e

2.

Thus, we can define the set of ex post efficiency permitting ownership structures Re(θ) as
Re(θ) ≡ {r ∈ [0, 1] | Πe(θ, r) ≥ 0}. Focusing on the existence of ex post efficiency permitting
ownership structures, Lemma A.2 shows that for θ < 1, there exists ownership r∗ ∈ [0, 1]

that equalizes the agents’ worst-off types; moreover, r∗ maximizes Πe(θ, r) with respect to
r and ensures that Πe(θ, r) is positive.This implies that r∗ ∈ Re(θ), which guarantees that
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Re(θ) is nonempty.
It is convenient here to prove the result for the more general case of n ≥ 2 agents, where

we have an ownership vector (r1, . . . , rn) ∈ ∆ ≡ {x ∈ [0, 1]n |
∑n

i xi = 1}. To establish
that Πe(r∗) > 0, the proof of Lemma A.2 shows that when all agents have equal worst-off
types, the VCG mechanism (satisfying interim individual rationality) has a budget surplus
in expectation.

Lemma A.2. Given θ ∈ [0, 1), there exists ownership r∗ ∈ ∆ that equalizes agents’ worst-off
types; moreover, r∗ maximizes Πe(r) and Πe(r∗) > 0.

Proof. See Online Appendix C.1.

Lemma A.2 extends existing results to the case of agents with differing supports. As
noted above, a corollary of Lemma A.2 is that Re(θ) is nonempty.

Ownership: For θ ∈ [0, 1), Lemma A.2 shows that ownership that equalizes the agents’ worst-
off types is always possible and maximizes the designer’s revenue under ex post efficiency;
moreover, that maximized revenue is positive, implying that Re(θ) is nonempty. But, for
θ ∈ [0, 1), Myerson and Satterthwaite (1983) show that ex post efficiency is impossible with
extremal ownership, implying that neither 0 nor 1 are elements of Re(θ), i.e., Re(θ) ⊂ (0, 1).

Turning to the limit result, because an agent’s worst-off type must be in its type support,
in the limit at θ goes to 1 from below, equalized worst-off types must approach 1. Using a
result first established by Cramton et al. (1987) (see Lemma B.2 in Appendix B), agent 2’s
worst-off type θ̂2 must satisfy either (i) qe2(θ̂2) = 1− r or (ii) θ̂2 = θ and q2(θ) > 1− r. Thus,
noting that qe2(1) = F1(1) = 1, a worst-off type of 1 requires that r = 0. Further, when r

approaches zero and θ approaches 1, the expected net payoff, and hence maximized revenue,
approaches zero, with the implication that the set of ownerships inducing positive revenue
under ex post efficiency approaches the singleton set {0}.

For θ ≥ 1, ex post efficiency is straightforward to achieve for any ownership because
resources owned by the agent with support [0, 1] can be sold to the agent with support
[θ, 1 + θ] at a posted price p ∈ [1, θ].

Bargaining weights : Case (i): For θ ≤ 1, ex post efficiency is possible for 𝑤 = 1/2 and
r ∈ Re(θ), as just seen, so we are left to show that for 𝑤 ̸= 1/2, it is not possible. To this, it
suffices to recall the allocation rule of the incomplete information bargaining mechanism in
Proposition 1. This rule is not ex post efficient if 𝑤 ̸= 1/2 because then the ironed virtual
type function of the two agents differ. Case (ii): For θ ∈ (1, θ∗), ex post efficiency is possible
for 𝑤 = 1/2 for any r. With nonoverlapping supports, i.e., θ > 1, small enough departures
from equal bargaining weights will only affect the weighted ironed virtual type functions
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in such a way that agent 2’s weighted ironed virtual type is still larger than agent 1’s for
all possible θ2 and θ1. The larger is θ, the larger can these departures from equality be,
which proves the result We(θ) increases in the set inclusion sense. Convexity follows from
the monotonicity of the virtual type functions in 𝑤i. For θ < θ∗, either ΨS

1 (1) > θ, implying
that trade will not be ex post efficient for 𝑤 = 0 or sufficiently close to 0 or θ < 1−ΨB

1 (0),
implying that trade will not be ex post efficient for 𝑤 = 1 or sufficiently close to 1 (or both).
Case (iii): For θ ≥ θ∗, agent 2 is always a buyer and agent 1 always a seller of r units.
Because the weighted virtual type functions are monotone in 𝑤 and ex post efficiency obtains
for 𝑤 ∈ {0, 1}, ex post efficiency obtains for any 𝑤 ∈ [0, 1]. ■

Proof of Proposition 3. The proof for parts (i) and (ii) follows from the envelope theorem
applied to the Lagrangian associated with the designer’s problem. Part (iii) reflects the
property shown in Proposition 4 that the expected net payoff frontier has slope −𝑤/(1−𝑤)

if r /∈ Re(θ) and the convex hull of the frontier has slope −1 if r ∈ Re(θ), where for r ∈ Re(θ)

and 𝑤 = 1/2, the expected net payoff depends on the parameter η.
It remains to prove parts (iv)–(vii) of the proposition. We begin by focusing on the case

with 𝑤 = 1 and proving that U1r(r, 1) > 0 for r sufficiently close to 0, and that U1r(r, 1) < 0

for r sufficiently close to 1, when F1 = F2. For 𝑤 = 1, the interim expected allocations are:

q1(θ1) =

 F2(Ψ
S−1

2 (θ1)) if 0 ≤ θ1 ≤ F−1
1 (1− r),

F2(Ψ
B−1

2 (θ1)) if F−1
1 (1− r) < θ1 ≤ 1,

and

q2(θ2) =


F1(Ψ

S
2 (θ2)) if 0 ≤ θ2 < ΨS−1

2 (F−1
1 (1− r)),

1− r if ΨS−1

2 (F−1
1 (1− r)) ≤ θ2 ≤ ΨB−1

2 (F−1
1 (1− r)),

F1(Ψ
B
2 (θ2)) if ΨB−1

2 (F−1
1 (1− r)) < θ2 ≤ 1.

Using the characterization of worst-off types from Cramton et al. (1987) (see also Lemma
B.2 in the Online Appendix), this gives us a worst-off type for agent 1 of

ω1 =


ΨB

2 (F
−1
2 (r)) if F2(Ψ

B−1

2 (F−1
1 (1− r))) ≤ r,

F−1
1 (1− r) if F2(Ψ

S−1

2 (F−1
1 (1− r))) < r < F2(Ψ

B−1

2 (F−1
1 (1− r))),

ΨS
2 (F

−1
2 (r)) if r ≤ F2(Ψ

S−1

2 (F−1
1 (1− r))),

and for agent 2, any type in
[
ΨS−1

2 (F−1
1 (1 − r)),ΨB−1

2 (F−1
1 (1 − r))

]
is worst-off, including

ω2 = F−1
1 (1 − r). As set out in Appendix B, ui(θ) = θ(qi(θ) − ri) − mi(θ) and, in the
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IIB mechanism, mi(θ) = θ(qi(θ) − ri) −
∫ θi
ωi
(qi(y) − ri)dy − ηiπ(Q,ω), where π(Q,ω) =∑

i∈N E[Ψi(θi, ωi)qi(θi)] −
∑

i∈N ωiri. For the case of n = 2 with 𝑤 = 1, we have η1 = 1

and so u1(θ1) =
∫ θ1
ω1
(q1(y) − r)dy +

∑2
i=1 Eθi [Ψi(θi, ωi)qi(θi)] − ω1r − ω2(1 − r). Thus,

agent 1’s expected net payoff when 𝑤 = 1 is U1(r, 1) =
∫ 1

0

∫ θ1
ω1
(q1(y) − r)dydF1(θ1) +∑2

i=1

∫ 1

0
Ψi(θi, ωi)qi(θi)dFi(θi) − ω1r − ω2(1 − r). We can write the double integral in the

expression for U1(r, 1) as
∫ 1

ω1

∫ θ1
ω1
(q1(y)−r)dydF1(θ1)−

∫ ω1

0

∫ ω1

θ1
(q1(y)−r)dydF1(θ1) =

∫ 1

ω1
(1−

F1(y))(q1(y)− r)dy−
∫ ω1

0
F1(y)(q1(y)− r)dy. Taking the case of r sufficiently close to 1 such

that ω1 = ΨB
2 (F

−1
2 (r)) > F−1

1 (1 − r), we can rewrite this as
∫ 1

ω1
(1 − F1(y))(F2(Ψ

B−1

2 (y)) −
r)dy −

∫ F−1
1 (1−r)

0
F1(y)(F2(Ψ

S−1

2 (y)) − r)dy −
∫ ω1

F−1
1 (1−r)

F1(y)(F2(Ψ
B−1

2 (y)) − r)dy, which has
derivative with respect to r, evaluated at r = 1, of 1 − E[θ1].41 Turning to the summation
term in the expression for U1(r, 1), for agent 1, and for r sufficiently close to 1 such that
ω1 = ΨB

2 (F
−1
2 (r)) > F−1

1 (1− r), this is

∫ ωi

0
ΨS

i (θi)qi(θi)dFi(θi) +
∫ 1

ωi
ΨB

i (θi)qi(θi)dFi(θi)

=
∫ F−1

1 (1−r)

0
ΨS

1 (θ1)F2(Ψ
S−1

2 (θ1)dF1(θ1) +
∫ ω1

F−1
1 (1−r)

ΨS
1 (θ1)F2(Ψ

B−1

2 (θ1))dF1(θ1)

+
∫ 1

ω1
ΨB

1 (θ1)F2(Ψ
B−1

2 (θ1))dF1(θ1),

which has derivative with respect to r, evaluated at r = 1, of 2/f2(1).42 For agent 2, not-
ing that we are working with r such that ΨB−1

2 (F−1
1 (1−r)) ≤ F−1

2 (r), the summation term for

agent 2 is
∫ ΨS−1

2 (F−1
1 (1−r))

0
ΨS

2 (θ2)(F1(Ψ
S
2 (θ2))−(1−r))dF2(θ2)+

∫ 1

ΨB−1
2 (F−1

1 (1−r))
ΨB

2 (θ2)(F1(Ψ
B
2 (θ2))−

(1 − r))dF2(θ2) + (1 − r)ω2. Differentiating with respect to r and evaluating at r = 1, we
get

∫ 1

ΨB−1
2 (0)

ΨB
2 (θ2)dF2(θ2).

43 Finally, note that for r sufficiently close to 1, the derivative
of −ω1r − ω2(1 − r), evaluated at r = 1, is equal to −1 − 2

f2(1)
. Thus, gathering the terms

calculated above, for r sufficiently close to 1, the derivative of U1(r, 1) taken with respect to
r and evaluated at r = 1, is

U1r(1, 1) = 1− E[θ1] + 2/f2(1) +
∫ 1

ΨB−1
2 (0)

ΨB
2 (θ2)dF2(θ2)− 1− 2/f2(1)

= −
∫ 1

0
θ1dF1(θ1) +

∫ 1

ΨB−1
2 (0)

θ2dF2(θ2)−
∫ 1

ΨB−1
2 (0)

(1− F2(θ2)) dθ2.

41Generally, for r sufficiently close to 1, we have ω1−E[θ1]−ω′
1(1−F1(ω1))(F2(Ψ

B−1

2 (ω1))−r)+F−1′
1 (1−

r)(1− r)
[
F2(Ψ

S−1

2 (F−1
1 (1− r)))− F2(Ψ

B−1

2 (F−1
1 (1− r)))

]
.

42Generally, for r sufficiently close to 1, we have ΨS
1 (F

−1
1 (1−r))

[
F2(Ψ

B−1

2 (F−1
1 (1−r)))−F2(Ψ

S−1

2 (F−1
1 (1−

r))
]
+ΨB′

2 (F−1
2 (r))F−1′

2 (r)r.

43For general r sufficiently close to 1, we get
∫ ΨS−1

2 (F−1
1 (1−r))

0
ΨS

2 (θ2)dF2(θ2) +∫ 1

ΨB−1
2 (F−1

1 (1−r))
ΨB

2 (θ2)dF2(θ2)− ω2 + (1− r)ω′
2.
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If F1 = F2 = F, then we have

U1r(1, 1) = −
∫ ΨB−1

(0)

0
θ1dF (θ1)−

∫ 1

ΨB−1 (0)
(1− F (θ2)) dθ2 < 0.

By analogous calculations, U1r(0, 1) > 0 if F1 = F2. By continuity, U1r(r, 1) < 0 for r
sufficiently close to 1 and U1r(r, 1) > 0 for r sufficiently close to 0, assuming that F1 = F2.

For 𝑤 = 0, we can reverse the roles of agents 1 and 2 in the analysis above and replace r
with 1− r, giving us the result that U2r(r, 0) < 0 for all r sufficiently large and U2r(r, 0) > 0

for all r sufficiently small, assuming that F1 = F2.

Now turn to effects for the agent without the bargaining power, starting with 𝑤 = 1. For
agent 2, we have η2 = 0 and so u2(θ2) =

∫ θ2
ω2
(q2(y)− (1− r))dy and U2(r, 1) =

∫ 1

0

∫ θ2
ω2
(q2(y)−

(1− r))dydF2(θ2). This is analogous to the double integral term analyzed above. Replacing
1 with 2 and r with 1− r in the expression above, we have U2(r, 1) =

∫ 1

ω2
(1−F2(y))(q2(y)−

(1− r))dy−
∫ ω2

0
F2(y)(q2(y)− (1− r))dy. Thus, using the definition of q2, we haveU2(r, 1) =∫ 1

ΨB−1
2 (F−1

1 (1−r))
(1−F2(y))(F1(Ψ

B
2 (y))−(1−r))dy−

∫ ΨS−1

2 (F−1
1 (1−r))

0
F2(y)(F1(Ψ

S
2 (y))−(1−r))dy.

Differentiating with respect to r, we get

U2r(r, 1) =
∫ 1

ΨB−1
2 (F−1

1 (1−r))
(1− F2(y))dy −

∫ ΨS−1

2 (F−1
1 (1−r))

0
F2(y)dy

=

 −
∫ ΨS−1

2 (1)

0
F2(y)dy < 0 if r = 0,∫ 1

ΨB−1
2 (0)

(1− F2(y))dy > 0 if r = 1.

By continuity, U2r(r, 1) > 0 for all r sufficiently close to 1 and U2r(r, 1) < 0 for all r
sufficiently close to 0. Analogously, U1r(r, 0) > 0 for r sufficiently close to 1 and U1r(r, 0) < 0

for r sufficiently close to 0. ■

Proof of Proposition 4. Concavity follows from the slope of the frontier, which we now
prove. Let ⟨Q𝑤,M𝑤⟩ be the incomplete information mechanism for a given 𝑤. Letting
u𝑤i (θi) denote agent i’s interim expected net payoff given 𝑤, away from ex post efficiency, the
expected net payoff frontier is given by (Eθ1 [u

𝑤
1 (θ1)],Eθ2 [u

𝑤
2 (θ2)])𝑤∈[0,1], where dEθ1

[u𝑤
1 (θ1)]

d𝑤
> 0,

and so the frontier has slope dEθ2
[u𝑤

2 (θ2)]

d𝑤
/
dEθ1

[u𝑤
1 (θ1)]

d𝑤
. By the envelope theorem, the derivative

with respect to 𝑤 of the optimized objective for the incomplete information bargaining
problem satisfies

d

d𝑤

(
Eθ[𝑤(Q

𝑤
1 (θ)θ1 −M𝑤

1 (θ)) + (1− 𝑤)(Q𝑤
2 (θ)θ2 −M𝑤

2 (θ))]
)

= Eθ[Q
𝑤
1 (θ)θ1 −M𝑤

1 (θ)− (Q𝑤
2 (θ)θ2 −M𝑤

2 (θ))].

(A.1)
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Using u𝑤i (θi) = (q𝑤i (θi)− ri)θi −m𝑤
i (θi), we can write 𝑤Eθ1 [u

𝑤
1 (θ1)] + (1− 𝑤)Eθ2 [u

𝑤
2 (θ2)] =

Eθ[𝑤(Q
𝑤
1 (θ)θ1 −M1(θ)) + (1 − 𝑤)(Q𝑤

2 (θ)θ2 −M2(θ))] − Eθ[𝑤rθ1 + (1 − 𝑤)(1 − r)θ2]. Dif-
ferentiating the above equation with respect to 𝑤 and using (A.1), we get

Eθ1 [u
𝑤
1 (θ1)]− Eθ2 [u

𝑤
2 (θ2)] + 𝑤

dEθ1 [u
𝑤
1 (θ1)]

d𝑤
+ (1− 𝑤)

dEθ2 [u
𝑤
2 (θ2)]

d𝑤
= Eθ[Q

𝑤
1 (θ)θ1 −M1(θ)− (Q𝑤

2 (θ)θ2 −M2(θ))]− Eθ[rθ1 − (1− r)θ2]

= Eθ1 [u
𝑤
1 (θ1)]− Eθ2 [u

𝑤
2 (θ2)],

which gives dEθ2
[u𝑤

2 (θ2)]

d𝑤
/
dEθ1

[u𝑤
1 (θ1)]

d𝑤
= − 𝑤

1−𝑤
. In contrast, when ex post efficiency is achieved,

Eθ1 [u
𝑤
1 (θ1)] + Eθ2 [u

𝑤
2 (θ2)] is constant, which implies that the slope of the frontier at ex post

efficiency is −1. ■

Proof of Proposition 5. Consider the setup with n = 2 and decreasing marginal values.
The second-best allocation rule is the pointwise maximizer of

∑
i∈N ρEθ

[
Qi

(
Ψi, 1

ρ
(θi, ωi) −

1
2
Qi

)]
, where, for convenience, we normalize bargaining weights to 1, with the implica-

tion that feasible ρ satisfy ρ ≥ 1. Assuming that r = 1, worst-off types are ω1 = θ1 and
ω2 = θ2, and so the objective reduces to Eθ

[
Q1(θ)

(
ΨS

1, 1
ρ

(θ1)− 1
2
Q1(θ)

)]
+Eθ

[
Q2(θ)

(
ΨB

2, 1
ρ

(θ2)−
1
2
Q2(θ)

)]
. If ΨS

1, 1
ρ

(θ1)+ΨB
2, 1

ρ

(θ2) ≤ 1, the second-best allocation isQ1(θ) = min{θ1,ΨS
1, 1

ρ

(θ1)} =

θ1 and Q2(θ) = min{θ2,max{0,ΨB
2, 1

ρ

(θ2)}} = max{0,ΨB
2, 1

ρ

(θ2)}. If ΨS
1, 1

ρ

(θ1) + ΨB
2, 1

ρ

(θ2) > 1,

then, ignoring the free-disposal constraint for the moment, the second-best allocation is
(Q∗

ρ(θ), 1 − Q∗
ρ(θ)), where Q∗

ρ(θ) is the value of Qρ that maximizes Qρ

(
ΨS

1, 1
ρ

(θ1) − 1
2
Qρ

)
+

(1−Qρ)
(
ΨB

2, 1
ρ

(θ2)− 1
2
(1−Qρ)

)
, which has first-order condition

Q∗
ρ(θ) ≡ 1

2

(
1 + ΨS

1, 1
ρ

(θ1)−ΨB
2, 1

ρ

(θ2)
)
= 1+θ1−θ2

2
+ ρ−1

2ρ

(
F1(θ1)
f1(θ1)

+ 1−F2(θ2)
f2(θ2)

)
≥ 1+θ1−θ2

2
,

with a strict inequality if ρ > 1 and either θ1 > θ1 or θ2 < θ2. Accounting for free-
disposal, we have Q1(θ) = min{θ1, Q∗

ρ(θ)} and Q2(θ) = min{θ2, 1 − Q1(θ)}. Note that

ΨS
1, 1

ρ

(θ1) + ΨB
2, 1

ρ

(θ2) = θ1 + θ2 +
ρ−1
ρ

(
F1(θ1)
f1(θ1)

− 1−F2(θ2)
f2(θ2)

)
, so, depending on the distributions,

we can have four possible cases:

Case Qe(θ) Second-best Q(θ)

1. θ1 + θ2 ≤ 1 and ΨS
1, 1

ρ

(θ1) + ΨB
2, 1

ρ

(θ2) ≤ 1 (θ1, θ2) (θ1,max{0,ΨB
2, 1

ρ

(θ2)})

2. θ1 + θ2 > 1 and ΨS
1, 1

ρ

(θ1) + ΨB
2, 1

ρ

(θ2) ≤ 1 (1+θ1−θ2
2

, 1−θ1+θ2
2

) (θ1,max{0,ΨB
2, 1

ρ

(θ2)})

3. θ1 + θ2 ≤ 1 and ΨS
1, 1

ρ

(θ1) + ΨB
2, 1

ρ

(θ2) > 1 (θ1, θ2) (min{θ1, Q∗
ρ(θ)},min{θ2, 1−Q1(θ)})

4. θ1 + θ2 > 1 and ΨS
1, 1

ρ

(θ1) + ΨB
2, 1

ρ

(θ2) > 1 (1+θ1−θ2
2

, 1−θ1+θ2
2

) (min{θ1, Q∗
ρ(θ)},min{θ2, 1−Q1(θ)})
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If ex post efficiency is not possible, then ρ > 1, and so in case 1, θ2 ≥ max{0,ΨB
2, 1

ρ

(θ2)},

with a strict inequality for all θ2 ∈ (θ2, θ2). In case 2, 1+θ1−θ2
2

̸= θ1 unless θ1 = 1 − θ2,

which is a zero-measure set of types. In case 4, as we showed, Q∗
ρ(θ) ≥ 1+θ1−θ2

2
, with a strict

inequality for all but a zero measure set of types, and given θ1+θ2 > 1, we have 1+θ1−θ2
2

< θ1,

so 1+θ1−θ2
2

= min{θ1, Q∗
ρ(θ)} for at most a zero-measure set of types.

This leaves us with case 3. In order to have the conditions for case 3, we require θ1+θ2 ≤ 1

and ΨS
1, 1

ρ

(θ1) + ΨB
2, 1

ρ

(θ2) = θ1 + θ2 + ρ−1
ρ

(
F1(θ1)
f1(θ1)

− 1−F2(θ2)
f2(θ2)

)
> 1. Thus, we require that

1−F2(θ2)
f2(θ2)

< F1(θ1)
f1(θ1)

, and this must hold for an open set of types such that θ1 + θ2 ≤ 1. Under
the condition that F1(x)

f1(x)
≤ 1−F2(x)

f2(x)
for all x ∈ [0, 1/2], this cannot hold. Under case 3, one can

have Qe(θ) = Q(θ) for an open set of types for example if F1(θ) = θ and F2(θ) = 2θ − θ2,

both with support [0, 1]. This completes the proof. ■
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