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a b s t r a c t 

The emergence and ubiquitous presence in everyday life of 
digital go o ds such as songs, movies, and e-b o oks give renewed 
salience to the problem of providing public go o ds with exclu- 
sion. Because digital go o ds are typically traded via intermedi- 
aries like iTunes, Amazon, and Netflix, the question arises as 
to the optimal pricing mechanism for such club go o d interme- 
diaries. We derive the direct Bayesian optimal mechanism for 
allocating club goods when the mechanism designer is an inter- 
mediary that neither produces nor consumes the go o ds, and we 
develop an indirect mechanism that implements this mecha- 
nism. We also derive sufficient conditions for the intermediary- 
optimal mechanism to be implementable with revenue sharing 
contracts, which are widely used in e-business. 
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1. Introduction 

The issue of optimal public go o ds provision has achieved new salience with the emer-
gence of digital go o ds like e-b o oks, downloadable songs, and movies along with new
technologies that make exclusion and distribution possible at negligible marginal costs. 
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n aspect not present in the analysis of excludable public go o ds or “club go o ds” in the
ge of the internet is that consumers gain access to these digital go o ds via an interme-
iary such as Amazon, iTunes, Spotify, or Netflix rather than contracting directly with
he producer of the club go o d as they might with the owner of a country club. In this
aper, we provide an analysis of optimal mechanisms for club good intermediaries , which
re brokers who intermediate between the producer of a public good with exclusion and
onsumers. Besides the aforementioned intermediaries for digital go o ds, crowdfunding
latforms like Kickstarter or Indiegogo are other examples of club go o d intermediaries. 1
We analyze club go o d intermediaries within the independent private values paradigm

n Bayesian mechanism design, assuming that all agents draw their values and costs inde-
endently from some commonly known distributions and that they are privately informed
bout the realizations of their types. Among other things, the Bayesian mechanism de-
ign approach has the benefit of imposing no constraints on the optimal mechanism other
han the usual incentive compatibility and individual rationality constraints. 

We extend the methods and insights developed by Myerson (1981) and Myerson and
atterthwaite (1983) for private go o ds to the case of club go o ds. 2 Just as with a broker
or private go o ds, the optimal mechanism for a club go o d intermediary can be stated
n terms of virtual valuations and virtual costs, with trade occurring when the former
xceed the latter. However, the conditions for trade for a club go o d intermediary are
ore intricate because the optimal allocation rule is such that trade occurs if and only if

he sum of the virtual values of those buyers with nonnegative virtual values exceeds the
eller’s virtual (fixed) cost for producing the go o d. 3 Also, in the private go o d setting, the
echanism need only determine a single price to be paid by the winning buyer. But in

he club go o d setting, the mechanism must determine a price for each buyer who receives
he go o d, and these prices may differ across buyers as a function of the buyers’ reported
ypes and identities. 

Besides characterizing the Bayesian optimal club go o d mechanism for an intermediary,
e define a club go o d clo ck auction in which it is a dominant strategy for buyers to exit at
heir values. We provide generalizations that allow for congestion effects, nonmonotonic
irtual types that require ironing, and an objective for the designer that includes weight
n both profit and social surplus. We also derive sufficient conditions for the intermediary-
ptimal mechanism to be implementable with revenue sharing contracts. These are widely
sed in e-business and featured prominently in Apple’s e-b o ok case. 4 
1 For more on crowdfunding platforms, see, for example, Marwell (2015) . 
2 It is well known that under seemingly weak conditions (a lower b ound supp ort of the buyers’ type 
istributions of zero) the Bayesian optimal mechanism allocates the public go o d with probability zero in 
he large economy ( Rob, 1989 ). With n buyers, the sum of the virtual types of the buyers converges to n times 
he expected virtual type, which is equal to the lower bound of support of the buyers’ type distribution, and 
ence to n times zero under the condition just stated. This provides further motivation to study Bayesian 
ptimal provision of club go o ds. 
3 Bearing in mind the applications of digital go o ds, we assume that the marginal cost of delivering every 
dditional copy is zero once the fixed cost of producing the go o d has been borne. In general, the constraint 
s that the sum of the virtual values of those buyers with virtual values no less than the marginal costs 
xceeds the seller’s virtual fixed cost. 
4 “Ruling That Apple Led E-Book Pricing Conspiracy Is Upheld,” New York Times , June 30, 2015. 
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In some settings, whether a go o d is offered as a private go o d or as a public go o d
is a choice variable of the designer. For example, whether radio spectrum is used as a
public go o d with exclusion or under rivalry of consumption as a private go o d dep ends
on the technological standards, which may be a choice variable of the designer. Similarly, 
artists can choose between selling private goods in the form of paintings and club goods
in the form of photographs. Under the assumptions that the demand and fixed cost
of production for the two kinds of goods are the same, our analysis shows that a profit
maximizing designer will choose to offer the good as a club good. In this way, our analysis
provides a way of endogenizing the choice of technological format for applications like 
these. 

First and foremost, our paper contributes to the large and growing literature on market 
making and intermediation by introducing club goods. Thus far, this literature has either 
focused on private goods – see, for example, Rubinstein and Wolinsky (1987) , Stahl 
(1988) , Gehrig (1993) , Spulber (1996) , Rust and Hall (2003) , Loertscher (2007 , 2008 ),
or Loertscher and Niedermayer (2015) – or on the need of market making intermediaries 
to bring both sides on board, accounting for direct network effects, like Caillaud and
Jullien (2001 , 2003 ), Rochet and Tirole (2002 , 2006 ), or Gomes (2014) . With club go o ds,
there is an indirect network effect even after both sides are on board because each buyer
benefits from additional buyers because they are a source of revenue and therefore make 
the provision of the go o d more likely even though no buyer directly cares about any other
buyer. 5 

Our paper is also related to the literature on the provision of excludable public go o ds.
Perhaps the paper closest to ours in this strand of literature is Schmitz (1997) . Schmitz
studies a setup with one-sided private information and derives the optimal allocation 

for a club go o d (allowing for congestion effects) for a profit maximizing seller under
the assumption of regularity. He shows that in the limit as the number of buyers goes
to infinity (and the cost increases with the number of buyers as in Rob (1989) ), the
profit maximizing mechanism is a posted-price mechanism. Norman (2004) considers a 
similar environment to Schmitz’s with an excludable, nonrivalrous go o d and with buy-
ers whose values are privately known. However, Norman focuses on efficient provision 

subject to a constraint that the mechanism not run a deficit, whereas we consider a
more general objective for the designer. 6 Norman shows that in his model the optimal 
mechanism can be approximated with a mechanism that provides a fixed quantity of the
go o d and charges a fixed admission fee. Fang and Norman (2010) extend the analysis to
5 As discussed in Marwell (2015) , this effect also arises in all-or-nothing fundraising models, where fundrais- 
ers only collect donations if the total amount pledged exceeds a target and donors care about the amount 
raised. In concurrent work, Strausz (2015) analyzes the principal-agent problems that arise in crowdfund- 
ing. His work is complementary to ours, as we analyze the platform’s optimal pricing problem absent moral 
hazard. 

6 The results of Norman (2004) continue to hold if the designer maximizes the weighted average of profit 
and consumer surplus as long as the weight on profit is no more than that on consumer surplus because, 
when consumer surplus has a greater or equal weight, the objective can be increased by returning any profits 
to consumers, in which case the constraint on nonnegative profit binds and any positive weight on profit 
has no effect. (See Norman, 2004 , Section 2.3.) 
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nclude multiple excludable public go o ds. Hellwig (2010) considers a similar environ-
ent to Norman (2004) and shows that with sufficient inequality aversion, the optimal
echanism may involve randomized admissions. Ledyard and Palfrey (2007) characterize

nterim efficient allocation rules that satisfy interim incentive compatibility and interim
ndividual rationality constraints. 

The remainder of this paper is organized as follows. In Section 2 , we describe our
etup. Section 3 characterizes the Bayesian optimal direct mechanism. Section 4 describes
ominant strategy implementations of the mechanism. Section 5 presents asymptotic
esults. Section 6 generalizes the model to allow for congestion effects and nonmonotonic
irtual types that require ironing. Section 7 concludes. 

. Model 

We consider a setup in which a seller has one unit of a go o d that can be allocated to
ne buyer at marginal cost k ≥ 0 and to additional buyers at marginal cost of zero. We
ssume that there are no congestion effects. We relax this in the extensions section. We
enote by N the set of buyers and n ≥ 2 the number of buyers. We assume buyers have
nit demands. 
We consider both a one-sided and a two-sided setup. In the one-sided setup, the

esigner knows the seller’s cost k . In the two-sided setup, the designer acts as an inter-
ediary between the seller and the buyers, paying the seller for its input and collecting
ayments from buyers. 
Many club go o ds, including digital go o ds like songs, movies, and e-b o oks, are not

irectly sold from the producer to final consumers but rather traded via an intermediary.
t is therefore of interest and relevance to understand the Bayesian optimal mechanism
or a broker who is uncertain both about buyers’ valuations and the seller’s cost. To this
nd, we also consider the two-sided setup. In that two-sided setup, the seller’s cost k is the
eller’s private information and is viewed by the designer as drawn from the distribution
 with support [ k , k ] and positive density g . 
The designer’s objective is to maximize the weighted sum of revenue and social surplus,

ith weight α ∈ [0 , 1] on revenue. Thus, in the two-sided setup, if α = 1 , then the designer
s a profit maximizing intermediary, paying the seller for its input and collecting payments
rom buyers. A buyer’s payoff is zero if he does not trade and is equal to his value minus
he price he pays to the designer if he does trade. The seller’s payoff is the sum of the
ayments received from the designer minus the cost of providing the go o d when there is
rade. If there is no trade, the seller’s payoff is zero. 

Each buyer i draws his value v i independently from the distribution F i , with support
 v i , v i ] and positive density f i . Denote the weighted virtual value function for bidder i
y 

Φi ( v) ≡ v − α
1 − F i ( v) 
f i ( v) 

, (1)
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and denote the weighted virtual cost function for the seller by 

Γ( k) ≡ k + α
G ( k) 
g( k) . 

Note that Γ( k ) = k and Φi ( v i ) = v i . As observed by Bulow and Roberts (1989) , the
virtual cost can be interpreted as a marginal cost of production accounting for the infor-
mational rents while virtual values can be interpreted as marginal revenue. We assume 
that 

n ∑ 

i =1 
Φi ( v i ) < Γ( k ) and 

n ∑ 

i =1 
v i > k , (2) 

which ensures that trade is sometimes optimal for the designer in the two-sided setup. 

3. Optimal direct mechanisms 

3.1. One-sided setup 

We begin with the one-sided setup and focus on the regular case, where Φi is a mono-
tonically increasing function for all i . In Section 6 , we consider the extension to the
nonregular case, which requires ironing. 

Consider a direct mechanism and denote by q i ( v) the probability that agent i re-
ceives access to the club go o d when the vector of reports is v. Standard arguments
(see Appendix A for details) imply that in any incentive compatible interim individually 

rational mechanism the designer’s expected profit is 

Π = E v 

[ 

n ∑ 

i =1 
Φi ( v i ) q i ( v, k) − k min 

{ 

1 , 
n ∑ 

i =1 
q i ( v, k) 

} ] 

, (3) 

minus a constant, which, however, can be set equal to 0 by making the individual ratio-
nality constraints bind for the worst-off types. 

We look for incentive compatible, interim individually rational mechanisms that maxi- 
mize the designer’s profit Π. It is always possible to have q i ( v, k) = 0 for all i and all v , in
which case Π = 0 . Thus, avoiding deficits (ex ante, at least) is never a binding constraint
for a profit maximizing mechanism. 

In the tradition of Myerson, let us look at the term in square brackets in (3) , 

n ∑ 

i =1 
Φi ( v i ) q i ( v, k) − k min 

{ 

1 , 
n ∑ 

i =1 
q i ( v, k) 

} 

, (4) 

to find out whether pointwise maximization will give us an incentive compatible mecha- 
nism. A first result for pointwise maximization is immediate: Set 

q j ( v, k) = 0 for all j with v j ≤ Φ−1 
j (0) . (5) 
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egardless of other agents’ reports, these types only decrease the expression in (4) when
 j > 0. Let I ( v) be the set of all agents i with Φi ( v i ) > 0 : 

I ( v) ≡
{
i : v i > Φ−1 

i (0) 
}
. 

or all agents i ∈ I ( v) , set q i ( v, k) = 1 if 
∑ 

h ∈ I ( v) 

Φh ( v h ) − k > 0 , (6)

nd set q i ( v, k) = 0 otherwise. We can write this as: 

q i ( v , k) ≡
{ 

1 , if v i ∈ I ( v) and 

∑ 

h ∈ I ( v) Φh ( v h ) > k 

0 , otherwise. 
(7)

This is the allocation rule that maximizes Π pointwise. To see that it is monotone
which as is well known is necessary and sufficient for being implementable in a Bayesian
ncentive compatible way), notice first that an agent l with v l ≤ Φ−1 

l (0) never gets access
nd can hence only increase the probability of getting access by reporting something
igher. When of type v l > Φ−1 

l (0) , agent l receives access with probability 1 if 

∑ 

h ∈ I −l ( v) 

Φh ( v h ) − k > 0 , (8)

here 
I −l ( v) ≡ { j ∈ I ( v) \ l} , 

n which case reporting something higher will still give him access with probability 1, or
e increases the probability of getting access by becoming pivotal in the sense that 

∑ 

h ∈ I −l ( v) 

Φh ( v h ) − k ≤ 0 < 

∑ 

h ∈ I ( v) 

Φh ( v h ) − k. (9)

Consider the example of the case with two buyers whose values are drawn from the
niform distribution on [0, 1], and focus on the case of a revenue maximizing designer
 α = 1 ). Assume k = 0 . 25 . Fig. 1 (a) shows the regions of trade when the go o d is private
nd so can only be allocated to one buyer. Fig. 1 (b) shows the regions of trade when the
o o d is a club go o d. In the areas indicated in the upper right quadrant of Fig. 1 (b), both
uyers consume the go o d. 
As illustrated in Fig. 1 , whenever a buyer trades in the private go o d case, he or she

lso trades in the club go o d case. In addition, in the club go o d case, sometimes b oth
uyers trade and there are cases in which both buyers trade when there would be no
rade at all in the private go o d case. This occurs when the buyers have positive virtual
alues that are less than k , but the sum of the buyers’ virtual values is greater than k . 
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Fig. 1. Illustration of revenue maximizing allocation ( α = 1 ) for the one-sided setup with two buyers, labeled 
A and B , drawing values from the uniform distribution and k = 0 . 25 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

As Fig. 1 suggests, whether there is more revenue in the optimal private go o d mech-
anism relative to the optimal club go o d mechanism may depend on the underlying dis-
tributions. Thus, when a revenue-maximizing designer has a choice as to whether a go o d
should b e allo cated as a private go o d or as a club go o d, it may seem a priori unclear
which option will maximize the designer’s objective. However, as we now show, the club
go o d dominates. 

To define payments that can be used to implement the optimal allocation rule de-
scrib ed ab ove, we focus on the dominant strategy incentive compatible, ex post individ-
ually rational implementation. Our focus on dominant strategy mechanisms is motivated 

by a desire for mechanisms that are more robust in ways relevant for practical imple-
mentation. For example, concerns regarding the demanding nature of the assumption 

of common priors for practical purposes are raised by, among others, Ledyard (1986) , 
Hagerty and Rogerson (1987) and Wilson (1987) , the literature on robust mechanism 

design, e.g., Bergemann and Morris (2005) , and the literature on prior-free mechanism 

design, e.g., Loertscher and Marx (2016) . In addition, equilibrium strategies that can 

be explained to bidders in terms of dominance may be more transparent to bidders. As
described in Kagel (1995) , even dominant strategies can be difficult for novice bidders to
comprehend, with even greater difficulty for Bayesian equilibrium strategies. 

As shown by Mookherjee and Reichelstein (1992) , the existence of a dominant strategy 

implementation of the allocation rule in (7) is guaranteed by the monotonicity of the
allocation rule. Moreover, in our environment, given the assumption of regularity, an 

allocation is implementable in a Bayesian equilibrium if and only if it is impementable 
in a dominant strategy equilibrium (see Mookherjee and Reichelstein, 1992 ). Let m i ( v, k )
be the price that i has to pay. By ex post individual rationality, of course, m i ( v, k) = 0
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or all i / ∈ I ( v) . For any l ∈ I ( v) , we have 

m l ( v, k) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Φ−1 
l (0) , if 

∑ 

h ∈ I −l ( v) Φh ( v h ) − k > 0 
Φ−1 

l 

(
k −

∑ 

h ∈ I −l ( v) Φh ( v h ) 
)
, if l is pivotal ((9) holds) 

0 , otherwise. 
(10)

To see that ex post individual rationality is satisfied, note that buyer i only makes a
ositive payments when v i > Φ−1 

i (0) and he trades, in which case he pays either Φ−1 
i (0) ,

hich provides positive surplus, or Φ−1 
i 

(
k −

∑ 

h ∈ I −i ( v) Φh ( v h ) 
)
. The latter payment ap-

lies only when i is pivotal, which implies that Φi ( v i ) + 

∑ 

h ∈ I −i ( v) Φh ( v h ) > k, and so
−1 
i 

(
k −

∑ 

h ∈ I −i ( v) Φh ( v h ) 
)
> v i and buyer i has positive surplus. 

To see that dominant strategy incentive compatibility is satisfied, consider buyer i with
alue v i . If v i ≤ Φ−1 

i (0) , clearly there is no profitable deviation because the minimum
ayment conditional on trade is Φ−1 

i (0) , which is greater than the buyer’s value. Suppose
 i > Φ−1 

i (0) . A report less than or equal to Φ−1 
i (0) causes buyer i not to trade. If buyer i

eports a value greater than Φ−1 
i (0) but less than v i , to the extent it changes the outcome

or buyer i , it is because buyer i was pivotal and the change caused there to be no trade,
eaving buyer i worse off. If buyer i reports a value r i greater than v i , to the extent it
hanges the outcome for buyer i , it is because buyer i becomes pivotal and causes there
o be trade when there was no trade under truthful reporting, i.e., 

Φi ( v i ) + 

∑ 

h ∈ I −i ( v) 

Φh ( v h ) − k ≤ 0 < Φi ( r i ) + 

∑ 

h ∈ I −i ( v) 

Φh ( v h ) − k, 

hich implies that v i ≤ Φ−1 
i 

(
k −

∑ 

h ∈ I −i ( v) Φh ( v h ) 
)
. Because the amount buyer i pays

nder the deviation is equal to the right side in this inequality, the deviation is not
rofitable. 
We illustrate the payoffs to a revenue maximizing ( α = 1 ) designer associated with

his payment rule in Fig. 2 . The two panels contrast the corresponding mechanisms for
he case of private and club go o ds. The figure shows that the revenue to the designer is
eakly greater in the case of a club go o d. Revenue is the same in the region where only
ero or one buyer trades in the club go o d case, but it otherwise is higher for the club
o o d case. 

Because providing the go o d as a private go o d – or, for that matter, as a public go o d
is an option that is available in the club go o d setting but revealed to be dominated by
roviding it as a club go o d, providing the go o d as a club go o d is b etter for the designer
han providing it as either a private go o d or a public go o d. In this sense, the club go o d
ominates both private and public goods. 

As mentioned in the introduction, this is relevant when the designer can choose the
echnology with which the buyers use the asset he offers for sale. It also matters for
rtists who can choose between making a painting, which is a private go o d, or a photo-
raph, which is a club go o d. It is well known that paintings command higher prices than
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Fig. 2. Illustration of payoffs for the revenue-maximizing designer ( α = 1 ) in the optimal dominant strategy 
incentive compatible, ex post individually rational mechanism for the one-sided setup with two buyers, 
labeled A and B , drawing values from the uniform distribution and k = 0 . 25 . 

 

 

 

 

 

 

 

 

 

 

 

 

photographs because photographs are replicable. Nevertheless, if the costs of production 

and the per buyer demand for the two works of art are the same, this analysis shows
that the profit-maximizing artist will produce and sell photographs. 

In contrast, the revenue comparison between private go o ds and public go o ds without
exclusion is, as far as we are aware, an open question. The answer to this question is not
trivial because the set of admissible allocations under a private go o d neither nests nor is
nested by those for a public go o d without exclusion. 

We summarize with the following proposition. 

Proposition 1. For the one-sided setup, in the Bayesian optimal club good mechanism, 
subject to incentive compatibility and interim individual rationality, the allocation rule is 
given by (7) . In the dominant strategy incentive compatible, ex post individually rational
implementation, payments are given by (10) . Moreover, the club good dominates both 

private and public goods. 

As noted by Bulow and Roberts (1989) , virtual values can be interpreted as marginal
revenue, treating the (change in the) probability of trade as the (marginal change in)
quantity. Following this insight, we can illustrate the basic tensions present in the optimal 
club go o d allo cation problem by examining a standard monop oly pricing problem with
decreasing marginal costs. Consider linear demand P = a −Q, with marginal revenue 
P = a − 2 Q, and a cost function with marginal cost k = 0 . 5 up to a quantity of 0.25 and
no incremental cost thereafter. Then the monopolist chooses the quantity that equates 
marginal revenue with marginal cost. As shown in first pair of graphs in Fig. 3 , when
a is sufficiently large, this occurs with Q = 0 . 75 , where marginal revenue is equal to
zero. As a decreases, we reach a range where there are two local maxima for profit, one
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Fig. 3. Profit maximization with demand P = a − Q . 

c  

e  

g
 

r  

t  

p  

o  

o  

m  

p

orresponding to marginal revenue equal to k and one corresponding to marginal revenue
qual to zero. For a sufficiently small, such as in the final pair of graphs in Fig. 3 , the
lobal maximum for profit occurs where marginal revenue is equal to k . 

In this monopoly pricing example, the monopolist either prices such that marginal
evenue is equal to zero or such that marginal revenue is equal to k . As demand shifts
o the left, the monopolist switches from pricing based on the marginal cost of zero to
ricing based on a marginal cost of k . We observe a similar shift from allocating based
n a marginal cost of zero to allocating based on a marginal cost of k in the Bayesian
ptimal mechanism for a club go o d. However, a difference is that in the Bayesian optimal
echanism for club go o ds, there is price discrimination, with different buyers potentially
aying different amounts for the go o d. 
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Fig. 4. Illustration of revenue-maximizing outcomes ( α = 1 ) with n = 4 , types drawn from the Uniform 

distribution on [0, 1], and k = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the Bayesian optimal mechanism for a club go o d, when many buyers have types
that satisfy the criteria that v i ≥ Φ−1 

i (0) , then each individual buyer is less likely to be
pivotal in determining whether it is optimal for the designer to allocate the good. In the
case in which no individual buyer is pivotal, each buyer i pays Φ−1 

i (0) . When one or
more buyers are pivotal (if buyers draw their values from the same distribution it will
always be the buyers with the highest values that are pivotal), a pivotal buyer i pays
more than Φ−1 

i (0) and a nonpivotal buyer i pays Φ−1 
i (0) . If there is only one buyer i with

v i ≥ Φ−1 
i (0) and Φi ( v i ) ≥ k, then buyer i pays Φ−1 

i ( k) ∈ ( k, v i ) . 
When buyers are symmetric, the comparative statics for the monopoly pricing problem 

and the Bayesian optimal club go o d mechanism correspond. In the monopoly problem, 
for a sufficiently large, the optimal price corresponds to a marginal revenue of zero. In the
optimal club go o d mechanism, for n sufficiently large, the optimal mechanism converges
to a posted price mechanism with price equal to Φ−1 (0) . 

For the case of a revenue maximizing designer with n = 4 , types drawn from the
Uniform distribution on [0, 1], and k = 0 . 1 , the variety of possible outcomes is illustrated
in Fig. 4 . 

Although Fig. 4 shows positive payoffs for the revenue-maximizing designer, the 
Bayesian optimal club go o d mechanism is not necessarily deficit free. To see this, con-
sider a simple example with three buyers drawing from the Uniform distribution on [0, 
1] and k = 1 . 6 . If v 1 = v 2 = v 3 = 1 , then no individual buyer is pivotal, so each pays
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nly Φ−1 (0) = 1 / 2 , which implies that the designer does not cover her costs. As another
xample, suppose two buyers draw from distribution F ( x ) = 

√ 

x on [0, 1] and k = 0 . 95
the virtual value does not require ironing for x > 

4 
9 ). If v 1 = v 2 = 0 . 98 , then each buyer

s pivotal. Each pays Φ−1 ( 1 − Φ(0 . 98) ) = 0 . 47 , whic h implies that the designer does not
over her costs. 

In a simulation of 1000 Bayesian optimal auctions for a club go o d with 5 buyers in
ach auction, values drawn from the Uniform distribution on [0, 1], and k = 2 , we found
hat 7 out of the 1000 auctions resulted in negative profit to the designer, 872 auctions
esulted in zero profit to the designer, and the remaining 121 resulted in positive profit
o the designer. 

One might think that for some environments the designer might prefer to commit
o selling the go o d as a private go o d b ecause doing so would eliminate the p ossibility
f running a deficit. In fact, for some type realizations, revenue might be substantially
arger if the designer committed to allocating the good to only one agent. For example,
f n = 2 and types are, with high probability, either low or high, and if Φ−1 ( k) is more
han twice as large as Φ−1 (0) , then revenue when both agents are of the high type, with
either being pivotal, is Φ−1 ( k) with a private go o d and only 2Φ−1 (0) with a club go o d.
owever, the expected payoff for the designer is lower with a private go o d b ecause of

he additional revenue in the cases when the go o d is allo cated with only one agent being
ivotal. 
More formally, assume n ≥ 2 with types drawn independently from F and k = 0 .

xpected revenue is E v [ 
∑ n 

i =1 Φ( v i ) q i ( v, k) ] . This is maximized by setting q i = 1 if v i ≥
−1 (0) and q i = 0 otherwise, which is the case with a club go o d. The restriction to a
rivate go o d is a restriction that 

∑ n 
i =1 q i ( v, k) ≤ 1 , which of course can only reduce the

xpected payoff. 

.2. Two-sided setup 

The intermediary-optimal mechanism in the two-sided setup has the allocation rule
7) with k replaced by Γ( k ). Thus, under condition (2) , it is sometimes but not always
ptimal for the go o d to be produced. 

As in the one-sided setup, standard arguments imply that in any incentive compatible
nterim individually rational mechanism the designer’s expected profit is 

Π = E v ,k 

[ 

n ∑ 

i =1 
Φi ( v i ) q i ( v, k) − Γ( k) min 

{ 

1 , 
n ∑ 

i =1 
q i ( v, k) 

} ] 

, 

inus a constant, which can be set equal to 0 by making the individual rationality
onstraints bind for the worst-off types. In an incentive compatible, interim individually
ational mechanism that maximizes the designer’s profit Π, it must be that q j ( v, k) = 0
or all j with v j ≤ Φ−1 

j (0) . In addition, we require that there be no trade by any agent
 q j ( v, k) = 0 for all j ) if when one considers the set I ( v) , 

∑ 

h ∈ I ( v) Φh ( v h ) ≥ Γ( k) . Thus,
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in the two-sided setup, 

q i ( v, k) ≡
{ 

1 , if v i ∈ I ( v) and 

∑ 

h ∈ I ( v) Φh ( v h ) > Γ( k) 
0 , otherwise. 

(11) 

As in the one-sided case, we have found the allocation rule that maximizes Π pointwise. 
Proceeding as in the one-sided case, say that agent h is pivotal if 

∑ 

h ∈ I −l ( v) 

Φh ( v h ) − Γ( k) ≤ 0 < 

∑ 

h ∈ I ( v) 

Φh ( v h ) − Γ( k) . (12) 

one can show that in the dominant strategy, ex post individually rational implementation, 
for any l ∈ I ( v) , we have 

m l ( v, k) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

Φ−1 
l (0) , if 

∑ 

h ∈ I −l ( v) Φh ( v h ) − Γ( k) > 0 

Φ−1 
l 

(
Γ( k) −

∑ 

h ∈ I −l ( v) Φh ( v h ) 
)
, if l is pivotal ( (12) holds) 

0 , otherwise 
(13) 

and the payment to the seller when reports are ( v , k ) is zero if there are no trades and
otherwise is the worst type for the seller such that the seller continues to produce,
i.e., 

m 

S ( v, k) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

k , if Γ( k ) ≤
∑ 

h ∈ I ( v) Φh ( v h ) 

Γ−1 
(∑ 

h ∈ I ( v) Φh ( v h ) 
)
, if Γ( k) < 

∑ 

h ∈ I ( v) Φh ( v h ) ≤ Γ( k ) 
0 , otherwise. 

(14) 

The same arguments as in the one-sided setup further imply that providing the go o d
as a club go o d dominates its provision as either a private go o d or a public go o d. We
summarize these results with the following proposition. 

Proposition 2. For the two-sided setup, in the Bayesian optimal club good mechanism, 
subject to incentive compatibility and interim individual rationality, the allocation rule 
is given by (11) . In the dominant strategy, ex post individually rational implementation, 
payments are given by (13) . Moreover, the club good dominates both private and public
goods. 

As an illustration, assuming that the buyers draw their values from the distribution 

F ( v) = 1 − (1 − v) β with v ∈ [0 , 1] and β > 0 , we can obtain closed-form solutions
because the virtual value function is linear. For example, for α = 1 , we have Φ( v) =
(( β + 1) v − 1) /β, which implies that the inverse virtual value function is also is linear:
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−1 ( y) = ( βy + 1) / ( β + 1) . Consequently, the price buyer l faces at ( v, k ) is 

m l ( v, k) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 
β + 1 , if 

∑ 

h ∈ I −l ( v) Φh ( v h ) − Γ( k) > 0 

1 + βΓ( k) + I −l 

β + 1 −
∑ 

h ∈ I −l ( v) v h , if l is pivotal ( (12) holds) 

0 , otherwise, 

(15)

hile the seller’s price is as in (14) , with 

∑ 

h ∈ I ( v) Φh ( v h ) = 

1 
β

(
( β + 1) 

∑ 

i ∈ I ( v) v i − I 
)
. 

. Implementation 

.1. One sided: club good clock auction 

In this section we define a club go o d clo ck auction that implements the Bayesian
ptimal mechanism in the one-sided setup. To do so, we adapt the definition of a clock
uction in Loertscher and Marx (2016) and Milgrom and Segal (2015) to the club good
etting. In a clock auction, active agents have the option to exit as the clock price
ncreases, but agents who exit remain inactive forever after exiting. In contrast to a clock
uction for a private go o d, in the club go o d setting, agents who exit may trade. 

We focus on an increasing clock auction, where the price begins low with all buyers
ctive and gradually increases. As we discuss below, this mechanism has an advantage
ver a decreasing clock in that it has the potential to preserve the privacy of some or all
rading agents. In contrast, with a decreasing clock, the mechanism must elicit the types
f all buyers with positive virtual types (to identify whether they are in the trading set)
henever there is trade, so a decreasing clock never preserves the privacy of any trading
gents. See Milgrom and Segal (2015) and Loertscher and Marx (2016) on the value of
rivacy preservation for practical implementation. 
The club go o d clo ck auction must elicit two types of information. It must elicit whether

rade is optimal for the designer, and, if so, it must identify whether agents are pivotal or
ot. The auction proceeds by first increasing the clock until it is determined that trade
s optimal for the designer. This is stage 1. Then the auction proceeds to stage 2, which
ontinues until either there are no longer any active bidders or it is determined that the
econd-highest valuing buyer is not pivotal. If the second-highest valuing buyer is pivotal,
hen the value of the highest is required to determine prices, and so the auction must
ontinue until all exit. It is always the case that buyers with higher values are more “at
isk” for being pivotal, so the determination of pivotal buyers can proceed based on a
eries of thresholds. 

In the interest of reducing notation, we assume that buyers are symmetric in that they
ll draw their types from the same distribution F . Thus, we drop the agent subscript on

he distribution and virtual value function. 
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At p erio d t ∈ {0, 1, ...} of a club good clock auction , the state is ω t = ( stage , N 

A , x, z , p ) .
The first component of the state, stage ∈ {stage 1, stage 2, trade, no trade}, specifies
whether the auction has not yet identified the trading set (stage 1), has identified the
trading set but not yet all the information required to determine prices (stage 2), has
ended with trade (trade), or has ended without trade (no trade). The remaining compo-
nents of the state are: the set of active buyers N 

A ⊆ N with cardinality n 

A , the vector
x of exit prices greater than Φ−1 (0) for the nonactive buyers who have exited at such
prices, the vector z of indices of the nonactive buyers corresponding to the exit prices in
x , and the clock price p ∈ R . Let Ω be the set of all possible states. 

A club go o d clo ck auction starts in state ω 0 ≡ ( stage 1 , N , ∅ , ∅ , p ) with p ≤ v . 
The transition from state ω t to ω t +1 relies on the trade determination function τ :

Ω → R and the pivotal agent determination function ρ : Ω → R , where we can write the
functions as depending only on the set of active agents and vector of exit prices greater
than Φ−1 (0) , rather than the entire state, as follows: 

τ( N 

A , x) ≡ Φ−1 

( 

k 

n 

A 

− 1 
n 

A 

dim x ∑ 

h =1 

Φ( x h ) 
) 

and for n 

A ≥ 2, 

ρ( N 

A , x) ≡ Φ−1 

( 

k 

n 

A − 1 −
1 

n 

A − 1 

dim x ∑ 

h =1 

Φ( x h ) 
) 

. 

To understand the usefulness of these functions, consider a point in a clock auction 

with a clock price greater than Φ−1 (0) , where n 

A buyers remain active, dim x buyers
have exited at prices x , all greater than Φ−1 (0) , and the remaining buyers have exited at
prices less than or equal to Φ−1 (0) . If the n 

A active buyers continue to be active at a clock
price of τ( N 

A , x) , then we can conclude that the condition for trade, 
∑ 

h ∈ I ( v ) Φ( v h ) ≥ k,

is satisfied. To see this, note that in this case, the set I ( v) consists of the dim x buyers
with types x as well as the n 

A active buyers whose types are at least τ( N 

A , x) , which
implies that 

∑ 

h ∈ I ( v ) 

Φ( v h ) ≥
dim x ∑ 

h =1 

Φ( x h ) + n 

A Φ( τ( N 

A , x)) = 

dim x ∑ 

h =1 

Φ( x h ) + n 

A 

( 

k 

n 

A 

− 1 
n 

A 

dim x ∑ 

h =1 

Φ( x h ) 
) 

= k, 

which is the condition for trade. 
Furthermore, if the condition for trade is satisfied and n 

A ≥ 2 active buyers continue 
to be active at a clock price of ρ( N 

A , x) , then we can conclude that no agent is pivotal.
To see this, note that for any active bidder l , if n 

A ≥ 2 so that there is at least one other
active bidder, then each active bidder’s value is at least Φ( ρ( N 

A , x)) , and so 
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∑ 

h ∈ I ( v ) \ l 
Φ( v h ) ≥

dim x ∑ 

h =1 

Φ( x h ) + ( n 

A − 1)Φ( ρ( N 

A , x)) 

= 

dim x ∑ 

h =1 

Φ( x h ) + ( n 

A − 1) 
( 

k 

n 

A − 1 −
1 

n 

A − 1 

dim x ∑ 

h =1 

Φ( x h ) 
) 

= k, 

o no such bidder is pivotal. Because the dim x bidders that exited at prices greater than
−1 (0) have lower values than the active bidders, none of those bidders is pivotal either.
If the condition for trade is satisfied and n 

A = 1 , then the final active bidder is pivotal
f and only if 

∑ dim x 
i =1 Φ( x i ) ≤ k. It is only necessary to have this final bidder reveal his

ype if there are other pivotal bidders. It is sufficient to check whether the exited bidder
ith the highest value would be pivotal if the active bidder’s value were equal to the
urrent clock price. The last bidder to exit may be pivotal if 

∑ dim x −1 
i =1 Φ( x i ) + p ≤ k. If

his is the case, we must continue to increase the clock price until either the final active
idder exits or the last bidder to exit is revealed not to be pivotal. This is necessary in
he context of dominant strategy implementation because the designer needs to know the
alues for all other trading bidders in order to determine the price for a pivotal bidder. 

A club go o d clo ck auction continues until a state is reached that has a first component
qual to either “no trade” or “trade.” In the case of “no trade,” the auction ends with
o trade. In the case of “trade,” the auction ends with trade by the remaining active
idders as well as by those identified in the vector z as exiting at prices above Φ−1 (0) .
he prices are given by the pricing rule described below. The auction stays in stage 1
ntil either all buyers exit, in which case there is no trade, or the clock price reaches
he level specified by the trade determination function τ( N 

A , x) and moves to stage 2, in
hich case there will be trade. The auction stays in stage 2 until either all buyers exit,
nly 2 active buyers remain and the clock reaches the level specified by the pivotal agent
etermination function ρ( N 

A , x) , or only 1 active buyer remains but it is possible that
he second-highest valuing bidder might be pivotal. 

• Stage 1 : For t ∈ {0, 1, ...}, if ω t = ( stage 1 , N 

A , x, z , p ) , then ω t +1 is determined as
follows: 

If n 

A = 0 , ω t +1 = ( no trade , N 

A , x, z , p ) . 
If n 

A > 0 and p < Φ−1 (0) , then increase the clock from p until either a buyer
i exits at clock price ˆ p ≤ Φ−1 (0) or the clock reaches Φ−1 (0) with no exit. If
there is an exit, define ω t +1 = ( stage 1 , N 

A \ i, x, z , ̂  p ) , and otherwise ω t +1 = ( stage
1, N 

A , x, z , Φ−1 (0)) . 
If n 

A > 0 and p ≥ Φ−1 (0) , then increase the clock from p until either a buyer i
exits at clock price ˆ p ≤ τ( N 

A , x) or the clock price reaches ˆ p ≥ τ( N 

A , x) with no
exit. 7 If there is an exit, define ω t +1 = ( stage 1 , N 

A \ i, ( x, ̂  p ) , ( z , i ) , ̂  p ) , and otherwise
A 
ω t +1 = ( stage 2 , N , x, z , ̂  p ) . 

7 If the clock price is initially greater than or equal to the threshold, then the clock stops immediately. 
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• Stage 2: For t ∈ {1, 2, ...}, if ω t = ( stage 2 , N 

A , x, z , p ) , then ω t +1 is determined as
follows: 

If n 

A = 0 , ω t +1 = ( trade , N 

A , x, z , p ) . 
If n 

A ≥ 2, then increase the clock from p until either a buyer i exits at clock price ˆ p ≤
ρ( N 

A , x) or the clock price reaches ˆ p ≥ ρ( N 

A , x) with no exit. If there is an exit, de-
fine ω t +1 = ( stage 2 , N 

A \ i, ( x, ̂  p ) , ( z , i ) , ̂  p ) , and otherwise ω t +1 = ( trade , N 

A , x, z , ̂  p ) .
If n 

A = 1 : 
If k < 

∑ dim x −1 
i =1 Φ( x i ) + Φ( p ) , then the second-highest valuing bidder is revealed not

to be pivotal, so the auction can end: ω t +1 = ( trade , N 

A , x, z , p ) . 
Otherwise, increase the clock from p until either the remaining buyer i ex- 

its at clock price ˆ p ≤ Φ−1 ( k −
∑ dim x −1 

i =1 Φ( x i )) or the clock price reaches ˆ p ≥
Φ−1 ( k −

∑ dim x −1 
i =1 Φ( x i )) with no exit. If there is an exit, define ω t +1 =

( trade , N 

A \ i, ( x, ̂  p ) , ( z , i ) , ̂  p ) , and otherwise ω t +1 = ( trade , N 

A , x, z , ̂  p ) . 

• Pricing rule : For t ∈ {1, 2, ...}, if ω t = ( trade , N 

A , x, z , p ) , then buyers in T ≡ N 

A ∪
{ z 1 } ∪ ... ∪ { z dim z } trade, with buyer l ∈ T paying m l ( ̂  v , k ) , where ˆ v is defined by, for
l ∈ N , 

ˆ v l ≡

⎧ ⎪ ⎨ 

⎪ ⎩ 

v , if l / ∈ T 

p, if l ∈ N 

A 

x i , otherwise, where l = z i . 

Thus, conditional on using an increasing clock auction to implement the Bayesian 

optimal club go o d mechanism in dominant strategies, this club go o d clo ck auction elicits
the minimum information required. That information includes sufficient detail about 
types to discern whether 

∑ 

h ∈ I ( v) Φh ( v h ) is greater than k or not, to determine whether
trade should occur, and sufficient detail about the types of trading agents to determine
which, if any, agents are pivotal and the corresponding price for any pivotal agents. For
example, if the types are such that no agent is pivotal, then the clock price stops at
the point when this is apparent and does not require full revelation of agents’ types,
preserving the privacy of high-valuing nonpivotal agents. 

4.1.1. Incentives in the club good clock auction 

Bidders in the club go o d clo ck auction have an incentive to exit at their values. Because
prices for trading agents are at least Φ−1 (0) and because bidders who exit a prices less
than or equal to Φ−1 (0) do not trade, a bidder with a value less than or equal to Φ−1 (0)
has an incentive to exit at his value, and bidders with a value greater than Φ−1 (0) have
an incentive to stay active at least until the price exceeds Φ−1 (0) . 

Case 1: v i > Φ−1 (0) , 
∑ 

h ∈ I ( v) Φ( v h ) > k, i is not pivotal: With truthful bidding, there
is trade and bidder i pays Φ−1 (0) . If bidder i exits at a price greater than Φ−1 (0)
but less than v i or at a price greater than v i , then there is no change. Because there
is trade and i is not pivotal, a different exit point greater than Φ−1 (0) does not
affect whether there is trade or whether i is pivotal. 
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Case 2: v i > Φ−1 (0) , 
∑ 

h ∈ I ( v) Φ( v h ) > k, i is pivotal: With truthful bidding, there is

trade and bidder i pays Φ−1 
(
k −

∑ 

h ∈ I −i ( v) Φ( v h ) 
)
. If bidder i exits at a price

greater than Φ−1 (0) but less than v i , then either there is no change or there is no
longer trade, in which case bidder i is worse off. If bidder i exits at a price greater
than v i , then there is still trade and bidder i is still pivotal, and so the amount
bidder i pays is unchanged. 

Case 3: v i > Φ−1 (0) , 
∑ 

h ∈ I ( v) Φ( v h ) ≤ k: With truthful bidding, there is no trade. If
bidder i exits at a price less than v i , then there continues to be no trade. If bidder
i exits at a price greater than v i , either there is no change or bidder i becomes
pivotal and there is trade. In that case, bidder i pays Φ−1 

(
k −

∑ 

h ∈ I −i ( v) Φ( v h ) 
)
.

Because for this case we assume, Φ( v i ) ≤ k −
∑ 

h ∈ I −i ( v) Φ( v h ) , it follows that 

Φ−1 

⎛ 

⎝ k −
∑ 

h ∈ I −i ( v) 

Φ( v h ) 

⎞ 

⎠ ≥ Φ−1 ( Φ( v i ) ) = v i , 

and so deviator pays an amount at least v i , implying that the deviation is not
profitable. 

Thus, it is a dominant strategy for each bidder to exit the auction when the clock
rice reaches his value. We summarize with the following proposition. 

roposition 3. The club good clock auction implements the Bayesian optimal club good
llocation in dominant strategies. 

As defined by Li (2015) , a strategy s i is obviously dominant if, for any deviating
trategy s 0 , starting from any earliest information set where s 0 and s i disagree, the best
ossible outcome from s 0 is no better than the worst possible outcome from s i . In the
lub go o d clo ck auction, the strategy for a buyer of exiting at its value is not an obviously
ominant strategy. 8 

.1.2. Privacy preservation in the club good clock auction 

In the club go o d clo ck auction, we can show that the clock price never exceeds Φ−1 ( k) ,
o buyers with values greater than Φ−1 ( k) are never asked to reveal any more than the
act that their value exceeds that threshold. The intuition for this result is that if the
lock price reaches Φ−1 ( k) with two or more active buyers, then it is revealed that the
ondition for trade is satisfied and that no buyer is pivotal, and so the auction ends. If
8 Consider a buyer with value v i > Φ−1 (0) who considers deviating by exiting at price ˆ v < v i . Suppose 
he clock price reaches ˆ v . Then the buyers’s payoff under the deviation will be q i ( ̂  v , v −i )( v i − p i ( ̂  v , v −i )) . 
n the b est p ossible outcome from the deviation, q i ( ̂  v , v −i ) = 1 and i is not pivotal and so pays Φ−1 (0) , 
or surplus of v i − Φ−1 (0) . At the information set in which the clock price is ˆ v , it may be unclear as to 
hether there will be trade. In particular, it may be that there is no trade even when buyer i exits at v i . 
hus, the b est p ossible outcome from exit at ˆ v exceeds the worst possible outcome from exit at v i from the 
 ersp ective of that information set. 
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the clock price reaches Φ−1 ( k) with only one active buyer, then it is again revealed that
the condition for trade is satisfied and that buyers other than the one active buyer are
not pivotal, so their purchase price is Φ−1 (0) . The purchase price for the one active buyer
is determined by the exit prices of the other buyers, which have already been revealed.
Thus, if the clock price reaches Φ−1 ( k) , no further information is required to determine
whether the condition for trade is satisfied or the purchase prices of any of the buyers. 

Formally, if n 

A ≥ 1, then the trade determination price is 

τ( N 

A , x) = Φ−1 

( 

k 

n 

A 

− 1 
n 

A 

dim x ∑ 

h =1 

Φ( x h ) 
) 

≤ Φ−1 
(

k 

n 

A 

)
≤ Φ−1 ( k ) , 

so the trade determination price never exceeds Φ−1 ( k) . Thus, the clock price never ex-
ceeds Φ−1 ( k) during stage 1 of the auction. In stage 2, as long as two or more buyers are
active, the clock price never exceeds ρ( N 

A , x) , which is no greater than Φ−1 ( k) : 

ρ( N 

A , x) = Φ−1 

( 

k 

n 

A − 1 −
1 

n 

A − 1 

dim x ∑ 

h =1 

Φ( x h ) 
) 

≤ Φ−1 
(

k 

n 

A − 1 

)
≤ Φ−1 ( k ) . 

Finally, if n 

A = 1 in stage 2 of the auction, then the clock price does not exceed Φ−1 ( k −∑ dim x −1 
i =1 Φ( x i )) ≤ Φ−1 ( k) . Thus, the clock price never exceeds Φ−1 ( k) . 
We summarize in the following proposition. 

Proposition 4. The club good clock auction is privacy preserving for all buyers with values
greater than Φ−1 ( k) . 

4.2. Two sided: revenue sharing contracts 

In a variety of real-world situations, intermediaries who enable trade between produc- 
ers and buyers of club go o ds may need to contract with the producer before buyers are
present. Most naturally, this occurs when production precedes sales and marketing, for 
example because of the innovative nature of the go o d, as would typically be the case
with works of art. We next show that this variation in the timing of events changes the
intermediary’s mechanism design problem from a club go o d problem to a standard pro-
curement problem even though it does not affect the nonrivalrous nature of the good in
question. We also show that it gives raise to a contractual arrangement that is widely
used in practice, for example, by iTunes for songs and e-b o oks, namely shared revenue
between the intermediary and the seller. 

To b e sp ecific, we supp ose that the intermediary and the seller have to contract in
stage 1 before any buyer arrives in stage 2. There is no loss in generality by assuming
that there is no discounting, as will be shown shortly. Let n be the number of buyers who
draw their types independently from the regular distribution F . To conserve on notation, 
for x ≥ Γ( k ) , define Γ−1 ( x ) to be k . 
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From Propositions 1 and 2 , we know that it is optimal to sell the go o d as a club go o d.
enote the maximizer of x (1 − F ( x )) over x by Φ−1 (0) . The maximized exp ected p er
uyer revenue is thus Φ−1 (0)(1 − F (Φ−1 (0))) . Let R denote expected revenue from stage
. 9 With this seemingly innocuous change in assumptions, the intermediary’s problem
ecomes a standard procurement problem, with the willingness to pay of the risk-neutral,
atient intermediary being given by R . Facing a seller whose cost k is drawn from the reg-
lar distribution G with virtual cost Γ( k ), the intermediary-optimal mechanism consists
f the take-it-or-leave-it offer to the seller p S ≡ Γ−1 ( R) , as is well known from standard
echanism design theory. 
Under the assumptions that the support of G is [0 , k ] and that G ( k ) is a generalized

areto distribution of the form G ( k) = ( k/ k ) σ, 10 we have Γ−1 ( k) = σk/ ( σ + 1) and 

p S = 

σ

σ + 1 R. 

hat is, the optimal take-it-or-leave-it offer is a percentage of revenue. Interestingly,
ather than setting a take-it-or-leave-it offer, the intermediary can equivalently implement
his optimal contract by offering the percentage σ/ ( σ + 1) of realized revenue. Moreover,
s long as the intermediary and the seller are equally informed about demand and both
elieve that buyers draw their types independently from F , it is immaterial whether the
ntermediary or the seller sets the buyers’ price p B 

= Φ−1 (0) . Thus, under the assumption
f a generalized Pareto distribution, the predictions of this model are consistent with
pple’s controversial e-b o oks contracting mo del. This consisted of a revenue sharing
greement with publishers that left the authority to set the buyers’ prices with the sellers.
n the surface, this arrangement may appear to be different from Apple’s business model

or songs and movies on iTunes, which also involves revenue sharing but leaves the right
o set buyers’ prices with Apple. However, as observed by Loertscher and Niedermayer
2008) in the context of private go o ds, the broker-optimal fee is independent of the buyers’
istribution F if the seller’s distribution is a generalized Pareto distribution. Therefore,
t does not even matter whether the intermediary and the seller are equally well informed
bout demand. 

The result that the optimal procurement contract can be implemented with a fee levied
n realized revenue generalizes to seller’s type distributions of the form G ( k) = 

(
k−k 

k −l 

)σ

.
s shown by Loertscher and Niedermayer (2008) , these distributions are equivalent to

inear virtual cost functions Γ( k) = 

σk+1 −k 
σ . This linearity obviously implies linearity of

he inverse virtual cost function: Γ−1 ( y) = 

σy+ k 
σ+1 . Any risk-neutral seller will be indifferent

etween receiving p S or E[Γ−1 ( Y )] if and only if Γ−1 is linear, where Y is realized
evenue, whose distribution is such that R = E[Y ] . As before, whether the seller or the
9 All that matters in this setup is expected discounted future revenue, which is why the assumption that 
here is no discounting is without loss. If the discount factor were some δ > 0 and expected stage 2 revenue 
ere ˆ R , we would simply have R = δ ˆ R . 

10 See Loertscher and Niedermayer (2015) for a micro-foundation for why generalized Pareto distributions 
ay be a particularly good approximation of the supply side in thin markets. 
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intermediary sets the reserve price buyers face is immaterial. These results are related 

to but distinct from the observations of Loertscher and Niedermayer (2008 ; 2015 ), who
analyze intermediary-optimal auctions for a seller of a private go o d. They notice that
for this family of distributions, the optimal fee function is linear and independent of the
buyers’ distribution. With a private go o d, however, the seller has to set the reserve price
that the buyers face because the optimal reserve price varies with the seller’s private
information about his cost. 

5. Asymptotics in the two-sided setup 

In some two-sided setups, it is reasonable to think of the number of buyers as being
very large, for example for iTunes and other digital products. Thus, we consider the
asymptotic properties of our mechanisms. For the purposes of this section, for simplicity 

assume that buyers are symmetric. 
Schmitz (1997) provides asymptotic results for the one-sided setup. He allows the 

number of buyers to go to infinity and assumes, as in Rob (1989) that k n = κn, where
κ ∈ (0, 1). Schmitz (1997 , Proposition 3) shows that in the optimal mechanism the
club go o d is provided if and only if E [ max { 0 , Φ( v i ) } ] > κ, which implies that when this
condition holds, the club go o d is provided with probability one in the limit. This is in
contrast to the results of Rob (1989) and Mailath and Postlewaite (1990) for the case of
nonexcludable public go o ds. They show that in their setup, the go o d is provided with
probability zero in the limit. 

We extend this result to the two-sided setup. We assume that the cost when there are
n buyers is k n ≡ κnk , where κ ∈ (0, 1) and k is drawn from distribution G . Thus, k n 
has distribution H ( k n ) ≡ G ( k n /( n κ)) on [κn k , κn k ] with density h ( k n ) = 

1 
nκg( k n / ( nκ)) .

Then the weighted virtual cost associated with distribution H is ˆ Γ( k n ) ≡ k n + αH( k n ) 
h ( k n ) =

k n + αnκG ( k n / ( nκ)) 
h ( k n / ( nκ)) , and so ˆ Γ( k n ) = nκΓ( k n / ( nκ)) = nκΓ( k) . 

Under this assumption, in the two-sided case, when there are n buyers, it is optimal
for the go o d to be provided if and only if 

∑ 

h ∈ I ( v) Φh ( v h ) > 

ˆ Γ( k n ) . Note that 

lim 

n →∞ 

Pr 

⎛ 

⎝ 

∑ 

h ∈ I ( v) 

Φ( v h ) > 

ˆ Γ( k n ) 

⎞ 

⎠ = 1 

⇔ lim 

n →∞ 

Pr 

⎛ 

⎝ 

∑ 

h ∈ I ( v) 

Φ( v h ) > nκΓ( k) 

⎞ 

⎠ = 1 

⇔ lim 

n →∞ 

Pr 

⎛ 

⎝ 

1 
Γ( k) 

1 
n 

∑ 

h ∈ I ( v) 

Φ( v h ) > κ

⎞ 

⎠ = 1 
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⇔ lim 

n →∞ 

E 

⎡ 

⎣ 

1 
Γ( k) 

1 
n 

∑ 

h ∈ I ( v) 

Φ( v h ) 

⎤ 

⎦ > κ

⇔ lim 

n →∞ 

E 

[ 

1 
Γ( k) 

1 
n 

n ∑ 

i =1 
max { 0 , Φ( v i ) } 

] 

> κ

⇔ E 

[
1 

Γ( k) 

]
lim 

n →∞ 

E 

[ 

1 
n 

n ∑ 

i =1 
max { 0 , Φ( v i ) } 

] 

> κ

⇔ E [ max { 0 , Φ( v) } ] > κE [ Γ( k) ] . 

Thus, we have the following result. 

roposition 5. In the optimal mechanism in the two-sided setup, the club good is provided
ith probability one in the limit as the number of buyers goes to infinity and k = κn, where
∈ (0, 1), if and only if E [ max { 0 , Φ( v) } ] > κE [ Γ( k) ] . 

Thus, under the condition of Proposition 5 , the club go o d intermediary facilitates trade
ith probability one in the limit. Using E[ max { 0 , Φ( v) } ] = Φ−1 (0)(1 − F (Φ−1 (0))) and
 [ Γ( k) ] = k , 11 we can restate the necessary and sufficient condition of Proposition 5 as 

Φ−1 (0)(1 − F (Φ−1 (0))) > κk . 

or example, with values drawn from the uniform distribution on [0, 1] and k = 1 , the
ondition is κ < 

1 
4 . 

. Extensions 

.1. Congestion effects 

We consider two types of congestion effects, those with costs borne by the seller and
hose that diminish the value to buyers. 

We allow for the possibility that the seller incurs incremental costs to support addi-
ional buyers by assuming that if the designer allocates the go o d to � buyers, then the
eller’s cost is k + c ( � ) , where k is drawn from distribution G and c ( ·) is a nonnegative
ondecreasing function with c (0) = 0 . Thus, the cost of the first unit is k + c (1) and
he incremental cost associated with selling � units rather than one unit is c ( � ) − c (1) .
he case of c ( ·) ≡ 0 corresponds to no congestion costs for the seller. Given � , the
eller’s cost k + c ( � ) has distribution 

ˆ G ( x ; � ) ≡ G ( x − c ( � )) , with associated virtual cost
11 These follow using E[ max { 0 , Φ( v) } ] = 

∫ v 
v 

max { 0 , Φ( v ) } f( v ) dv = 

∫ v 
Φ−1 (0) 

(
v − 1 −F ( v) 

f( v) 

)
f( v ) dv and 

 [ Γ( k) ] = 

∫ k 
k 

(
k + 

G ( k) 
g( k) 

)
g( k ) dk and using integration by parts. 
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ˆ Γ( x ; � ) ≡ x + 

ˆ G ( x ; � ) 
ˆ g ( x ; � ) = x + 

G ( x −c ( � )) 
g( x −c ( � )) , so ˆ Γ( k + c ( � ); � ) = Γ( k) + c ( � ) . Thus, we can view

the seller as having virtual cost Γ( k) + c ( � ) . 
We also allow for the possibility that buyers’ values are diminished by increases in the

number of buyers by assuming that buyer i with type v i has value v i θ( � ) for the go o d if
the go o d is supplied to � buyers, where θ( ·) is a nonincreasing function with value in [0,
1] and θ(1) = 1 . The case of θ( ·) ≡ 1 corresponds to no congestion costs for buyers. 

In any incentive compatible interim individually rational mechanism the designer’s 
expected profit is 

Π = E v ,k 

⎡ 

⎣ 

n ∑ 

i =1 
Φi ( v i ) θ

⎛ 

⎝ 

n ∑ 

j=1 
q j ( v, k) 

⎞ 

⎠ q i ( v, k) − Γ( k) min 

{ 

1 , 
n ∑ 

i =1 
q i ( v, k) 

} 

− c 

( 

n ∑ 

i =1 
q i ( v, k) 

) ] 

, 

minus a constant, which, as before, can be set equal to 0 by making the individual
rationality constraints bind for the worst-off types. 

Recall that I ( v) ≡
{
i : v i > Φ−1 

i (0) 
}
. Relabel the buyers in I ( v) as 1 , ..., | I ( v) | so that

Φ1 ( v 1 ) ≥ ... ≥ Φ| I ( v) | ( v | I ( v) | ) , breaking ties at random. Relabel the buyers not in I ( v)
with indices greater than | I ( v) | . If I ( v) = ∅ , let q = 0 and otherwise let q be such that 

q ∈ arg max 

h ∈{ 1 ,..., | I ( v) |} 

h ∑ 

i =1 
Φi ( v i ) θ( h ) − c ( h ) . 

Thus, allocation of the object to (relabeled) buyers 1 , ..., q maximizes the sum of the
congestion adjusted virtual values of the trading buyers. The pointwise maximum requires 
trade with buyers 1 , ..., q if and only if trade with these buyers is optimal for the designer: 

q i ( v, k) ≡
{ 

1 , if i ≤ q and 

∑ q 
h =1 Φh ( v h ) θ( q ) − Γ( k) − c ( q ) > 0 

0 , otherwise. 

In the dominant strategy implementation, agents pay the lowest type they could report 
and yet still trade. 

In some situations, congestion costs may be constant marginal costs that are borne 
by the intermediary. For example, in the case of digital go o ds like songs, b o oks, and
movies, costly server capacity is provided by the broker. If the intermediary and the
seller contract before buyers arrive, as assumed in Section 4.2 , then the intermediary- 
optimal contract will still be a take-it-or-leave-it offer p S = Γ−1 ( R 

net ) , with the twist
that R 

net is now expected net revenue. If, in addition, the seller’s virtual type function is
linear, the intermediary-optimal contract can be implemented with a linear fee function 

of realized net revenue Y 

net that satisfies R 

net = E[ Y 

net ] . 
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.2. The case without regularity 

If the virtual types are not monotone, then we must “iron.” Given distribution F i with
ositive density f i (implying that F i is invertible) and nonmonotone virtual value Φi , the
roned virtual value Φi is defined as follows: Let κi ( x ) ≡ Φi ( F 

−1 
i ( x )) and let K i ( x ) ≡

 x 

v 
κi ( y ) dy and let K 

co 
i ( x ) define the convex hull of K i ( x ) on [ v , v ] . Define κi ( x ) ≡ K 

co ′ 
i ( x ) .

hen the ironed virtual value is 

Φi ≡ κi ( F i ( x )) . 

For example, consider 

F ( x ) ≡
{ 

3 / 2 x, if 0 ≤ x ≤ 1 / 2 
1 / 2 + 1 / 2 x, if 1 / 2 < x ≤ 1 

n [0, 1]. Then the virtual value is nonmonotone, as shown in Fig. 5 (a). We show the
onstruction of κ and K and its convex hull in Fig. 5 (b) and (c). The original and ironed
irtual values are shown in Fig. 5 (d). 

The Bayesian optimal club go o d mechanism and club go o d clo ck auction are then as
efined above, but replacing the virtual types with ironed the virtual types and replacing
Fig. 5. Illustration of the ironing of the virtual value. 
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the inverse of the virtual types with the generalized inverse: 

Φ−1 
i ( x ) ≡ inf 

{
v i ∈ [ v , v ] | Φi ( v i ) ≥ x 

}
. 

In the private go o d environment, ironing introduces a need for tie breaking because buyers
with different values can have the same ironed virtual type. In a rivalrous environment, 
tie breaking arises with positive probability when regularity is not satisfied. However, in 

a club go o d setting, if one buyer with a particular virtual type trades at a given price,
then all buyers with that virtual type also trade at that same price, so tie breaking is
not necessary. 

7. Conclusions 

The emergence of the internet and of digital go o ds have renewed interest in the optimal
mechanisms for the provision of public go o ds with exclusion, also known as club go o ds.
Because digital go o ds like e-b o oks, songs, and movies are typically traded via interme-
diaries such as Amazon, iTunes, and Netflix, a new question of considerable practical 
relevance is what pricing mechanisms are optimal for a club go o d intermediary. In this
paper, we have analyzed this question using a Bayesian mechanism design framework 

with independent private values, which beyond incentive compatibility and individual 
rationality imposes no constraints on the choice of mechanism. 

Dynamics are an important aspect of real life that are not captured by our model. In
many situations, not all buyers are present at the outset when the production decisions
have to be made. Extending our one-shot model to a dynamic setup that incorporates
features like these seems a valuable avenue for future research. Crowdfunding and crowd- 
funding platforms are another example in which uncertainty about aggregate demand, 
which is only lifted over time, is arguably important. Dynamics also play a pertinent role
in the economics of innovation and R&D, with ideas being a quintessential example of a
consumption go o d without rivalry and patents b eing one way of making this sort of pub-
lic go o d excludable. In this vein, one might consider the optimal mechanism in a setup
in which the seller first has to invest, for example developing a new drug or producing
a new movie (with effort being noncontractible). One can then consider how large is the
optimal weight on seller profit in this environment. 

Appendix A. Standard arguments 

As stated in the text, standard arguments imply that in any incentive compatible 
interim individually rational mechanism the designer’s expected profit is 

Π = E v ,k 

[ 

n ∑ 

i =1 
Φi ( v i ) q i ( v, k) − Γ( k) min 

{ 

1 , 
n ∑ 

i =1 
q i ( v, k) 

} ] 
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inus a constant, which, however, can be set equal to 0 by making the individual ratio-
ality constraints bind for the worst-off types. 
By the Revelation Principle, we can focus attention on direct mechanisms ( q,

, m 

S ), where q : ×n 
i =1 [ v , v ] × [ k , k ] → ×n 

i =1 [0 , 1] , m : ×n 
i =1 [ v , v ] × [ k , k ] → R 

n , and m 

S :
n 
i =1 [ v , v ] × [ k , k ] → R . This differs from the private go o d case in that q maps into
n 
i =1 [0 , 1] , whereas in the private go o d case it maps into the n -dimensional simplex.
he expected quantity produced by the seller is q S ( v, k) ≡ 1 − Πn 

i =1 (1 − q i ( v, k)) . The
roof provided by Krishna (2002 , Proposition 5.1) for the private go o d case is easily
dapted to our club go o d environment. The following arguments, which are standard for
he private go o d case (see, e.g., Krishna, 2002 , Chapter 5.1), apply equally to the club
o o d case. 

Given a direct mechanism ( q, m, m 

S ) and letting f ( v) ≡ f 1 ( v 1 ) . . . f n ( v n ) , define 

ˆ q i ( z i ) = 

∫ 

[ k , k ] 

∫ 

×j � = i [ v , v ] 
q i ( z i , v −i , k ) f −i ( v −i ) g( k ) dv −i dk 

o be the probability that i gets the object when he reports z i and all other buyers and
he seller report their types truthfully. Similarly, define 

ˆ m i ( z i ) = 

∫ 

[ k , k ] 

∫ 

×j � = i [ v , v ] 
m i ( z i , v −i , k ) f −i ( v −i ) g( k ) dv −i dk 

o be buyer i ’s expected payment when he reports z i and others report truthfully. Because
e assume independent draws, ˆ q i ( z i ) and ˆ m i ( z i ) depend only on the report z i and not
n the buyer i ’s true value v i . The expected payoff of buyer i is then ˆ q i ( z i ) v i − ˆ m i ( z i ) . 

Similarly, define the expected quantity and payment to the seller to be 

ˆ q S ( k) = 

∫ 

×n 
i =1 [ v , v ] 

q S ( v, k) f ( v) dv 

nd 

ˆ m 

S ( k) ≡
∫ 

×n 
i =1 [ v , v ] 

m 

S ( v, k) f ( v) dv. 

he direct mechanism is incentive compatible if for all i , x i , and z i , 

U i ( v i ) ≡ ˆ q i ( v i ) v i − ˆ m i ( v i ) ≥ ˆ q i ( z i ) v i − ˆ m i ( z i ) 

nd for all k and k ′ , 

U 

S ( k) ≡ ˆ m 

S ( k) − k ̂  q S ( k) ≥ ˆ m 

S ( k ′ ) − k ̂  q S ( k ′ ) . 

Focusing on the buyers, this implies that U i ( v i ) = max z i ∈ [ v , v ] { ̂  q i ( z i ) v i − ˆ m i ( z i ) } , i.e.,
 i is a maximum of a family of affine functions, which implies that U i is convex and so
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absolutely continuous and differentiable almost everywhere in the interior of its domain. 12 
In addition, incentive compatibility implies that U i ( z i ) ≥ ˆ q i ( v i ) z i − ˆ m i ( v i ) = U i ( v i ) +
ˆ q i ( v i )( z i − v i ) , which for δ > 0 implies 

U i ( v i + δ) − U i ( v i ) 
δ

≥ ˆ q i ( v i ) 

and for δ < 0 implies 
U i ( v i + δ) − U i ( v i ) 

δ
≤ ˆ q i ( v i ) , 

so taking the limit as δ goes to zero, at every point v i where U i is differentiable, U 

′ 
i ( v i ) =

ˆ q i ( v i ) . Because U i is convex, this implies that ˆ q i ( v i ) is nondecreasing. 13 Because every
absolutely continuous function is the definite integral of its derivative, 

U i ( v i ) = U i ( v ) + 

∫ v i 

v 

ˆ q i ( t i ) dt i , 

which implies that, up to an additive constant, a buyer’s expected payoff in an incentive 
compatible direct mechanism depends only on the allocation rule. 

Turning to the seller, U 

S ( k) = max k ′ ∈ [ k , k ] 
{

ˆ m 

S ( k ′ ) − k ̂  q S ( k ′ ) 
}
, implying, as with the 

buyers, that U 

S is convex and so absolutely continuous and differentiable almost every- 
where in the interior of its domain. In addition, at every point k where U 

S is differentiable,
U 

S′ ( k) = ˆ q S ( k) , and this is nondecreasing. Finally, again as above, we can write 

U 

S ( k) = U 

S ( k ) + 

∫ k 

k 

ˆ q S ( k ′ ) dk ′ . 

Thus, the usual Revenue Equivalence result for private go o ds applies here: If the direct
mechanism ( q,m, m 

S ) is incentive compatible, then for all i and v i , the expected payment
by buyer i is 

ˆ m i ( v i ) = ˆ q i ( v i ) v i − U i ( v i ) 

= ˆ q i ( v i ) v i − U i ( v ) −
∫ v i 

v 

ˆ q i ( t i ) dt i 

= ˆ m i ( v ) − ˆ q i ( v ) v + ˆ q i ( v i ) v i −
∫ v i 

v 

ˆ q i ( t i ) dt i 
12 A function f : [ v , v ] → R is absolutely continuous if for all ε > 0 there exists δ > 0 such that when- 
ever a finite sequence of pairwise disjoint sub-intervals ( v k , v ′ k ) of [ v , v ] satisfies 

∑ 

k ( v 
′ 
k − v k ) < δ, then ∑ 

k 

∣∣f( v ′ k ) − f ( v k ) 
∣∣ < ε . One can show that absolute continuity on compact interval [ a , b ] implies that f has 

a derivative f ′ almost everywhere, the derivative is Lebesgue integrable, and that f( x ) = f( a ) + 

∫ x 
a 

f ′ ( t ) dt 
for all x ∈ [ a, b ] . For example, the Cantor function is uniformly continuous but not absolutely continuous 
(the derivative of the Cantor function is zero almost everywhere and so 0 = 

∫ 1 
0 F 

′ ( t ) dt < F (1) − F (0) = 1 ). 
13 To see that a nondecreasing q i implies incentive compatibility, note that a sufficient condition for incentive 
compatibility is that for all v i and z i , U i ( z i ) ≥ U i ( v i ) + q i ( v i )( z i − v i ) , which because every absolutely 
continuous function is the definite integral of its derivative, we can write as 

∫ z i 
v i 

q i ( t i ) dt i ≥ q i ( v i )( z i − v i ) , 
which holds if q i is nondecreasing. 
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nd the expected payment to the seller is 

ˆ m 

S ( k) = U 

S ( k) − k ̂  q S ( k) 

= U 

S ( k ) + 

∫ k 

k 

ˆ q S ( k ′ ) dk ′ − k ̂  q S ( k) 

= ˆ m 

S ( k ) − ˆ q S ( k ) k + 

∫ k 

k 

ˆ q S ( k ′ ) dk ′ − k ̂  q S ( k) . 

If the worst-valuing type never trades, and so by individual rationality pays zero, then
e have 

ˆ m i ( v i ) = ˆ q i ( v i ) v i −
∫ v i 

v 

ˆ q i ( t i ) dt i (16)

nd 

ˆ m 

S ( k) = 

∫ k 

k 

ˆ q S ( k ′ ) dk ′ − k ̂  q S ( k) . (17)

he seller’s expected revenue from buyer is then 

n ∑ 

i =1 
E v [ ̂  m i ( v i ) ] = 

n ∑ 

i =1 

∫ v 

v 

ˆ m i ( v i ) f i ( v i ) dv i 

= 

n ∑ 

i =1 

∫ v 

v 

(
ˆ q i ( v i ) v i −

∫ v i 

v 

ˆ q i ( t i ) dt i 
)
f i ( v i ) dv i 

= 

n ∑ 

i =1 

(∫ v 

v 

ˆ q i ( v i ) v i f i ( v i ) dv i −
∫ v 

v 

∫ v 

t i 

ˆ q i ( t i ) f i ( v i ) dv i dt i 
)

= 

n ∑ 

i =1 

(∫ v 

v 

ˆ q i ( v i ) v i f i ( v i ) dv i −
∫ v 

v 

ˆ q i ( t i ) ( 1 − F i ( t i ) ) dt i 
)

= 

n ∑ 

i =1 

∫ v 

v 

ˆ q i ( v i ) 
(
v i −

1 − F i ( v i ) 
f i ( v i ) 

)
f i ( v i ) dv i 

= 

n ∑ 

i =1 

∫ v 

v 

ˆ q i ( v i )Φi ( v i ) f i ( v i ) dv i 

= E v 

[ 

n ∑ 

i =1 
ˆ q i ( v i )Φi ( v i ) 

] 

, 

here the first equality uses the definition of the expectation, the second uses (16) , the
hird switches the order of integration, the fourth integrates, the fifth collects terms, the
ixth uses the definition of the virtual value Φi , and the last equality uses the definition
f the expectation. 

Applying similar steps, and using (17) , one can show that 

E k 

[
ˆ m 

S ( k) 
]

= E k 

[
Γ( k ) ̂  q S ( k ) 

]
. 
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Thus, we have the result that 

Π = E v , k 

[ 

n ∑ 

i =1 
Φi ( v i ) q i ( v, k) − Γ( k) ̂  q S ( k) 

] 

. 
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