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Abstract— This paper considers a method of coding the sensor
outputs in order to detect stealthy false data injection attacks.
An intelligent attacker can design a sequence of data injection to
sensors and actuators that pass the state estimator and statistical
fault detector, based on knowledge of the system parameters.
To stay undetected, the injected data should increase the state
estimation errors while keep the estimation residues small. We
employ a coding matrix to change the original sensor outputs to
increase the estimation residues under intelligent data injection
attacks. This is a low cost method compared with encryption
schemes over all sensor measurements in communication net-
works. We show the conditions of a feasible coding matrix under
the assumption that the attacker does not have knowledge of the
exact coding matrix. An algorithm is developed to compute a
feasible coding matrix, and, we show that in general, multiple
feasible coding matrices exist. To defend against attackers who
estimates the coding matrix via sensor and actuator measure-
ments, time-varying coding matrices are designed according to
the detection requirements. A heuristic algorithm to decide the
time length of updating a coding matrix is then proposed.

Index Terms—Coding, detection, feasible coding matrix,
stealthy data injection attacks, time-varying coding, state esti-
mator.

I. INTRODUCTION

Cyber-physical systems (CPSs) integrate computation and
communications to interact with physical processes. Many
applications are considered as CPSs, including high confidence
medical devices, energy conservation, environmental control,
and safety critical infrastructures–such as water supply sys-
tems, electric power, and communication systems [2]. There-
fore, security is a critical aspect of these systems, and CPSs
involve additional challenges in control layer. The problem
of secure control is defined, and reasons for mechanisms of
information security, sensor network security alone are not
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sufficient for the security of CPSs are analyzed [3]. The key
challenges of CPSs securities are summarized in [4].

Novel attack-detection algorithms in cyber security area can
be designed, by understanding how attacks affect state estima-
tion and control of the system. Two algorithms to maximize the
utility of encrypted devices placed to increase system security
are proposed to reduce the cost of communication cost in
power grids [5]. Tools are developed to protect state-estimation
components from stealthy attacks from an intelligent attacker
with a partial model of the system [6].

Researchers have explored fault detection, isolation and
reconfiguration (FDIR) methods to ensure systems’ safety and
robustness [7]. Although active techniques have been designed
to tackle various types of attacks, fundamental limitations
still exist [8]. With a limited number of sensor and actu-
ator compromised by the attacker, i.e., some elements of
the injection vector is restricted to be zero, resilient state
estimators have been designed by previous work. Fawzi et al.
propose estimation and control schemes of noise free linear
systems [9]. Pajic et al. present a robust state estimation
method in presence of attacks to no more than half of the
sensors for systems with noise and modeling errors [10].
In contrast, we examine a different case where the attacker
can inject an arbitrary vector to the communication between
sensors and the estimator/detector/controller component, thus
no element of the injection vector is constrained to be zero.

The monitoring system can detect malicious behaviors in
general. Coding and decoding schemes to estimate the state
of a scalar stable stochastic linear system with noisy mea-
surements are designed in [11]. A distributed methodology for
detecting and isolating multiple sensor faults in interconnected
CPS is proposed in [12]. A class of false data injection attacks
against state estimators in power grid is analyzed in [13]. Se-
quential detection techniques of sensor networks are discussed
in [14]. Miao et al. design stochastic game approaches for
replay attacks detections [15] and secure control of CPSs [16].

However, with knowledge of the system model, an intelli-
gent cyber attacker is able to carefully design a data injection
sequence, such that the state estimation error increases without
triggering the alarm of the monitor [17], [18]. Manandhar et al.
design the Euclidean detector to overcome the limitation of χ2

detector for fault detection in smart grid [19]. However, the de-
sign of Euclidean detector is based on the voltage signal model
of smart grid and whether it works for a general linear system
model has not been shown yet. In this work, we consider the
detection problem of false data injection attacks for a general
linear system model. To address the computational overhead
of encryptions on embedded architectures [20], we propose an
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alternative low cost method to code the sensor measurements
for detection. With the coding scheme, no additional detector
is required for the system to detect stealthy data injected by
an attacker with the knowledge of system model. Compared
with error-correcting coding schemes [21], the sensor outputs
coding approaches proposed in this work aim to change the
value transmitted over the communication channel instead of
correcting errors on bit level. Moreover, the coding scheme
proposed in this work does not require additional bits for
each plaintext message of the sensor measurements, while
an encryption method introduces communication overhead
for each sensor message transmitted in the communication
channel [22]. We assume that the coding matrix is distributed
between sensors and the estimator/detector of the system
correctly like an secret encryption key [23], and measurement
of individual sensor is not corrupted before coded. With
the coding matrix, the values sent over the communication
channel are changed, without additional bits for encryption
overhead [21], and the scheme is low-cost compared with the
scheme of encrypting all sensor outputs.

The contributions of this work are summarized as follows:
1) The main contribution of this work is a low cost method

of coding sensor outputs to detect stealthy false data
injection attacks. We show that the system can detect the
original stealthy sensor injections by coding the sensor
outputs according to certain conditions.

2) We also design an algorithm to compute such coding
matrices, and show that in general, multiple feasible
coding matrices exist.

3) When the attacker can estimate the coding scheme
according to several measurements of sensor and ac-
tuator values, we show that it is difficult to get the
exact coding matrix in general. Moreover, in this case,
the system can either change a new coding matrix or
randomly use a set of coding matrices within a time
length before the attacker has enough measurements for
a good estimation. We design a heuristic algorithm to
decide the time length of updating a coding matrix.

The paper is organized as follows. In Section II we describe
the system and attack models. The conditions that a feasible
coding matrix should satisfy are presented in Section III. An
algorithm to find a feasible coding matrix based on rotation
matrix is developed in Section IV. A time-varying coding
scheme is designed in Section V. Section VI shows illustrative
examples. Conclusions are given in Section VII.

II. SYSTEM AND ATTACK MODEL

We will introduce a discrete-time linear time-invariant (LTI)
system model, a data injection attack model, and the attacked
system model in this section. The system architecture is shown
in Figure 1.

A. Linear system model

Assume that the CPS is composed of a discrete time LTI
system with the following form:

xk+1 = Axk +Buk + wk, yk = Cxk + vk, (1)

where xk ∈ Rn is the system state vector, uk ∈ Rm is the
control input, and yk ∈ Rp is the sensor observations at time k.
We do not have specific restrictions for the linear control input
uk here, since the choice of a linear controller does not affect
the detection of false data injection, and we will explain the
reason later. We assume that wk ∼ N(0, Q) and vk ∼ N(0, R)
are identical independent (i.i.d.) Gaussian noises.

The optimal Kalman filter used to estimate state x̂k|k is:

x̂0|−1 = 0, P0|−1 = Θ, Pk+1|k = APkA
T +Q,

Kk+1 = Pk+1|kC
T (CPk+1|kC

T +R)−1,

Pk+1 = (I −Kk+1C)Pk+1|k,

zk+1 = yk+1 − C(Ax̂k +Buk),

x̂k+1|k = Ax̂k +Buk, x̂k+1 = x̂k+1|k +Kkzk+1.

Under the assumption that (A,B) is stabilizable, (A,C) is
detectable, we get a steady state Kalman filter, with the error
covariance matrix P and Kalman gain matrix K:

P , lim
k→∞

Pk|k−1,K , PCT (CPCT +R)−1.

Without attacks, the estimation residue zk follows a Gaus-
sian distribution N ∼ (0, CPCT+R). Define the quantities gk
as gk = zTk P

−1zk, where P is the error covariance matrix of
Kalman filter, then gk satisfies a χ2 distribution with p degrees
of freedom. A χ2 failure detector considers the standardized
residue sequence ηk = P−

1
2 zk for a monitoring system, and

assumes that there exists a δη such that limk→∞ ‖Eηk‖ ≤ δη.
We denote α as the threshold for detecting a fault, meaning
that the alarm is triggered when gk > α.

B. False data injection attack model
The system model under sensor data injection attack is

described as (2)

x′k+1 = Ax′k +B(u′k + uak) + wk,

y′k = Cx′k + yak + vk,
(2)

where yak ∈ Rp, uak ∈ Rm are arbitrary vectors injected
to sensor outputs, actuator inputs by the attacker at time k
respectively. When uak = 0, only sensor values are changed
by the attacker. Assume the adversary has knowledge of the
system model described in Section II-A, and is able to inject
data over communication network between sensors and the
estimator/detector/controller.

Without attack, according to the system dynamics and the
definition of Kalman filter, the estimation error is

ek , xk − x̂k,
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Figure 1. System diagram, where the system is equipped with an estimator,
a detector and a controller. The attacker can inject arbitrary false data vector
yak to sensor outputs and uak to actuator inputs.
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ek+1 = (A−KCA)ek −Kvk + (I −KC)wk.

When matrix (A − KCA) is stable and Ewk = Evk = 0,
the expectation of estimation error converges to 0 with a
static Kalman filter, i.e., limk→∞ E[ek] → 0. Meanwhile, the
residual zk stays in the subspace that does not trigger the alarm
with a high probability.

To illustrate how the sensor injection sequence yak will affect
the estimation and monitoring system, we examine how the
estimation error and residue will change with yak . Denote the
estimation residuals of attacked system as

z′k = y′k+1 − C(Ax̂′k +Bu′k),

where x̂′k is the state estimation of the compromised system.
Similarly, we define the estimation error under attack as

e′k , x′k − x̂′k,
The probability that the sensor injection sequence yak , k =
0, 1, . . . is detectable is given by

Pr(g′k = (z′k)TP−1z′k > α for any k).

The difference between the normal and the compromised
systems can be captured by:

∆ek , e′k − ek, ∆zk , z′k − zk. (3)

The dynamics of the above difference vectors satisfy

∆ek+1 = (A−KCA)∆ek −Kyak+1 + (B −KCB)uak,

∆zk+1 = CA∆ek + yak + CBuak,
(4)

Hence the difference vectors between normal and compro-
mised systems, ∆zk(ya, ua),∆ek(ya, ua), are functions of the
injection sequences ya , (ya0 , y

a
1 , . . . ), ua , (ua0 , u

a
1 , . . . ). To

simplify the notations, we concisely denote these vectors as
∆zk,∆ek, respectively.

The objectives of the attacker include increasing the esti-
mation error e′k without triggering the alarm, and destabilizing
the system with infinite state estimation error e′k in the long
run. Note that these types of attacks on control systems have
been illustrated in the recent years. For instance, the estimated
trajectories of Unmanned Ground Vehicle (UGV) [10] and Un-
manned Aerial Vehicle (UAV) navigation systems [18] under
stealthy data injection attacks (e.g., by GPS spoofing) deviate
from the actual trajectories of the autonomous vehicles before
being detected. Thus the attacker’s objective is equivalent to
increasing ‖∆ek‖2 (the difference between estimation error
of the normal and compromised systems) to infinity without
increasing ‖∆zk‖2 much as time goes by. Since computing the
detecting statistic of compromised system g′k is to integrate a
Gaussian distribution on an ellipsoid, the stealthy requirement
can be approximated by keeping ‖z′k‖2 small. Residues of the
normal system zk are bounded, and the attacker should keep
the change of residues bounded make the injection stealthy. It
means the following inequality should hold

‖∆zk‖2 ≤M, (5)

where M is a residue norm change threshold designed by
the attacker. The compromised estimation residue should be

close to that of the normal system, to deceive the monitoring
system. 1 When yak can be an arbitrary vector, a necessary and
sufficient condition for a stealthy injection yak that can increase
‖e′k‖2, ‖x′k‖2 to infinity while keep ‖z′k‖2, ‖∆zk‖2 bounded
is derived in [18], [17]. The condition that Cv ∈ span(I), i.e.,
there exists y∗ satisfying y∗ = Cv is always satisfied by the
attack model (2). Hence, we have the following proposition.

Proposition 1. There exists a stealthy sequence yak , k =
0, 1, . . . , given the attacked system model (2), if and only if
matrix A has an unstable eigenvalue λ and the corresponding
eigenvector v, such that v ∈ span(Qoa), where Qoa is the
controllability matrix associated with the pair (A−KCA,K).

III. CODING SENSOR OUTPUTS FOR DETECTING STEALTH
SENSOR DATA INJECTION

Existing statistical detectors, active monitor schemes (design
some additive control input udk) and fault detection filters
have limitations, that even actuators are not compromised,
they cannot detect stealthy sensor data injection attacks. It
is necessary to design some inexpensive techniques to com-
pensate for the vulnerability of the system under intelligent
sensor data injection attacks. It has been shown that by only
compromising sensors, attackers can induce infinite estimation
error without being detected under monitoring systems like a
χ2 detector [18]. Therefore, we first discuss the case of stealthy
sensor false data injection attacks in this section.

A. Limitations of existing approaches

The limitation of active monitor approach: Under the
assumption that actuators work appropriately for the attacked
system (2), the challenge here is whether adding udk to the
pre-designed linear control input uk (such as optimal LQG
control) can help to detect stealthy sensor data injections. For
instance, consider a new control input

ũk = uk + udk, (6)

where udk is some random authentication signal or a constant
value. It is worth noting that active monitor approaches do
not help for detecting sensor data injection attacks described
in model (2) .

Lemma 1. There exists no active monitor in the form (6) that
can increase the detection probability of a stealthy sensor data
injection sequence, for the system (1) equipped with a Kalmen
Filter and a χ2 detector.

Proof: We denote the difference between estimation
residual and estimation error of the normal and compromised
system for the system with the controller (6) as ∆z̃k+1

and ∆ẽk+1, respectively. By the definition of ∆z̃k+1 and
∆ẽk+1 and a similarly calculation process to get (4), we have
∆ẽk = ∆ek, and ∆z̃k+1 = CA∆ẽk + yak+1 + CBuak. Any
additional control input udk will be eliminated by the deduction
of z̃k+1 and z̃′k+1 to get ∆zk+1. The active control input does

1The relation between the scale or norm of the injection sequence and the
alarm trigger threshold α is shown in Theorem 1 in [18].
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not increase the norm of ∆z̃k+1 compared with ∆zk+1, which
means there exists no linear form of ũk as described above
that can increase ‖∆zk+1‖2 under yak for the system (2).

The limitations of active monitors for a unified LTI model
are explained in Theorem 4.7 of [8] 2. From this perspective,
different linear controllers are equivalent under stealth sensor
data injection attacks, and we do not restrict the controller
model for designing our detection techniques.

The limitation of fault detection filter: Besides Kalman fil-
ter, observer-based fault detection filters for LTI systems with
unknown error have been developed. The design requirements
usually include robustness to unknown inputs and sensitivity
to faults. Such filters generate a different residue from zk
of Kalman filter. Consider the following form of residual
generator and residual evaluator (including a threshold and
a decision logic unit, see [25] for details) [25]:

x̂k+1 = Ax̂k +Buk +H(yk − ŷk),

ŷk = Cx̂k, rk = V (yk − ŷk),
(7)

where x̂k ∈ Rn and ŷk ∈ Rp represent the state and output
estimation vectors, respectively, and rk is the residual signal.
This fault detector shares the same limitation with Kalman
filter, i.e., the intelligent sensor data injection attack is stealth
for the filter described as (7), since the residue is still observer
based difference between yk and ŷk.

B. Coding sensor outputs to detect stealth data injection

Since existing monitoring systems cannot detect intelligent
false data injection attacks, and encryption method has a con-
straint of significant computation overhead, we propose a de-
sign of coding the sensor outputs to detect stealth sensor data
injection attacks. An intelligent attacker designs the sequence
yak carefully to keep the change of residue ‖∆zk‖2 ≤ M ,
where M is a constant. Thus, the objective of a detecting
approach is equivalent to increasing ‖∆zk‖2 as fast as possible
under a stealthy data injection sequence, and ‖∆zk‖2 should
increase to infinity as time goes to infinity.

The necessary and sufficient conditions for stealth false
sensor data injection in Corollary 1 assume that the at-
tacker knows (A,B,C,K). Parameters A and B are related
to physical dynamics that may not be altered, while C is
related to the sensor measurements, corresponding specific
physical states. Without changing the physical setup, we still
can manipulate the sensor outputs. To violate the attacker’s
design, we consider the method of transforming sensor outputs
as shown in Figure 2–instead of sending the output vector

2A different case when adding exogenous Gaussian distribution control
input can detect replay attacks is discussed in [24].

Encoder

Figure 2. System diagram when coding sensor outputs with a matrix Σ that
satisfies the conditions of Theorem 1. The attacker can inject arbitrary false
data vector yak to sensor outputs.

yk = Cxk + vk to the estimator/controller/detector, sensors
transmit the value

Yk = Σ(Cxk + vk), C ∈ Rp×n, (8)

where Σ ∈ Rp×p is an invertible matrix. We assume that the
measurement of individual sensor is not corrupted yet before
coding, and injection sequence appears in the communication
between sensors to the estimator/controller/detector. One can
think of Σ as an inexpensive code, and compare Σ with an
encryption key. By encrypting only the coding matrix channel
once, the coding approach saves encryption cost compared
with encrypting all sensor outputs for every time k.

We assume that the attacker does not know the matrix Σ
at least before estimating the matrix based on knowledge of
matrices (A,B,C,K) and sensor and actuator values, since
the coding matrix Σ is not fixed by the physical model of
the system and can be time-varying, calculated in polynomial
time when a new coding matrix is needed (an algorithm will
be proposed in the next section). We assume that the attacker
cannot access the coding matrix directly if he/she only applies
eavesdropping techniques to the unencrypted communication
channel and the process of distributing Σ is protected. We
will propose a time-varying coding scheme later in this work.
When the attacker has designed a sequence of stealthy attack
signal yak for the original system without the knowledge of the
coding matrix Σ, the false sensor value after coding changes
to:

Y ′k = ΣCxk + yak + Σvk. (9)

Since Σ is an invertible matrix, when the state estimator
receives Yk or Y ′k , the encoded packet is decoded as

ỹ′k = Σ−1Y ′k = yk + Σ−1yak , (10)

And we still use the same Kalman filter and χ2 detector on
the decoded sensor outputs. Similar as the definitions of ∆ek
and ∆zk (4) for sensor outputs before coding, we define ∆e′k
and ∆z′k as the change of state estimation and residue for
coded sensor outputs without attack (8) and under attack (9),
respectively. With Σ, a stealth data injection designed for (1)
(with parameters (A,B,C,K)), ‖∆z′k‖2 increases to infinity
as k →∞ under certain conditions. In the following theorem,
we show the sufficient conditions that Σ should satisfy for any
stealth sequence of yak , k = 0, 1, . . . that satisfies Theorem 1.

Theorem 1. Given an attacked system model (2), assume
that (A,C) is detectable, uak = 0, and the attacker designs
a sequence of sensor data injection yak , k = 0, 1, . . . , based
on one unstable eigenvector v ∈ span(Qoa), where Qoa is the
controllability matrix associated with the pair (A−KCA,K).
If there exists an invertible matrix Σ, and the direction of ΣCv
is not the same with that of Cv, i.e.,

(Cv)′ΣCv
‖ΣCv‖2‖Cv‖2

6= 1, (11)

then after injecting yak the estimation residue change satisfies
limk→∞ ‖∆z′k‖2 →∞, by coding sensor outputs (8) with Σ.
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Proof: Given a system under data injection attacks as (2),
we assume that the system has one unstable eigenvector v
with corresponding eigenvalue λ. According to the definition
in equation (3), the dynamics of ∆ek,∆zk satisfy (4) with
uak = 0. For coded sensor outputs (9), after decoding

∆e′k+1 = (A−KCA)∆e′k −KΣ−1yak+1,

∆z′k+1 = CA∆e′k + Σ−1yak+1,
(12)

The proof of Theorem 1 in [18] shows that under a stealthy
sensor data injection sequence, the only component of ∆ek
that goes to infinity eventually depends on the unstable eigen-
vector, denoted as ckv, limk→∞ ck = ∞, and ∆ek can be
decomposed as ∆ek = ckv + ε1k, ‖ε1k‖2 ≤M1.

To keep ∆zk bounded as k → ∞, any stealthy injection
sequence yak must satisfy

yak+1 = −ckλCv + ε2k, ‖ε2k‖2 ≤M2, k = 0, 1, 2, . . . , (13)

where M2 is a constant such that ‖∆zk‖2 ≤M for all k.
We assume that the attacker does not know Σ, and designs

an injection sequence for the original system (1) as described
in (13). Similarly as ∆ek, the only component of ∆e′k that
can goes to infinity is ckv, since matrix A is not changed by
the coding matrix Σ. However, with any yak in (13), ∆z′k can
be decomposed as

∆z′k = ckλ(Cv − Σ−1Cv) + ε3k, k = 0, 1, 2, . . . , (14)

where ε3k is a bounded vector components of ∆z′k. When
Σ satisfies equation (11), ΣCv − Cv 6= 0. With ck → ∞,
‖∆z′k‖ → ∞ as k →∞.

We call a matrix Σ that satisfies the conditions of Theo-
rem 1 a feasible coding matrix. Theorem 1 shows that even
the attacker knows system parameters (A,B,C,K), without
changing the physical structure or altering A,B, we can
utilize the sensor data to get different residues for detecting.
Leveraging sensor outputs is the key reason to detect a
stealth sensor data injection. It is worth noting that here we
do not constrain specific structure of the matrix Σ besides
conditions in Theorem 1. For an LTI system, ΣC is simply a
linear transform of the original sensor measurement. When A
has several unstable eigenvectors satisfying Corollary 1, the
following lemma extends the result of Theorem 1.

Lemma 2. Given an attacked system (2) with (A,C) de-
tectable and a set of unstable eigenvectors v1, . . . , vu ∈
span(Qoa), where Qoa is the controllability matrix associated
with the pair (A−KCA,K), if Σ is an invertible matrix, and

(Cṽ)′ΣCṽ
‖ΣCṽ‖2‖Cṽ‖2

6= 1, (15)

for any linear combinations of v1, . . . , vu – ṽ, then Σ is a
feasible coding matrix to increase ‖∆z′k‖2 for any stealth data
injection to attacked system (2).

Proof: When matrix A has a set of unstable eigenvectors
v1, . . . , vu with corresponding eigenvalues λ1, . . . , λu, similar
as the proof of Theorem 1, a stealthy injection sequence takes
the form

yak =

u∑
i=1

cikλiCvi + ε2k, ‖ε2k‖2 ≤M2, k = 0, 1, 2, . . . ,

and the change of residual is defined as

∆z′k =

u∑
i=1

cikλi(Cvi − Σ−1Cvi) + ε3k,

= C(

u∑
i=1

cikλivi)− Σ−1C(

u∑
i=1

cikλivi), k = 0, 1, 2, . . . .

Hence, we consider ṽ =
∑u
i=1 cikλivi as a linear combi-

nation of all the unstable eigenvectors, the conclusion holds
with the coding matrix Σ satisfying all the constraints.

Remark 1. When the attacker is able to learn Σ by analyzing
sensor outputs and actuator inputs, the system can send a new
Σ before the attacker figures out the current applied coding
matrix. The process of learning Σ from the perspective of an
attacker will be discussed in Section V.

C. When sensor and actuator packets are both injected

We will derive the condition for a feasible coding matrix
when the attacker can mount deception attacks to both sensor
packets and actuator packets.

Theorem 2. Given an attacked system model (2), assume that
the attacker designs a sequence of stealthy sensor and actuator
data injection (yak , u

a
k), k = 0, 1, . . . , that uak is bounded and

drives the estimation error to infinity limk→∞ ‖∆ek‖2 →∞.
If there exists an invertible matrix Σ such that yak−Σ−1yak 6= 0
for any yak , then after injecting (yak , u

a
k) the estimation residue

change satisfies limk→∞ ‖∆z′k‖2 → ∞, by coding sensor
outputs (8) with Σ.

Proof: The dynamics of change of estimation error, resid-
uals between the normal and compromised system is described
as (4), where yak , u

a
k is the injected sequence to sensor and

actuator packets, respectively. Since ‖∆zk+1‖2 ≤ M for all
k = 0, 1, . . . , any pair of (yak+1, u

a
k) must satisfy

yak+1 = −CA∆ek − CBuak + εk, ‖εk‖2 ≤M. (16)

For bounded uak, the injection sequence satisfies that
limk→∞ ‖yak‖2 → ∞ to make sure limk→∞ ‖∆ek‖2 → ∞.
When coded sensor values are injected as (9), and the estimator
decodes the value as

ỹ′k = Σ−1Y ′k = Cxk + vk + Σ−1yak ,

the coded system with the original design of Kalman filter is
equivalent to be injected by a sequence of pair (Σ−1yak+1, u

a
k).

It is worth noting that the actuator data is not coded, and uak
keeps the same for both the original and coded system. The
dynamics of the change of estimation error, residuals between
the normal and compromised coded system are as following

∆e′k+1 = (A−KCA)∆e′k −KΣ−1yak+1 + (B −KCB)uak,

∆z′k+1 = CA∆e′k + Σ−1yak+1 + CBuak.

Without loss of generality, we assume that ∆e0 = 0, then

∆ek =

k∑
j=1

(A−KCA)k−j(−Kyaj + (B −KCB)uaj−1),
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∆e′k =

k∑
j=1

(A−KCA)k−j(−KΣ−1yaj + (B −KCB)uaj−1).

Plug in the expression of ∆e′k in the equation of ∆z′k+1, with
CBuak = −yak+1 − CA∆ek + εk, we have

∆z′k+1 =CA

k∑
j=1

(A−KCA)k−j(−KΣ−1yaj

+ (B −KCB)uaj−1) + Σ−1yak+1 + CBuak

=CA

k∑
j=1

(A−KCA)k−jK(I − Σ−1)yaj

+ (Σ−1 − I)yak+1 + εk.

(17)

Hence, for Σ 6= I , limk→∞ ‖yak+1‖2 → ∞, we have
limk→∞ ‖∆z′k‖2 →∞ for ∆z′k defined in (17).

IV. ALGORITHM TO COMPUTE A CODING MATRIX

In this section we propose an algorithm to compute a set of
feasible coding matrices for the case there exists a sequence
of sensor data injections to cause unbounded state estimation
error, i.e., the system has unstable eigenvectors of A.

The coded sensor values should increase the difference
between estimation residue of the normal and attacked sys-
tem – ‖∆z′k‖2 as k → ∞, which is equivalent to keep
‖Cv − Σ−1Cv‖2 or ‖Cṽ − Σ−1Cṽ‖2 for multiple unsta-
ble eigenvectors nonzero, by the proof of Theorem 1 and
Lemma 2. The system satisfies that (A,C) is detectable, then
with an invertible coding matrix Σ and the decoded sensor
value ỹ′k defined in (10), ỹ′k = yk when yak = 0. Hence, the
state estimator still converges to the true state without attacks
and the coding scheme does not sacrifice the performance of
state estimator.

For multiple unstable eigenvectors, when we do not know
the exact linear combination result of ṽ applied by the attacker
to design the injection sequence, we can not guarantee that Σ
works for the exact injected sequence yak by finding a feasible
coding matrix with respect to a specific vector v. According to
Theorem 1 and Lemma 2, the coding matrix should work for
any possible injection sequence yak designed based on unstable
eigenvectors of the system matrix A. Hence, we consider to
find a coding matrix based on the concept of a rotation matrix
without specific knowledge about the value of injected data to
sensors.

Definition 1. A Givens rotation is a n×n rotation matrix, with
1’s on the diagonal, 0’s elsewhere, except the intersections of
the ith and jth rows and columns corresponding to a rotation
in the (i, j) plane in n dimensions. It takes the following form

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


, (18)

where c = cos θ, s = sin θ.
The product G(i, j, θ)x represents a counterclockwise rota-

tion of the vector x ∈ Rp in the i, j plane of θ radians. Hence,
only the i-th and j-th elements of x will be changed. Given
system model (1), there are multiple ways to choose a rotation
matrix as a coding matrix in general. If a rotation matrix can
guarantee that the direction of any possible stealthy injection
is changed, it must rotate all nonzero elements in the vector
space

span(Cv1, . . . , Cvu) (19)

The following algorithm provides a design process of a
rotation matrix given system matrix A.

Algorithm 1 : Compute a feasible coding matrix Σ

Input: System model parameters A,C, unstable eigenvalues
and eigenvectors λi, vi, i = 1, . . . , u of A.
Initialization: Calculate vectors Cvi ∈ Rp for all unsta-
ble eigenvectors i = 1, . . . , u. Construct the standard basis
(ep1 , ep2 , . . . , epl), epj ∈ Rp for the vector space defined
as (19), where 1 ≤ p1 < p2 · · · < pl ≤ p, and epj is a vector
with the pj-th element as 1 and all the other elements as 0.
Define rotation step as r = 1, uncovered unstable dimension
set as S = {p1, p2, . . . , pl}.
Iteration: When S 6= φ
If more than two elements are left in the set S: randomly
picking up a rotation radian θ ∈ (0, π2 ], rotation dimension
pi, pj ∈ S, let S = S \ {pi, pj};
Else: randomly picking a rotation radian θ ∈ (0, π2 ] with uni-
form distribution, rotation dimension pi ∈ S, pj ∈ {1, . . . , p}
and pj 6= pi, let S = S \ {pi}.
Get the rotation matrix Gr = G(pi, pj , θ) as defined in (18).
Let r = r + 1.
Return: A feasible transform matrix Σ = G1G2 . . . Gr.

The existence condition of a feasible coding matrix designed
as a rotation matrix is then explained in the following lemma.

Lemma 3. When the dimension of matrix C of the system (1)
satisfies that p ≥ 2, there always exists a feasible givens
rotation matrix Σ that satisfies the condition of Theorem 1
or Lemma 2 for the system.

Proof: According to the definition of a Givens matrix (18)
and the process of calculating a feasible rotation matrix, when
p ≥ 2, we apply Algorithm 1. Since every rotation has an
angle θ ∈ (0, π

2 ] and there are no two rotations in the same
plane, vector ΣCv is not in the same direction with Cv. Hence,
Algorithm 1 provides a feasible rotation matrix.

The coding scheme proposed in this work is a low cost
approach from computation perspective. Specifically, the pro-
posed coding scheme requires only O(n3 +p3) multiplications
and additions, where n and p denote the number of plant
states and sensors respectively. As we clarify now in the new
version of the manuscript (in Section IV), this is significantly
lower than the computation cost for even basic encryption and
coding schemes that involve computation of highly complex
non-linear primitives [26], [20], [21].
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The coding scheme proposed in this work is also a low
cost approach from communication perspective. The coding
scheme proposed in this work does not require additional bits
for each plaintext message of the sensor measurements, while
an encryption method introduces communication overhead
for each sensor message transmitted in the communication
channel [22]. The sensor outputs coding approaches proposed
in this work aim to change the value transmitted over the
communication channel instead of correcting errors on bit level
compared with error-correcting additional coding bits [21].
Hence, the communication overhead of the proposed scheme
in this work is relatively low.

Remark 2. The rotation matrix Σ calculated by Algorithm 1 is
a sparse matrix in general, since a rotation matrix has many 0
elements, and Algorithm 1 is a polynomial heuristic algorithm.
This means the coding process is computationally efficient.

For systems with structural constraints, two potential
schemes can be considered. One is that the structure of Σ
is also limited and we design a coding matrix Σ with an addi-
tional constraint that some components Σ must be 0 because of
the sparsity of the sensors the system equipped with. Another
scheme is distributed coding that multiple coding matrices are
applied for the whole system. This is a revenue for future
work.

V. TIME-VARYING CODING SCHEME WHEN THE
ATTACKER ESTIMATES THE CODING MATRIX

The coding scheme in this work is effective for the cases that
sensor values are not manipulated by the attacker before they
are coded by matrix Σ. We also assume that the attacker does
not know when the system starts to apply Σ for transforming
sensor output values, and aims to inject a stealthy sequence
yak to the sensor communication channel with respect to the
original system. If the attacker is powerful enough to update
the system model and acquire the knowledge of the coding
design after some time steps, the system should constantly
apply a time-varying coding scheme, and the time length for
updating the coding matrix depends on the learning ability of
the attacker and detecting requirements of the system.

Each time the system updates the coding matrix, it will
cost the attacker some time to figure out the transformed
sensor outputs values. Since it is sufficiently fast to compute
a feasible transform based on the algorithm, the system can
even generate new coding matrices during the running process.
Before the attacker learns Σ or the coded observer parameter
ΣC, the false data injection sequence is not stealthy for the
coded system. We assume that the attacker cannot directly
acquire the coding matrix during its communication process,
similar as the secrecy requirement of a key for encryption
sensor nodes [22], [23]. We assume that the sensors and
controller are synchronized, which is a standard assumption
in safety-critical control systems. Thus, with the same notion
of time, both sensors and the controller can use the same
random generator to (re)generate the coding matrix or exploit
some of the existing schemes for secret key distribution. In
addition, they will be able to synchronously switch from
using one matrix to the newly created/obtained ones. Various

protocols of key distributions have been proposed according
to the properties of the systems [22], [27].

A. The time length an attacker needs to learn Σ

To learn the matrix Σ that distributed secured between
sensors and the controller/estimator/detector, we assume that
the attacker is able to eavesdrop the sensor outputs and actuator
inputs via the communication channel for estimating Σ, instead
of directly capturing the matrix Σ. Since yak is designed by
the attacker, the sensor information received by the attacker is
then the true sensor measurements under the coding scheme
Yk = Σyk. System dynamics from the perspective of an
attacker are

xk =Akx0 +

k−1∑
j=0

Ak−j−1(Buj + wj),

Yk =C̃Akx0 +

k−1∑
j=0

C̃Ak−j−1(Buj + wj) + yak + vk,

(20)

where C̃ = ΣC. When the attacker does not have any
knowledge about the structure of the coding matrix Σ ∈ Rp×p,
there are p2 variables for estimating Σ. Meanwhile, in general
initial state x0 can only be acquired via estimation, and there
are n variables additionally in (20). Without loss of generality,
we initialize k = 0 as the time that attacker starts to observe
the system’s sensor outputs and actuator inputs to update the
knowledge of the system coding scheme. It is worth noting that
for designing a sequence of stealthy injection data, the attacker
needs to know the model of the system, including the estimator
and statistics detector, while the values of sensor outputs or
actuator inputs are not necessary for the attacker. When the
attacker starts to record sensor and actuator communicational
packets at an arbitrary time k, the corresponding system
state x0 can not be directly retrieved by the attacker. Hence,
Σ ∈ Rp×p and x0 ∈ Rn are variables to be estimated.

We examine a simpler case to estimate the the coding matrix
first—how many steps of sensor values the attacker need to
measure for the following noise-free LTI system

xk+1 =Axk +Buk, ȳk = Cxk. (21)

The sensor outputs coded by Σ at time k are

Ȳk = C̃Akx0 +

k−1∑
j=0

C̃Ak−j−1Buj , Ȳk ∈ Rp. (22)

We define the attacker’s observation YΣ,N during time k =
0, 1, . . . , N when the system applies Σ, and the corresponding
noise-free measurements ȲΣ,N as

YΣ,N =
[
Y0|Y1| · · · |YN

]
, ȲΣ,N =

[
Ȳ0|Ȳ1| . . . |ȲN

]
.

The observed sensor values from the perspective of the attacker
are bilinear equations with respect to Σ and x0. Consider the
noise-free dynamics of sensor measurements as the following

ȲΣ,N = ΣC
[
x0 · · · ANx0 +

∑N−1
j=0 AN−j−1Buj

]
,

(23)



8

where [Ȳ1, . . . , ȲN ], [u0, . . . , uN ] is eavesdropped by the
attacker and (A,B,C) is within the knowledge space of the
attacker. To write the above equation as a standard form of
bilinear equations regarding to vectors, we denote the coding
matrix Σ as

Σ =

Σ11 Σ12 · · · Σ1p

...
...

. . .
...

Σp1 Σp2 · · · Σpp

 =

σ1

...
σp

 ,
where σi ∈ R1×p, i ∈ {1, . . . , p} is the i-th row of matrix Σ.
We also vectorize ȲΣ,N ∈ Rp×(N+1) (YΣ,N ) ∈ Rp×(N+1) as
d̄ ∈ Rp(N+1) (d ∈ Rp(N+1))

vec(ȲΣ,N ) =


[Ȳ0]1

...
[Ȳ0]p

...
[ȲN ]p

 =


d̄1

...
d̄p
...

d̄p(N+1)

 ∈ Rp(N+1), (24)

where [·]j means the j-the element of a vector, and d̄i ∈ R.
Then equation (23) can be written as the following p(N + 1)
equations

σiCx0 = [Ȳ0]i = d̄i,

σi(CA
k)x0 + σi

C k−1∑
j=0

Ak−j−1Buj

 = [Ȳk]i = d̄pk+i,

(25)

In particular, define coefficient matrices

T0 = C, Tk = CAk, S0 = 0, Sk = C

k−1∑
j=0

Ak−j−1Buj ,

for k = 1, . . . , N . For the case of a noise-free system, the
attacker is possible to solve the bilinear problem (25) only
after observing enough time steps of Ȳk.

Remark 3. By the property of bilinear equations [28], the
attacker needs at least N ≥ max{n, p} − 1 measurements
of sensor and actuator values to calculate the exact coding
matrix Σ and true initial state x0 when there is no noise.

With noises in practical, we have

σiCx0 + [v0]i = [Y0]i = di,

σi(CA
k)x0 + σi

C k−1∑
j=0

Ak−j−1(Buj + wj)

+ [vk]i

=[Yk]i = dpk+i, i = 1, . . . , p, k = 1, . . . , N,
(26)

where [Yk]i and di are defined similar as [Ȳk]i an d̄i in
vectorization (24). Under the assumption that both wk, vk are
i.i.d. Gaussian noise, for any k, their expectations satisfy

E

σi(C k−1∑
j=0

Ak−j−1wj) + [vk]i

 = 0.

Then the noise-free and noisy sensor values satisfy that
EYΣ,N = ȲΣ,N .

Hence, when the attacker observes noisy sensor outputs
YΣ,N , the objective of retrieving the coding matrix Σ without
the knowledge of x0 is equivalent to finding σ1, . . . , σp, x0

that fit for the noise-free equation set (25). With even Gaussian
noise, it becomes difficult to numerically find an exact solution
of the true coding matrix, and the problem is then to minimize
the total error between the left and right sides of the equations.
The problem of estimating Σ, x0 is described as Problem 1.

Problem 1. The problem of estimating Σ, x0 in the minimum
mean square error perspective is defined as the following
bilinear programming problem

minimize
σ1,...,σp,x0

N∑
k=0

p∑
i=1

‖σiTkx0 + σiSk − dpk+i‖2

subject to rank(Σ =

σ1

...
σp

) = p.

(27)

When there exists an invertible matrix Σ that satisfies the
equations defined in (26), the above bilinear optimization
problem (27) has an optimal cost 0. However, the optimal
solution Σ∗ does not need to be the true coding matrix Σ,
since there is noise and the objective function of problem (27)
does not include noise of each time step.

The rank constraint of problem (27) is non-convex, and in
practice the attacker does not know how many measurements
return the best estimation before calculating Σ∗ given all ex-
isting measurements. Hence, we design the following heuristic
algorithm for the attacker, which ignores the rank constraint
first, and checks whether Σ is full rank every step till a feasible
solution is reached.

Algorithm 2 Algorithm of estimating Σ for the attacker
Inputs: System’s parameter (A,B,C), design of Kalman
Filter K, the threshold α of χ2 detector, algorithm stopping
condition–estimation error ε.
Initialization: Initialize the value of estimation error Er > ε,
and the estimation of coding matrix Σ̂ as a n identical matrix.
While Er > ε or Σ̂ = I .
1). Read one new sensor and actuator observation, and update
parameters of problem (27);
2). Solve problem (27). If the optimal solutions σ∗1 , . . . , σ

∗
p

satisfy the full rank constraints, let Er be the value of the
optimal cost, and Σ̂ = Σ∗ =

[
(σ∗1)T . . . (σ∗p)T

]T
.

Return: Estimation result of Σ̂.

Remark 4. It is worth noting that a bilinear equation usually
has multiple solutions, and Algorithm 2 returns different
optimal solutions Σ̂ under different sensor and actuator mea-
surements time N . Under this situation, it is not clear for
the attacker to decide how many time steps to measure and
which optimal solution to choose, even when the optimal cost
of problem (27) is 0. Even for a simple two dimensional
system A, multiple solutions exist and do not converge to one
estimation after 20 steps of measurements, which we will show
in simulation.
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To summarize, there are two main challenges for the
attacker to estimate the true coding matrix, the first one
is because multiple solutions exist for bilinear equations or
bilinear optimization problems. The second one comes from
the noise in the communication channel, that even the attacker
find a feasible solution to the bilinear equation set (26), it is
only an unbiased estimation instead of the true coding matrix.

B. When the estimated Σ̂ 6= Σ

After the attacker estimates a coding scheme Σ̂ and con-
siders it as the true coding matrix the system is applying, the
easiest way to keep stealthy is to inject Σ̂yak , where yak is a
stealthy data injection designed for the original system without
coding. However, as discussed above, when there exists noise,
the attacker is not able to calculate the exact coding matrix the
system is applying. When Σ̂ 6= Σ, the injection sequence Σ̂yak
can only extend the time length before detected and cannot
pass the detector. Then the system needs to evaluate how long
the attacker needs to measure the sensor outputs and how
long the attacker can stay stealthy by applying a new injection
sequence, in order to decide the time length of changing the
coding matrix.

Definition 2. An estimated coding matrix Σ̂ calculated by the
attacker is called a feasible estimation of Σ that keeps the
attacker stealthy for time k = 0, . . . , T while causing e error,
if and only if for all sequence of injections Σ̂yak designed by
the attacker according to the estimated coding matrix Σ̂, the
dynamics of ∆e′k,∆z

′
k satisfy that

∆e′k+1 = (A−KCA)∆ek −KΣ−1Σ̂yak+1,

∆z′k+1 = CA∆ek + Σ−1Σ̂yak+1,

max
k=1,...,T

‖∆ek‖2 ≥ e, max
k=1,...,T

‖∆zk‖2 ≤M,

(28)

where Σ is the true coding matrix the system is applying.
Define the time length of keeping stealthy with injection

sequence yak , k = 1, . . . , Ts, for a system (1) as

Ts(y
a
k) = inf

k
{k : ‖∆zk(yak)‖2 > M}. (29)

The attacker increases the time length of keeping stealthy
when Ts(Σ̂yak) > Ts(y

a
k). However, the attacker does not have

a guarantee about Ts(Σ̂yak) without the knowledge of the true
coding matrix, since ∆zk(Σ̂yak) is affected by both Σ and Σ̂.
There exists a trade-off between the time N the attacker takes
to measure sensor and actuator values to estimate a better
Σ̂ and the time the attacker starts to apply a new injection
sequence Σ̂yak . If the measuring time N is large, it is possible
that the system already triggers the alarm before the attacker
successfully recovers the coding scheme. If the attacker does
not have enough measurements for a good estimation and then
applies the estimated Σ̂ to design a new injection sequence
Σ̂yak , Ts(Σ̂yak) will not be much larger than Ts(y

a
k) and the

malicious behavior will still be detected quickly by the system.
It is worth noting that the system can not decide whether

Σ is easy to be estimated by the attacker by only checking
‖∆zk(yak)‖2, k = 1, . . . , Ts(Σ̂y

a
k). When ‖∆zk(yak)‖2 stays in

a small range for a long time and Ts(Σ̂yak) is large, the reason

may be the original injection sequence yak also has a large
time length of keeping stealthy Ts(y

a
k). Define the stealthy

time increasing proportion for an estimated Σ̂(N) calculated
after measuring time N as

α(NΣ) =
Ts(Σ̂(N)yak)− Ts(yak)

Ts(yak)
, (30)

where Σ̂(N) is estimated from N steps measurements of
sensor and actuator values. As we will show in Section VI,
α(NΣ) increases with an increasing NΣ for a fixed Σ in
general. When the attacker is able to estimate the coding
matrix and inject (Σ̂(N)yak) to stay stealthy for a longer time,
the system needs to apply a new coding matrix before the
attacker has enough measurements to estimate an Σ̂(N) that
reaches the threshold α̃(NΣ) of the increasing time proportion
α(NΣ). From the perspective of the system, a heuristic way to
decide the time length NΣ of changing Σ is as Algorithm 3.

Algorithm 3 Heuristic Algorithm for choosing NΣ

Inputs:Coded system’s parameter (A,B,C,K,Σ), χ2 detec-
tor threshold α, time step ts for increasing NΣ, threshold
proportion α̃(NΣ).
Initialization:Initialize the value of Σ̂ as an identical matrix,
let NΣ = 0, calculate α(NΣ)
While α(NΣ) < α̃(NΣ)
1). Estimate Σ̂ with ts steps of new sensor and actuator values,
and update α(NΣ).
2). Let NΣ = NΣ + ts, and save sensor and actuator values
for next iteration.
Return: Measurement time length NΣ for estimating Σ.

VI. ILLUSTRATIVE EXAMPLES

A. Coding scheme detect stealthy data injection

We show the effects of coding sensor outputs by examples
of two-dimensional LTI systems. Consider a detectable 2-
dimensional linear system with parameters:

A =

[
0.8 0
0.5 1

]
,B =

[
1

0.5

]
,C =

[
2 0.5
0 1

]
,D = 0,

where A has an unstable eigenvalue λ = 1 and eigenvector v =
[0 1]T . One stealth attack sequence is: ya0 = [0.0588 0.0588]T ,
ya1 = [0.1286 − 0.9706]T , yk = yak−2 − ya0 , k ≥ 2. Multiple
solutions of feasible coding matrices that satisfy Theorem 1
exist in general. For instance, for the above system, Σ1 =[

2 −0.5
−0.5 1

]
and Σ2 =

[
1 −1
2 0

]
are both feasible.

Figure 3 shows the comparison result of ‖∆zk‖2, ‖∆z′k‖2
when there is injection attacks for the original and coded
systems, and ‖∆z′k‖2 increases with time k after coded by
Σ1, while without coding ‖∆zk‖2 is bounded. Figure 4
shows that for the sensor outputs transformed by Σ2, ∆z′k
increases with time k, while the original system ∆zk stays
inside a bounded range. For the transformed sensor outputs,
the change of the estimation error ∆e′k increases even slower
than ∆ek under data injection attack as shown in Figure 5.
By comparing the change of estimation error ∆ek and ∆e′k,
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we show that estimation error of a coded system does not
necessarily increase faster than the original system.

B. When the attacker tries to estimate the coding matrix

In this example, the system applies the coding matrix
designed based on Algorithm 1, a scaled rotation matrix
2 ∗G(1, 2, π4 ) with a rotation radian θ = π

4 in the (1, 2) plane

Σ =

[
0.7 0.5
−0.5 0.7

]
. When the attacker estimates Σ according

to N = 20 steps of sensor and actuator measurements via
Algorithm 2, the estimated result is Σ̂ and the attacker designs
a new injection sequence Σ̂yak based on Σ̂

Σ̂ =

[
2.80 −0.15
−0.89 0.05

]
.

In Figure 6, we compare the residue change for: the orig-
inal system under injection sequence yak , the coded system
under data injection yak , and the coded system under injection
sequence Σ̂yak . Assume the threshold for ‖∆zk‖2 is set as
M = 2, in Figure 6 we can see that the attack will be detected
after injecting a sequence of data yak (designed for the original
system) for 12 seconds to the coded system, i.e., Ts(yak) = 12.
In contrast, Ts(Σ̂yak) = 50 seconds, however, Σ̂ is estimated
via N = 20 seconds of measurements of sensor and actuator
values. Hence, the attacker does not have enough time to get
such Σ̂ before being detected.

C. Number of measurements to estimate the coding matrix

Figure 7 shows how the estimation of Σ̂ changes with the
number measurement steps N . In general, when N increases,
the difference between Σ̂ and Σ decreases, and the norm of
residue change ‖∆zk‖2 increases slower with sensor injection
sequence Σ̂yak . However, as shown in Figure 7, for both
N = 25 and N = 200, ‖∆zk‖2 are almost the same, hence,
the attacker does not infer a better coding matrix to keep
stealthy with a greater measurement time. Comparing the time
of keeping stealthy with estimated coding matrix, we have
Ts(Σ̂y

a
k) = 20 for N = 2, Ts(Σ̂yak) = 30 for N = 5,

and approximately Ts(Σ̂y
a
k) = 51 for N > 25. From the

perspective of the system, if we set the threshold α̃(NΣ) = 1.5

in this case, and Ts(Σ̂(N)yak)−Ts(yak)
Ts(yak) = 30−12

12 = 1.5, by
the heuristic Algorithm 3, the system can change the coding
matrix every 5 seconds.
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Figure 3. Comparison of ‖∆zk‖2 of the original system and ‖∆z′k‖2 of
the coded system with Σ1.
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Figure 4. Comparison of norm of residue change between the original system
and coded system, ∆zk and ∆z′k , for Σ2 that satisfies Theorem 1.
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Figure 5. Comparison of norm of estimation error change between the
original system and coded system, ∆ek and ∆e′k , for Σ2 that satisfies
Theorem 1.
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Figure 6. Comparison of norm of estimation residue change between the
original system—∆zk , coded system—∆z′k when the system applies Σ and
the attacker injects yak designed for the original system, and the sensor data
injection sequence designed with estimated coding matrix— ∆zsk when
the attacker injects Σ̂yak and the true coding matrix is Σ. When M = 2,
Ts(yak) = 12 seconds, Ts(Σ̂yak) = 50 seconds.
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Figure 7. Comparison of norm of estimation residue change when the attacker
designs a sensor injection sequence according to Σ̂ estimated with different
measurement number N . When attacker injects Σ̂yak and the system applies
coding, the detection time, i.e., the time ‖∆zsk‖2 > 2 is labeled for different
measurement time N : N = 2, Ts(Σ̂yak) = 20; N = 5, Ts(Σ̂yak) = 30. For
N = 25 and N = 200, Ts(Σ̂yak) are almost the same value: 51.

VII. CONCLUSION

In this work, we have proposed a method of coding sensor
outputs to detect stealthy data injection attacks that designed
by an intelligent attacker with system model knowledge. We
show the conditions of a feasible coding scheme to detect
a stealthy injection sequence with statistical detectors, and
develop an efficient algorithm to compute such feasible coding
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matrices. The sensor coding scheme is valid for the scenarios
where the attacker is capable to estimate the coding matrix
via measuring sensor outputs and actuator inputs. Simulation
examples show that the adaptive injection sequence designed
based on an estimated coding matrix cannot pass the detector
without knowledge of the coding matrix applied by the system
in general. In the future, we will explore a coding scheme for
a system with structural constraints.
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