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This Online Appendix contains the following material (sections are labeled starting with
“B” to distinguish these appendices from Appendix A in the paper). In Section B, we
present proofs omitted from the body of the paper and the full proofs for those that were
only sketched in the body of the paper. In Section C, we provide extensions and discussion.
In Section D, we illustrate based on the Republic-Santek transaction how the divestiture
policies that we discuss can be implemented in practice using market data that is typically
available in a merger review process.

B Details of sketched and omitted proofs

B.1 Proof of Proposition 2

Proof of Proposition 2. The social surplus results follow from the Schur-concavity of SS(r)

once we have shown that r̃′ majorizes r′. We prove this through the use of three lemmas,
which we state and prove below. Consider a vector r ∈ ∆ with one element r` ≥ σ > 0.
Then the amount σ can be spread among the n−1 elements of the vector r−`. Let r(`, σ) be
the most symmetric vector that is obtained by this procedure, that is, the most symmetric
among vectors that are obtained by distributing σ among the elements in r−` and replacing
r` with r` − σ. We show that given r̃, r ∈ ∆ with r̃˜̀ = r` ≥ σ > 0, if r̃ majorizes r, then
r̃(˜̀, σ) majorizes r(`, σ). We begin in Lemma B.1 by characterizing r(`, σ). As a matter
of notation, given vector x, we use x(i) to denote the i-th highest element of x. We define
x(0) ≡ ∞ and use x↓ to denote (x(1), . . . , x(|x|)).

Lemma B.1. Given r ∈ ∆ with r` ≥ σ > 0, we have r(`, σ) = (r′−`, r` − σ), where
r′−`
↓ = (r−`(1), . . . , r−`(j), x, . . . , x) for j ∈ {0, . . . , n − 1} and x ∈ [r−`(j+1), r−`(j)] such that∑n−1
i=j+1(x− r−`(i)) = σ.

Proof of Lemma B.1. Take as given r ∈ ∆ with r` ≥ σ > 0, and let r′ be constructed from
r as in the statement of the lemma. Thus, as in the statement of the lemma, there exists
j ∈ {0, . . . , n− 1} such that for i ∈ {0, . . . , j}, r′−`(i) = r−`(i), and for i ∈ {j + 1, . . . , n− 1},
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r′−`(i) = x. Take an arbitrary vector r̂ ∈ ∆ with r̂ˆ̀ = r` − σ for some ˆ̀∈ N , r̂−ˆ̀6= r′−`, and
r̂−ˆ̀ = r−` + (ε1, . . . , εn−1), where εi ≥ 0 and

∑n−1
i=1 εi = σ. We show that r̂ majorizes r′,

which then completes the proof.
We first show that r̂−ˆ̀ majorizes r′−`. If j = 0, then r′−` = (x, . . . , x), which is majorized

by any other n-dimensional vector whose elements sum to the same amount, thus including
r̂−ˆ̀. So assume that j ≥ 1. By the construction of r̂−ˆ̀, we have for all i ∈ {1, . . . , j},
r̂−ˆ̀(i) ≥ r−`(i) = r′−`(i) ≥ x, which implies that for all h ∈ {1, . . . , j},

h∑
i=1

r̂−ˆ̀(i) ≥
h∑
i=1

r′−`(i).

Let ̂ be the largest index such that r̂−ˆ̀(̂) ≥ x. From the argument above, we know that
̂ ≥ j, and we know that for h ∈ {1, . . . , ̂},

h∑
i=1

r̂−ˆ̀(i) ≥
h∑
i=1

r′−`(i), (B.1)

where (B.1) holds with a strict inequality for at least one h ∈ {1, . . . , ̂}: to see this, note
that if (B.1) is not strict for h = j, then for all i ∈ {1, . . . , j}, r̂−ˆ̀(i) = r′−`(i), and it
follows from r̂−ˆ̀6= r′−` and the fact that both r̂−ˆ̀ and r′−` sum to the same amount that
r̂−ˆ̀(j+1) > r′−ˆ̀(j+1)

= x, which implies that ̂ ≥ j + 1 and that (B.1) is strict for h = j + 1.

Because r̂−ˆ̀ and r′−` sum to the same amount, we have
∑n−1

i=1 r̂−ˆ̀(i) =
∑n−1

i=1 r
′
−`(i), which

we can write as
j∑
i=1

(r̂−ˆ̀(i) − r
′
−`(i)) +

̂∑
i=j+1

(r̂−ˆ̀(i) − x) =
n−1∑
i=̂+1

(x− r̂−ˆ̀(i)), (B.2)

where the summation from j + 1 to ̂ is defined to be zero if ̂ = j. Using this, for h ∈
{̂+ 1, . . . , n− 1}, we have

h∑
i=1

r̂−ˆ̀(i) −
h∑
i=1

r′−`(i) =

j∑
i=1

(r̂−ˆ̀(i) − r
′
−`(i)) +

̂∑
i=j+1

(r̂−ˆ̀(i) − x) +
h∑

i=̂+1

(r̂−ˆ̀(i) − x)

=
n−1∑
i=̂+1

(x− r̂−ˆ̀(i)) +
h∑

i=̂+1

(r̂−ˆ̀(i) − x)

= (n− 1− h)x−
n−1∑
i=h+1

r̂−ˆ̀(i)

≥ 0,

where the first equality uses r′−`(i) = x for i > j, the second equality uses (B.2), the third
equality rearranges, and the inequality uses h ≥ ̂ + 1, which implies that for i ∈ {h +
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1, . . . , n− 1}, r̂−ˆ̀(i) < x. Combining this with (B.1), we conclude that r̂−ˆ̀ majorizes r′−`.
We are left to show that r′ = (r′−`, r` − σ). Because r̂ was arbitrary, this is equivalent

to showing that r′ is majorized by r̂ = (r̂−ˆ̀, r` − σ). Let ρ be the rank of r` − σ in r′,

i.e., r` − σ = r′(ρ), and let ρ̂ be the rank of r` − σ in r̂, i.e., r̂ˆ̀ = r` − σ = r̂(ρ̂) (breaking
ties in favor of larger ρ and ρ̂, respectively). For h ∈ {1, . . . ,min{ρ̂ − 1, ρ − 1}} and for
h ∈ {max{ρ̂, ρ}, . . . , n},

h∑
i=1

r̂(i) −
h∑
i=1

r′(i) =
h∑
i=1

r̂−ˆ̀(i) −
h∑
i=1

r′−`(i) ≥ 0,

where the inequality uses that r̂−ˆ̀ majorizes r′−`. It remains to show that
∑h

i=1 r̂(i) −∑h
i=1 r

′
(i) ≥ 0 for ρ̂ < ρ and h ∈ {ρ̂, . . . , ρ − 1} and for ρ < ρ̂ and h ∈ {ρ − 1, . . . , ρ̂}.

If ρ̂ < ρ, then for h ∈ {ρ̂, . . . , ρ− 1},
h∑
i=1

r̂(i) −
h∑
i=1

r′(i) =
h−1∑
i=1

r̂−ˆ̀(i) + r` − σ −
h∑
i=1

r′−`(i) ≥
h−1∑
i=1

r̂−ˆ̀(i) + r̂−ˆ̀(h) −
h∑
i=1

r′−`(i)

=
h∑
i=1

r̂−ˆ̀(i) −
h∑
i=1

r′−`(i) ≥ 0,

where the first inequality uses that for i ≥ ρ̂, r̂−ˆ̀(i) ≤ r̂(i) ≤ r̂(ρ̂) = r` − σ, and the second
inequality uses that r̂−ˆ̀ majorizes r′−`. If ρ < ρ̂, then for h ∈ {ρ, . . . , ρ̂− 1},

h∑
i=1

r̂(i) −
h∑
i=1

r′(i) =
h∑
i=1

r̂−ˆ̀(i) −
h−1∑
i=1

r′−`(i) − (r` − σ)

=
h−1∑
i=1

r̂−ˆ̀(i) −
h−1∑
i=1

r′−`(i) + r̂−ˆ̀(h) − (r` − σ) ≥
h−1∑
i=1

r̂−ˆ̀(i) −
h−1∑
i=1

r′−`(i) ≥ 0,

where the first inequality uses that for i < ρ̂, r̂−ˆ̀(i) = r̂(i) ≥ r̂(ρ̂) = r` − σ, and the second
inequality uses that r̂−ˆ̀majorizes r′−`. Thus, we conclude that r̂majorizes r′, which completes
the proof. �

Next, in Lemma B.2, we show that majorization extends to subvectors when a common
element is removed:

Lemma B.2. If r̃ majorizes r and r̃˜̀ = r`, then r̃−˜̀ majorizes r−`.

Proof of Lemma B.2. Let j̃ and j be the rank of r̃˜̀ and r`, respectively, breaking ties in favor
of larger j̃ and j. If j ≤ j̃, then the result follows because then

∑h
i=1 r̃−ˆ̀(i) −

∑h
i=1 r−`(i) is

either the same as
∑h

i=1 r̃(i) −
∑h

i=1 r(i), and so nonnegative (and positive for at least one
h), or even greater by the amount r(j) − r(j+1) ≥ 0. So, suppose that j > j̃. It is sufficient
to check that for h ∈ {j̃ + 1, . . . , j − 1} we have

∑h
i=1 r̃−ˆ̀(i) ≥

∑h
i=1 r−`(i). By the definition
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of j, we have r(i) ≥ r` for i < j, and by the definition of j̃, we have r̃(i) ≤ r̃˜̀ for i ≥ j̃ + 1.

Thus, for h ∈ {j̃, . . . , j − 1}, we have

r−`(h) = r(h) ≥ r` = r̃˜̀≥ r̃(h) ≥ r̃−˜̀(h) (B.3)

and
h∑
i=1

r̃−˜̀(i) =
h∑
i=1

r̃(i) − r̃˜̀ + r̃−˜̀(h) ≥
h∑
i=1

r(i) − r` + r̃−˜̀(h)

=
h∑
i=1

r−`(i) + r` − r−`(h) − r` + r̃−˜̀(h) =
h∑
i=1

r−`(i) − r−`(h) + r̃−˜̀(h) ≥
h∑
i=1

r−`(i),

where the first inequality uses that r̃ majorizes r and the inequality second uses (B.3). �

Finally, in Lemma B.3, we show use Lemmas B.1 and B.2 to show that majorization extends
to optimally divested ownership structures:

Lemma B.3. Given r̃, r ∈ ∆n−1
R with r̃˜̀ = r` and σ ∈ (0, r`], if r̃ majorizes r, then r̃(`, σ)

majorizes r(`, σ).

Proof of Lemma B.3. Let j̃ and x̃ be the parameters of the optimal divestiture given r̃, ˜̀,
and σ, and let j and x be the parameters of the optimal divestiture given r, `, and σ as
derived in Lemma B.1. That is, x̃ ∈ [r̃−ˆ̀(j̃+1), r̃−ˆ̀(j̃)] and x ∈ [r−`(j+1), r−`(j)] and

n−1∑
i=j̃+1

(x̃− r̃−˜̀(i)) =
n−1∑
i=j+1

(x− r−`(i)) = σ. (B.4)

Assume that r̃ majorizes r. It follows from Lemma B.2 that r̃−˜̀ majorizes r−`.
Let r̃(`, σ) ≡ (r̃′−˜̀, r˜̀−σ) and r(`, σ) ≡ (r′−`, r`−σ) and suppose that r̃′−˜̀does not majorize

r′−`. Then there exists a smallest ĥ ∈ {1, . . . , n − 1} such that
∑ĥ

i=1(r̃′−˜̀(i)
− r′−`(i)) < 0.

Given that r̃−˜̀ majorizes r−` and that r̃′−˜̀(i)
and r′−`(i) coincide with r̃−˜̀(i) and r−`(i) for

i ≤ min{j, j̃} and that both r̃′−˜̀ and r′−` are constant for i > max{j, j̃}, it must be that
ĥ ∈ (min{j, j̃},max{j, j̃}].

Case 1. j̃ < ĥ ≤ j. In this case, we can rewrite (B.4) as
j∑

i=j̃+1

(x̃− r̃−˜̀(i)) +
n−1∑
i=j+1

(x̃− r̃−˜̀(i)) =
n−1∑
i=j+1

(x− r−`(i))

or, using x̃ ∈ [r̃−ˆ̀(j̃+1), r̃−ˆ̀(j̃)],

j∑
i=j̃+1

(x̃− r̃−˜̀(i))︸ ︷︷ ︸
positive

+ (n− 1− j)(x̃− x) =
n−1∑
i=j+1

(r̃−˜̀(i) − r−`(i)) ≤ 0,

4



which implies that x̃ < x. But then
n−1∑
i=1

(
r′−`(i) − r̃′−˜̀(i)

)
>

n−1∑
i=ĥ+1

(
r′−`(i) − r̃′−˜̀(i)

)
=

j∑
i=ĥ+1

(
r′−`(i) − x̃

)
+

n−1∑
i=j+1

(x− x̃)

≥
j∑

i=ĥ+1

(x− x̃) +
n−1∑
i=j+1

(x− x̃) ≥ 0,

where the first inequality uses
∑ĥ

i=1(r̃′−˜̀(i)
− r′−`(i)) < 0, the second inequality uses x < r′−`(i)

for i ≤ j, and the third inequality uses x̃ < x. This violates the summing up condition, which
requires that

∑n−1
i=1 r

′
−`(i) =

∑n−1
i=1 r̃

′
−`(i), giving us a contradiction.

Case 2. j < ĥ ≤ j̃. For this case, we know that at ĥ-th highest element, r′−` is already equal
to x, but r̃′−˜̀ is still equal to r̃−`. By the definition of ĥ, it must be that the change from∑ĥ−1

i=1 r
′
−`(i) to

∑ĥ
i=1 r

′
−`(i), which is equal to x, is larger than the change from

∑ĥ−1
i=1 r̃

′
−˜̀(i)

to∑ĥ
i=1 r̃

′
−˜̀(i)

. Thus, we have x > r̃′−˜̀(ĥ)
, which means that x > r̃′−˜̀(ĥ)

≥ · · · ≥ r̃′−˜̀(n−1)
, which

means that
∑n−1

i=ĥ+1
r′−`(i) >

∑n−1

i=ĥ+1
r̃′−˜̀(i)

, so we have

n−1∑
i=1

r′−`(i) =
ĥ∑
i=1

r′−`(i) +
n−1∑
i=ĥ+1

r′−`(i) >
ĥ∑
i=1

r̃′−˜̀(i)
+

n−1∑
i=ĥ+1

r̃′−˜̀(i)
=

n−1∑
i=1

r̃′−`(i),

which contradicts the summing up condition, which requires that
∑n−1

i=1 r
′
−`(i) =

∑n−1
i=1 r̃

′
−`(i).

Thus, we conclude that r̃′−˜̀ majorizes r′−`, which completes the proof of Lemma B.3. �

Combining Lemmas B.1–B.3 completes the proof of Proposition 2. �

B.2 Proof of Lemma 1

Proof of Lemma 1. As noted in Section 3, an implication of IC is that u′i(θ) = qi(θ) − ri
wherever ui is differentiable, which by IC is almost everywhere. Given this, the monotonicity
of ui implies the following characterization of the set of worst-off types for firm i, denoted
by Ωi ≡ arg minθi∈[0,1] ui(θi) (see also Cramton et al. (1987, Lemma 2) and Loertscher and
Wasser (2019)):

Ωi =

 {θi ∈ [0, 1] | qi(θi) = ri} if ∃θi ∈ [0, 1] s.t. qi(θi) = ri,

{θi ∈ [0, 1] | qi(z) < ri ∀z < θi and qi(z) > ri ∀z > θi} otherwise.

In the first case in which there exists θi ∈ [0, 1] such that qi(θi) = ri, the set Ωi is a (possibly
degenerate) interval, and in the second case, Ωi is a singleton.

Taking the expression for mi(θ) in (6), with θ′ replaced by θ̂i, we have
∫ 1

0
mi(θ)dFi(θ) =∫ 1

0
(qi(θ)−ri)θdFi(θ)−

∫ 1

θ̂i

∫ θ
θ̂i

(qi(x)−ri)dxdFi(θ)+
∫ θ̂i

0

∫ θ̂i
θ

(qi(x)−ri)dxdFi(θ)−ui(θ̂i). Chang-
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ing the order of integration in the double integrals and substituting the virtual type functions
and noting that Eθi [Ψi(θi, θ̂i)] = θ̂i gives the result. �

B.3 Additional detail for the proof of Proposition 3

Proof of Proposition 3. We begin with a lemma:

Lemma B.4. Πe(r) is strictly concave in r, and Re is convex in r.1

Proof of Lemma B.4. The second part of the statement is an implication of the first, so we
prove the first part. Using Lemma 1, we have

Πe(r) =
∑
i∈N

(
Eθi
[
Ψi(θi, θ̂

e

i (ri))q
e
i (θi)

]
− riθ̂

e

i (ri)
)
, (B.5)

where θ̂
e

i (ri) is firm i’s worst-off type under ex post efficiency. This can be rewritten as

Πe(r) =
∑
i∈N

(∫ θ̂
e
i (ri)

0

ΨS
i (θ)qei (θ)dFi(θ) +

∫ 1

θ̂
e
i (ri)

ΨB
i (θ)qei (θ)dFi(θ)− riθ̂

e

i (ri)

)
.

Differentiating with respect to ri, the three terms involving dθ̂
e
i

dri
cancel, and we are left with

∂Πe(r)
∂ri

= −θ̂
e

i (ri). Because θ̂
e

i (ri) increases in ri, all second partial derivatives are negative.
Further, all cross-partial derivatives are zero. This completes the proof. �

Because −θ̂
e

i (ri) is the derivative of Πe(r) with respect to ri and because Πe(r) is strictly
concave, it follows that the unique ownership structure that maximizes Πe(r) subject to the
constraint that

∑
i∈N ri = 1, denoted r∗, is such that all firms have the same worst-off types.

Further, the proof of Proposition 6, which is stated for multi-dimensional types but also
encompasses one-dimensional types, shows that Πe(r∗) is positive, implying that r∗ ∈ Re.
We now show that a r∗ exists that induces equal worst-off types.

Lemma B.5. There exists a unique ownership structure r∗ ∈ ∆k such that θ̂
e

i (r
∗
i ) = θ̂

e
∈

(0, 1) for all i ∈ N .

Proof of Lemma B.5. Given Lemma 1, we need only show that there exists θ̂ ∈ (0, 1)

such that r∗ = (qe1(θ̂), . . . , qen(θ̂)) ∈ ∆k. Define N−i ≡ N\{i}. By the definition of ex post
efficiency, for all i ∈ N and θ ∈ [0, 1],

qei (θi) =
∑
A⊂N−i

max{0,min{ki, 1−
∑
j∈A

kj}}
∏

j∈N−i\A

Fj(θi)
∏
j∈A

(1− Fj(θi)),

which is continuous and increasing in θi on [0, 1]. Under our maintained assumption that∑
j 6=i kj ≥ 1, qei (0) = 1, so we have

∑
i∈N q

e
i (0) < 1. The assumption of excess demand

1Πe(r) is strictly concave in r, but Re is only convex (and not necessarily strictly convex) because
Re ≡ {r | Πe(r) ≥ 0} ∩∆k. So, Re is not strictly convex where it intersects with the boundary of ∆R,k.
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implies that
∑

i∈N q
e
i (1) > 1, so we have∑

i∈N

qei (0) < 1 <
∑
i∈N

qei (1).

By the continuity and monotonicity of qei (·) on [0, 1], there exists a unique θ̂ ∈ (0, 1) such
that

∑
i∈N q

e
i (θ̂) = 1. Further, qei (θ̂) ∈ [0, ki] for all θ. So, (qe1(θ̂), . . . , qen(θ̂)) ∈ ∆k. �

It remains to show that SS(r) is concave and strictly concave outside of Re. For any r ∈ ∆k,

let 〈Qr,Mr〉 denote the expected social surplus maximizing mechanism, subject to IC, IR,
and no deficit. Let r, r′ ∈ ∆k and µ ∈ [0, 1] be given. Because 〈Qr,Mr〉 and 〈Qr′ ,Mr′〉
satisfy IC, IR, and no deficit, when the ownership structure is µr+ (1−µ)r′, the mechanism
〈Q̂, M̂〉 such that q̂i(θi) = µqr,i(θi) + (1−µ)qr′,i(θi) and m̂i(θi) = µmr,i(θi) + (1−µ)mr′,i(θi)

also satisfies these constraints. Total expected social surplus from 〈Q̂, M̂〉 is µSS (r) + (1−
µ)SS (r′) , but 〈Qµr+(1−µ)r′ ,Mµr+(1−µ)r′〉 maximizes expected social surplus subject to the
constraints, so

µSS (r) + (1− µ)SS (r′) ≤ SS(µr + (1− µ)r′),

which implies that SS(r) is concave.
For r ∈ Re, the market mechanism with the efficient allocation rule satisfies the no-deficit

constraint. If r /∈ Re, then the no-deficit constraint cannot be satisfied with the efficient
mechanism, implying that SS (r) < SSe ≡ SS(r∗). Thus, SS(r) is strictly concave for
r /∈ Re.

This completes the proof of Proposition 3. �

B.4 Proof of Proposition 5

Proof of Proposition 5. We begin with a lemma. For the purposes of the lemma, given an IC
mechanism 〈Q,M〉 and ownership structure r, we let θ̂

Q

i (ri) denote the minimum worst-off
type of firm i with assets ri under allocation rule Q, and let ΠQ(r) denote the expected
budget surplus under allocation rule Q and ownership structure r when IR constraints are
satisfied with equality for the worst-off types.

Lemma B.6. Given an IC mechanism 〈Q,M〉 and ownership structure r with θ̂
Q

i (ri) ≥
θ̂
Q

j (rj), if r′ is derived from r by a T -transform that shifts assets to firm i from firm j, then

ΠQ(r′)− ΠQ(r) < 0.

Proof of Lemma B.6. Take Q as given. Let qi(θi) be firm i’s interim expected allocation
when its type is θi. Let uQi (θi, ri) be firm i’s interim expected payoff net of its outside option
when its type is θi, its resource ownership is ri, and the payment rule is such that IR is
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satisfied with equality for worst-off types. Assume that θ̂
Q

i (ri) ≥ θ̂
Q

j (rj). Using Lemma 1,
we have

ΠQ(r) =
∑
i∈N

(
Eθi
[
Ψi(θi, θ̂

Q

i (ri))qi(θi)
]
− riθ̂

Q

i (ri)− uQi (θ̂
Q

i (ri), ri)
)

=
∑
i∈N

(∫ θ̂
Q
i (ri)

0

ΨS
i (θ)qi(θ)dFi(θ) +

∫ 1

θ̂
Q
i (ri)

ΨB
i (θ)qi(θ)dFi(θ)− riθ̂

Q

i (ri)− uQi (θ̂
Q

i (ri), ri)
)

=
∑
i∈N

(∫ 1

0

ΨS
i (θ)qi(θ)fi(θ)dθ − uQi (1, ri)− ri

)
,

where the final equality uses equation (5), which implies that uQi (1, ri)+ ri = uQi (θ̂i(ri), ri)+

riθ̂
Q

i (ri) +
∫ 1

θ̂
Q
i (ri)

qi(y)dy. Differentiating the second line above with respect to ri, the three

terms involving dθ̂
Q
i (ri)
dri

cancel, uQi (θ̂
Q

i (ri), ri) is constant at zero as ri changes, and we are

left with ∂ΠQ(r)
∂ri

= −θ̂
Q

i (ri). It follows from the Monotone Selection Theorem of Milgrom

and Shannon (1994) that θ̂
Q

i (ri) is increasing in ri, and so all second partial derivatives
are negative. Further, all cross-partial derivatives are zero. Thus, ΠQ is strictly concave
(and the final line of the displayed expression above, which does not depend on θ̂

Q

i , shows
that this result holds irrespective of the selection of worst-off type from the set of worst-off
types). Because ΠQ is strictly concave and ∇ΠQ(r) = (−θ̂

Q

1 , . . . ,−θ̂
Q

n ), where we drop the
dependence of θ̂

Q

i on ri, it follows that for r′ derived from r by shifing amount ∆ > 0 from
firm j to firm i, we have

ΠQ(r′)− ΠQ(r) = ΠQ(ri + ∆, rj −∆, r−i,j)− ΠQ(ri, rj, r−i,j)

< (∆,−∆,0−i,j) · (−θ̂
Q

1 , . . . ,−θ̂
Q

n )

= −∆(θ̂
Q

i − θ̂
Q

j )

≤ 0,

where the final inequality uses the assumption that θ̂
Q

i ≥ θ̂
Q

j . which completes the proof. �

The remainder of the proof of Proposition 5 proceeds in two parts:

Part (i). Suppose that Πe(r) > 0 and there exist two traders indexed by 1 and 2 with
η1 + η2 ≤ 1. By virtue of the firms being traders, 0 < r1 < k1 and 0 < r2 < k2. Without
loss of generality, we can assume that θ̂

e

2(r2) ≤ θ̂
e

1(r1). Because r1 < k1 and 0 < r2, there
exists ∆ > 0 sufficiently small that the ownership vector r̃(∆) defined by r̃1(∆) ≡ r1 + ∆,

r̃2(∆) ≡ r2−∆, and r̃−{1,2}(∆) ≡ r−{1,2} is a feasible ownership vector (i.e., r1 + ∆ ≤ k1 and
0 ≤ r2 −∆). Further, using the continuity of Πe and the assumption that Πe(r) > 0, there
exists ∆ > 0 sufficiently small that Πe(r̃(∆)) > 0. Taking ∆ to satisfy these conditions, ex
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post efficiency is achieved under both r and r̃(∆), and by Lemma B.6,

Πe(r̃(∆)) < Πe(r). (B.6)

Defining m̂i(ri) ≡ Eθi
[
Ψi,0(θi, θ̂

e

i (ri))q
e
i (θi)

]
−riθ̂

e

i (ri) and noting that Πe(r) =
∑

i∈N m̂i(ri),

it follows that

Πe(r)− Πe(r̃(∆)) = m̂1(r1) + m̂2(r2)− m̂1(r1 + ∆)− m̂2(r2 −∆). (B.7)

Because firm i’s expected net surplus under ex post efficiency is

uei (r) ≡ Eθi [θi(q
e
i (θi)− ri)]− m̂i(ri) + ηiΠ

e(r),

the change in the joint expected gross surplus of firms 1 and 2 from a change in ownership
structure from r to r̃(∆) is

ue1(r̃(∆)) + ue2(r̃(∆))− ue1(r)− ue2(r) + (r̃1(∆)− r1)Eθ1 [θ1] + (r̃2(∆)− r2)Eθ2 [θ2]

= −m̂1(r1 + ∆) + η1Πe(r̃(∆))− m̂2(r2 −∆) + η2Πe(r̃(∆))

+m̂1(r1)− η1Πe(r) + m̂2(r2)− η2Πe(r)

= (1− η1 − η2) (Πe(r)− Πe(r̃(∆)))

≥ 0,

where the first equality uses the definition of uei (·), the second equality uses (B.7), and
the inequality uses the assumption that η1 + η2 ≤ 1 and (B.6). The inequality is strict if
η1 + η2 < 1. Thus, the joint expected gross payoff of firms 1 and 2 increases (weakly if
η1 + η2 ≤ 1 and strictly if η1 + η2 < 1) as a result of shifting amount ∆ of firm 2’s assets to
firm 1, which completes the proof of the first part of the proposition.

Part (ii). Assume, as in the statement of the proposition, that n ∈ {3, 4, . . . }, Πe(r) = 0,

and firms 1 and 2 are traders. Without loss of generality, assume that θ̂
e

1(r1) ≥ θ̂
e

2(r2). Define
ownership structure r̃(∆) by r̃1(∆) ≡ r1 +∆, r̃2(∆) ≡ r2−∆, and r̃−{1,2}(∆) ≡ r−{1,2}, which
is feasible for ∆ ∈ [0,min {k1 − r1, r2}]. This is a nonempty interval because firms 1 and 2
are traders. Because we are considering a shift from the firm with the weakly lower worst-off
type to the firm with the weakly higher worst-off type, by Lemma B.6, for all ∆ > 0 in the
feasible range, we have

Πe(r̃(∆)) < Πe(r) = 0. (B.8)

Recall that given IC, IR market mechanism 〈Q,M〉, the expected gross payoff of firm i

with type θi is θiqi(θi)−mi(θi), and by Lemma 1,

Eθi [mi(θi)] = Eθi [Ψi,0(θi, θ̂i)qi(θi)]− ui(θ̂i)− θ̂iri, (B.9)

where binding IR for the firms’ worst-off types implies that ui(θ̂i) = 0.
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Given ∆ > 0 and r̃(∆), the solution value of the Lagrangian associated with the (second-
best) market mechanism 〈Q∗,M∗〉 is

Eθ

[∑
i∈N

θiq
∗
i (θi; θ̂

∗
(∆), ρ∗(∆))

]
− (1− ρ∗(∆))Π∗(r̃(∆); θ̂

∗
(∆), ρ∗(∆)),

where θ̂
∗
(∆) and ρ∗(∆) are, respectively, the solution values for the worst-off types and the

Lagrange multiplier on the no-deficit constraint, q∗i (θi; θ̂
∗
(∆), ρ∗(∆)) is the solution value for

the interim expected allocation rule for firm i, and, letting m∗i (θi; r̃(∆), θ̂
∗
(∆), ρ∗(∆)) be the

solution value for the interim expected payment rule for firm i, the solution value for the
expected budget surplus is

Π∗(r̃(∆), θ̂
∗
(∆), ρ∗(∆)) ≡

∑
i∈N

Eθi
[
m∗i (θi; r̃(∆), θ̂

∗
(∆), ρ∗(∆))

]
.

Thus, given ∆, the expected gross payoff of firm i is

ũi(∆) ≡ Eθi
[(
θi −Ψi,0(θi, θ̂

∗
i (∆))

)
q∗i (θi; θ̂

∗
(∆), ρ∗(∆))

]
+ θ̂

∗
i (∆)r̃i(∆).

Using this and (B.9), we have

Π∗(r̃(∆), θ̂
∗
(∆), ρ∗(∆)) =

∑
i∈N

(
Eθi
[
Ψi,0(θi; θ̂

∗
i (∆))q∗i (θi; θ̂

∗
(∆), ρ∗(∆))

]
− ũi(∆)− θ̂

∗
i (∆)r̃i(∆)

)
.

Given the assumption that Fi = F for all i ∈ N , the interim expected allocation rule for
each firm i has the form illustrated in Figure B.1, and, correspondingly, we have

q∗i (θi; θ̂
∗
(∆), ρ∗(∆)) =

 ri if zi(ρ∗(∆)) ≤ θi ≤ zi(ρ
∗(∆)),

qei (θi) otherwise,
(B.10)

where [zi(ρ
∗(∆)), zi(ρ

∗(∆))] is the ironing range for firm i and for ρ sufficiently close to 1,

z′i(ρ) < 0 and z′i(ρ) > 0. (B.11)

Further, θ̂
∗
i (∆) ∈ [zi(ρ

∗(∆)), zi(ρ
∗(∆))] and ri > qei (θi) for θi < θ̂

∗
i (∆) and ri < qei (θi) for

θi > θ̂
∗
i (∆), as illustrated in Figure B.1.

To establish that the envisioned transaction between firms 1 and 2 is strictly mutually
beneficial, we need to show that for ∆ > 0 sufficiently small,∑

i∈{1,2}

ũi(∆) >
∑
i∈{1,2}

ũi(0). (B.12)

By (B.8), the first-best is not possible. Thus, under the second-best, the solution value
for the mechanism’s budget surplus, Π∗, satisfies

Π∗(r̃(∆); θ̂
∗
(∆), ρ∗(∆)) = 0. (B.13)
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(a) Virtual type functions

ψi,1(θi;θ

i)

ψi,1/ρ(θi;θ

i)

θ

iθ θ

θiθ

θ

zi

(b) Interim expected allocation

qi
e(θi)

qi(θi;θ

,ρ)

θ

iθ θzi(ρ) zi(ρ)

θi0

ki

ri

Figure B.1: Illustration of the effects of an increase in ρ above 1 on the ironed weighted virtual types and
interim expected allocation. Assumes ρ > 1.

Further, because Πe(r̃(0)) = Πe(r) = 0, it follows that ρ∗(0) = 1 and that ρ∗(∆) increases as
∆ increases above 0, i.e.

∂ρ∗(∆)

∂∆

∣∣∣∣
∆↓0
≥ 0 and ρ∗(∆) > ρ∗(0) for ∆ > 0. (B.14)

Using the definitions of ũi(∆) and Π∗(r̃(∆); θ̂
∗
(∆), ρ∗(∆)), and dropping the argument ∆

for θ̂
∗
(∆) and ρ∗(∆), we can write∑

i∈{1,2}

ũi(∆) =
∑
i∈{1,2}

Eθi
[
θiq
∗
i (θi; θ̂

∗
, ρ∗)

]
− Π∗(r̃(∆); θ̂

∗
, ρ∗)

+
∑

j∈N\{1,2}

(
Eθj
[
Ψj,0(θj, θ̂

∗
j)q
∗
j (θj; θ̂

∗
, ρ∗)

]
− θ̂

∗
j r̃j(∆)

)
(B.15)

=
∑
i∈{1,2}

Eθi
[
θiq
∗
i (θi; θ̂

∗
, ρ∗)

]
+

∑
j∈N\{1,2}

(
Eθj
[
Ψj,0(θj, θ̂

∗
j)q
∗
j (θi; θ̂

∗
, ρ∗)

]
− θ̂

∗
jrj

)
,

where the second equality uses (B.13) and r̃j(∆) = rj for j ∈ N\{1, 2}. Thus, the joint
expected payoff of firms 1 and 2 is equal to their expected utility from consumption plus the
expected payments by their rivals.

By construction of the virtual type functions and q∗i (θ̂
∗
i ; θ̂

∗
, ρ∗) = ri, we have:2

∂

∂θ̂i

(
Eθi
[
Ψi,0(θi, θ̂

∗
i )q
∗
i (θi; θ̂

∗
, ρ∗)

]
− θ̂

∗
i ri

)
=

∫ θ

θ

Ψi,0(θi, θ̂
∗
i )
∂q∗i (θi; θ̂

∗
, ρ∗)

∂θ̂i
dFi(θi). (B.16)

2To see this, note that:

∂

∂θ̂i

(
Eθi

[
Ψi,0(θi, θ̂i)qi(θi; θ̂, ρ)

]
− θ̂iri

)
=

∂

∂θ̂i

(∫ θ̂i

θ

ΨS
i,0(θi)qi(θi; θ̂, ρ)dFi(θi) +

∫ θ

θ̂i

ΨB
i,0(θi)qi(θi; θ̂, ρ)dFi(θi)

)
− ri

= (ΨS
i,0(θ̂i)−ΨB

i,0(θ̂i))qi(θ̂i; θ̂, ρ)fi(θ̂i) +

∫ θ̂i

θ

ΨS
i,0(θi)

∂qi(θi; θ̂, ρ)

∂θ̂i
dFi(θi) +

∫ θ

θ̂i

ΨB
i,0(θi)

∂qi(θi; θ̂, ρ)

∂θ̂i
dFi(θi)

= qi(θ̂i; θ̂, ρ) +

∫ θ

θ

Ψi,0(θi, θ̂i)
∂qi(θi; θ̂, ρ)

∂θ̂i
dFi(θi)− ri =

∫ θ

θ

Ψi,0(θi, θ̂i)
∂qi(θi; θ̂, ρ)

∂θ̂i
dFi(θi).
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Using (B.16) and noting that q∗i (θi; θ̂, ρ) is independent of θ̂ when ρ = 1, it then follows that
the derivative of the right side of (B.15) with respect to θ̂ is zero when evaluated at ∆ = 0.
Thus, when considering the effect of a marginal change in ∆ on

∑
i∈{1,2} ũi(∆) at ∆ = 0, we

need only consider effects that come through ρ∗(∆). But note that, by the envelope theorem,
the partial derivative of

L(ρ) = Eθ

[∑
i∈N

θiq
∗
i (θi; θ̂

∗
, ρ)

]
− (1− ρ)Π∗(r̃(∆); θ̂

∗
, ρ) +

∑
i∈N

µiui(θ̂
∗
i )

with respect to ρ evaluated at ρ = ρ∗ is 0, so we have

∂

∂ρ

∑
i∈N

Eθi
[
θiq
∗
i (θi; θ̂

∗
, ρ)
]∣∣∣∣∣
ρ=ρ∗

= 0. (B.17)

Thus, differentiating (B.15) with respect to ∆, we are left with only the effects that come
through ρ∗(∆) (as mentioned above), and we obtain, noting that θ̂j

∗
= θ̂

e

j at ∆ = 0,∑
i∈{1,2}

ũ′i(0) = ρ∗′(0)
∂

∂ρ

 ∑
i∈{1,2}

Eθi
[
θiq
∗
i (θi; θ̂

∗
, ρ)
]

+
∑

j∈N\{1,2}

Eθj
[
Ψj,0(θj, θ̂j)q

∗
j (θj; θ̂

∗
, ρ)
]∣∣∣∣∣∣

ρ=ρ∗(0)

= ρ∗′(0)
∂

∂ρ

∑
i∈N

Eθi
[
θiq
∗
i (θi; θ̂

∗
, ρ)
]

+
∑

j∈N\{1,2}

Eθj
[(

Ψj,0(θj, θ̂j)− θj
)
q∗j (θj; θ̂

∗
, ρ)
]∣∣∣∣∣∣

ρ=ρ∗(0)

= ρ∗′(0)
∂

∂ρ

 ∑
j∈N\{1,2}

Eθj
[(

Ψj,0(θj, θ̂j)− θj
)
q∗j (θj; θ̂

∗
, ρ)
]∣∣∣∣∣∣

ρ=ρ∗(0)

= ρ∗′(0)
∂

∂ρ

 ∑
j∈N\{1,2}

(∫ θ̂
∗
j

θ

Fj(θj)q
∗
j (θj; θ̂

∗
, ρ)dθj −

∫ θ

θ̂
∗
j

(1− Fj(θj)) q∗j (θj; θ̂
∗
, ρ)dθj

)∣∣∣∣∣∣
ρ=ρ∗(0)

= ρ∗′(0)
∂

∂ρ

 ∑
j∈N\{1,2}

(∫ zj(ρ)

θ

Fj(θj)q
e
j (θj)dθj +

∫ θ̂
∗
j

zj(ρ)

Fj(θj)rjdθj

−
∫ zj(ρ)

θ̂
∗
j

(1− Fj(θj)) rjdθj −
∫ θ

zj(ρ)

(1− Fj(θj)) qej (θj)dθj

))∣∣∣∣∣
ρ=ρ∗(0)

= ρ∗′(0)
∑

j∈N\{1,2}

(
z′j(ρ

∗(0))︸ ︷︷ ︸
negative

Fj(zj(ρ
∗(0)))

(
qej (zj(ρ

∗(0)))− rj
)︸ ︷︷ ︸

negative

−z′j(ρ∗(0))︸ ︷︷ ︸
positive

(1− Fj(zj(ρ∗(0))))
(
rj − qej (zj(ρ∗(0)))

)︸ ︷︷ ︸
negative

)
> 0,

where the first equality uses the definition of ũi, the second equality rearranges, the third
equality uses (B.17), the fourth equality uses the definition of Ψi,0, the fifth equality uses
(B.10), the sixth equality differentiates and rearranges, and the inequality uses the observa-
tions above, including (B.11) and (B.14), which hold strictly for ∆ > 0 sufficiently small.
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Thus,
∑

i∈{1,2} ũ
′
i(0) ≥ 0 and for ∆ > 0 sufficiently small

∑
i∈{1,2} ũi(∆) >

∑
i∈{1,2} ũi(0),

which implies that transactions between firms 1 and 2 of ∆ > 0 sufficiently small are mutu-
ally beneficial. By Lemma B.6, such transactions result in Πe(r̃(∆)) < 0, which completes
the proof. �

C Appendix: Extensions and discussion

C.1 Extension to multiple periods

Here, we define a T -period extension of the static model without discounting and with one-
dimensional types. Fix an ownership structure r. Within each period, types are realized
(independently across firms and time), firms participate in the market to lease assets to or
from other firms, and then firms realize payoffs associated with their total asset holdings
(initial assets, minus assets leased to others, plus assets leased from others). At the end of
the period, the leases expire and firms’ asset holdings revert to the ownership structure r.

If one assumes that a firm’s participation decision in one period has no implications for
whether it can participate in future periods, then the IR constraints in each period remain
the same as in our static model. Thus, the ex post efficiency permitting set remains simply
Re.

If, instead, a firm that chooses not to participate in period t cannot participate in any
future period, then firm i’s IR constraint is relaxed. Firm i participates in period t as long
as ui(θi) ≥ −(T − t)Eθi [u(θi)], rather than simply as long as ui(θi) ≥ 0. Thus, the set of
ownership structures that result in ex post efficiency in period t < T is a superset of Re.
However, only ownership structures in Re permit ex post efficiency in every period. In this
sense, the key features of the static setup extend to the multi-period model.

C.2 Extension to nonidentical supports

In this appendix, we provide additional details related to the extension to nonidentical
supports discussed in Section 6.3. This extension also allows us to connect with prior results
related to vertical integration.

As described in Section 6.3, we assume that firms are divided into a set NU of NU ≥ 1

“upstream” sellers with support [0, 1] and a set ND of ND ≥ 1 “downstream” buyers with
support [θ, 1 + θ], where prior to integration, all firms have one-dimensional types and have
maximum demands of k. Thus, each seller i has ri = k and each buyer i has ri = 0, which
implies that k = 1/NU .

In this context, integration between an upstream seller s (i.e., s ∈ NU with rs = k)
and a downstream buyer b (i.e., b ∈ ND with rb = 0) creates an integrated firm i that is a
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trader with ri = k and ki = 2k, which is naturally thought of as a vertically integrated firm.
Consequently, in what follows, we use the term vertical integration to refer to full integration
between an upstream seller and a downstream buyer.

Case I. If NU = 1, ND = 1, and θ < 1 (overlapping supports), then vertical integration
permits ex post efficiency whereas prior to full integration ex post efficiency is not possible.
In the case of one upstream seller and one downstream buyer and θ < 1, because the supports
overlap, ex post efficiency is not possible by Myerson and Satterthwaite (1983). But, because
full integration eliminates an agency problem within the firm, ex post efficiency is achieved
following a merger of the buyer and seller. Thus, as observed in Loertscher and Marx (2022,
Proposition 6), in this case vertical integration increases social surplus.

Case II. If NU > 1, ND = 1, and θ ≥ 1 (nonoverlapping supports), then vertical integra-
tion reduces social surplus because ex post efficiency is possible before but not after vertical
integration.
We obtain a contrasting result for the setting with one downstream buyer, multiple upstream
sellers, and θ ≥ 1. In the pre-integration market, ex post efficiency is possible—for example
based on a second-price auction with reserve p ∈ [1, θ]. Integration between the downstream
buyer and one upstream seller leaves us with NU −1 ≥ 1 sellers and one integrated firm that
has a two-dimensional type and k units of the asset. Ex post efficiency requires that k units
be allocated to the integrated firm’s buyer-side type, which is drawn from [θ, 1 + θ], and for
the remaining 1 − k units of supply to be allocated to the NU largest seller types, whether
that is the integrated firm’s seller-side type or one of the independent sellers’ types. In this
setting, one can essentially remove the integrated buyer and the integrated firm’s k units
from the problem because that allocation occurs for all type realizations. What remains
then are NU entities all with the same support, where one (the seller side of the integrated
firm) acts as a buyer and the remaining as sellers. This is a two-sided setting with a common
support in which ex post efficiency is not possible (Delacrétaz et al., 2019). Thus, in this
case, as in Loertscher and Marx (2022, Proposition 7), vertical integration decreases social
surplus.

Case III. If NU > 1, ND = 1, and θ ∈ [0, 1) (overlapping supports), then the social surplus
effects of vertical integration depend, in general, on the number of sellers.
As in Loertscher and Marx (2022, Online Appendix F.2.B), with one buyer, multiple sellers,
and overlapping supports, the social surplus effects of vertical integration depend, in general,
on the number of sellers. We know from Williams (1999) and Makowski and Mezzetti (1993)
that ex post efficiency is possible with nonidentical supports if NU is large enough. Because
vertical integration between buyer 1 and seller 1 creates an integrated firm that is a buyer
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(because all other firms are sellers, the integrated firm can only act as a buyer) with will-
ingness to pay for k units from the independent sellers of min{v1, c1} whose support is [θ, 1],
where v1 (c1) is the buyer’s value (seller’s cost). The results of Williams (1999) for this case
imply that ex post efficiency is not possible. Hence, vertical integration is socially harmful
whenever NS and θ are such that ex post efficiency is possible pre-integration. With identical
supports, ex post efficiency is not possible with or without vertical integration if NU > 1

(see, e.g., Williams, 1999). Further, with identical supports and uniformly distributed types,
as the number of sellers grows large, the change in social surplus due to vertical integration
is nonmonotone in the number of outside suppliers and, in the limit, approaches zero from
below (see Loertscher and Marx (2022, Figure F.1(a))).

So far, these results have stayed within a “one-to-many” setting. The focus on one buyer
and multiple sellers ensures that the post-integration firm can be viewed as effectively having
a one-dimensional type because, in the absence of any other buyers or traders to sell to, the
integrated firm can only act as a buyer vis à vis the other firms, so only its maximum
willingness to pay for an external unit is relevant.

However, the methodology developed in this paper gives us the ability to go beyond the
one-to-many cases and to consider many-to-many markets, thereby extending the results of
Loertscher and Marx (2022) on vertical integration.

Case IV. If NU = ND and θ ≥ 1 (nonoverlapping supports), then vertical integration
does not affect social surplus because ex post efficiency is possible before and after vertical
integration.
With an equal number N of upstream sellers and downstream buyers and θ ≥ 1, ex post
efficiency is possible. For example, trade at a fixed price p ∈ [1, θ] achieves ex post efficiency.
Following the integration of one buyer and one seller, ex post efficiency continues to require
that the buyer-side type of the integrated firm receives k units. We can think of the integrated
firm’s k units as allocated to its buyer-side type, leaving us with N − 1 downstream buyers
with supports [θ, 1 + θ] and maximum demands of k, and k(N − 1) units to be allocated
to them from the upstream sellers with supports [0, 1] (the seller-side of the integrated firm
acts a buyer with support [0, 1] and so is never allocated anything). Ex post efficiency can
then be achieved in this residual market with a posted price p ∈ [1, θ], with the result that
vertical integration in this case is neutral for social surplus.

Case V. If NU > ND ≥ 2 and θ ≥ 1 (nonoverlapping supports), then whether vertical
integration increases or decreases social surplus depends on market details.
With NU > ND ≥ 2, and θ ≥ 1, ex post efficiency is possible in the pre-integration market,
for example based on a posted price of p ∈ [1, θ]. Following integration between an upstream
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seller and a downstream buyer, ex post efficiency requires that k units be allocated to the
integrated firm’s buyer type, and k(ND − 1) to the independent buyers. The remaining
k(NU − ND) units must then be allocated to the firms with the highest NU − ND types
among the NS − 1 independent sellers and the integrated firm’s seller type. A payment of
θ can be required from each of the independent buyers, which may or may not be sufficient
to “grease the wheels” for the remaining transactions, which must occur among firms with a
common support.

As an example, consider the case with NU = 3 and ND = 2. Let c1 denote the type
of the integrated seller and c2 and c3 denote the types of the independent sellers. Then ex
post revenue based on VCG payments with binding IR for the firms’ worst-off types, where
the integrated firm’s worst-off type is (θ, 0), is k(θ + max{c2, c3} − 2 max{c1, c2, c3}). Thus,
revenue is increasing in θ and positive for all type realizations if θ ≥ 2. For θ ∈ [0, 2), the
sign of expected revenue depends on the distributions of the sellers’ types. For example, with
θ = 1 and uniformly distributed types, expected revenue is negative, so ex post efficiency is
not possible post-integration because the no-deficit constraint cannot be satisfied. However,
if instead the sellers’ costs are drawn from the distribution G(c) = c1/4 (with expected value
of 1/5), then expected revenue is positive and so the no-deficit constraint is satisfied, giving
us the result that ex post efficiency is possible. This establishes that in this case the effects
of vertical integration can go either way and depend, in general, on θ and the sellers’ type
distributions.

Figure C.1 illustrates that for NU > 2 = ND and θ = 1, the expected revenue in the
post-integration market under binding IR for the firms’ worst-off type varies with the number
of upstream sellers NU . Using (x)(j) to denote the j-th highest element of x and assuming
that NU > ND, ex post revenue as a function of NU and ND is given by

1

NU

(
(ND − 1)θ +

NU−ND∑
j=1

(c−1)(j) − (NU − 1)

NU−ND∑
j=1

(c)(j) +

NU∑
i=2

NU−ND−1∑
j=1

(c−i)(j)

)
. (C.18)

As NU grows large, the sums of all but the j lowest order statistics for j ∈ {1, . . . , ND+1}
approach (NU−j)µ, where µ is the expected cost of a seller. Thus, as NU grows large, (C.18)
approaches θ−(ND−1)µ

NU
, which then approaches zero, and from above if ND = 2, as illustrated

in Figure C.1. Further, increasing the number of downstream firms has the effect of increasing
the number of firms that pay θ, which for θ sufficiently large increases expected revenue and
makes vertical integration less harmful.
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Figure C.1: Expected revenue following the integration of one upstream seller with one downstream buyer
under the ex post efficient allocation and binding IR for firms’ worst-off types. Assumes NU > 2 = ND,
θ = 1, and common maximum demands of k = 1/NU . Sellers’ costs are drawn from distribution G on [0, 1],
and buyers’ values are drawn from the uniform distribution on [1, 2].

C.3 Optimal ownership and revenue under ex post efficiency

Much of the discussion above has focused on whether ex post efficiency is possible. This
analysis provides the foundation for the guidance that divestitures should, if possible, be
designed to secure ownership structures in Re. But to the extent that unmodeled transac-
tions costs or market frictions are present, a competition authority might have a preference
for ownership structures that are not just an element of Re, but that are robust to such
unmodeled costs as best possible. This can be achieved with the ownership structure r∗,
which maximizes expected revenue under ex post efficiency and binding IR for the firms’
worst-off types. This raises the question of how r∗ varies with the size and strength of firms
in the market. The possibility of differences in firms’ maximum demands allows for differ-
ences in firm sizes, and differences in firms’ distributions can be thought of as differences in
productivity across the firms, and across types within a firm.

Consider firms i and j with the same dimensionality of their types, hi = hj = h, and
maximum demand vectors ki = (k1

i , . . . , k
h
i ) and kj = (k1

j , . . . , k
h
j ). All else equal between

firms i and j, ki ≥ kj and ki 6= kj imply that qei (θ) > qej (θ) for θ ∈ (0, 1)h. Further, all
else equal between firms i and j, if F `

i first-order stochastically dominates F `
j for all ` and

F `
i 6= F `

j for at least one `, then qei (θ) > qej (θ) for θ ∈ (0, 1)h. Combining these observations,
we have the following result:3

Proposition C.1. All else equal, firms with larger maximum demands or stronger dis-

3For a proof for the case of one-dimensional types, see Liu et al. (forth., Proposition 2). See also the
related result of Che (2006) for one-dimensional types, ki = 1 for all i ∈ N , and distributions ranked by
first-order stochastic dominance.
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tributions according to first-order stochastic dominance have larger asset ownership in r∗:
that is, given firms i and j with h-dimensional types: (i) assuming that F `

i = F `
j for all

` ∈ {1, . . . , h}, if ki ≥ kj and ki 6= kj, then r∗i > r∗j ; and (ii) assuming that ki = kj, if F `
i

first-order stochastically dominates F `
j for all ` ∈ {1, . . . , h} and F `

i 6= F `
j for some `, then

r∗i > r∗j .

Proposition C.1 offers guidance for a divestiture strategy that, in an abundance of cau-
tion, strives to identify an ownership structure that is maximally robust to unmodeled market
frictions. In this case, the target asset ownership structure should be r∗, which gives rela-
tively more asset ownership to firms with relatively greater maximum demands and to firms
with relatively greater value for their use. Further, if firms are ex ante identical, that is,
have identical maximum demands and distributions, then this robustness criteria is met by
having symmetric asset ownership. This provides a rationale for divestitures in markets with
symmetric firms that promote symmetric asset ownership.

An open question of practical relevance remains for mergers such that ex post efficiency
is possible neither before nor after the merger and such that a second-best analysis is not
available because the multi-dimensionality of the integrated firm’s type is nontrivial. Of
course, if a post-merger divestiture exists that makes ex post efficiency possible, then a
social surplus maximizing authority should approve the merger and require such a divestiture
because the merger cum divestiture offers the opportunity to increase social surplus. So, the
open issue pertains to the subset of mergers such that ex post efficiency is possible neither
before nor after the merger, even with a divestiture, and when the second-best mechanism
post merger is not known. A natural and feasible way of evaluating such a merger would be
to compare expected revenue under ex post efficiency before and after the merger, which in
either case is negative because ex post efficiency is impossible. If the merger increases that
revenue, then a natural rule would be to approve the merger, and to otherwise block it.4 This
rule is in the spirit of the above discussion of divestiture strategies and of the paper more
broadly insofar as larger revenue under ex post efficiency offers more “leeway” for the market
to operate “well.” It also has a (partial) foundation in some one-dimensional setups, where
the second-best mechanism is known. For example, with ex ante identical firms, both social
surplus and expected revenue under ex post efficiency are Schur-concave. Thus, if revenue
under ex post efficiency increases because the ownership structure becomes more symmetric,
then social surplus increases as well. Because majorization is a partial order, revenue can
increase without the ownership structure becoming more symmetric, and reliability of the
test would require social surplus to increase as well in such situations. While for models

4Of course, the rule could be augmented by also considering all possible divestitures post-merger and to
evaluate expected revenue after both the merger and the divestitures.
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with interior ownership assessing whether this is the case is challenging even numerically, it
is clearly the case in a bilateral trade setting à la Myerson and Satterthwaite (1983) in which
the buyer’s support shifts upward.5

In what follows, we provide an illustration of its application beyond this case. Specifically,
we provide an illustration in a partnership setup, which is essentially one-dimensional, of the
rule of approving a merger if the merger increases revenue under ex post efficiency. Consider
the case of three firms and suppose that pre-merger ownership is r = (0.85, 0.1, 0.05). Figure
C.2, particularly panel (b) indicates that the iso-expected social surplus curve associated
with r = (0.85, 0.1, 0.05) lies largely, if not entirely, to the right of the iso-ex post efficient
revenue curve through that point. Thus, increases in ex post efficient revenue due to merger
imply increases in expected social surplus.

(a) Iso-revenue curves
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Figure C.2: Iso-ex post efficient revenue curves, i.e., constant Πe(r), and expected second-best social surplus.
Assumes n = 3, ki = 1, and uniformly distributed types. The iso-revenue curve for revenue −0.050976
includes r = (0.85, 0.05, 0.1) and r = (0.830275, 0.169725, 0), and the related vectors by symmetry. At
r = (0.830275, 0.169725, 0), we have ρ∗ = 1.078037 and the worst-off types are θ̂ = (0.877443, 0.413357, 0).

At r = (0.85, 0.05, 0.1), we have ρ∗ = 1.081305 and θ̂ = (0.886987, 0.258573, 0.318155).

5To be precise, assume firm 1 is a buyer whose type is drawn from a distribution with shifting support
[θ, θ + 1] and firm 2 is a seller whose type is drawn from a distribution with support [0, 1]. Ex post revenue
under ex post efficiency and DIC is max{θ2, θ} − min{θ1, 1}, which increases in θ, and expected revenue
increases because of that and because the probability that the seller is paid less than θ1 increases as θ
increases. At the same time, social surplus under the second-best mechanism increases as θ increases. That
said, revenue under ex post efficiency is not a universally reliable indicator for the performance of the second-
best mechanism; see, for example, Loertscher and Marx (2023, Propositions 4 and 5) and the discussion after
Theorem 1 above.
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C.4 Details for transforming a setting with multi-dimensional types

into one with one-dimensional types

In this appendix, we provide details related to the discussion in Section 6.4 on how the
two-dimensional types that arise due to the full integration of two firms might reasonably
be transformed into a one-dimensional type.

Consider a setting with three pre-merger firms with one-dimensional types, ex post
efficient allocation Qe(θ), and ex post welfare W (θ). We analyze the merger of firms
1 and 2 to create a post-merger firm with a two-dimensional type and asset ownership
r1,2 ≡ r1 + r2. For this post-merger setting, the ex post efficient allocation for the merged
firm is Qe

1,2(θ) ≡ Qe
1(θ) + Qe

2(θ). The worst-off types (ω, ω) for the merged firm and θ̂3 for
firm 3 satisfy qe1,2(ω, ω) = r1 + r2 and qe3(θ̂3) = r3. Thus, the VCG revenue accounting for the
merged entity’s two-dimensional type is

Πe(r1,2, r3) = Eθ[W (ω, ω, θ3)−W (θ1, θ2, θ3) +Qe
1(θ1, θ2, θ3)θ1 +Qe

2(θ1, θ2, θ3)θ2]− ωr1,2

+Eθ[W (θ1, θ2, θ̂3)−W (θ1, θ2, θ3) +Qe
3(θ1, θ2, θ3)θ3]− θ̂3r3,

where the expectations are taken with respect to the pre-merger distributions.
As we have shown, Πe(r1,2, r3) is concave and positive at a unique r∗, which implies that

we have unique cutoffs r3 and r3 such that Πe(1− r3, r3) = 0 and Πe(1− r3, r3) = 0, where
Πe(1−r3, r3) > 0 for all r3 ∈ (r3, r3). Thus, for the post-merger setting with two-dimensional
types, Re = {(1− r3, r3) | r3 ∈ [r3, r3]}.

We can then construct a density f̃ such that when the merged entity has a one-dimensional
type drawn from a distribution with density f̃ , along with asset ownership r1,2 and maximum
demand of k̃ ≡ min{1, k1 + k2}, then the ex post efficiency permitting set is once again Re.

In the one-dimensional setup, Q̃e
1,2(θ1,2, θ3) ≡ k̃ ·1θ1,2>θ3 + (1−k3) ·1θ1,2<θ3 and Q̃e

3(θ1,2, θ3) ≡
k3 · 1θ1,2<θ3 + (1 − k̃) · 1θ1,2>θ3 , and welfare is W̃ (θ1,2, θ3) ≡ Q̃e

1,2(θ1,2, θ3)θ12 + Q̃e
3(θ1,2, θ3)θ3.

The merged entity’s worst-off type is ω̃(r1,2) satisfying q̃e1,2(ω̃(r1,2)) = r1,2, which does
not depend on f̃ . The nonmerging firm has interim expected allocation rule q̃e3(θ3; f̃) ≡∫ 1

0
Q̃e

3(θ1,2, θ3)f̃(θ1,2)dθ1,2 and worst-off type θ̃3(r3; f̃) defined by q̃e3(θ̃3(r3; f̃); f̃) = r3, where
we explicitly note the dependence on f̃ .

We parameterize the density f̃ as the piecewise uniform density

f̃(θ) = (f̃1, . . . , f̃`) · (1θ∈[0,1/`), 1θ∈[1/`,2/`), . . . , 1θ∈[(`−1)/`,1]),

where ` is a sufficiently large integer, f̃i > 0, and
∑`

i=1
1
`
f̃i = 1.

The expected budget surplus under ex post efficiency with one-dimensional types, as a

20



function of the firms’ asset ownership as well as firm 3’s worst-off type, is then

Π̃e(r1,2, r3; f̃) ≡
∫ 1

0

∫ 1

0

(
W̃ (ω̃(r1,2), θ3)− 2W̃ (θ1,2, θ3) + Q̃e

1,2(θ1,2, θ3)θ1,2

+ W̃ (θ1,2, θ̃3(r3; f̃)) + Q̃e
3(θ1,2, θ3)θ3

)
f̃(θ12)f(θ3)dθ12dθ3

−ω̃(r1,2)r1,2 − θ̃3(r3; f̃)r3.

One can then solve for (f̃1, . . . ; f̃`), θ̃3(r3; f̃), and θ̃3(r3; f̃) such that we have, simultaneously,
Π̃e(1− r3, r3; f̃) = Π̃e(1− r3, r3; f̃) = 0, q̃e3(θ̃3(r3; f̃); f̃) = r3, and q̃e3(θ̃3(r3; f̃); f̃) = r3. This
gives us the density f̃ such that the ex post permitting set in the one-dimensional setting is,
as in the two-dimensional setting, Re = {(1 − r3, r3) | r3 ∈ [r3, r3]}, which is illustrated in
Figure C.3.

(a) Ex post efficiency permitting sets
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(b) Virtual types for transformed distribution
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Figure C.3: Panel (a) shows the pre-merger (blue) and post-merger (orange) ex post efficiency permitting
set based on two-dimensional types. Panel (b) shows the corresponding virtual types (solid lines) when the
merged firm’s type is transformed to be one-dimensional based on the piecewise uniform type distribution
with 10 segments (` = 10). For comparison, dashed lines show the virtual type functions for the distribution
for the maximum of two types. Assumes that the pre-merger types are uniformly distributed and that
k1 = k2 = 0.8 and k3 = 1.

D Application to the Republic-Santek transaction
A natural question is how the divestiture policies that we discuss can be implemented in
practice. In a merger review context, the parties would need to provide details of their own
holdings to the competition authority and assist the competition authority in understanding
the nature of upstream and downstream competitive constraints. In addition, public filings
and industry analyst reports provide relevant information for assessing market structure,
maximum capacities, market shares, and parties’ margins. This means that r can plausibly
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be treated as observable.
In this appendix, we show how the framework of this paper can be applied to market

data that is typically available in a merger review process. As we now illustrate, historical
market shares on the input market and maximum allocations can be used to estimate firms’
expected allocations and maximum demands. Under parametric assumptions about firms’
distributions, one can estimate these parameters to match the firms’ historical market shares
and to determine, for any given r, how efficient the market operates. With these estimates in
hand, one can then estimate sets likeRe andR(r), determine whether a proposed transaction
is harmful, and what (if any) divestitures are capable of offsetting that harm or would even
permit the first-best if the first-best was not possible prior to the transaction.

(a) First-best permitting ownership struc-
tures Re along with rb and r∗
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r
b=(0.5,0.5,0) r2=k2

r3=k3

(0,0.5,0.5)

(0.72,0,0.28) (0.61,0,0.39)

(b) Social surplus preserving ownership
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Figure D.1: First-best permitting region (blue) and social surplus preserving region R(rb) (yellow) for
upstream market shares r ∈ ∆k and k = (1, 1/2, 1/2) and distributions calibrated to the waste management
market, which has rb = (1/2, 1/2, 0). Specifically, Fi(θ) = 1− (1− θ)si , with s1 = 1, s2 = 1.2, and s3 = 0.8.

In our illustration, there are three firms. The initial ownership structure is rb = (1/2, 1/2, 0)

and the vector of maximum demands is k = (1, 1/2, 0). The transaction consist of firm 2
selling its assets to firm 1, resulting in ra = (1, 0, 0). Panel (a) in Figure D.1 displays rb,
ra, and the estimated r∗ and Re. As the figure shows, the first-best is not possible with or
without the transaction. Panel (b) adds the estimated set R(rb) (in yellow) and divestitures
that restore social surplus equal to SS(rb) as well as divestitures that permit the first-best.

Our application is inspired by the 2021 transaction involving waste management compa-
nies Republic and Santek.6 However, the specific data that we use are hypothetical.

6For background, see Loudermilk et al. (2023) and the U.S. DOJ’s website on “U.S. and Plaintiff
States v. Republic Services, Inc. and Santek Waste Services, LLC” (https://www.justice.gov/atr/case/
us-and-state-alabama-v-republic-services-inc-and-santek-waste-services-llc).
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Republic and Santek both held upstream waste disposal assets and also operated down-
stream waste collection businesses. In addition to using its own upstream assets, Republic
also purchased upstream assets from Santek (and other firms). For Santek, in addition to
consuming its own upstream assets, it also sold upstream assets to other firms, including to
Republic and a third firm, Regional, that held no upstream assets of its own. Motivated by
these facts, we model Republic as a trader, Santek, as a seller, and Regional as a buyer.

In general, one would expect the upstream ownership structure, rb, to be observable.
The maximum demands k can be estimated using data on historical allocations. Specifically,
assuming one has observations of input good market quantities qti over t ∈ {1, . . . , T} periods
that result from T independent instances of the market we studied, the maximum demands
can be estimated by k̂i = maxt{qti}. This is a good approximation if T is large enough
because, regardless of how efficient the market operates, every once in a while the type
realizations will be such that firm i is allocated its maximum demand ki. Likewise, firm i’s
expected or average quantity q̂i can be estimated by q̂i =

∑
t q

t
i

T
, and firm i’s estimated market

share generated in the input market will be ς̂ i = q̂i/R, where R =
∑

i∈N ri is total supply.
For our illustration, we assume the following industry data:

Firm i rbi k̂i Market share ς̂ i Type

1. Republic 1/2 1 50% trader

2. Santek 1/2 1/2 24% seller

3. Regional 0 1/2 26% buyer

To complete the specification of the market, we then need to estimate the firms’ type
distributions. To do so, we assume a class of parameterized distributions and calibrate the
firms’ parameters based on the information in the table above. Specifically, we model each
firm i as having a type distribution of the form Fi(θ) ≡ 1−(1−θ)si , where si > 0. See Waehrer
and Perry (2003) for an axiomatic foundation for this basic structure.7 The firms’ market
shares together with an additional identifying assumption, such as the margin for one of the
firms, then determine the distributional parameters. For computational convenience, instead
of using one firm’s margin, we use as the identifying assumption that Republic has uniformly
distributed types, i.e., ŝRepublic = 1, which implies that the ironing parameter for Republic’s
ironed virtual type function has an analytic form. Proceeding in this way, we estimate
the firms’ distributional parameters as follows. Given r, k̂, and arbitrary distributional

7Waehrer and Perry (2003) show that their three properties of no externalities, homogeneity, and constant
returns are satisfied if and only if there exists a distribution function G with support [0, 1] such that for all
i and c ∈ [0, 1), Fi(c) = 1− (1−G(c))

si for si > 0.
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parameters s, one can solve numerically for ρ∗ and Republic’s worst-off type, θ̂
∗
Republic (because

Santek is a seller, θ̂
∗
Santek = 1, and because Regional is a buyer, θ̂

∗
Regional = 0). Thereby

one obtains the firms’ interim expected allocation rules and the associated market shares.
One can iterate over distributional parameters to calibrate to the market shares ς̂. The
distributional parameters shown in the table below imply that ρ∗ = 1.09 and θ̂

∗
Republic = 0.50,

which then imply the market shares ς̂ i shown in the table above.8 The table below displays
the distributional parameters ŝi obtained through this procedure:

Firm i ŝi

1. Republic 1

2. Santek 1.2

3. Regional 0.8

With the distributional parameters in hand, we can calculate the ex post efficiency per-
mitting region for ownership structures, Re, as well as the set R(rb), which contains all the
ownership structures that generate a social surplus of at least SS(rb). Both of these regions
are illustrated in Figure D.1. As the figure shows, ex post efficiency is not possible under
the industry’s pre-transaction upstream ownership structure rb = (1/2, 1/2, 0), and the up-
stream ownership structure that maximizes Πe is r∗ = (1/2, 1/4, 1/4).9 The post-transaction
markets structure is indicated as a red dot in Figure D.1 and given by (1, 0, 0). The minimal
divestiture that offsets the harm from that transaction, which requires Republic to divest
36% to Regional, is indicated by the black dot in Figure D.1(b). If it divests between 57%
and 78%, ex post efficiency is achieved after the transaction with divestiture whereas it was
not possible before the transaction.

Ultimately, the DOJ allowed Republic’s acquisition of Santek subject to the divestiture
of a number of Santek’s assets to approved buyers.10

8If there are traders that do not have uniformly distributed types, then one must also solve numerically
for their ironing parameters. This applies, for example, for the problem of estimating R(r), displayed in
panel (b) of Figure D.1.

9In the efficient allocation, Santek and Regional are allocated their full maximum demand if and only if
their type is greater than the type of Republic. Thus, given that Republic’s type is uniformly distributed,
we have qeSantek(θ) = qeRegional(θ) = θ. For Republic, we have qeRepublic(θ) = 2 − (1 − θ)0.8 − (1 − θ)1.2.
The upstream ownership structure that equalizes the firms’ worst-off types to be θ̂ is then r∗ satisfying
r∗Santek = r∗Regional = θ̂, r∗Republic = 2 − (1 − θ̂)0.8 − (1 − θ̂)1.2, and r∗Republic + r∗Santek + r∗Regional = 2.

Solving this, we get θ̂ = 0.502, and so r∗Santek = r∗Regional = 0.5024 and r∗Republic = 0.9951, which rounds
to r∗ = (1, 0.5, 0.5). Even though Santek and Republic’s distributional parameters differ, their r∗i ’s are the
same.

10U.S. DOJ, “U.S. and Plaintiff States v. Republic Services, Inc. and Santek Waste Services, LLC” (https:
//www.justice.gov/atr/case/us-and-state-alabama-v-republic-services-inc-and-santek-waste-services-llc).
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