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1 Introduction

Industrial Organization covers imperfectly competitive markets and incentives within firms
and organizations. It derives particular real-world relevance through its application to regu-
lation, consumer protection, antitrust, and competition policy, as well as related court cases.
Naturally, it aims to analyze the effects of alternative arrangements, such horizontal and
vertical integration, workers’ right to unionize, and firms’ ability to price discriminate, on
consumer and social surplus, and the inevitable tradeoffs between them.

This applicability and real-world exposure simultaneously constrain the field and give
it direction and purpose. As anyone privy to policy debates or courtroom arguments will
readily attest, it is not the fanciest and theoretically most advanced arguments (“Shouldn’t
you be doing dynamic mechanism design here?”) that win the day, partly because of the
need for evidence-based decision making and the inevitable limitations of data and empirical
methods, and partly because of the need for those arguments to be comprehended by intelli-
gent, noneconomist policymakers and judges.1 At the same time, the fundamental need for
conceptual frameworks to contemplate and communicate genuine counterfactuals—changes
in the economic environment from the known into the unknown—is painstakingly clear. In
an ever changing world, there are simply never going to be enough takeovers of Instagram
by Facebook or Time Warner by AT&T for any empiricist to make conclusive inferences,
one way or another, without relying on assumptions. In other words, the field inevitably
requires a combination of theory and empirics within a framework that generates a tradeoff
between profits and social and consumer surplus, allows for social surplus effects of varying
bargaining power, and accommodates incentives for investment and innovation.

In this chapter, we provide an introduction to what we call the Incomplete Information
Industrial Organization framework—or Triple-IO. The aims of this chapter are, on the one
hand, to demonstrate to readers not familiar with it the framework’s tractability, discipline,
and flexibility, and, on the other, to illustrate and discuss its internal consistency and external
validity. The chapter first discusses the background and backdrop for Triple-IO. Then we
review progress to date. The chapter concludes with an overview of outstanding questions
and the path ahead.

1Baye and Wright (2011) state: “We find that decisions involving the evaluation of complex economic
evidence are significantly more likely to be appealed, and decisions of judges trained in basic economics
are significantly less likely to be appealed than are decisions by their untrained counterparts. Our analysis
supports the hypothesis that some antitrust cases are too complicated for generalist judges.”
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2 Motivation

In this section, we provide background for antitrust economics and an overview of re-
cent developments in Antitrust and Industrial Organization, taking these as motivation for
incomplete-information models.

2.1 Background

Monopoly behavior is a longstanding and ongoing focus of interest in Industrial Organiza-
tion and Antitrust, and thus serves well as a lead-in to discussion of alternative models.
Traditional approaches—by which we mean approaches that are not based on incomplete-
information models—to monopoly pricing typically assume that a monopoly is, for reasons
that are outside the model (such as resale among buyers), restricted to setting a uniform
price to consumers. The deeper, although not necessarily widely publicized, reason for im-
posing this assumption is that it prevents the monopoly from perfectly price discriminating
among the consumers, in which case there would be no social surplus rationale for regulating
monopolies or preventing monopolies from forming. The goal of a monopoly that captures
all of the social surplus that it creates is perfectly aligned with the social planner’s objective
since it grabs all surplus. As we will see, incomplete information immediately implies a
tradeoff between social surplus and profit because eliciting information about agents’ values
has an incentive cost.

While the dependence of the predictions and prescriptions on these assumptions has long
been recognized, the modeling device of assuming uniform pricing remains influential in un-
dergraduate teaching, research, and practical applications. As a case in point, successive
uniform pricing monopolies give rise to double marginalization (Spengler, 1950) whose elim-
ination continues to be an influential and widely accepted efficiency-based argument in favor
of vertical integration (see, e.g., the 2020 U.S. Vertical Merger Guidelines).

The basic tenet in the monopoly model that one side of the market sets the price for the
other carries over to oligopoly models à la Cournot or Bertrand, which are used to model
imperfectly competitive markets. The main effect of competition in these models is that
it renders each firm’s residual demand function more price elastic and, therefore, makes it
behave more aggressively. Competition does not alter the fact that one side of the market
(in consumer markets, typically the supply side) sets the terms of trade. These models
are therefore incapable of capturing notions like shifts in bargaining power, buyer power,
or countervailing power. This creates a disconnect between the reliance on these notions
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in practice,2 and the models being used to analyze and quantify associated effects, which
remain largely grounded in oligopoly models à la Cournot or Bertrand.3

Antitrust concerns and thinking in their current form emerged in an era of steel and
rail. The regulation of natural monopolies that arise because of nonconvex cost functions
was a central concern, and took on the form, for example, of Ramsey pricing (see, e.g.,
Ramsey, 1927; Wilson, 1993), which involves a convex combination of perfectly competitive
prices and monopoly prices. Such approaches recognize that, because of the cost structure
and network organization of the problems at hand, perfectly competitive pricing would not
allow the operators to break even (and would provide poor incentives for maintaining and
improving infrastructure), and that the monopoly price would have undesirable effects for
consumer and social surplus. Even though it may not have been achievable, marginal cost
pricing was a clear and sensible benchmark against which one could evaluate firms’ behavior.
As the discussion below will make clear, this is a luxury that concurrent issues in Antitrust
are no longer necessarily afforded because notions of competitive pricing are often vague or
vacuous.

2.2 Recent developments in Antitrust

The two salient developments in Antitrust in recent times are, on the one hand, an upsurge
of concern with big tech companies and, on the other, a recognition of the need to account for
bargaining and negotiation procedures that are not captured by standard oligopoly models.

The last few years have seen an upsurge of interest in and concern with competition issues
in the digital age. In 2019 alone, the Australian Competition and Consumer Commission, the
European Commission, the Digital Competition Expert Panel in the U.K., and the Stigler
Center for Study of the Economy and the State produced four substantive reports devoted to
that.4 In the United States and Europe, 2020 saw investigations and antitrust cases launched
against Google, Facebook, and Apple, and combinations thereof. The ongoing nature of the

2The 2010 U.S. Horizontal Merger Guidelines (2010 Guidelines), which both guide and reflect antitrust
practice in the United States, note in Section 6.2 on “Bargaining and Auctions” that “Buyers commonly
negotiate with more than one seller, and may play sellers off against one another,” and in Section 8 on
“Powerful buyers” that “Powerful buyers are often able to negotiate favorable terms with their suppliers.”
Further, the Guidelines allow that Agencies could identify a price discrimination market defined by a single
powerful buyer.

3For example, the reliance of competition authorities around the globe on merger screens based on the
Herfindahl-Hirschman Index (HHI) has foundations in the Cournot oligopoly model (see, e.g., Werden, 2008;
Werden and Froeb, 2008). A variety of well-accepted merger review tools and simulation techniques are
grounded in the differentiated products Bertrand oligopoly model (see, e.g., Epstein and Rubinfeld, 2004).
Much of the analysis surrounding collusive conduct has as its conceptual framework a model of repeated
Cournot competition along the lines of Green and Porter (1984) (see, e.g., Ivaldi et al., 2007).

4See Australian Competition & Consumer Commission (2019), Cémer et al. (2019), Furman et al. (2019),
and Stigler Center (2019).
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concerns is also evident in the creation in 2019 by the U.S. Federal Trade Commission of a
permanent “Technology Enforcement Division,” which is tasked with monitoring competition
and investigating potential anticompetitive conduct in U.S. technology markets. Further,
officials at the U.S. Department of Justice have said that: “We plan to continue our review
of competitive practices by market-leading online platforms, and where necessary address
those as well.5

Over the last decade or so, there have been a large number of substantial merger cases
in which bargaining—understood as a process to determine the terms of trade that is not
adequately captured by off-the-shelf oligopoly models—played an important role. Recent
cases include the AT&T–TimeWarner merger, where a key concern was the merger’s effect on
negotiations between the merged entity and video content distributors, as well as numerous
other media mergers.6 There is a similarly long list of health care mergers, including, e.g.,
the merger of Hackensack Meridian Health and Englewood Healthcare, which raise issues
related to negotiations between hospitals and insurers,7 as well as other mergers where the
relevant market is most appropriately viewed as a bilateral oligopoly, such as the proposed
merger of Halliburton-Baker Hughes in oilfield services. Antitrust matters related to the
licensing of intellectual property, particularly among pharmaceutical and high tech firms,8

are reflected in recently issued antitrust guidelines for the licensing of intellectural property
and require an evaluation of the relative bargaining power of the licensor and licensee for
the calculation of damages.9

Consistent with the cases just mentioned, the 2020 Guidelines emphasize the importance
and relevance of bargaining and auctions, stating: “In many industries, especially those
involving intermediate goods and services, buyers and sellers negotiate to determine prices
and other terms of trade. In that process, buyers commonly negotiate with more than one
seller, and may play sellers off against one another. Some highly structured forms of such

5“Introductory Remarks of Deputy Attorney General at Announcement of Civil An-
titrust Lawsuit Filed Against Google,” October 20, 2020, https://www.justice.gov/opa/speech/
introductory-remarks-deputy-attorney-general-announcement-civil-antitrust-lawsuit-filed (emphasis in
the original).

6For example, Nexstar-Tribune merger raised issues related to negotiations between broadcasters and
advertisers. For additional examples, see the list on the U.S. Department of Justice’s “Antitrust Case Filings”
website, https://www.justice.gov/atr/antitrust-case-filings?.

7U.S. Federal Trade Commission, “Merger Review” website, https://www.ftc.gov/news-events/
media-resources/mergers-and-competition/merger-review.

8For example, VirnetX, Inc. v. Cisco Systems (2014) related to technology used in the FaceTime and
VPN features in iOS devices and Mac computers, and FTC v. Actavis, Inc. (2013) related to negotiated
payments by a drug patentee to a generic drug manufacturer known as “pay-for-delay.”

9U.S. Department of Justice and Federal Trade Commission, “Antitrust Guidelines for the Licensing of
Intellectual Property,” 2017, https://www.justice.gov/atr/IPguidelines/download. See, e.g., Sidak (2015) on
the role of bargaining power in the Georgia-Pacific framework for damages calculations and courts’ rejection
of Nash bargaining for the quantification of damages.
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competition are known as auctions. Negotiations often combine aspects of an auction with
aspects of one-on-one negotiation, although pure auctions are sometimes used in government
procurement and elsewhere” (2010 Guidelines, Section 6.2).

2.3 Recent developments in Industrial Organization

There has been an upsurge of interest in bargaining in the empirical IO literature, driven
both by the advent of big data sets and the need to accommodate negotiated outcomes in
counterfactual analyses.

For example, issues of market power and the possibility of countervailing market power
are prominent in recent debates surrounding Internet giants such as Google. For example,
Decarolis and Rovigatti (2020) show that consolidation among online advertising interme-
diaries has increased their buyer power, countervailing Google’s significant market power in
online search, and is consistent with the theoretical result that consolidation that equalizes
bargaining power between the buyer and seller sides of the market can increase welfare. Re-
lated to online negotiations through eBay’s Best Offer bargaining platform, Backus et al.
(2020, p. 2) find that “the observation that bargaining very frequently ends in disagree-
ment is consistent with the presence of incomplete information and bargaining costs,” and
Backus et al. (2019) find that agents take steps to credibly communicate the strength of
their bargaining positions.

Outside the realm of big Internet firms, Larsen (2020) estimates a model of incomplete-
information bargaining in the context of negotiations in the wholesale used-car industry,
documenting, empirically, the efficiency effects of private information. Byrne et al. (2019)
find evidence of bargaining power effects in negotiations between simulated customers and
call centers for providers of retail electricity, where customers demonstrating a greater will-
ingness and ability to search and bargain obtained better prices. Sweeting et al. (2018)
examine data on U.S. beer sales and show that signaling effects that arise with incomplete
information can cause merger simulations that assume complete information to significantly
underpredict post-merger price rises. Related to the licensing of intellectual property, Caves
et al. (1983) find evidence that patent owners cannot fully appropriate a licensee’s maximum
rent due, in part, to incomplete information, and Kankanhalli and Kwan (2019) provide em-
pirical evidence that royalty rates in intellectual property licensing agreements are affected
by bargaining power.

In contrast to the research just mentioned, to date, the more standard approach to the
empirical analysis of markets with negotiated prices has been to use the complete-information
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models of Nash bargaining and Nash-in-Nash bargaining.10 The Nash bargaining solution
has the feature that parties divide a fixed pie, with no tradeoff between the division of the pie
and its overall size. For example, one way that greater bargaining power might express itself
is through more aggressive offers, with the result that bargaining is more likely to breakdown.
But because bargaining breakdown does not occur in Nash bargaining on the equilibrium
path, that model is a poor fit for settings where there is systematic bargaining breakdown
on the equilibrium path. For example, Backus et al. (2020) find a breakdown probability
of roughly 55 percent in data covering 25 million observations of bilateral negotiations on
eBay.11

The Nash-in-Nash model, introduced by Horn and Wolinsky (1988), extends Nash bar-
gaining to accommodate multiple simultaneous Nash bargains.12 In that model, the bargain-
ing equilibrium is the Nash equilibrium of a game in which players participate in potentially
many Nash bargains, but with each player essentially sending separate representatives to
each Nash bargain, with no coordination across the representatives of a player. As noted
by Crawford and Yurukoglu (2012, p. 659), “This setup does not allow for advantages due
to informational asymmetries. ... We view this absence of informational asymmetries as a
weakness of the bargaining model. In return, however, we gain tractability in determining
how the threat of unilateral disagreement determines input costs in a bilaterally oligopolistic
setting.” Thus, although the Nash-in-Nash model constrains the market interaction in a way
that raises concerns, it is viewed as offering a benefit in terms of tractability.

The large literature making use of Nash-based models is testament to the relevance of
negotiated outcomes, bargaining power, and countervailing power in Industrial Organiza-
tion. On the effects of hospital mergers on bargaining power and negotiated outcomes, see,
e.g., Capps et al. (2003); Sorensen (2003); Capps and Dranove (2004); Dafny (2009); Gaynor
and Town (2012); Cutler and Scott Morton (2013); Gowrisankaran et al. (2015); Ho and
Lee (2017, 2019); Craig et al. (2020); Prager and Schmitt (forth.).13 For example, Ho and
Lee (2017) apply the Nash-in-Nash framework to the question of countervailing power by

10The remarks of Nevo (2014) describe the important role that the theory of Nash bargaining plays in
antitrust practice, and Shapiro (2018) uses the Nash bargaining model to analyze and quantify competitive
harms associated with the AT&T-Time Warner merger.

11As described by Crawford (2014), there are regular blackouts of broadcast television stations on cable
and satellite distribution platforms due to the breakdown of negotiations over the terms for retransmission
of the broadcast signal.

12Collard-Wexler et al. (2019) and Rey and Vergé (2019) provide theoretical foundations for the Nash-in-
Nash model.

13On bargaining between hospitals and suppliers of medical devices, see Grennan (2013, 2014); Grennan
and Swanson (2020). In work on insurer-hospital bargaining, Lewis and Pflum (2015) find that bargaining
power (the share of generated surplus captured by an agent) is a greater determinant of post-merger markups
than bargaining positions (the agent’s threat point).
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insurers when negotiating with hospitals and find evidence that consolidation among insurers
improves their bargaining position vis-à-vis hospitals. Craig et al. (2020) find evidence that
following mergers, hospitals are able to negotiate somewhat lower prices for medical supplies,
consistent with mergers involving countervailing effects of improved buyer power and man-
agerial disruption.14 For media mergers, where negotiations play a role in determining what
content is distributed where and at what prices and what rates are paid by advertisers, see,
e.g., Gal-Or and Dukes (2003, 2006); Crawford et al. (2018a). Related to bundling and ver-
tical integration, see Crawford and Yurukoglu (2012) and Crawford et al. (2018b). Related
to intellectual property, for Nash-bargaining based models of patent hold-up and litigation,
see, e.g., Katz and Shapiro (1985); Bessen and Meurer (2006); Shapiro (2010); Ganglmair
et al. (2012); Lemus and Temnyalov (2017); Choi and Gerlach (2017).

2.4 The case for incomplete-information IO models

As mentioned, in models of complete information bargaining, the only thing to be bargained
over is the distribution of the pie; whether or not there is a pie to share and, if so, its size
is common knowledge before bargaining even starts. This not only makes it difficult for
complete information bargaining models to account for the salient real-world phenomenon of
bargaining breakdown, but also deprives bargaining of some of its most important features.15

While complete information bargaining models have been criticized by some economists,16

(and, of course, been embraced by many others), some skepticism visà-vis complete informa-
tion bargaining has also been uttered by practitioners, perhaps most vocally by Judge Leon
in the AT&T–Time Warner merger case. Upon hearing the government’s Nash bargaining
model, he wrote: “I wondered on the record whether its complexity made it seem like a Rube
Goldberg contraption. ... But in fairness to Mr. Goldberg, at least his contraptions would
normally move a pea from one side of a room to another By contrast, the evidence at trial
showed that [the] model lacks both ‘reliability and factual credibility,’ and thus fails to gener-
ate probative predictions of future harm associated with the Government’s increased-leverage
theory” (Leon, 2018, p. 32).

14They conclude that price savings seem “modest relative to the cross-sectional price variation across
hospitals and claims of potential savings via increased ‘buyer power” ’ (Craig et al., 2020, p. 41). Related to
buyer power more generally, see, e.g., Snyder (1996); Caprice and Rey (2015).

15Or as Fudenberg and Tirole (1991, p. 399) put it: “bargaining derives much of its interest from incomplete
information.”

16For example, Holmström and Myerson (1983, p. 1809) note: “Some economists, following Coase have
... argued that we should expect to observe efficient allocations in any economy where there is complete
information and bargaining costs are small. However, this positive aspect of efficiency does not extend to
economies with incomplete information.” For a similar view, see Samuelson (1985).
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Incomplete-information bargaining

The modeling backbone for incomplete-information bargaining that we work with is the
bilateral trade model of Myerson and Satterthwaite (1983), which we revisit in the next
section, and its generalizations such as Williams (1987), who extended it to allow the traders
to have different bargaining weights, and Gresik and Satterthwaite (1989), who generalized
it to multiple traders on each side of the market. As observed by Ausubel et al. (2002, p.
1934), in light of the results of Myerson and Satterthwaite (1983) insisting on efficiency in
incomplete-information bargaining is “fruitless.” The methodology we employ is mechanism
design, and empowered and encouraged by the revelation principle (see below), our focus is
on direct mechanisms. It is our view, and our aim to convince the readers, that the time is
ripe to do so.17

Earlier literature on incomplete information bargaining has paid considerable attention
to the extensive-form game in which bargaining takes place. Part of the reason for this was
theoretical. Ausubel et al. (2002, p. 1908) note that, despite its virtues, the mechanism-
design approach has the weaknesses of relying on common knowledge of agents’ beliefs and
utility functions and of assuming too much commitment. They write: “In practice bargainers
use simple trading rules—such as a sequence of offers and counteroffers—that do not depend
on beliefs or utility functions. And bargainers may be unable to walk away from known
gains from trade.” As will become clear from the analysis below, it is precisely by varying
an agent’s ability to walk away from known gains from trade that the mechanism-design ap-
proach is able to capture notions like bargaining and buyer power, which have social surplus
effects. So we view the ability of the mechanism-design approach to endow agents with such
commitment power as a merit rather than as a shortcoming. Of course, we maintain the
assumption of common knowledge of type distributions and payoff functions throughout. In
defense of this assumption, we merely note that every model has to start somewhere and
stipulating that agents share a common prior has proved a productive assumption in eco-
nomics. Further, the assumption is not specific to incomplete-information models, although
it is almost exclusively raised in the context of incomplete-information models, perhaps be-
cause it is, somewhat ironically, more glaring there. With complete information, agents
do not only have common knowledge of distributions and utility functions, but they also
happen to know that every agent’s distribution is degenerate with the lower bound of sup-
port equal to its upper bound. Put differently, progress toward models that dispense with

17Fifteen to twenty years ago, there was something of a breakthrough of auction theory into “mainstream”
economics, with Paul Klemperer explaining “why every economist should learn some auction theory” (Klem-
perer, 2002); see also Krishna (2002), Klemperer (2004), and Milgrom (2004). With that in mind, the view
and belief expressed here is that now is the time to move to another level of abstraction and to embrace the
mechanism-design approach.
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the common-knowledge assumption would add value, but lack thereof is nothing that sets
incomplete-information models at any disadvantage relative to complete-information models
because, whatever criticism applies to the former, a fortiori applies to the latter.

Another part of the motivation for extensive-form representations of bargaining seems
to have been empirical. For example, the structural estimation approach in auctions makes
use of knowledge of the auction format—for example, first-price auction in Guerre et al.
(2000)—and assumptions about type distributions and equilibrium—in this case, identical
distributions and Bayes Nash equilibrium—to estimate the distributions of types based on
bidding data. From a practical modeling perspective, the problem of relying on extensive
forms is that they permit tractability only in special cases. For example, the first-price
auction is tractable with identical distributions but rarely otherwise.18 Likewise, the k-
double-auction of Chatterjee and Samuelson (1983) is tractable for two bidders and uniform
distributions, but not otherwise. This severely impedes the use of these models for, say,
merger review because the distributions cannot sensibly be stipulated to be the same across
all bidders before and after two agents merge. These problems are compounded in an em-
pirical context, where it is arguably more often than not the case that the outside observers
cannot be sure that they observe the precise bargaining game that is being played.19

Fortunately, reliance on knowledge of the extensive form is not required empirically ei-
ther. As Larsen and Zhang (2018) show, incentive compatibility and the revelation principle
can be used, together with the hypothesis that agents’ actions constitute a Bayes Nash equi-
librium, to infer type distributions from limited observations of agents’ actions, payments,
and allocations. We illustrate their approach in Section 4.5 below.

From extensive forms to direct mechanisms

Real-world bargaining can take a variety of forms. Its description might be relatively straight-
forward, such as when a seller posts a take-it-or-leave-it price, which a buyer can then either
accept or reject. Or, the price-determination process might involve significant back and
forth, with the buyer and seller engaging in a set of unstructured offers and counteroffers

18Of course, the first-price auction is detail-free in the sense of Wilson (1987), which makes it appealing
for practical use. But that does not make it a suitable theoretical device to model price formation any more
than the great theoretical properties of the second-price (or Vickrey) auction make it appealing for practical
use.

19As Fudenberg and Tirole (1991, pp. 398–399) note: “Even with complete information, any split of the
pie can be obtained by changing the extensive form for bargaining. This is worrisome because we, as outside
observers of a bargaining process, usually have little information about which extensive form is being played,
and furthermore the extensive form is likely to vary from one situation to the next. Of course, in any
application of game theory the conclusions can vary with the extensive form chosen, but the issue seems
more serious here than in other contexts, in which we may be able to limit attention to a smaller set of
extensive forms.”
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and other communication over time, eventually settling on terms of trade. The process
might be partially structured, with an initial auction phase in which suppliers submit bids
to an online platform, but then the buyer might continue to negotiate with one or more of
the auction participants, perhaps asking for additional concessions or asking for quantity
discounts, after the auction phase is over. The specification of the details of a bargaining
process is referred to as its extensive form. Extensive forms have in common that they take
as inputs the characteristics and private information of the parties, particularly as related to
the good being traded, and, through the application of agents’ optimal strategies given their
private information, produce as outputs a specification of what trades occur and what pay-
ments are made. These inputs and outputs are also the information required to evaluate the
contribution of the bargaining process to consumer, producer, and social surplus. This raises
the question: to understand how a particular set of inputs (agent characteristics and private
information) affect outcomes such as consumer, producer, and social surplus, do we need to
allow for all the possible extensive-form bargaining games that could be played and how they
might be played. Happily, the answer to this is no. The revelation principle implies that
any extensive-form game that agents with independent private information might play can
be reformulated as a direct mechanism that maps agents reports of their private information
to allocations and transfers. Somewhat more precisely, given an extensive-form game and
optimal strategies for all the players as a function of their independent private information,
there exists a direct mechanism such that it is optimal for each agent to truthfully report
its private information to the mechanism and such that the direct mechanism replicates the
outcome associated with the agents’ optimal strategies in the extensive-form game (see, e.g.,
Myerson, 1981, Lemma 1; Börgers, 2015, Proposition 2.1). This powerful result simplifies
our task greatly because it implies that without loss of generality, we can focus on direct
mechanisms.

2.5 Of maps and models

Models, like maps, are abstractions. As such, they deliberately violate certain facts and data
in order to shed light on others. Just as the usefulness of a map depends on its purpose, so
does the value of a specific model. In Industrial Organization and Antitrust, the purpose of a
model is to serve as a conceptual framework for problems that involve tradeoffs between social
surplus and profit and to permit the conceptualization of policy counterfactuals. Using a flat
map does not make a traveller a flat-worlder, nor does adhering to a model with rational,
risk neutral agents with a common prior mean that the economists who do so believe that
these assumptions are factual descriptions. No user of a flat map would ever be accused of
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holding the erroneous and demonstrably wrong belief that buildings are two-dimensional.
Those who use these kinds of maps and models find them useful because they serve the
purpose of guiding them from here to there.

It is also worth remembering that new scientific theories often precede the arrival of data
substantiating them. This was true for Copernicus and Galilei, who stipulated—without
evidence (for centuries to come)—that the sun rather than the earth is the center of our
solar system, for Darwin’s theory of evolution, and Einstein’s theory of relativity (and, if
you like, the independent private values model). It was not notions of plausibility and realism
of the assumptions that won the day for these new approaches.20 Indeed, it is difficult to
argue that the idea that we and everything on Earth move at all times at speeds faster than
bullets fly is more plausible or realistic than stipulating that Earth stands still. This seems
worth bearing in mind when discussing and evaluating the pros and cons of the incomplete
information approach to Industrial Organization.

3 Methodology

In this section, we first describe the setup, and then explore implications of incentive com-
patibility and individual rationality. Then we examine optimal and efficient mechanisms.
We conclude with a discussion of the uniqueness of the properties of the independent private
values setting.

3.1 Setup

We consider a setup with multiple buyers and sellers, although in some cases we specialize
to the case of bilateral trade, where there is just one buyer and just one seller, or even to the
case of a single agent interacting with a mechanism designer. In the baseline setup, there
are n buyers and m sellers.

We assume that agents have independent private types. Each buyer i has private value vi
for one unit of a good, where vi is drawn independently from the distribution F with support
[v, v]. Each seller j can produce one unit of the good at private cost cj drawn independently
from distribution G with support [c, c]. We assume that c < v so that gains from trade are
possible.

We assume that agents are risk neutral, implying that the expected payoff of buyer i with
value vi that trades expected quantity q and makes an expected payment to the mechanism

20See, for example, Kuhn (1970).
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of m is qvi−m, and the expected payoff of seller i with cost ci that trades expected quantity
q and receives expected payment from the mechanism of m is m− qci.

3.2 Incentive compatibility, individual rationality, and their impli-

cations

To explore the powerful implications of incentive compatibility, focus temporarily on a single
agent, which could be either a buyer or a seller. To embrace both possibilities, we denote
the agent’s type by x ∈ [x, x], which would be v ∈ [v, v] for a buyer and c ∈ [c, c] for a
seller. Take as given a direct mechanism 〈q,m〉, where q : [x, x] → [0, 1] for a buyer and
q : [x, x] → [−1, 0] for a seller, and where m : [x, x] → R. The mechanism maps the agent’s
reported type z ∈ [x, x] onto an expected quantity traded q(z) and expected payment to
the mechanism m(z).21 As mentioned above, by the revelation principle (see, e.g., Myerson,
1981, Lemma 1; Börgers, 2015, Proposition 2.1), a focus on direct mechanisms is without
loss of generality.

The payoff of an agent with type x that reports z is

U(x, z) ≡ q(x)x−m(z),

and the payoff of an agent with type x under truthful reporting is

U(x) ≡ q(x)x−m(x). (1)

The mechanism is incentive compatible if an agent’s payoff from truthful reporting is greater
than or equal to its payoff from reporting any other type.22 That is, for all x, z ∈ [x, x],

U(x) ≥ q(z)x−m(z) = U(z) + q(z)(x− z). (2)

Individual rationality is satisfied if for all x ∈ [x, x], U(x) ≥ 0.
For example, if q(z) > 0 and m(z) > 0, then the agent is a buyer that receives q(z) units

of a good for which it has a per-unit value of x in exchange for a payment of m(z). If instead

21With multiple agents, define q(z) and m(z) to be the agent’s expected allocation and transfer when its
report is z, with the expectation taken over the other agents’ types.

22With multiple agents, one can distinguish between incentive compatibility as we have defined it, i.e.,
evaluated at the interim stage when an agent knows its own type, but not the types of the other agents, and ex
post incentive compatibility, which requires that an agent’s payoff is maximized by truthful reporting for all
possible realizations of the other agents’ types. In our independent private values setting, the outcome of any
interim (Bayesian) incentive compatible and interim individually rational mechanism can be implemented
with a mechanism that satisfies ex post incentive compatibility and ex post individual rationality (Gershkov
et al., 2013).
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q(z) < 0 and m(z) < 0, then the agent is a seller that produces |q(z)| units of a good at a
per-unit cost of x and receives a payment of m(z) from the mechanism.

Following standard arguments (see, e.g., Börgers, 2015, Chapter 2), we can write the
definition of incentive compatibility in (2) as: for all x ∈ [x, x],

U(x) = max
z∈[x,x]

q(z)x−m(z).

This implies that U is a maximum of a family of affine functions, which implies that U is
convex and so absolutely continuous and differentiable almost everywhere in the interior of
its domain.23

Further, the definition of incentive compatibility in (2) is equivalent to: for all x, z ∈ [x, x],

U(x)− U(z) ≥ q(z)(x− z).

Dividing both sides by x − z, one obtains, for x > z, U(x)−U(z)
x−z ≥ q(z) and, for x < z,

U(x)−U(z)
x−z ≤ q(z). Letting z → x thus yields U ′(x) ≥ q(x) ≥ U ′(x) at every point at which

U is differentiable, forcing the conclusion that at every such point, U ′(x) = q(x). In other
words, for all x, q(x) is the slope of a line that supports the function U at the point x. This
is illustrated in Figure 1.

0 x z

U(x)

U(z)

q(z)

q(x)

U

Figure 1: Illustration of the convexity of U (Krishna, 2010, Figure 5.2)
.

Because U is convex, it follows that q is nondecreasing. Further, because every absolutely

23A function h : [x, x] → R is absolutely continuous if for all ε > 0 there exists δ > 0 such that
whenever a finite sequence of pairwise disjoint sub-intervals (xk, x

′
k) of [x, x] satisfies

∑
k(x′k − xk) < δ, then∑

k |h(x′k)− h (xk)| < ε. One can show that absolute continuity on compact interval [a, b] implies that h has
a derivative h′ almost everywhere, the derivative is Lebesgue integrable, and that h(x) = h(a) +

∫ x
a
h′(t)dt

for all x ∈ [a, b] (see, e.g., Theorem 18 in Chapter 6 of Royden and Fitzpatrick, 2010).
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continuous function is the definite integral of its derivative, for any x, z ∈ [x, x], we have

U(x) = U(z) +

∫ x

z

q(t)dt. (3)

Equation (3) is often referred to as the payoff equivalence theorem (Börgers, 2015, Lemma
2.3) because it implies that, up to the constant U(z), the agent’s payoff when its type is x is
pinned down by the allocation rule q.24 That is, all incentive-compatible mechanisms with
the same allocation rule give the agent the same payoff up to an additive constant. The
payoff equivalence theorem provides the important insight that the allocation rule is the key
component. For example, if one is interested in efficient allocation, an agent’s payoff is, up
to an additive constant, pinned down. In addition, the payoff equivalence theorem has the
important implication for IO applications that perfect price discrimination is ruled out. If
two different types of the same agent get the same allocation, they must get the same payoff.
Hence, holding the allocation fixed, the price cannot vary.

Using the payoff equivalence theorem, it follows from (3) with z = v that for a buyer,
U ′(v) = q(v) ≥ 0, and so the buyer with type v is the worst-off type of buyer. Using (3) with
z = c, we have U(c) = U(c) +

∫ c
c
q(t)dt = U(c)−

∫ c
c
q(t)dt, so for a seller, who has q(c) ≤ 0,

U ′(c) = q(c) ≤ 0, implying that the seller with type c is the worst-off type of seller. It is
then necessary and sufficient for individual rationality that for a buyer U(v) ≥ 0 and for a
seller U(c) ≥ 0.

Equating the expressions for U(x) from (1) and (3) yields the following implication of
the payoff equivalence theorem:

m(x) = q(x)x−
∫ x

z

q(t)dt− U(z). (4)

This is sometimes referred to as the revenue equivalence theorem (Börgers, 2015, Lemma
2.4) because it states that the (expected) payment of an agent of type v is pinned down, up
a constant, by the allocation rule. Riley and Samuelson (1981) noticed an instance of this
principle in their analysis of revenue equivalence among “standard auctions” with identically
distributed types, where a standard auction is defined as an auction that always allocates
the good to the highest bidder and gives a payoff of zero to the lowest possible type, that is,
is characterized by U(x) = 0.

While the analysis above shows that incentive compatibility implies that q is nondecreas-
ing, one can also show that if q is nondecreasing, then the mechanism with allocation rule

24An early instance of this theorem, under the assumption that the ex post allocation rule is efficient,
was established by Holmström (1979).
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q and payment rule given by (4) is incentive compatible. To see this, note that given the
payment rule in (4), the payoff of an agent with type x that reports x̂ is

U(x, x̂) ≡ (x− x̂)q(x̂) +

∫ x̂

z

q(t)dt+ U(z),

which means that the incremental payoff of an agent with type x that reports truthfully
versus reporting x̂ is

U(x)− U(x, x̂) =

∫ x

z

q(t)dt− (x− x̂)q(x̂)−
∫ x̂

z

q(t)dt

=

∫ x

x̂

q(t)dt− (x− x̂)q(x̂)

=

∫ x

x̂

(q(t)− q(x̂))dt,

which is nonnegative if q in nondecreasing, establishing incentive compatibility. Thus, the
mechanism 〈q,m〉 is incentive compatible if and only if q is nondecreasing and m satisfies
(4) (Börgers, 2015, Proposition 2.2).

If we now make use of information on the distribution of the agent’s type, we can derive
an expression for the agent’s expected payment. For this purpose, assume that the agent’s
type is distributed according to distribution H with support [x, x] and continuous, positive
density h. Define the agent’s virtual value function ΦH and virtual cost function ΓH by

ΦH(x) ≡ x− 1−H(x)

h(x)
and ΓH(x) ≡ x+

H(x)

h(x)
.

For the case of a buyer, we have H = F , h = f , and [x, x] = [v, v]. In this case, the
relevant virtual value function is ΦF ≡ Φ, where we drop the distribution subscript. For
the case of a seller, we have H = G, h = g, and [x, x] = [c, c], and the relevant virtual cost
function is ΓG ≡ Γ. We assume that Φ and Γ are increasing. We discuss the role of this
assumption below—it is analogous to the assumption of decreasing marginal revenue and
increasing marginal cost.

Given z ∈ [x, x], we can write the agent’s expected payment as follows (for details on
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how one obtains this expression, see Appendix A.1):

Ex [m(x)] =

∫ x

x

m(t)h(t)dt

=

∫ z

x

ΓH(t)q(t)h(t)dt+

∫ x

z

ΦH(t)q(t)h(t)dt− U(z)

= Ex [ΓH(x)q(x) | x ≤ z] Pr(x ≤ z) + Ex [ΦH(x)q(x) | x ≥ z] Pr(x ≥ z)− U(z).

Thus, we have the result that in any incentive-compatible direct mechanism 〈q,m〉, the
agent’s expected payment to the mechanism (and, symmetrically, the expected revenue to
the mechanism) is pinned down by the allocation rule, virtual type functions, and type
distribution, up to an additive constant.

For example, if the agent is a buyer, then its worst-off type is v. Letting z = v in the
expression above, the buyer’s expected payment to the mechanism is

Ev [m(v)] = Ev [Φ(v)q(v)]− U(v).

If the agent is a seller, then its worst-off type is c. Letting z = c implies that the seller’s
expected payment from the mechanism is

−Ec [m(c)] = Ec [Γ(c)|q(c)|] + U(c).

Of course, by combining these expressions for the expected payment to the mechanism by
buyers and the expected payment from the mechanism to sellers, we can obtain expressions
for the expected budget surplus of the mechanism itself, which, as this shows, depends
critically on the allocation rule. This leads us to the following discussion of optimal and
efficient mechanisms.

3.3 Optimal and efficient mechanisms

Given the mechanism-design setup just discussed, we can consider key questions of what is
the optimal mechanism and whether efficient mechanisms exist that satisfy incentive com-
patibility and individual rationality and do not run a deficit.

We begin by considering optimal mechanisms. We revisit Myerson’s (1981) derivation of
the optimal auction of an object for which the auctioneer has commonly known cost c < v

to a buyer with private value v defined as above to be drawn from distribution F on [v, v].
We seek the mechanism 〈q,m〉 that maximizes the auctioneer’s expected payoff subject to
incentive compatibility and individual rationality. We know from the analysis above that we
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can write the auctioneer’s expected payoff from any incentive compatible mechanism 〈q,m〉
as

Ev [m(v)− cq(v)] = Ev [(Φ(v)− c)q(v)]− U(v).

If Φ is increasing, which Myerson (1981) refers to as the regular case, then the auctioneer
optimally sets q(v) = 1 if Φ(v) ≥ c and q(v) = 0 otherwise, and sets U(v) = 0, which is
the lowest amount such that the buyer’s individual-rationality constraint is satisfied. This
amounts to a take-it-or-leave-it offer by the auctioneer of Φ−1(c) (or an ascending-bid auction
with a reserve of Φ−1(c)).25 Analogously, assuming that Γ is increasing, the optimal mecha-
nism for the purchase of one unit for which the auctioneer has commonly known value v > c

from a seller with private cost c drawn from distribution G on [c, c] is a take-it-or-leave-it
offer of Γ−1(v).26

As observed by Mussa and Rosen (1978), virtual value functions can be interpreted as
marginal revenue functions and, analogously, virtual cost functions can be interpreted as
marginal cost functions. To see this, drawing on Bulow and Roberts (1989), note that the
demand at price p by a buyer whose value is drawn from distribution F is D(p) = 1−F (p),
and so the revenue associated with quantity Q is R(Q) ≡ QF−1(1 − Q). Noting that
R′(Q) = F−1(1 − Q) − 1−F (F−1(1−Q)))

f(F−1(1−Q))
= Φ(F−1(1 − Q))|x=F−1(1−Q) = Φ(x), the assumption

of decreasing marginal revenue is then equivalent to the assumption that the virtual value
function Φ is increasing. Thus, Myersonian regularity, i.e., the assumption of an increasing
virtual value function, corresponds to decreasing marginal revenue, or equivalently, concave
revenue, and, analogously, the assumption of an increasing virtual cost function corresponds
to increasing marginal cost.27 Further, because a monopoly seller with a constant or in-
creasing marginal cost function and concave revenue function optimally sets a uniform price,
uniform pricing follows as a conclusion, not an assumption, from our mechanism-design setup
with regularity.28

To consider the existence of efficient mechanisms, let us now move to a bilateral trade
setting with one buyer with private value v and one seller with private cost c. In that
case, the direct mechanism 〈Q,MB,MS〉 maps the type vector (v, c) to a quantity traded,

25For c < Φ(v), define Φ−1(c) ≡ v, implying that the seller’s take-it-or-leave-it offer is v.
26For v > Γ(c), define Γ−1(v) ≡ c, implying that the buyer’s take-it-or-leave-it offer is c.
27If the virtual type functions are not increasing, then more care is required to ensure that incentive

compatibility holds, i.e., that the allocation rule is nondecreasing. This is where Myerson’s (1981) “ironing”
techniques come into play. While the expected payment Ev [m(v)] is characterized by the “unironed” virtual
types, regardless of whether the virtual type functions are increasing, the allocation rule for the optimal
mechanism must be defined in terms of “ironed” virtual types in the absence of regularity. See Section 4.4
for further discussion.

28In contrast, if the monopoly has increasing marginal costs and the revenue function that it faces is not
concave, then setting non-market-clearing prices may be optimal; see the discussion in Section 4.4.
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Q(v, c) ∈ {0, 1}, a payment from the buyer, MB(v, c), and a payment to the seller MS(v, c).
Of course, the mechanism is required to be incentive compatible and individually rational.
As mentioned above, incentive compatibility and individual rationality are defined in terms
of the agent’s interim expected allocation and payment. For the buyer, those are qB(v) ≡
Ec[Q(v, c)] and mB(v) ≡ Ec[MB(v, c)], and for the seller, they are qS(c) ≡ Ev[Q(v, c)] and
mS(c) ≡ Ev[MS(v, c)]. We say that a mechanism satisfies the no-deficit condition if the
mechanism does not run a deficit in expectation, that is, if Ev,c[mB(v)−mS(c)] ≥ 0. Under
the view that a mechanism represents a market outcome, it makes sense to restrict attention
to mechanisms that satisfy the no-deficit condition so that no resources have to be injected
into the system, and a risk neutral intermediary would be willing to facilitate the mechanism.

Consider the question whether efficient trade can be achieved in the bilateral trade setup.
That is, does there exist an incentive-compatible, individually-rational, no-deficit mechanism
that has the efficient allocation rule, QE(v, c) = 1 if v ≥ c, and QE(v, c) = 0 otherwise?
Myerson and Satterthwaite (1983) provide an answer to this question: it depends on whether
the supports of the distributions of v and c overlap. Economically, overlapping supports mean
that trade is sometimes but not always ex post efficient. Myerson and Satterthwaite (1983)
show that if v < c, i.e., the type spaces overlap, then there is no such mechanism. This is
their famous impossibility result.

We can now see how the power of incentive compatibility comes into play to prove the
Myerson-Satterthwaite impossibility result. We first prove the impossibility result for the
special case in which the buyer’s and seller’s support are identical and, without further loss
of generality, equal [0, 1], and then we generalize. Define qEB(v) ≡ Ec[QE(v, c)] = G(v) and
qES (c) ≡ Ev[QE(v, c)] = 1 − F (c). It follows that the expected payment from the buyer is
Ev[Φ(v)G(v)] and the the expected payment to the seller is Ec[Γ(c)(1−F (c))] up to constants
which must be nonnegative by individual rationality. If any such mechanism satisfies the no
deficit constraint, then it is the ones with the constants equal to zero, so we proceed under
that assumption. Hence, expected revenue to the mechanism is

Ev[Φ(v)G(v)]− Ec[Γ(c)(1− F (c))] =

∫ 1

0

Φ(v)G(v)f(v)dv −
∫ 1

0

Γ(c)(1− F (c))g(c)dc

= −
∫ 1

0

(1− F (x))G(x)dx

< 0,

where the second equality follows from substituting the expression for Φ and Γ, noting that
G(x)f(x)− (1−F (x)g(x) = − d

dx
[(1−F (x))G(x)], and integrating by parts. The inequality

is a consequence of the integrand being positive for all x ∈ (0, 1) and nonnegative at the
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bounds. Notice that the mechanism’s deficit
∫ 1

0
(1−F (x))G(x)dx is equal to expected social

surplus, which is
∫ 1

0

∫ v
0

(v − c)g(c)f(v)dcdv. For example, for F and G uniform, expected
social surplus and the deficit are 1/6.

To generalize this argument, and to see how the deficit result depends on v < c, consider
the dominant-strategy implementation of the efficient allocation rule whose payment rule
is given by M̂B(v, c) ≡ max{c, v} if v ≥ c and M̂B(v, c) ≡ 0 otherwise, and M̂S(v, c) ≡
min{v, c} if v ≥ c and M̂S(v, c) ≡ 0 otherwise.29 The mechanism 〈QE, M̂B, M̂S〉 is incentive
compatible by the usual second-price auction logic, and the mechanism satisfies individual
rationality since U(v) = 0 = U(c). If v < c, then

M̂B(v, c)− M̂S(v, c) ≤ 0,

with strict inequality with probability given that the distributions of v and c are continuous.30

Because the dominant-strategy implementation runs a deficit, it follows that any incentive-
compatible, individually-rational bilateral trade mechanism with the efficient allocation rule
runs a deficit. (For a more formal demonstration, see Appendix A.2.) In other words,
efficient bilateral trade is not possible without running a deficit.

Intuitively, the deficit for v < c arises because the buyer and seller are complementary
inputs into social surplus. By the usual Vickrey-Clarke-Groves logic (Vickrey, 1961; Clarke,
1971; Groves, 1973), each agent obtains as its payoff its social marginal product, which be-
cause of complementarity is larger with the other agent present. Hence, the sum of marginal
products exceeds the total product, which is social surplus. This is maybe easiest to see
with identical support, that is, if v = c and v = c. Then each agent’s marginal product
is simply social surplus. Consequently, the mechanism has to pay two times social surplus
and generates it only once, hence incurring a deficit equal to social surplus, which explains
the observation made above that with identical supports the expected deficit is equal to
expected social surplus.31 Notice also that if v ≥ c, then trade is always efficient and
M̂B(v, c)− M̂S(v, c) = v − c ≥ 0. That is, ex post efficient trade is possible.32

29This argument follows closely Krishna (2010, Section 5.3.3).
30To see this, notice first that if v ≤ c and c ≥ v, we have M̂B(v, c)− M̂S(v, c) = c− v, which is negative

given that trade is efficient. If v > c and c ≥ v, then M̂B(v, c)− M̂S(v, c) = c− c, which is negative (unless
c = c) and if v > c and c < v, then M̂B(v, c)− M̂S(v, c) = v − c, which is negative by assumption. Finally,
if c < v and v ≤ c, then M̂B(v, c)− M̂S(v, c) = v − v, which is negative unless v = v.

31Generalizing Loertscher et al. (2015), Delacrétaz et al. (2019) explore this intuition systematically
and show that it extends to a large range of environments with multi-unit traders. The complementarity
between agents is also at the source of the deficit in public goods problems, of which, as noted by Mailath
and Postlewaite (1990), the bilateral trade problem is a special case.

32Another observation is worth making. Under the dominant strategy implementation of the efficient
allocation rule, every agent is the residual claimant to the social surplus it creates. Because the implemen-
tation does not depend on the distribution from which the agent draws its type, keeping its support fixed,

19



The Myerson-Satterthwaite impossibility result raises the question what is the maxi-
mum expected social surplus that can be achieved in a bilateral trade setting when v < c.
Chatterjee and Samuelson (1983) investigate this and analyze second-best mechanisms that
maximize expected social surplus subject to incentive compatibility, individual rationality,
and no deficit. As they emphasize, the efficiency of the allocation must be sacrificed in order
to satisfy the no-deficit condition. This is illustrated with their k-double auction mechanism,
in which the buyer submits bid pB and the seller submits bid pS and trade occurs if and only
if pB ≥ pS, in which case the buyer pays kpB + (1− k)pS to the seller. The mechanism sat-
isfies the no-deficit condition by construction. For the case of agents whose types are drawn
from the same uniform distribution and who play according to their linear Bayes Nash equi-
librium bidding strategies, the k-double auction with k = 1/2 is a second-best mechanism.
Any movement in k away from 1/2 not only shifts surplus between the two agents, but also
reduces the total expected surplus, highlighting the centrality of the surplus-payoff tradeoff:
Agents’ bargaining power affects only the division of surplus in bilateral bargaining, but also
the total surplus created through bilateral trade.

3.4 Uniqueness of the properties of the independent private values

setting

As we have seen, the mechanism-design setup with independent private types and risk neutral
agents allows for the powerful payoff equivalence and revenue equivalence theorems. One
might wonder whether even greater applicability could be obtained by venturing outside of
these bounds. However, as we now discuss, the literature identifies significant challenges
when one relaxes any of the core assumptions.

We have assumed a setup with single-dimensional, independent, private types drawn
from continuous distributions, which implies that for a given objective, the mechanism that
maximizes this objective, subject to incentive compatibility, individual rationality, and no
deficit, is well defined and pinned down (up to a constant in the payments) by the allocation
rule, which is unique. As discussed above, it also has the feature that, quite generally, there
is a tradeoff between allocating efficiently and extracting payments, which is of particular
interest for Industrial Organization. If one relaxes the assumption of private types, then
agents become subject to hold up in a way that they are not when types are private, and

it thus provides the agent with incentives to invest to improve this distribution that align with those of
the social planner (see, e.g., Milgrom, 2004). As explored in more detail in Loertscher and Marx (2021),
efficient bargaining under incomplete information thus implies efficient investments. In other words, under
efficient incomplete-information bargaining there is no hold-up of the form that is central to the inefficient
investments results with complete information bargaining (see, e.g., Grossman and Hart, 1986; Hart and
Moore, 1990).
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the privacy of types means that first-degree price discrimination is not possible.
Dropping the assumption of risk neutrality, Maskin and Riley (1984) and Matthews

(1984) show that optimal mechanisms depend on the nature of risk aversion, are not easily
characterized, and may require payments to and/or from losers. Without independence, as
foreshadowed by Myerson (1981), Crémer and McLean (1985, 1988) show that there is no
tradeoff between profit and social surplus. Without private values, additional and, there-
fore, in some sense arbitrary, restrictions may be required to maintain tractability and/or
the tradeoff between profit and social surplus (Mezzetti, 2004, 2007). Notwithstanding re-
cent progress, with multi-dimensional private information and multiple agents, the optimal
mechanism is not known (see, e.g., Daskalakis et al., 2017). With discrete types, there is
no payoff equivalence theorem. In other words, the mechanism is not pinned down by the
allocation rule.

Thus, our focus on the setup with single-dimensional, independent, private types drawn
from continuous distributions and risk neutral agents is motivated not only by the power
and applicability of that setup, but also by the conclusion that these are essentially the only
assumptions that permit a tractable approach and that maintain the core tradeoff between
profit and social surplus.

4 Progress to date

In this section, we review progress in analyzing agents’ power in incomplete-information IO
models. We start with the definition and analysis of buyer power in Section 4.1. Then in
Section 4.2, we examine the implications of bargaining power for efficiency. In Section 4.3,
we illustrate these ideas and others in the context of a k-double auction. In Section 4.4, we
revisit standard monopoly pricing through the lens of mechanism design. Finally, in Section
4.5, we discuss and illustrate estimation in the context of incomplete-information bargaining.

4.1 Buyer power

Notions of buyer power and countervailing power figure prominently in antitrust debates—
indeed, there’s a long history, with Galbraith referring to the mitigation or regulation of
economic power as the oldest of economic problems. Both buyer power and countervailing
power are discussed in the context of merger review. In the United States, agencies’ merger
guidelines state that “The Agencies consider the possibility that powerful buyers may con-
strain the ability of the merging parties to raise prices” (US Guidelines), and that it is
possible that “buyer power would act as a countervailing factor to an increase in market
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power resulting from the merger” (EC Guidelines). Further, the notion has traction in a
litigation context: “Although the strong-buyer defense may be valid in a variety of circum-
stances, I believe that the courts have sometimes embraced it as if it had talismanic power
that cured all doubts about a merger” (Steptoe, 1993). As an example, the buyer power of
the large oil companies Shell, BP, and ExxonMobil in the purchase of oilfield services was
recognized by competition authorities in their evaluation of the proposed merger of Hal-
liburton and Baker Hughes. Let us consider what these seemingly power buyers do when
they purchase inputs. The large oil companies hold auctions plus follow-on negotiations for
the oilfield services that they purchase. Computer manufacturers such as Dell and HP hold
online auctions plus face-to-face negotiations with suppliers of computer components. And
governments often hold competitive procurements. This suggests that a natural model of
buyer power involves a buyer that uses a procurement mechanism, where buyer power is the
ability to use an optimal procurement.

Contributions in the theoretical literature related to buyer power include Galbraith
(1952); Stigler (1954); Snyder (1996, 2008); Nocke and Thanassoulis (2014); Caprice and
Rey (2015); Loertscher and Marx (2019a); Decarolis and Rovigatti (2020). Here we focus
on the definition of buyer power provided in Loertscher and Marx (2019a), which, similar
to Bulow and Klemperer (1996), view buyer power as a buyer’s ability to use the optimal
mechanism rather than an efficient mechanism. Under this definition, one can analyze buyer
power in a mechanism-design setup with one-sided private information where, pre merger,
m sellers have costs drawn from distribution G and 1 buyer has a commonly known value
v. We model a merger of sellers as creating a merged entity whose cost is drawn from the
distribution of the minimum of two independent draws from G, which is the distribution
Ĝ(c) ≡ 1− (1−G(c))2.33

Having no buyer power means that the buyer holds an efficient procurement, thereby
ensuring, as suggested by the quote from Ausubel et al. (2002), that no gains from trade
remain unrealized. Specifically, one can think of the buyer with no power as using a second-
price auction with a reserve r equal to the minimum of the buyer’s value and the upper
support of the sellers’ cost distribution, r = min{v, c}. This says that a buyer with power
can commit not to purchase even if the lowest cost is less than v, but a buyer without power
cannot.

As shown in Loertscher and Marx (2019a) and as discussed below, mergers always harm
the buyer, regardless of whether the buyer is powerful.34 Essentially, a merger eliminates a

33As discussed in Loertscher and Marx (2019a), most results extend to sellers who are asymmetric pre
merger.

34While here we focus on the so-called unilateral effects of a merger, an incomplete-information approach
to analyzing additional merger harms due to coordinated effects can be found in Loertscher and Marx
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bidder, and that is bad for the buyer. Without buyer power, mergers are always profitable
and neutral for rivals because, regardless of the merger, the low-cost seller always trades
with the buyer whenever their cost is below the buyer’s value. The only change caused by
the merger is that the buyer has to pay more if the bid that was eliminated by the merger
was the second-lowest cost. In contrast, with buyer power, mergers are not always profitable
and, with pre-merger symmetry, benefit rivals and entrants. This occurs because, with buyer
power, the buyer discriminates against the merged entity because of its stronger productive
power, which tips the scale towards the rivals and potential entrants.

Digging in a bit more on what the optimal procurement looks like in this setup, in the
pre-merger market with pre-merger symmetry, one can think of the optimal procurement as
selecting the bidder with the lowest cost and then allowing the buyer to make a take-it-or-
leave-it offer to that bidder. In the post-merger market, there is no symmetry because the
merged entity now draws its cost the distribution Ĝ. In that case, the optimal procurement
selects the bidder with the lowest virtual cost—this has the effect of handicapping the merged
entity, so that it has to submit a distinctly lower bid to win—and then allows the buyer to
make a take-it-or-leave-it offer to that bidder, where the buyer’s optimal take-it-or-leave-it
offer is lower for the merged entity than for the other sellers.

As above, denote the virtual cost function for the pre-merger sellers by Γ, and denote
the virtual cost function for the merged entity by Γ̂. Then the optimal take-it-or-leave-it
offers are the prices p and p̂ that equate the buyer’s value with the corresponding virtual
cost. Notice that for all c ∈ (c, c),

Γ(c) = c+
G(c)

g(c)
< c+

2−G(c)

2− 2G(c)

G(c)

g(c)
= c+

Ĝ(c)

ĝ(c)
= Γ̂(c),

which means that the take-it-or-leave-it offer to the merged entity, p̂ = Γ̂−1(v), is less that
the take-it-or-leave-it offer to the other sellers, p = Γ−1(v). That is, the buyer negotiates
more aggressively with the merged entity than with the pre-merger sellers.

This illustrates a distinction between productive power and bargaining power. A buyer
without power is harmed by a merger—buyer surplus decreases because the buyer receives
one fewer bid. But, interestingly, a buyer with power is also harmed by the merger. To
see this, note that a buyer with power could replicate the post-merger mechanism in the
pre-merger market, but because it chooses not to, by revealed preference, the buyer is better
off in the pre-merger market than in the post-merger market, and so is harmed by the
merger.35 But as long as the merging sellers are symmetric, buyer power does act as a

(2020a).
35To be more precise, as there is one more bidder pre merger, the mechanisms necessarily differ. However,
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countervailing force in the sense that a buyer with power is harmed less by a merger than
a buyer without power. Intuitively, a buyer with power is able to use discrimination in the
post-merger market, which has asymmetric sellers, which reduces the harm experienced by
a buyer with power relative to that experienced by a buyer without power, but at the same
time introduces distortions in the allocation rule that reduce expected social surplus.

A limitation of analysis in Loertscher and Marx (2019a) is that sellers have no power
and whether the buyer is powerful or not is, largely, treated as exogeneously given.36 Con-
sequently, there can be no possibility of a mergers of sellers causing the bargaining power of
those sellers to increase, possibly countervailing the buyer’s power. And, the buyer’s power
is defined to be all or nothing and not to change with a merger. This is the motivation for
recent work that relaxes these assumptions, including Loertscher and Marx (2019b, 2021),
which we discuss next. We first review the key results from the prior literature on which this
work builds.

4.2 Bargaining power and social surplus

Given Myerson and Satterthwaite’s impossibility theorem, the efficient allocation rule is “off
the table,” which means that any incentive compatible, individually rational mechanism
that avoids a deficit will be inefficient. Given this, Williams (1987) notes that there can
be many allocation rules such that the expected payoffs to the buyer and seller are not
Pareto dominated by the expected payoffs under any other allocation rule. And, there will
be an allocation rule or rules that is best for the buyer and others that are best for the
seller. Thus, Williams (1987) brings the notion of bargaining power into the incomplete-
information bargaining setup. Williams (1987) derives the Pareto frontier of payoff vectors
that are possible in incentive-compatible, individually-rational, no-deficit, bilateral-trade
mechanisms, which we refer to as the Williams frontier. Figure 2 illustrates the Williams
frontier for the case when the agents’ types are drawn from the uniform distribution on
[0, 1]. As the figure shows, the farther from equal division of surplus one moves, the greater
is the loss of social surplus. For general distributions, Williams shows that the outcomes
of the k-double auction with k = 1 (“buyer’s bid mechanism”) and with k = 0 (“seller’s
price mechanism”) are on the Pareto frontier. These points correspond, respectively, to the
buyer-optimal and the seller-optimal mechanism.

Keeping bargaining weights the same across all agents, Gresik and Satterthwaite (1989)

one can implement the post-merger optimal allocation rule pre merger by having having the two merging
suppliers compete for the right to produce whenever this allocation induces production by the merged entity;
see Loertscher and Marx (2019a) for more details.

36The exception pertains to a discussion showing that a merger makes a buyer more inclined to acquire
buyer power.
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show that as the number of traders increases, the inefficiency is reduced. They characterize
the rate at which a bound on the expected inefficiency of the mechanism’s allocations relative
to ex post efficient allocations diminishes as the number of traders increases. Of course, this
has implications for how we evaluate the effects of mergers, which reduce the number of
traders, in addition to potentially affecting agents’ type distributions and bargaining power.
In what follows, we illustrate the combination of these effects in the context of a k-double
auction.

4.3 Illustration based on the k-double auction

We now use a well-known incomplete-information model, the k-double auction of Chatterjee
and Samuelson (1983), to illustrate key attributes of the incomplete-information framework.
As we show, the model embodies the key payoff-versus-social-surplus tradeoff, allows one
to parameterize separately firms’ productive power and their bargaining power, and offers
scope for analyzing countervailing power. Further, it allows an illustration of the link between
investment incentives and the efficiency of the bargaining process.

As mentioned above, the k-double auction model has one buyer with a value drawn from
distribution F and one seller with a cost drawn from distribution G. Given k ∈ [0, 1], the
buyer and seller in a k-double auction simultaneously submit bids pB and pS, and trade
occurs at the price kpB + (1 − k)pS if and only if pB ≥ pS. By construction, the k-double
auction never incurs a deficit. For k ∈ {0, 1}, the k-double auction reduces to take-it-or-
leave-it offers—by the buyer if k = 1 and by the seller if k = 0.

Payoff versus social surplus tradeoff

If the agents’ types are uniformly distributed on [0, 1], then in the linear Bayes Nash equilib-
rium of the k-double auction, a buyer of type v bids pB(v) ≡ (1−k)k/(2(1 +k)) + v/(1 +k),
and a seller with cost c bids pS(c) ≡ (1 − k)/2 + c/(2 − k). Thus, the linear Bayes Nash
equilibrium of the k-double auction results in trade if and only if v ≥ c1+k

2−k + 1−k
2
. The

associated expected payoffs of the buyer and seller are illustrated in Figure 2.
As illustrated in Figure 2, bargaining in the incomplete-information framework entails

a payoff-surplus tradeoff. As k increases, the buyer’s (seller’s) expected payoff increases
(decreases) but the sum of expected payoffs is maximized at k = 1/2. Indeed, as first noted
by Myerson and Satterthwaite (1983), for k = 1/2 and uniformly distributed types, the
k-double auction yields the second-best outcome. Williams (1987) noted that this insight
generalizes insofar as, for uniformly distributed types and any k ∈ [0, 1], the k-double auction
implements the outcomes of incomplete-information bargaining for some bargaining weights.
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Figure 2: Expected payoffs of the buyer, uB , and the seller, uS , in the k-double auction for k ∈ [0, 1].
Assumes that the buyer’s value and the seller’s cost are uniformly distributed on [0, 1].

Bargaining power versus productive power and scope for countervailing power

It is straightforward to extend the uniform-uniform k-double auction model by parameteriz-
ing the distributions so that for some a ∈ [0, 1/2], the buyer draws its value from the uniform
distribution on [a, 1] and the seller draws its cost from the uniform distribution on [0, 1− a].
Then, as a increases from 0 to 1/2, the productive power of both the buyer and the seller
increases, and, separately, the k of the k-double auction parameterizes the agents’ relative
bargaining powers.

In this setup,37 there is a linear Bayes Nash equilibrium in which a buyer of type v bids

pB(v) ≡

 v
1+k

+ k(1−k)
2(1+k)

if v ≤ 1+k
2−k (1− a) + 1−k

2
,

1−a
2−k + 1−k

2
otherwise,

and a seller with type c bids

pS(c) ≡

 a
1+k

+ k(1−k)
2(1+k)

if c < 2−k
1+k

a− (1−k)(2−k)
2(1+k)

,

c
2−k + 1−k

2
otherwise.

Expected payoffs of the buyer and seller are illustrated in Figure 3.
As suggested by these results, the k of the k-double auction can be viewed as a bargaining

power parameter, with k = 1/2 corresponding to equal bargaining power between the buyer

37Example 2 of Chatterjee and Samuelson (1983) encompasses this setup (NB typos in the bid functions
as stated in the 1983 paper).

26



1
16

1
8

3
16

1
4

uS

1
16

1
8

3
16

1
4

uB

a=0

a=1/4

a=1/8

k=1

k=0

k=1

k=0

k=1

k=0

Figure 3: Expected payoffs of the buyer, uB , and the seller, uS , in the k-double auction for k ∈ [0, 1]. Assumes
that the buyer’s value is uniformly distributed on [a, 1] and that the seller’s cost is uniformly distributed on
[0, 1− a]. The dashed lines show the second-best frontiers for different values of a.

and the seller. In contrast, the productive power of the agents is captured by their distri-
butions. We illustrate this in Figure 3, which shows how productive power and bargaining
power separately affect the agents’ payoffs and the efficiency of bargaining.38

As this shows, the incomplete-information framework allows one to capture the notion
of countervailing power—an equalization of bargaining power has the potential to outweigh
productive power effects. In a market with extreme bargaining power, a change in agents’
productive power, for example due to a merger, that reduces social surplus might be coun-
terbalanced by an equalization of bargaining power.

Investment incentives

To consider investment incentives, we adapt the prior k-double auction setup so that the
buyer’s value is drawn from the uniform distribution on [aB, 1], denoted FaB , and the seller’s
cost is drawn from the uniform distribution on [0, 1 − aS], denoted GaS . Suppose aB is
determined by the buyer’s investment, with aB ∈ [0, 1) having cost IB(aB), and that aS is
determined by the seller’s investment, with aS ∈ [0, 1) having cost IS(aS). Assume that

38Using the Nash-in-Nash model, Crawford and Yurukoglu (2012) find that differences in bargaining
power explain pricing differentials in multichannel television markets, finding that small cable operators and
satellite providers have slightly less bargaining power than large cable operators. They rely on bargaining
power differences to explain price differences, without allowing differences in the productive power of, for
example, small and large cable operators and satellite providers. Incomplete-information models have the
potential to differentiate between the two sources of price differentials.
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investment occurs prior to type realizations and that the buyer and seller do not observe the
investment of the other agent. For our purposes here, we assume that all optima are defined
by first-order conditions.

Suppose that there is a symmetric Nash equilibrium investment a∗; that is, in equilibrium,
aB = aS = a∗. Denote by p∗B and p∗S the bid functions defined above but with a = a∗. Let
u∗B(aB, aS) be the expected payoff of a buyer, not including investment costs, when its type
is drawn FaB , the seller’s type is drawn from GaS , the seller bids according to p∗S, and the
buyer bids optimally given that it believes that the seller bids according to p∗S and has type
drawn from Ga∗ . Analogously, let uS(aB, aS) be the expected payoff of a seller, not including
investment costs, when its type is drawn from GaS , the buyer’s type is drawn from FaB , the
buyer bids according to p∗B, and the seller bids optimally given that it believes that the buyer
bids according to p∗B and has type drawn from Fa∗ .

By the assumptions that investments aB = aS = a∗ are a Nash equilibrium and that the
rival’s investment is not observed, each agent’s investment maximizes its expected payoff
given that the other agent bids according to its equilibrium bid function and has a type
drawn from its equilibrium distribution, i.e.,

∂uB(aB, a
∗)

∂aB

∣∣∣∣
aB=a∗

= I ′B(a∗) and
∂uS(a∗, aS)

∂aS

∣∣∣∣
aS=a∗

= I ′S(a∗).

In contrast, investments aB = aS = a∗ are optimal for the planner if and only if

∂uB(aB, a
∗)

∂aB

∣∣∣∣
aB=a∗

+
∂uS(aB, a

∗)

∂aB

∣∣∣∣
aB=a∗

= I ′B(a∗)

and
∂uB(a∗, aS)

∂aS

∣∣∣∣
aS=a∗

+
∂uS(a∗, aS)

∂aS

∣∣∣∣
aS=a∗

= I ′S(a∗).

It follows that Nash equilibrium investments are optimal for the planner if and only if the
allocation and payment are not affected by the investments. If the solution to the planner’s
problem has aB = aS = a∗ < 1/2, so that the buyer’s and seller’s type distributions overlap,
then the agents’ Nash equilibrium investments are not socially optimal. However, if a∗ ≥ 1/2

and if trade occurs at the fixed price of, say, 1/2, then each agent is the residual claimant
to its investment, and Nash equilibrium investments are socially optimal. Loertscher and
Marx (2021) show in a more general incomplete-information bargaining setup that first-best
investments are a Nash equilibrium outcome if (and under additional conditions only if)
incomplete information bargaining is efficient.
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Illustration that mergers harm the buyer

Let us now focus on the case of k = 1 and a = 0, that is, assume that the buyer has all
the bargaining power and types are drawn from the uniform distribution on [0, 1].When the
buyer faces 2 or more sellers, it holds an optimal procurement. This is consistent with the
k-double auction in that when k = 1 and there is only one seller, the equilibrium of the
k-double auction is equivalent to the buyer making a take-it-or-leave-it offer to the seller,
which is the optimal procurement in that case.

As above, we assume that when the two sellers merge, the merged entity’s cost is drawn
from the distribution of the minimum of two independent draws from G. Supposing that the
sellers draw their costs from the distribution G(c) = 1 −

√
1− c on [0, 1], then the merged

entity’s cost distribution, Ĝ(c) ≡ 1− (1−G(c))2 = c, is the uniform distribution on [0, 1].
Before the merger, the optimal reserve of a buyer with value v ≤ 1 is pB satisfying

Γ(pB) = v.39 Thus, pB(v) = 1
9

(
4 + 3v − 2

√
4− 3v

)
. However, after the merger, the buyer’s

optimal reserve is p̂B(v) = v/2, which is lower for all v ∈ (0, 1]. This illustrates the point
discussed above that the buyer negotiates more aggressively when facing the merged entity
than when facing the two competing sellers.

Nevertheless, the buyer is harmed by the merger of sellers. Before the merger, a buyer
with value 1 has an optimal reserve of 5/9 and an expected payoff of

Ec1,c2 [(1−min{max{c1, c2},Γ−1(1)}) · 1min{c1,c2}<Γ−1(1)] = 0.41.

After the merger, its optimal reserve is 1/2, and its expected payoff is 1/4.
Consider a buyer with a value of greater than or equal to maxc∈[c,c] Γ(c). Prior to the

merger, the buyer benefits from competition between the sellers, paying the maximum of
the two sellers’ costs, which is less than c with probability one. But after the merger, the
transaction price is just c, implying that the buyer is harmed by the merger.

Countervailing power

In pre-merger markets in which sellers sell their product to powerful buyers, a merger among
sellers has the potential to have have countervailing effects (Galbraith, 1952). In particular,
consolidation may increase expected social surplus if the enhanced market power of the
combined seller serves to counterbalance the power of the buyers. This thinking is laid
out in the Australian government’s 1999 (now superseded) guidelines, which state: “If pre-
merger prices are distorted from competitive levels by market power on the opposite side

39For v ∈ [0, 1], Γ−1(v) is well defined.
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of the market, a merger may actually move prices closer to competitive levels and increase
market efficiency. For example, a merger of buyers in a market may create countervailing
power which can push prices down closer to competitive levels” (ACCC, 1999, para. 5.131).

As an illustration, reconsider the setup above with 1 buyer and 2 pre-merger sellers, where
the buyer’s value is uniformly distributed on [0, 1] and the pre-merger sellers’ costs are drawn
from G(c) = 1−

√
1− c. If the buyer has all the bargaining power in the pre-merger market,

then pre-merger expected social surplus is

Ev,c1,c2
[
(v −min{c1, c2}) · 1min{c1,c2}≤pB(v)

]
=

953

7290
≈ 0.13,

where, as above, pB(v) = 1
9
(4 + 3v − 2

√
4− 3v).

In contrast, if one assumes that after the merger between the two sellers, k changes,
then social surplus can be larger after merger, as shown in Figure 3 (for the case of a = 0).
In particular, given a post-merger value of k denoted by k̂, the post-merger expected social
surplus is 1

16
(2− k̂)(1+ k̂), which is concave in k̂ and achieves its maximum value of 9

64
≈ 0.14

when k̂ = 1/2. Expected social surplus increases as a result of the merger combined with
the reduction in k to k̂ for all k̂ ∈ (0.102, 0.898).40 In particular, the bargaining power of
the buyer must be reduced from the pre-merger level of k = 1, but the buyer must retain
some bargaining power in the post-merger market, so that we do not simply trade an all-
powerful buyer for an all-powerful seller. This gives rise to the countervailing power result
that if, as a result of the merger, the bargaining power of the buyer and seller are sufficiently
equalized, then the merger-plus-reduction-in-buyer-power results in an increase in expected
social surplus (and is profitable for sellers and harms the buyer). While here we focus on the
k-double auction, Loertscher and Marx (2021) analyze the scope for social-surplus-increasing
countervailing power in a general incomplete-information bargaining setup.

4.4 Monopoly pricing revisited

Optimal rationing and randomization

It is commonly perceived as puzzling that sellers would set below market clearing prices,
randomly ration consumers, and then either try to prevent the resale that ensues from the
inefficient initial allocation or at least complain about the emergence of resale.41 Would the

40With one buyer and one seller drawing their types from the uniform distribution, k = 1 and k = 0 are
equivalent for social surplus. It may seem natural to expect that for any k ∈ (0, 1), social surplus increases.
However, this is not the case because pre merger there are two sellers, and the competition between them
mitigates the detrimental effects of the buyer’s bargaining power.

41See, for example, Becker (1991).
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seller not be better off setting a market clearing price, whereby it would preempt resale and
make more revenue, thereby killing two birds with one stone? Following Loertscher and Muir
(2020), we now briefly revisit monopoly pricing problems and show that rationing is optimal
for a monopoly only if the revenue function is not concave and, using their insights, connect
this to opaque pricing of vertically differentiated products. Heuristically, this exercise also
illustrates why market clearing pricing is optimal when revenue is concave.

Consider a monopoly who, for now, has K units of a homogeneous good for sale, facing a
continuum of consumers with single-unit demand described by the downward sloping inverse
demand function P (Q) that, under market clearing pricing, gives rise to the revenue R(Q) ≡
P (Q)Q. As an alternative to selling K units at the market clearing price P (K), suppose
the seller uses a two-price mechanism with prices p1 > p2. These prices are such that in
equilibrium all Q1 < K consumers with values no less than P (Q1) buy at price p1 and
are served for sure, while Q2 − Q1 with Q2 > K consumers participate in a lottery where
they are served with probability α ≡ K−Q1

Q2−Q2
< 1. (While for notational ease we keep the

dependence of α on K, Q1, and Q2 implicit, we emphasize this dependence as it matters
below.) Making the participation for the marginal consumers bind yields p2 = P (Q2). The
incentive compatibility constraint for the consumers with value P (Q1) is P (Q1) − p1 =

α(P (Q1) − p2), which, using p2 = P (Q2), is equivalent to p1 = (1 − α)P (Q1) + αP (Q2). In
other words, p1 is a convex combination of P (Q1) and P (Q2). Multiplying p1 by Q1 and p2

by the quantity sold at that price, which is K −Q1, yields the revenue

(1− α)R(Q1) + αR(Q2), (5)

which is larger than the revenue R(K) from market-clearing pricing if and only if R is not
concave at K. Maximizing (1 − α)R(Q1) + αR(Q2) over Q1 and Q2 yields the convex hull
(or concavification) of R, denoted R̄(K), that is,

R̄(K) ≡ max
Q1,Q2

(1− α)R(Q1) + αR(Q2),

which is the smallest concave function such that R̄(K) ≥ R(K) for all K in the domain of
of R. See Figure 4 for an illustration.

Denoting by F the distribution of consumers’ values, we have P (Q) = F−1(1 − Q),
and taking the derivative of R̄(K) yields what Myerson (1981) termed the ironed virtual
valuation, which we denote Φ̄(v), that is, R̄′(K) ≡ Φ̄(F−1(1−K))|v=F−1(1−K) = Φ̄(v). Using
Myerson’s arguments, one can show that rationing is not only better than uniform pricing,
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Figure 4: Illustration of nonconcave revenue and the construction of ironed marginal revenue. In panel (a),
the red line concavifies the revenue function. In panel (b), the shared blue area is equal to the shaded red
area, and the dashed black line indicates the ironed marginal revenue function.

but is the optimal mechanism for the monopoly (see, e.g., Bulow and Roberts, 1989).42

Intuitively, rationing when revenue is not concave—or equivalently, marginal revenue is not
monotone—is better than market clearing prices because it allows the monopoly to serve
the highest marginal revenue consumers (who are not necessarily the consumers with the
largest values) subject to not violating the incentive compatibility constraint that q(v) must
be nondecreasing. The best the monopoly can do, subject to incentive compatibility, is to
serve consumers with lower values and higher marginal revenue with the same probability as
it serves higher value consumers with lower marginal revenue. Thus, uniform (or random)
rationing is optimal.

Note that consumers pay the price p2 if only if they are successful in the lottery. As
Loertscher and Muir (2020) observe, the monopoly can alternatively achieve the revenue
R̄(K) by creating a vertically differentiated, inferior good that consists of K − Q1 high
quality units (with quality 1) and Q2−K lower quality units (of quality 0), whose expected
quality is thus α. The market clearing price for this opaquely priced good is p̃2 = αP (Q2),
and incentive compatibility for the consumers with value P (Q1) implies that the price p̃1 for
the high-quality good is p̃1 = (1−α)P (Q1) + p̃2 because the consumers can only be charged
the incremental quality improvement 1− α. Multiplying p̃1 by Q1 and p̃2 by Q2 −Q1 yields
the expression in (5), whose maximum is R̄(K). Of course, the conflated good consisting of

42Without relating to mechanism-design arguments or to Myerson (1981), Wilson (1988) and Ferguson
(1994) establish, respectively, the optimality of two-price mechanisms and their relation to rationing. Optimal
monopoly pricing with nonconcave revenue was first analyzed by Hotelling (1931) and Mussa and Rosen
(1978).
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Q2 −K units of quality 0 is, in a sense, degenerately conflated. Loertscher and Muir (2020)
show that the argument extends to any quality θ ∈ [0, 1) and to an arbitrary number of
vertically differentiated goods that are available in given capacities.

Loertscher and Muir (2020) also analyze the effects of resale that ensue from random-
ization and show that, while it harms the seller, it does not offset all the benefits from
randomization. In other words, they show that once one accounts for incomplete informa-
tion (and allows for nonconcave revenue), there is no puzzle. The seller dislikes resale much in
the same way that an incumbent in a game with an entrant dislikes entry, yet accommodates
it because it is more profitable than deterring entry. They also show that randomization—in
the form of rationing and conflation—has positive effects on the quantity that the monopoly
sells in equilibrium, and that if this effect is strong enough, then randomization increases
consumer surplus. By a similar logic, allowing for highly efficient resale can have an ad-
verse quantity effect, and if this effect is strong enough, then consumers may be harmed
by too efficient resale. This suggests the possibility of a consumer surplus rationale for the
Better Online Tickets Sales (BOTS) Act of 2016 in the United States, which reduced the
efficiency of resale without banning it. The reason for why there can be large quantity effects
of randomization is that randomization renders the optimized revenue function of the seller
concave. Hence, the optimal quantity sold varies smoothly in the parameters of the problem.
In contrast, when the optimized revenue is not concave (either because randomization is pro-
hibited or made less effective, which is the typical effect of resale), the revenue-maximizing
quantity can vary discontinuously.

Of course, the practical relevance of these insights hinges on whether or not revenue
is concave. Empirically, when concavity of revenue is not imposed, the hypothesis that
revenue is concave (or equivalently, that virtual values are monotone) is regularly rejected;
see, for example, Larsen et al. (2020, Section 5), Larsen and Zhang (2018, Appendix D), and
Celis et al. (2014).43 Loertscher and Muir (2020) provide theoretical reasons—such as the
integration of markets—as to why revenue may not be concave. Maybe more fundamentally,
even though it is standard to assume that revenue is concave, this does not make it so, and
there are simply no theoretical reasons for revenue to be concave.

Digital monopolies

As noted for example by Loertscher and Marx (2020b), larger markets are better, all else
equal, because they can execute the same trades as smaller, standalone markets, and some-

43Celis et al. (2014) analyze advertising bidding data from Microsoft Advertising Exchange and find that,
to a large extent because, empirically, virtual values are not monotone, one can do better in terms of revenue
and consumer surplus with mechanisms other than a second-price auction with an optimal reserve.

33



times execute more or more valuable trades. This feature of increasing returns to scale in
market making is inherent in the independent privates values model, in which the market
maker’s payoff function (be it social surplus, profit, a weighted average of the two, or social
surplus under the second-best mechanism) increases more than linearly in market size. More
precisely, denote by W (N ) the expected value of the market maker’s objective when there is
a set N of buyers and sellers, each drawing their values and costs independently from some
distributions F and G with overlapping supports. Then for two disjoint and finite sets N
and N ′, we have

W (N ) +W (N ′) < W (N ∪N ′),

because, reflecting Williamson’s (1985) notion of selective intervention, the market maker can
always replicate what it would do in the stand-alone markets and sometimes do better.44 This
basic insight is of relevance for the ongoing antitrust debates concerning big tech mentioned
in Section 2 because it provides a simple and coherent rationale for why, in principle, gigantic
market makers can emerge without engaging in anticompetitive conduct. Indeed, when firms
are primarily market makers, or otherwise subject to increasing returns to scale (for example,
because of the value of aggregating data), efficiency may dictate that there is a single active
firm. Borrowing from the notion of natural monopolies, Loertscher and Marx (2020b) refer
to firms in such environments as digital monopolies.

The analogy is also useful because it suggests that seemingly “old-school”, brick-and-
mortar approaches that proved useful in dealing with natural monopolies may also be pro-
ductive in the digital age. In particular, when increasing returns to scale loom large, breaking
up large firms may deprive society of these benefits of increased market thickness, and price
regulation may be an effective instrument to distribute these gains more evenly across so-
ciety. It is not clear, a priori, why it should not be possible to regulate, say, the fee Apple
charges for selling products via its App Store or to restrict the algorithms that Amazon and
others use to price (and target) the goods that they sell.

To illustrate the problems that may arise in the starkest and simplest terms, consider a
platform in the presence of two users that generates a value of V > 0 if both users join (and,
say, forego their privacy) and has zero value otherwise. V could be the social value of the
platform or the profit it generates to the platform. The cost of joining the platform for each
user i with i ∈ {1, 2} is ci, which is net of the private benefit that the platform generates for
the user. So, if V is the social value of the platform, it is efficient for the platform to operate

44The insight that larger markets perform better has been prominently explored by Gresik and Satterth-
waite (1989), who show that the performance of the second-best mechanism relative to first-best improves as
market size increases, and in the subsequent double-auctions literature. However, the insight is not restricted
to this class of mechanisms or to a specific objective.
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if and only if
∑2

i=1 ci < V .
To see that a competitive (or Walrasian) price p that induces the efficient allocation may

fail to exist, notice that for the platform to be willing to acquire both inputs/attract both
users (assuming for simplicity that it appropriates the entire social value V if it operates), it
must be that V − 2p > 0, assuming that the outside option of the platform is 0. For user i
to be willing to sell at price p, it must be that p− ci > 0, where 0 is the value of the outside
option of the user. Taken together, this means that a market clearing price that supports
the efficient allocation exists if and only if V − 2 max{c1, c2} > 0, while efficiency dictates
that the platform should operate whenever V − (c1 + c2) > 0. Thus, whenever

2 max{c1, c2} > V > c1 + c2,

the platform should operate, but there is no competitive price that supports that outcome.
Not surprisingly, once one has to account for the agents’ private information about their

costs, the obstacles do not necessarily become smaller. To see this, suppose the two agents are
privately informed about their costs ci of joining the platform and consider first the dominant-
strategy implementation of the efficient allocation rule. As above, let the value of their
outside option be 0. To make the problem interesting, let c be the largest possible cost for
each agent and assume that V < 2c, so that it is not always efficient to operate the platform.
Let pi(c) be the price offered to i when the costs are c = (c1, c2). If

∑2
i=1 ci ≥ V , then it

is efficient not to operate the platform, and so the smallest price that can be offered to the
agents, without violating their individual rationality constraints, is 0. If

∑2
i=1 ci < V , then it

is efficient to operate the platform, and each agent i is offered a price equal to the highest cost
it could report without changing the allocation, that is, pi(c) = min{V − cj, c}, where j 6= i.
It is straightforward to establish, that whenever the platform operates under efficiency, the
payments to the agents exceed the value of the platform, that is,

∑2
i=1 pi(c) > V .45 Thus,

this efficient mechanism that satisfies dominant strategies and agents’ (ex post) individual
rationality constraints always runs a deficit when it is efficient to operate the platform.46 If
we assume that the agents’ costs are independently distributed on the interval [c, c] according
to some distributions G1 and G2 with positive densities, then it follows that any efficient,

45To see this, assume first that V − ci < c for i ∈ {1, 2}. In this case,
∑2
i=1 pi(c) > V is equivalent to

2V − (c1 + c2) > V , which is equivalent to V > c1 + c2, which is the case because it is efficient to operate the
platform. Next, assume that V −ci ≥ c for i ∈ {1, 2}, in which case,

∑2
i=1 pi(c) > V is equivalent to 2c > V ,

which is true by assumption. Last, assume that V − ci < c ≤ V − cj for i 6= j, in which case
∑2
i=1 pi(c) > V

is equivalent to c > ci, which is the case.
46Individual rationality constraints are said be satisfied ex post if agents are better off participating

even after the payments have been and the allocation is determined. It contrasts with interim individual
rationality, which only stipulates that agents are better off participating at the time they report their types.
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incentive compatible and individually rational mechanism runs a deficit.47 Admittedly, the
assumption that the agents are perfect complements (and that there are only two agents)
is strong.48 However, it is useful as it makes the point that the competitive benchmark
cannot be taken for granted for pricing when there are strong complementarities among
agents, which is, for example, the case in data-driven industries where one consumer’s data
are primarily valuable in conjunction with data from other consumers.

Of course, the main activity of many platforms and big tech companies is not necessarily
that they match literally buyers and sellers and gain from the trades they execute. This
is certainly the case for companies such as Google, Facebook, and Twitter, which create
value for their users by facilitating certain flows of information. Accordingly, a major policy
concern in regards to companies like these is how these platforms steer information flows, to
what extent they create “echo chambers,” facilitate the spread of conspiracy theories, what (if
anything) are the limits to freedom of speech, and the like. Our discussion sheds little light
on these important aspects of the problem other than perhaps suggesting that the old-school
approach of subjecting social media to qualitatively similar rules and restrictions to those
that were imposed when radio and TV broadcasting emerged in the first half of the 20th
century may be preferable to dismantling social media networks, in particular if the returns
to scale that are the driving force behind them are so strong that as soon as one network is
dismantled another one pops up.

4.5 Empirical work

Estimation in the context of incomplete-information bargaining

We now turn to empirical estimation of incomplete-information bargaining and illustrate the
recent work by Larsen and Zhang (2018) mentioned in Section 2. They make use of the
power of the revelation principle and the implications of incentive compatibility to develop
estimation methods tailored to a general incomplete-information bargaining setups.

To illustrate the estimation approach of Larsen and Zhang (2018), consider the case of a
bilateral bargaining. Suppose that you have repeated observations on bargaining outcomes
between a buyer and a seller (not necessarily the same buyer and seller over time, but assumed
to draw their types from the same distribution over time). You do not observe the exact
mechanism through which bargaining occurs, but you do observe reports by agents (think
of these as the agents’ initial offers), and you observe bargaining outcomes. Specifically, for

47This is, of course, reflective of the public goods problem and, more generally, the issues arising from
complementarities mentioned in and around footnote 31.

48One can show that the deficit problem remains with an arbitrary number of agents n, provided nc > V
and provided the agents are perfect complements.
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each bargain j, you observe actions aBj and aSj , an indicator xj that is 1 if there is trade and
0 otherwise, and transfer tj from the buyer to the seller.

For example, if the underlying mechanism is a k-double auction with k = 3/4 and the
underlying type distributions are the uniform distribution on [0, 1], then one might observe
the following dataset:

j aBj aSj xj tj

1 0.30 0.20 1 0.28

2 0.43 0.49 0 0

3 0.59 0.52 1 0.57

4 0.28 0.57 0 0

5 0.34 0.16 1 0.30

Note that one should not expect to observe buyer bids less than 1−k
2

= 1
8
or seller

bids greater than 2−k
2

= 5
8
because such bids have zero probability of resulting in trade in

equilibrium.
Letting pB(v) be the (unobserved) mapping from buyer types to actions and pS(c) be

the (unobserved) mapping from seller types to actions, one can use this data to estimate the
inverses p−1

B and p−1
S using the methodology of Larsen and Zhang (2018). Specifically, for

a ∈ R, let

β̂
B

(a) ≡ (β̂B0 (a), β̂B1 (a), β̂B2 (a)) ≡ arg min
β

∑
j

(tj − 2∑
`=0

β`(a
B
j − a)`

)2

κht(a
B
j − a)


and

γ̂B(a) ≡ (γ̂B0 (a), γ̂B1 (a), γ̂B2 (a)) ≡ arg min
γ

∑
j

(xj − 2∑
`=0

γ`(a
B
j − a)`

)2

κhx(aBj − a)

 ,

where κh is a kernel functions with bandwidth h (see Larsen and Zhang (2018) for a discussion
of appropriate kernel and bandwidth choices). Then β̂

B
(a) and γ̂B(a) are defined for any a

not included as a buyer action in the dataset, and, as shown by Larsen and Zhang (2018),
for any such a, a consistent estimator of p−1

B (a) is given by

p̂−1
B (a) ≡ β̂B1 (a)

γ̂B1 (a)
.
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One can then extend the definition of p̂−1
B (a) to all buyer actions using linear interpolation.

Defining things analogously for sellers, and using −tj instead of tj and −xj instead of xj,

p̂−1
S (a) ≡ β̂S1 (a)

γ̂S1 (a)

provides a consistent estimate of p−1
S (a) for any a not included as a seller action in the

dataset. Similarly, this can be extended to all seller actions using linear interpolation.
Given these estimates of the inverse strategy mappings, we can estimate the underlying

types and construct the empirical distributions of those types using v̂j ≡ p̂−1
B (aBj ) and ĉj ≡

p̂−1
S (aSj ). We illustrate the results of such estimation in Figure 5, with the details contained

in Appendix A.3.

(a) Empirical distribution of estimated values
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Figure 5: Empirical distributions of estimated type compared with the theoretical distributions. Estimates
are based on the observation of 4000 randomly drawn outcomes of a k-double auction with k = 3/4 and
actual types drawn from the uniform distribution on [0, 1], assuming agents use their linear Bayes Nash
equilibrium strategies. In this case, buyers with values less than 1/8 and sellers with costs greater than 5/8
do not participate, and so the relevant theoretical distributions are the uniform distributions truncated at
those types, as shown.

Because this approach allows one to estimate the underlying types, one can then use
those types to estimate the agents’ expected payoffs by using the average payoffs in the
data. That is, given J total observations, we have

ûB ≡
1

t

J∑
j=1

(v̂jxj − tj) and ûS ≡
1

t

J∑
j=1

(tj − ĉjxj),

where it is important to note that the theoretical expected payoffs would also “average in”
some zeros because we only observe agents with types sufficiently “efficient” that they trade
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with positive probability. In the simulation underlying Figure 5, we get, ûB = 0.1430, as
compared with the relevant theoretical benchmark of uB = 0.1458, which is the expected
payoff of a buyer in a k-double auction with k = 3/4 and uniformly distributed values on [1

8
, 1]

and uniformly distributed costs on [0, 5
8
]. For the sellers, we get ûS = 0.0995 as compared

with the theoretical value of uS = 0.1041.
One can further use the methods of Loertscher and Marx (2020) to estimate the virtual

types. Specifically, letting v̂(j) denote the j-th highest estimated value and, letting ĉ[j]

denote the j-th lowest estimated cost, uniformly consistent estimators for 1−F (v(j))

f(v(j))
, where F

is the theoretical value distribution, and G(c[j])

g(c[j])
, where G is the theoretical cost distribution,

respectively, are given by
ĥBj ≡ jσBj and ĥSj ≡ jσSj ,

where σBj and σSj are the average spacing between nearby types:

σBj ≡
v̂(j−min{r,j−1}) − v̂(j+min{r,J−j})

min{r, j − 1}+ min{r, J − j}
and σSj ≡

ĉ[j+min{r,J−j}] − ĉ[j−min{r,j−1}

min{r, J − j}+ min{r, j − 1}

where r is the number of spacings on each side of a type that are included in the spacing
estimate, defined to be J4/5, rounded to the nearest integer.49

One can then use (v̂(j), ĥ
B
j )Jj=1 to define the estimate ĥB(v) of 1−F (v)

f(v)
for all v in the

relevant range using linear interpolation.50 Similarly, one can use (ĉ(j), ĥ
S
j )Jj=1 to define the

estimate ĥS(c) of G(c)
g(c)

for all c in the relevant range using linear interpolation.51 We illustrate
in Figure 6.

Given these estimates, for any bargaining weights (FB,FS) ∈ [0, 1]2, with at least one
weight being positive, and any ρ ≥ 1, we can define the allocation rule Qw,ρ as follows:

Qw,ρ(v, c) ≡

 1 if v − (1− FB

ρ
)ĥB(v) ≥ c+ (1− FS

ρ
)ĥS(c),

0 otherwise.

Given w, define the empirical budget surplus by

π̂w,ρ ≡ 1

J

J∑
j=1

[(
v̂j − ĥB(v̂j)

)
−
(
ĉj + ĥS(ĉj)

)]
Qw,ρ(v̂j, ĉj)

49See Loertscher and Marx (2020) for a discussion of the choice of the number of spacings to include in
the estimator.

50Interpolation is only used for the purposes of creating figures—in our estimates we only evaluate ĥB
and ĥS at estimated types.

51One might be able to improve estimates by constraining ĥB and ĥS to be positive. We have not done
this for the purposes of our illustration.
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(a) Estimated buyer hazard rate
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(b) Estimated seller hazard rate
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Figure 6: Estimated hazard rates based on the observation of 4000 randomly drawn outcomes of a k-double
auction with k = 3/4 and actual types drawn from the uniform distribution on [0, 1], assuming agents use
their linear Bayes Nash equilibrium strategies. In this case, buyers with values less than 1/8 and sellers
with costs greater than 5/8 do not participate, and so the relevant theoretical distributions are the uniform
distributions truncated at those types.

and define ρw to be the smallest ρ ≥ 1 such that π̂w,ρ ≥ 0.
Then, letting ηwB ≡ 1 if FB > FS, ηwB ≡ 0 if FB < FS, and ηwB ≡ 1/2 if FB = FS,

and analogously for ηwS (i.e., ηwS ≡ 1− ηwB ), estimated payoffs in the incomplete-information
bargaining mechanism with bargaining weights w are

ûB(w) ≡ ηwB π̂
w,ρw +

1

J

J∑
j=1

ĥB(v̂j)Q
w,ρw(v̂j, ĉj)

and

ûS(w) ≡ ηwS π̂
w,ρw +

1

J

J∑
j=1

ĥS(ĉj)Q
w,ρw(v̂j, ĉj).

As before, these estimates do not account for payoffs of zero associated with types that have
no probability of trading, which are missing from our dataset.

One can then find thew that minimize the distance between (ûS(w), ûB(w)) and (ûS, ûB),
giving us an estimate ŵ of the agents’ bargaining weights. We illustrate this in Figure 7(a).
As shown there, we find (F̂B, F̂S) = (1, 0.5), consistent with the data being simulated based
on a k-double auction with k = 3/4. To explore the precision of the estimation procedure
and the effects of sample size, we calculate bootstrap confidence intervals for the agents’
expected payoffs for sample sizes of 1,000 and 10,000, as shown in Figure 7(b). The figure
compares the bootstrap 95% confidence intervals to the theoretical values for the agents’
expected payoffs.
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(a) Estimated Williams frontier
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Figure 7: Estimated Williams frontier and bootstrap confidence intervals for agents’ expected payoffs com-
pared with theoretical values. Panel (a): The red point labeled “data” is (ûS , ûB). The small black points
along the frontier are (ûS(w), ûB(w)) for a grid of values for w with one bargaining weight equal to 1 and
the other an element of {0, 0.1, . . . , 1}. The green point labeled with bargaining weights is the grid point that
is closest to the red point. Estimated types and hazard rates are based on the observation of 4000 randomly
drawn outcomes (Larsen and Zhang (2018) also perform estimates for a sample size of 4000) of a k-double
auction with k = 3/4 and actual types drawn from the uniform distribution on [0, 1], assuming agents use
their linear Bayes Nash equilibrium strategies. Panel (b): 95% confidence intervals based on estimates of
buyer and seller expected surplus for 100 independently drawn simulated datasets of 1000 observations each
and, separately, for 100 independently drawn simulated datasets of 10,000 observations each for a k-double
auction with k = 3/4 and actual types drawn from the uniform distribution on [0, 1], assuming agents use
their linear Bayes Nash equilibrium strategies; uB and uS are the associated theoretical values.

Thus, as we have just illustrated, data on bids and outcomes are sufficient to allow the
identification of agents’ type distributions and bargaining weights associated with incomplete-
information bargaining. Although the k-double auction setup is special and results in
that setup depend on specific distributions, this illustration shows that the incomplete-
information framework provides a tractable, intuitive approach to: the payoff-surplus trade-
off, the separation of bargaining and productive power, countervailing power, and merger
harms.

Bargaining breakdown on the equilibrium path

As mentioned above, standard complete-information bargaining models focus on the division
of a fixed surplus, not the size of the surplus. In those models, when there are gains from
trade, trade always occurs. In contrast, in incomplete-information bargaining with over-
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lapping type distributions, negotiations break down on the equilibrium path with positive
probability. This occurs for two reasons. First, it may be that the buyer’s value is below
the seller’s cost, but because of private information, the two parties do not know this before
they sit down at the negotiating table. Second, by the Myerson-Satterthwaite impossibility
result, even if the buyer’s value exceeds the seller’s cost, the constraints imposed by incentive
compatibility, individual rationality, and no deficit may prevent ex post efficient trade from
taking place.

The possibility of bargaining breakdown that arises in incomplete-information bargain-
ing captures features of reality that complete-information models cannot accommodate. Our
common experience suggests that bargaining breakdown is common—we observe strikes and
blackouts and government shutdowns. More systematically, Backus et al. (2020) examine
millions of eBay transactions involving bilateral bargaining and document the prevalence
of bargaining breakdown. Data suggest that approximately half of negotiations that are
initiated end without a transaction. This, of course, is not a stylized fact that can be ac-
commodated by complete information bargaining models such as Nash bargaining. However,
in an incomplete-information context, as we have said, bargaining breakdown arises natu-
rally. Indeed, the observation of bargaining breakdown in data can be used to calibrate
distributions in an incomplete-information setup.

For example, under the assumption that incomplete-information bargaining maximizes
expected social surplus subject to incentive compatibility, individual rationality, and no
deficit, and that the buyer and seller are treated symmetrically, one can use the observed
frequencies of negotiation breakdowns to back out the parameters of the distributions from
which the buyer and the seller draw their types. To illustrate, assume that the buyer’s value
v is drawn from the distribution F (v) = 1−(1−v)1/κ and the seller’s cost c is drawn from the
distribution G(c) = c1/κ, whose supports are [0, 1], where κ ∈ (0,∞) has the interpretation
of a “capacity.” Figure 8 plots the probability that negotiations break down as a function of
κ under the assumptions stated. For example, if, as in the data set of Backus et al. (2020), 55
percent of all negotiations break down, eyeballing the figure indicates that κ must be around
1.5.52 Rather than treating negotiation breakdowns as measurement error as in the case
with complete information, with incomplete information the frequency of those breakdowns
is valuable information that can be used for estimation.

The suitability of our approach for applied work is reinforced by the ability to calibrate
straightforward parameterizations of the agents’ type distributions based on data such as the

52More precisely, for the case considered, a breakdown probability of 55 percent corresponds to κ =
1.60904.
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Figure 8: Probability of the breakdown of negotiations in incomplete-information bargaining as a function
of κ assuming F (v) = 1− (1− v)1/κ and G(c) = c1/κ on [0, 1].

observed probability with which negotiations break down.53 Given the calibrated distribu-
tions, the bargaining solution is easily computed. For example, with one buyer and one seller,
each drawing their types from the uniform distribution on [0, 1],54 incomplete-information
bargaining modeled as a k-double auction with k = 1/2 gives each agent an expected surplus
of 9/128 ≈ 0.07, which is slightly less than the expected surplus under Nash bargaining of
1/12 ≈ 0.08. One can also accommodate general distributions, asymmetries, and one-to-
many bargaining (Loertscher and Marx, 2021).

Of course, it may that in many instances empirical analysts do not have the luxury
of observing bargaining breakdown. But this does not necessarily mean that what is not
observed does not matter (just like it would be hard to argue that nuclear weapons played
no role during the cold war on the grounds that nuclear war did not occur). Methods to
account for unobserved bargaining breakdown might advance progress here.

5 Open issues and the road forward

Of course, there are many open issues, and a lot of work remains to be done. In this section,
we highlight a few of these issues and of the possible avenues for future work.

53For one-to-many bargaining, the market shares of the competing agents can also be used for calibration.
54A buyer and seller each drawing its type from the uniform distribution on [0, 1] corresponds to a

breakdown probability of approximately 72%, which is greater than the 50% breakdown probability in an
efficient bargaining setup with the same type distributions.
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5.1 Determinants of bargaining power

As discussed above, the mechanism-design based approach to incomplete-information bar-
gaining allows one to incorporate differential bargaining power for agents and, given data,
to estimate the relative bargaining power of agents. Questions remains, however, regarding
what determines this bargaining power in the first place. This is particularly pertinent given
the recent upsurge in interest in bargaining. Avenues for future work includes the analysis
of how bargaining power varies with market structure and how it depends on firm size, as
well as other things.

A possible avenue to pursue this more systematically is touched upon in Loertscher and
Marx (2019a), who discuss the incentives of the buyer to acquire, at some cost, buyer power
and show that these incentives are stronger post merger. This suggests that one could more
generally ask whether merging parties have stronger incentives to increase their bargaining
weight before or after the merger.

5.2 Mergers that create multi-unit traders

As discussed above, the incomplete-information IO framework loses its power if agents’ types
are not single dimensional. One can easily work within those bounds for a fixed market
structure. In particular, the setup accommodates multiple buyers with multi-unit demands,
if a buyer’s marginal value for each unit is a linear function of the agent’s single-dimensional
type; and there can be multiple sellers with multi-unit capacities, if a seller’s marginal cost
for each unit is a linear function of the agent’s single-dimensional type.

Modeling mergers is then straightforward in some cases. For example, if the total quantity
demanded by the buyers in the market is D, and if sellers i and j each have constant marginal
cost (equal to their types) up to a capacity of D and, then a merger of sellers i and j can
be modeled as creating a merged entity that has capacity D and a constant marginal cost
equal to the minimum of two independent cost draws, one from seller i’s type distribution
and one from seller j’s type distribution. This scenario applies in the case of one buyer
with single-unit demand purchasing from some number of sellers analyzed above, or more
generally when multiple agents on one side of the market trade with a single agent with
single-unit demand or capacity on the other side of the market.

Modeling challenges arise when the merged entity might trade more units than either of
the pre-merger agents can produce or consume. For example, suppose that there is one buyer
with two-unit demand and there are two sellers, each with one-unit capacity. Let G1 and G2

be the cost distributions of the two pre-merger sellers. The merged entity might be expected
to supply two units for some type realizations, but how should one model the merged entity’s
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costs for those two units? A way to transform G1 and G2 into a one-dimension distribution is
required to maintain the features of the Myersonian mechanism design approach. A number
of possibilities suggest themselves. Noting that the joint supply by the two pre-merger sellers
at price p is

S(p) = G1(p) +G2(p) = 2
G1(p) +G2(p)

2
,

one could model the merged entity as having two-unit supply at a constant marginal cost
drawn from the distribution G̃(c) ≡ G1(c)+G2(c)

2
. Or, one could view the merged entity

as having a type ĉ drawn from the distribution of the minimum of c1 and c2, given by
Ĝ(c) ≡ 1 − (1 − G1(c))(1 − G2(c)), and then viewing that type ĉ as the merged entity’s
marginal cost for its first unit and letting aĉ be the merged entity’s marginal cost for its
second unit for some commonly known a ≥ 1. For example, one could choose a to be the
ratio of the expected value of max{c1, c2} to the expected value of min{c1, c2}.

As we now discuss, additional, related challenges present themselves for the case of ver-
tical mergers.

5.3 Vertical integration

As in the case of horizontal mergers discussed above, one can easily accommodate vertical
integration within the incomplete-information setup for some market structures, assuming
that after integration, the integrated firm can efficiently solve its internal agency problem,
which is a standard assumption.55 For example, suppose that the pre-integration market has
one buyer with single-unit demand and value drawn from distribution F and multiple sellers
with costs drawn from distribution G. The integration of the buyer with seller 1 creates an
entity that has demand for one unit, which can either be sourced internally or externally.
The integrated firm never acts as a seller because there are no external buyers. Thus, the
integrated firm’s type that is relevant for trade with the external sellers is the integrated
firm’s willingness to pay for an external unit. Viewing the downstream component of the
integrated firm as having a willingness to pay of v and the upstream component as having a
cost to supply of c1, the willingness to pay of the integrated firm for an external unit is then
min{v, c1}. So one can naturally view the integrated firm as drawing a single-dimensional
willingness to pay for an external unit from the distribution of the minimum of v and c1.
Things are similarly straightforward if the pre-integration market has only one seller with
single-unit supply. In that case the willingness of the integrated firm to sell in the external
market is the maximum of the types of the integrated buyer and integrated seller.

55This assumption can be rationalized, for example, on the grounds that integration slackens the individual
rationality constraints within the integrated firm.
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Interestingly, as shown in Loertscher and Marx (2021), this immediately gives us the
result that vertical integration can, under general conditions, cause an efficient market to
no longer be efficient. To see this, consider the case of nonoverlapping supports with c ≤ v

and suppose that there are two suppliers and one buyer in the pre-integration market. That
is, efficient trade is possible prior to integration—for example, a second-price auction would
suffice—but following integration, the vertically integrated firm’s willingness to pay for an
external unit is min{v1, c1} = c1, which has overlapping support with the cost of the external
supplier, so the Myerson-Satterthwaite impossibility result applies. Efficient trade is possible
prior to integration, but following integration, there is no incentive-compatibily, individually-
rational, no-deficit mechanism that implements the efficient allocation.

Turning to the case of a pre-integration market with multiple buyers and multiple sup-
pliers, challenges arise because the integrated firm might act as either a buyer or a seller in
the external market, depending on type realizations. Vertical integration creates a market
in which at least one agent, the vertically integrated firm, cannot be categorized ex ante as
either a buyer or a seller. Following Loertscher and Marx (2020c), we refer to such a market
as an asset market.56 While many models presume that markets have two sides—agents are
either buyers or sellers with ex ante determined trading positions—in asset markets some
agents’ trading positions—buy, sell, do not trade—are determined endogeneously; see, e.g.,
Lu and Robert (2001); Chen and Li (2018); Johnson (2019); Loertscher and Marx (2020c).
In practice, the gig-economy has resulted in formerly two-sided markets becoming asset
markets, with examples such as eBay, Uber, and AirBnB.

Interest in accommodating asset markets adds to the appeal of the incomplete-information
approach because it offers scope for productively modeling asset markets. In contrast, for
standard oligopoly models with price-taking consumers on one side of the market, it is not
clear how one would even shift bargaining power between the buyer side and seller side of
the market, much less how one would adapt such models to handle ex ante nonidentified
traders.

Extending the incomplete-information framework to accommodate flexibly asset markets
would allow analysis of mergers between intermediaries who take positions and, depending
on circumstances, either buy or sell. This would pave the way for the analysis of settings
that have “three sides” in the sense that there are buyers, sellers, and integrated firm that
can be either buyers or sellers.

56Lu and Robert (2001), and Chen and Li (2018) following them, refer to these markets as markets with
“ex ante unidentified traders.” More recently, Johnson (2019) uses the term “one-sided” to refer to these
problems.
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6 Conclusions

We show that the incomplete-information model is tractable for capturing central issues in
Industrial Organization and Antitrust, such as the tradeoff between social surplus and profit
and the effects of buyer power, bargaining power, and countervailing power. Moreover, the
model predicts bargaining break down on the equilibrium path; implies that perfect price
discrimination is not possible because, holding fixed the quantity a buyer is allocated, the
price cannot vary with the buyer’s willingness to pay; provides conditions on the primitives
that imply that uniform pricing by a monopoly is optimal; and gives rise, without any
additional assumptions, to increasing return to scale in market making. This chapter provides
an overview of the relevant literature, explains the key mechanics, and lays out a roadmap
for the work ahead.
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A Appendix

A.1 Expected payment details

Given z ∈ [v, v], we have:

Ev [m(v)]

=

∫ v

v

m(v)f(v)dv

=

∫ v

v

(
q(v)v −

∫ v

z

q(x)dx

)
f(v)dv − U(z)

=

∫ z

v

(
q(v)v +

∫ z

v

q(x)dx

)
f(v)dv +

∫ v

z

(
q(v)v −

∫ v

z

q(x)dx

)
f(v)dv − U(z)

=

∫ z

v

q(v)vf(v)dv +

∫ z

v

∫ x

v

q(x)f(v)dvdx+

∫ v

z

q(v)vf(v)dv −
∫ v

z

∫ v

x

q(x)f(v)dvdx− U(z)

=

∫ z

v

q(v)vf(v)dv +

∫ z

v

q(x)F (x)dx+

∫ v

z

q(v)vf(v)dv −
∫ v

z

q(x)(1− F (x))dx− U(z)

=

∫ z

v

(
x+

F (x)

f(x)

)
q(x)f(x)dx+

∫ v

z

(
x− 1− F (x)

f(x)

)
q(x)f(x)dx− U(z)

=

∫ z

v

Γ(x)q(x)f(x)dx+

∫ v

z

Φ(x)q(x)f(x)dx− U(z)

= Ev [Γ(v)q(v) | v ≤ z] Pr(v ≤ z) + Ev [Φ(v)q(v) | v ≥ z] Pr(v ≥ z)− U(z),

where the first equality uses the definition of the expectation, the second uses (4), the third
through sixth rearrange, including switching the order of integration, the seventh uses the
definition of the virtual cost and virtual value functions Γ and Φ, and the last equality uses
the definition of the expectation.

A.2 Details of the demonstration of the Myerson-Satterthwaite im-

possibility result

Suppose that v < c and define M̂B(v, c) ≡ max{c, v} if v ≥ c and M̂B(v, c) ≡ 0 otherwise, and
M̂S(v, c) ≡ min{v, c} if v ≥ c and M̂S(v, c) ≡ 0 otherwise. The mechanism 〈QE, M̂B, M̂S〉 is
incentive compatible by the usual second-price auction logic: an agent’s report affects only
whether it trades, not its payment if it does trade, and trade is only an agent’s interest
when it is efficient, so agents cannot profit from misreporting their types. In addition, the
mechanism satisfies individual rationality with equality: a buyer with value v is the worst-off
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type of buyer and has an expected payoff of zero because it trades with probability zero, and
similarly for a seller with cost c.

We can now apply the revenue equivalence theorem. Suppose that there exists a payment
rule (M̃B, M̃S) such that mechanism 〈QE, M̃B, M̃S〉, with interim expected payoff function
for the buyer of ŨB and for the seller of ŨS, is incentive compatible and individually rational.
Then we have

Ev,c [m̃B(v)− m̃S(c)] = Ev,c
[
(Φ(v)− Γ(c))QE(v, c)

]
− ŨB(v)− ŨS(c)

≤ Ev,c
[
(Φ(v)− Γ(c))QE(v, c)

]
= Ev,c [m̂B(v)− m̂S(c)]

< 0,

where the first equality uses the revenue equivalence theorem applied to 〈QE, M̃B, M̃S〉, the
first inequality uses the implication of individual rationality that ŨB(v) ≥ 0 and ŨS(c) ≥ 0,
the second equality uses the revenue equivalence theorem applied to 〈QE, M̂B, M̂S〉 and the
fact that the interim expected payoffs of the worst-off types are zero in that mechanism, and
the final inequality follows because under mechanism 〈QE, M̂B, M̂S〉, the payment by the
buyer, max{c, v} is less than or equal to the payment to the seller, min{v, c}, and strictly
so for an open interval of types when v < c. Thus, when the set of possible buyer values
overlaps with the set of possible seller costs, v < c, any incentive-compatible, individually-
rational bilateral trade mechanism with the efficient allocation rule runs a deficit. In other
words, efficient bilateral trade is not possible without running a deficit.

A.3 Details of the estimation illustration

We begin by considering the theoretical application of the k-double auction, assuming that
agents’ types are uniformly distributed on [0, 1] and that agents uses their linear Bayes Nash
equilibrium strategies, where a buyer of type v bids pB(v) ≡ (1− k)k/(2(1 + k)) + v/(1 + k),
and a seller with cost c bids pS(c) ≡ (1− k)/2 + c/(2− k).

Let (PB, TB) be the menu faced by the buyer, where PB(b) is the probability that the
buyer trades given a bid b and TB(b) is the expected payment by the buyer to the mechanism
given a bid b. Then we have

PB(b) = p−1
S (b)

and

TB(b) =

∫ p−1
S (b)

0

(kb+ (1− k)pS(c))dc.

49



As required by incentive compatibility, the menu defines a convex frontier as shown in
Figure 9(a).

(a) Buyer’s menu

PB(pB(1))0.2 0.4
PB(b)

TB(pB(1))

0.1

0.2

0.3

TB(b)

(b) Seller’s menu

PS(pS(0)) -0.6 -0.4 -0.2
PS(b)

TS(pS(0))

-0.2

-0.1

TS(b)

Figure 9: Menu of expected allocations and transfers as a function of bids for a k-double auction with
k = 3/4 and types drawn from the uniform distribution on [0, 1], assuming agents use their linear Bayes
Nash equilibrium strategies.

Analogously, let (PS, TS) be the menu faced by the buyer, where −PS(b) is the probability
that the seller trades given a bid b and −TS(b) is the expected payment to the seller from
the mechanism given a bid b. Then we have

PS(b) = −(1− p−1
B (b))

and

TS(b) = −
∫ 1

p−1
B (b)

(kpB(v) + (1− k)b)dv.

Again, as required by incentive compatibility, the menu defines a convex frontier as shown
in Figure 9(b).

Simulated data

We generate a large number of pairs of uniform [0,1] values and costs, discarding those where
the value is less than 1

8
or seller the cost is greater than 5

8
, so that we ultimately have 4000

type vectors. From these, we calculate the bids of the buyer and seller according to pB and
pS with k = 3

4
and calculate the associated allocation and transfers.
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Bandwidth estimation

We use the data to calculate the bandwidth for use in the kernel estimation procedure.57

Following this procedure, we find bandwidths between 0.05 and 0.06.

Estimation of inverse strategy for the buyer

We now estimate the first derivative of TB using the local polynomial regression estimator
for TB(a) at a given bid a with degree 2, bandwidth hT , and the Gaussian kernel. We use
the value of β̂1(a) derived from

(β̂B0 (a), β̂B1 (a), β̂B2 (a)) ≡ arg min
β

4000∑
j=1

(tj − 2∑
`=0

β`(a
B
j − a)`

)2

κhT (aBj − a)

 .

Similarly, we estimate the first derivative of PB using the value of γ̂1(a) derived from

(γ̂B0 (a), γ̂B1 (a), γ̂B2 (a)) ≡ arg min
γ

4000∑
j=1

(xj − 2∑
`=0

γ`(a
B
j − a)`

)2

κhP (aBj − a)

 .

Then we estimate p̂−1
B (b) using β̂B

1 (a)

γ̂B1 (a)
, and similarly for p̂−1

S (b).

Further, β̂B1 (a) and γ̂B1 (a) are estimates of the first derivatives of TB and PB, respectively,
so we can use those to reconstruct TB and PB and calculate the (PB, TB) frontier, which we
confirm is convex.

57To do this, regress the vector of 4000 transfers on a quintic polynomial of the observed buyer bids and

calculate the variance of the residuals σ2
T . Let

̂̂
T
′′′

denote the third derivative of the fitted equation. Define
bandwidth

hT ≡ C

 σ2
T∑4000

j=1

(̂̂
T
′′′

(aBj )

)2


1/7

,

where C = 0.884 is a constant for the Gaussian kernel. Analogously, define the bandwidth for the allocation
rule by

hP ≡ C

 σ2
P∑4000

j=1

(̂̂
P
′′′

(aBj )

)2


1/7

.
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(a) Buyer’s inverse bid function

0. 0.1 0.2 0.3 0.4 0.5 0.6
a

0.2

0.4

0.6

0.8

1.
v

theoretical pB-1(a)

estimated p B
-1(a)

(b) Seller’s inverse bid function

0. 0.1 0.2 0.3 0.4 0.5 0.6
a

0.2

0.4

0.6

c

theoretical pS-1(a)

estimated p S
-1(a)

Figure 10: Estimated and theoretical inverse bid functions for a k-double auction with k = 3/4 and types
drawn from the uniform distribution on [0, 1], assuming agents use their linear Bayes Nash equilibrium
strategies.
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