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Abstract

Genome‐wide association mapping (GWAS) is a method to estimate the contribution

of segregating genetic loci to trait variation. A major challenge for applying GWAS

to nonmodel species has been generating dense genome‐wide markers that satisfy

the key requirement that marker data are error‐free. Here, we present an approach

to map loci within natural populations using inexpensive shallow genome sequenc-

ing. This “SNP‐skimming” approach involves two steps: an initial genome‐wide scan

to identify putative targets followed by deep sequencing for confirmation of tar-

geted loci. We apply our method to a test data set of floral dimension variation in

the plant Penstemon virgatus, a member of a genus that has experienced dynamic

floral adaptation that reflects repeated transitions in primary pollinator. The ability

to detect SNPs that generate phenotypic variation depends on population genetic

factors such as population allele frequency, effect size and epistasis, as well as sam-

pling effects contingent on missing data and genotype uncertainty. However, both

simulations and the Penstemon data suggest that the most significant tests from the

initial SNP skim are likely to be true positives—loci with subtle but significant quan-

titative effects on phenotype. We discuss the promise and limitations of this

method and consider optimal experimental design for a given sequencing effort.

Simulations demonstrate that sampling a larger number of individual at the expense

of average read depth per individual maximizes the power to detect loci.

K E YWORD S

GWAS, multiplexed shotgun genotyping, Penstemon, quantitative trait loci

1 | INTRODUCTION

A growing body of research infers evolutionary processes at the

population level using genomic data. Many of these population

genomic studies are based on shallow Illumina sequencing of bar-

coded individuals, notably by reduced representation sequencing

methods, genome resequencing and pool‐seq (Andrews, Good, Miller,

Luikart, & Hohenlohe, 2016; Catchen et al., 2017; Schlötterer,

Tobler, Kofler, & Nolte, 2014; Therkildsen & Palumbi, 2017). These

methods are inexpensive and accessible, which has enabled rapid

advances in understudied systems. Evolutionary biologists can now

test basic hypotheses on the process of ecological divergence and

reproductive isolation by comparing genome‐wide patterns of

genetic polymorphism within and between populations across a land-

scape. For example, researchers in a variety of study systems are

using data sampled across differentiated populations to identify

genomic signatures of local adaptation (Bassham, Catchen, Lescak,

von Hippel, & Cresko, 2018; Hoban et al., 2016; Pfeifer et al., 2018).

While the evolutionary insights gained from population genomic

studies are substantial, important questions cannot be answered

with genomic data alone. Adaptation in natural populations depends

on trait and fitness variation segregating within populations. The
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extent and pattern of standing genetic variation shape a population's

short‐term response to selection. By integrating genomic data with

trait or fitness data, we can begin to characterize the contributions

of individual loci to additive genetic variation. This information can

reveal the history of selection acting on traits within a population

and whether the availability or nature of standing variation con-

strains a population's response to natural selection. Moreover, we

can compare the genomic basis of standing variation to that of the

population or species divergence to assess the contribution of stand-

ing variation to evolutionary divergence. Yet population genomic

studies do not routinely incorporate phenotypic or fitness data.

To examine the genomic basis of standing genetic variation and

estimate the contribution of individual loci to the total additive

genetic variation, we need to sample variants according to their fre-

quency in natural populations. A direct approach is genome‐wide

association mapping (GWAS). GWAS takes advantage of linkage dis-

equilibrium (LD) between marker alleles and genetic variants with

phenotypic effects (“causal loci”), allowing one to map quantitative

trait loci (QTLs) within natural populations (reviewed by Schielzeth &

Husby, 2014). GWAS typically require great effort and expense. LD

often rapidly decays in large randomly mating populations, and dense

sampling of markers is necessary to tag genomic regions linked to

causal loci. However, increasing the density of sampled sites reduces

sequence depth per site for any given level of sequencing. This

introduces uncertainty in genotype assignments and reduces power

to detect genotype–phenotype associations. Extant GWAS methods

are designed mainly for systems with extensive genomic resources.

Many commonly used methods require certain genotype calls and lit-

tle to no missing data (Aulchenko, Ripke, Isaacs, & Van Duijn, 2007;

Bradbury et al., 2007; Kang et al., 2010; Purcell et al., 2007; Rönne-

gård et al., 2016; Zhou & Stephens, 2012; but see Parchman et al.,

2012). Data meeting these criteria can be generated by SNP panels

that deeply sequence large numbers of markers. SNP panels have

been developed for only a few nonmodel species (Johnston et al.,

2011; Knief et al., 2017; Santure et al., 2013; Silva et al., 2017).

One approach to increase the size and completeness of SNP data

sets for GWAS is genotype imputation, where missing genotypes are

assigned based on observed (“direct typed”) genotypes at adjacent

markers found in the same haplotype block (Marchini & Howie,

2010). Imputed genotypes are often expressed as a genotype score

(estimated allelic dosage) that varies continuously from 0 to 2. Sev-

eral GWAS methods can handle continuous genotype scores, includ-

ing EMMAX, GEMMA and PLINK (Kang et al., 2010; Purcell et al.,

2007; Zhou & Stephens, 2012). However, genotype imputation usu-

ally requires a reference panel of densely genotyped haplotypes, a

fine‐scale recombination map and/or knowledge about marker order

(Howie, Donnelly, & Marchini, 2009; Li, Willer, Sanna, & Abecasis,

2009). Moreover, existing imputation methods do not handle geno-

type uncertainty in the direct typed markers. Assuming a researcher

lacks prior knowledge of haplotype blocks, one option is to assign

continuous genotype scores for missing genotypes simply according

to the expectation based on allele frequency (“naïve imputation”;
Jarquín et al., 2014). Assigning a continuous genotype score may be

preferable to integer genotypes (0, 1 or 2), but results in a point esti-

mate that does not retain information on the underlying probability

distribution for genotype.

Here, we examine the utility of a two‐step “fast track” approach

to map loci within natural populations and estimate their contribu-

tion to the additive genetic variance. Sampling a natural population

in situ can be particularly informative because it captures variation in

traits and fitness that is expressed under relevant environmental

conditions—this variation may not easily be replicated under con-

trolled laboratory or greenhouse conditions. The first step is a gen-

ome‐wide shallow sequencing scan that finds markers associated

with phenotype, using a likelihood approach to account for missing

data and genotype uncertainty. Due to missing data, this initial scan

will only detect a portion of the total loci associated with phenotype,

and putative trait‐associated SNPs will show inflated associations

with phenotype. The second step interrogates these candidate SNPs

by deep sequencing PCR amplicons. This step fills in missing data

and removes genotype uncertainty for a given site.

As an example, we apply our method to analyse floral dimension

data collected from a natural population of the plant Penstemon virga-

tus. In this population, segregating variation in floral traits is highly

quantitative, making our data set ideal to illustrate both the promise

and challenges of mapping QTLs from shallow sequencing data. SNP‐
skimming does not provide an exhaustive catalogue of within‐popula-
tion QTLs, but instead enables an initial search for loci generating

within‐population variation. In this study, our approach uncovered a

subset of segregating sites with subtle effects on the focal trait, sta-

men length. Simulations of our initial genome‐wide scan suggest the

power to detect loci affecting phenotype is optimized by increasing

the population sample size, at the expense of average read depth.

2 | METHODS

2.1 | Study system and phenotypic measurements

Penstemon is a large North American genus of perennial herbs that

shows a dynamic pattern of floral evolution, including repeated origins

of hummingbird‐adapted flowers, from the ancestral condition of

hymenopteran‐adapted (“bee‐adapted”) flowers (Wessinger, Freeman,

Mort, Rausher, & Hileman, 2016; Wilson, Wolfe, Armbruster, & Thom-

son, 2007; Wolfe et al., 2006). Adaptation to hummingbird pollination

in Penstemon involves modification of multiple floral traits, including

the narrowing of the floral tube, and elongation of the stamen fila-

ments, style and floral tube. Since this evolutionary transition has

occurred at least twelve times in Penstemon on an apparently short

timescale (Wolfe et al., 2006), we hypothesize that bee‐pollinated Pen-

stemon populations harbour substantial variation in floral dimension

that may be recruited for adaptation to hummingbird pollination.

We studied a large population of a bee‐pollinated species, Pen-

stemon virgatus var. asa-grayi, located in Teller Co., Colorado

(38.42622 N, –105.09742 W, elevation ~2874 m) from June 26,

2016 to June 28, 2016 (Figure 1a). We sampled 291 individuals over

a uniform hillside. For each individual, we measured the following

2 | WESSINGER ET AL.



three traits on two flowers per plant: (a) length of the lateral stamen

filaments (“stamen length”), (b) length of the floral tube from base to

opening (“tube length”) and (c) width of the flower at its opening

(“tube width”). We measured open flowers whose anthers had not

yet dehisced in an effort to target flowers at the same developmen-

tal age. Trait measurements from replicate flowers per plant were

highly correlated; therefore, we averaged replicate trait measure-

ments for analyses. We collected leaf material from each individual

into silica gel and later extracted DNA from dried tissue using a

modified CTAB protocol (Wessinger et al., 2016).

2.2 | MSG library preparation and sequencing

To generate a genome‐wide set of polymorphic markers in the P. vir-

gatus population sample, we used multiplexed shotgun genotyping

(MSG; Andolfatto et al., 2011) using the restriction enzyme MseI.

This enzyme cuts frequently (recognition site: TTAA) and we

expected broad coverage of the genome, but low average read

depth per SNP per individual. We digested 50 ng of genomic DNA

from each P. virgatus individual using MseI (New England Biolabs)

and ligated one of 96 unique barcoded adapters onto each DNA

sample. Up to 96 samples were pooled into each of four sublibraries

that were size‐selected for fragments between 250 and 450 bp

using a Blue Pippen (Sage Science). We then amplified sublibraries

for 14 PCR cycles using Phusion High‐Fidelity Polymerase (New Eng-

land Biolabs) and primers that incorporate unique barcoded Illumina

indices. Each sublibrary was amplified in four replicate PCR that was

subsequently combined and purified. A single combined library with

equimolar concentrations of the four sublibraries was sequenced on

four Illumina HiSeq rapid run lanes (150‐bp single‐end reads) at the

University of Kansas Genome Sequencing Core.

2.3 | Identification of polymorphic sites

We sorted fastq files into sample‐specific read files based on adapter

barcodes, allowing for one barcode mismatch, using step 1 of ipyrad

(https://github.com/dereneaton/ipyrad). We then removed low‐qual-
ity sequence and adapter contamination using step 2 of ipyrad,

which implements the cutadapt algorithm (Martin, 2011). During this

step, reads were trimmed to a minimum length of 75 bp if they con-

tained adapter sequence, and reads were discarded if more than

seven bases had a phred quality score <20. For our analyses, we

took advantage of a draft reference genome assembly for P. barba-

tus, a close relative of P. virgatus (number of contigs = 18,827,

N50 = 43,419). This assembly is not annotated and covers 92.8% of

the total expected genome size of P. barbatus (696 Mbp of

750 Mbp). We expect this includes most of the gene‐rich regions

of the genome. We mapped filtered sequence reads from each indi-

vidual to this reference assembly using BWA (Li & Durbin, 2009).

This generated a mapping file (.sam file) for each individual. Our

MSG sequence data covered roughly 18% of the reference genome.

We then used the UnifiedGenotyper algorithm in GATK (McKenna

et al., 2010) to analyse the collection of 291 .sam files. GATK identi-

fies polymorphic sites across the sample of individuals and, at each

SNP for each individual, counts the number of reads matching the

reference base (“ref” allele) and the number of reads carrying the

alternative base (“alt” allele). Based on this information, GATK

assigns likelihoods that the individual is homozygous for the ref

allele, heterozygous or homozygous for the alt allele. These likeli-

hoods are phred‐scaled for efficient representation and are normal-

ized so that the most likely genotype is zero and values for the

other two genotypes are scaled relative to the most likely genotype.

The annotations for the total population at all SNPs are contained in

the variant call file (.vcf) produced by GATK.

Using a custom Python script, we filtered through the .vcf file to

recover SNPs matching the following criteria: (a) mapping quality

score> 20, (b) genotype calls in at least 75 individuals, (c) exactly

two alleles segregating in the population and (4) frequency of the

reference base in the range of 0.2–0.8 in the population sample. We

expect most SNPs segregating in the population have minor allele

frequency <0.2, but we have limited power to detect the effects of

alleles that are not at intermediate frequency across sampled individ-

uals. The filtered data set contains 650,917 SNPs. To identify pairs

of markers that are perfectly correlated across individuals in our

sample, we measured LD between SNPs that were sequenced on

the same 150‐bp read. We used custom Python scripts that calculate
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F IGURE 1 (a) Representative
individuals from the P. virgatus study
population. (b) Scatter plots of pairwise
floral dimension traits. Each dot is an
individual plant, and red lines show linear
regression. Pearson's correlations are
reported above the diagonal
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LD from single‐end Illumina sequence data, following the approach

of Feder, Petrov, and Bergland (2012). In brief, we filtered through

the .sam files generated by BWA for reads containing our focal

SNPs. When more than one site was present on a given sequencing

read, we tallied the observed two‐locus haplotype for each pair of

SNPs and calculated LD (r2). For sets of perfectly correlated SNPs

with genotype calls in the same set of individuals, we randomly dis-

carded all but one SNP. This yielded a final set of 620,473 SNPs for

downstream analyses.

2.4 | Estimation of allele frequencies and genotype
likelihoods at low read depth

With low read depths, the observed read data for an individual at

a SNP can be treated as a binomial random variable. The probabil-

ity of drawing a given allele (e.g., the ref allele) depends on geno-

type. Ignoring sequencing error and PCR bias, this probability is 1

if the individual is homozygous for the ref allele, ½ if the individual

is heterozygous and 0 if the individual is homozygous for the alt

allele. With a single read, we can distinguish between the two

homozygous genotypes, but we cannot distinguish a homozygote

for the ref allele from a heterozygote. With increased sequencing

depth, we perform a set of k binomial experiments, where k is the

number of reads sequenced in a given individual. If an individual is

homozygous for the ref allele, the probability of observing the ref

allele in each of k reads is 1, whereas the probability of this event

in a heterozygote is (½)k. As read depth increases, our ability to

distinguish between a heterozygote and a homozygote improves

because the probability of observing a single allele in a heterozy-

gote declines.

This inability to confidently identify genotypes at low read

depths is a general feature of population genomic studies. Popula-

tion genomic analyses that depend on estimation of individual geno-

types (e.g., GWAS) need to estimate and account for this

relationship between read depth and the probability of observing a

heterozygote. Assuming Hardy–Weinberg equilibrium (HWE), the

probability of observing a heterozygote at read depth k is as follows:

P observing het jk½ � ¼ 2q 1� qð Þτk (1)

where q is the sample allele frequency of the reference base and τk

is the probability of detecting a heterozygote at read depth k. The

expected value of τk is as follows:

τk ¼ 1� 2
1
2

� �k

(2)

In other words, one minus the chance that k reads drawn from a

heterozygote will either all match the ref base or all match the alt

base. However, the realized probability of detecting a heterozygote

may commonly be lower than this expectation and we suggest that

τk values be estimated from the observed genomic data. For exam-

ple, depending on the quality of DNA samples, amplification during

library preparation might skew the balance of ref vs. alt alleles at

heterozygous sites away from equality (Monnahan, Colicchio, &

Kelly, 2015). To estimate allele frequencies and τk values for our data

set, we performed the following steps: (a) initial estimation of allele

frequencies, (b) estimation of τk values given the initial allele fre-

quency estimates and (c) re‐estimation of allele frequencies given

the estimated τk values. We estimated q for each SNP by maximizing

the likelihood of the observed genomic data and assuming indepen-

dence across individuals:

ln L ¼ ∑
n

j¼1
ln P dataj

� �� �
(3)

where P[dataj] is the probability of the observed data for the j’th
individual. This can be written as the sum of conditional probabilities

of the observed genomic data:

P datajjq
� � ¼ LRRq

2 þ LRA2q 1� qð Þ þ LAA 1� qð Þ2 (4)

where Lg is the likelihood of the observed read data if the true geno-

type is g, RR is a homozygote for the ref allele, RA is a heterozygote,

and AA is a homozygote for the alt allele. This approach follows

Monnahan et al. (2015), who derived the likelihood of genomic data

across successive life stages in a selection component analysis. For

this initial estimate of q̂i, we take Lg values directly from the “PL”
field of the sample annotations in the .vcf file. For sites with missing

data, LRR = LRA = LAA = 1. These genotype likelihoods are multiplied

by prior genotype probabilities that assume HWE. We maximized

the likelihood of q using the optimize.brent bounded optimization

implemented in SciPy (www.scipy.org).

2.5 | Estimation of τk values

The genotype likelihoods (Lg values) from GATK provide information

on the most likely genotype, according to the sequence data. A

heterozygous individual is detected (LRA is maximal) with probability

τk. A heterozygous individual will be incorrectly detected as one of

the two homozygotes (e.g., RR homozygote if LRR is maximal) with

probability (1−τk)/2. We assume a heterozygote is equally likely to

appear as either homozygote. Therefore, to estimate τk values, we

summed the likelihood of the observed data at a given read depth k

across m SNPs and n individuals, given our maximum‐likelihood (ML)

allele frequency estimates (q̂i):

ln L ¼ ∑
m

i¼1
ln P dataijq̂i; τk½ �ð Þ (5)

P dataijq̂i; τk½ � ¼ q̂i
2 þ q̂i 1� q̂ið Þ 1� τκð Þ if LRR is maximal

P dataijq̂i; τk½ � ¼ 2q̂i 1� q̂ið Þτκ if LRA is maximal

P dataijqi; τk½ � ¼ q̂i 1� q̂ið Þ 1� τκð Þ þ 1� q̂ið Þ2 if LAA is maximal

We optimized the likelihood of τk again using optimize.brent imple-

mented in SciPy, and then re‐estimated allele frequencies (qi’) using

Equation 5, given our ML estimates of τ̂k values. In practice, these

re‐optimized allele frequencies were nearly identical (r2 = 0.999) to

original allele frequency estimates.
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2.6 | Estimating genetic effects on phenotype

For a given trait and SNP, we sum the log‐likelihood of the observed

set of genomic and phenotypic data across n individuals according to

Equation 3. In this case, P[dataj] is the probability of the observed

genomic and phenotypic data for the j’th individual. This can be

written as the sum of conditional probabilities of the observed phe-

notype Z in a given genotype, times the genotype probability:

P dataj
� � ¼ P ZjRR½ �P RR½ � þ P ZjRA½ �P RA½ � þ P ZjAA½ �P AA½ � (6)

As before, we set the genotype probabilities P[RR], P[RA] and P

[AA] as products of the genotype likelihoods (Lg) times the prior

genotype probabilities. For the initial genome scan where read depth

is low, we accounted for our estimated probability of detecting

heterozygotes: In cases where the most likely genotype was

homozygous (LRR or LAA maximal), we updated LRA to:

L0RA ¼ 1� τ̂kð Þ=2 (7)

We fit a null model (H0) where phenotype is normally distributed

and its mean (μ) and variance (σ2) do not depend on genotype: P[Z|

RR] = P[Z|RA] = P[Z|AA].

P datajjq̂; μ; σ2
� � ¼ 1p

2σ2π
e
� z�μð Þ2

2σ2 LRRq̂
2 þ LRA2q̂ 1� q̂ð Þ þ LAA 1� q̂ð Þ2

h i

(8)

We also fit an alternative model (H1) where mean phenotype

depends on genotype according to an additive model: ZRR ~ N(μRR,

σ2), ZRA ~ N(μRR + a, σ2) and ZAA ~ N(μRR + 2a, σ2). Here, μRR is the

mean phenotype of RR individuals and a is the additive effect of the

alt allele on mean phenotype.

P datajjq̂; μRR; σ2; a
� � ¼ 1ffiffiffiffiffiffiffiffi

2σ2π
p e

� z�μRRð Þ2
2σ2 LRRq̂

2
h i

þ 1p
2σ2π e

� z�μRRþað Þ2
2σ2 LRA2q̂ 1� q̂ð Þ½ �

þ 1p
2σ2π e

� z�μRRþ2að Þ2
2σ2 LAA 1� q̂ð Þ2

h i
(9)

For each site, we compared the likelihood of H1 to H0 with the like-

lihood ratio test (LRT) statistic and tested significance using the chi‐
square distribution with 1 degree of freedom. We performed these

calculations on the filtered .vcf file and the phenotypic data using a

custom Python script that maximizes likelihoods with Broyden–
Fletcher–Goldfarb–Shanno (BFGS) bounded optimization imple-

mented in SciPy. We estimated false discovery rate (FDR) for each

site with adjusted p‐values (q‐values; Benjamini & Hochberg, 1995)

using the qvalue R package (Dabney, Storey, & Warnes, 2010).

2.7 | MSG on PCR amplified regions

We selected a set of six P. virgatus SNPs for deep sequencing to

corroborate a potential association with stamen length in our popu-

lation sample as an initial test of our approach (Table 1). To inform

this selection, we leveraged information from a previous study that

mapped floral trait QTL in a genetic cross between the humming-

bird‐adapted species P. barbatus to its close relative, the bee‐adapted

species P. neomexicanus (Wessinger, Hileman, & Rausher, 2014).

These two species are closely related to P. virgatus (Wessinger et al.,

2016). In the Supporting Information Appendix S1, we describe our

approach to determine whether SNPs in the current study are

located near interspecific QTLs for stamen length. We chose two

SNPs (SNPs 3 and 5) with high LRT values in both the P. virgatus

and the interspecific F2 populations. We chose two SNPs (SNPs 1

and 2) with high LRT values in the P. virgatus population that did not

show evidence of association with stamen length in the interspecific

F2 population (one resides in a genomic interval that was not associ-

ated with phenotype in the interspecific data set and the other

resides in an interval that was not tagged by any interspecific mark-

ers). At last, we chose two SNPs (SNPs 4 and 6) that had moderate

LRT values in the P. virgatus population and reside in genomic inter-

vals strongly associated with stamen length in the interspecific popu-

lation.

For deep sequencing, we used PCR amplification followed by

MSG on the resulting amplicons. We used MSG for amplicon

sequencing simply because it provides an efficient means to barcode

individual samples for multiplexed sequencing. In our case, MSG

yielded nearly full coverage (entire length of targeted amplicons) due

to high frequency of the MseI cut site. However, other methods for

sequencing PCR amplicons could be substituted here. We designed

PCR primers to amplify a given SNP based on the local surrounding

sequence. First, we extracted the set of unique reads that map to

the P. barbatus scaffolds near a focal site (1 kb upstream to 1 kb

downstream) from the initial .sam files generated by BWA. We then

imported these sequences into Geneious (Kearse et al., 2012),

assembled sequences near a given SNP to create a contiguous

sequence for the local region and designed primers that amplified

the focal SNP using Primer3 (Untergasser et al., 2012). We used

these primers and Bullseye polymerase mastermix (Midsci) to amplify

the original DNA samples in 5 microlitre reactions for 35 cycles with

56°C annealing temperature. Amplicons of the six SNP regions for a

given individual were pooled in approximate equal DNA concentra-

tions (based on concentration estimates from eight PCR for each pri-

mer set). We performed MSG on these samples using MseI as

previously described, except we did not perform a size selection

step. We sequenced the combined library on approximately 1/5 of a

single 150‐bp single‐end Illumina HiSeq rapid run lane.

We repeated our variant calling pipeline on the resulting .fastq

files without downsampling (GATK—dt NONE flag). We filtered the

.vcf file to include sites with (a) mapping quality score > 20, (b)

genotype calls in at least 200 individuals, (c) exactly two alleles seg-

regating in the population and (d) median read depth of at least 400

reads. Inspection of the filtered .vcf file revealed that we recovered

five of the six targeted SNPs. The genomic region near the remain-

ing SNP (SNP 6) was not sequenced at high depth and therefore

was excluded from downstream analyses. By the way, this amplicon

did not amplify as strongly as the other five during PCR and perhaps

experienced nonspecific amplification.

For each focal SNP and closely linked sites, we calculated the

likelihood of an association between genotype and phenotype as
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described above in Equations 6, 8–9, taking genotype likelihoods

directly from GATK. For SNPs showing an association with pheno-

type (p‐value < 0.05), we calculated the proportion of the total phe-

notypic variance in the population explained by the SNP (heritability

due to variation at the SNP) as:

h2SNPð Þ ¼
2q̂ 1� q̂ð Þâ2

VP
(10)

where q̂ is the maximum‐likelihood estimate (MLE) for allele fre-

quency, â is the MLE for the additive effect, and VP is the pheno-

typic variance. This estimated heritability is inflated by estimation

error of â (Luo, Mao, & Xu, 2003; Monnahan & Kelly, 2015).

2.8 | Simulations

We performed simulations to examine the power of our pipeline to

detect a locus with quantitative effects on phenotype. For each sim-

ulation, we drew the following three sets of random variables: (a) a

population sample of N “true” genotypes, given an allele frequency q

and assuming HWE‐expected genotype frequencies, (b) read depth

(k) for each of N individuals, assuming read depth per site per indi-

vidual follows a Poisson distribution with mean and variance equal

to λ and (c) phenotypic values for each of N individuals in a sample.

To simulate a site with no effect on phenotype, we drew phenotypic

values for each sample in the population from a normal distribution

with mean = μ and variance = VP. To simulate a site with effects on

phenotype, we drew phenotypic values from genotype‐specific nor-

mal distributions with variance = VR and genotype‐specific means

(RR: μRR, RA: μRA + a, AA: μRR + 2a). Here, VR is the residual vari-

ance that is not explained by the phenotypic effect of the simulated

site:

VR ¼ VP � 2q 1� qð Þa2 (11)

Based on the randomly drawn true genotypes and read depths, we

simulated observed genotype data for each sample. If the true geno-

type is homozygous and k > 0, the observed genotype is the corre-

sponding homozygote. If the true genotype is heterozygous, the

observed genotype will be heterozygous with probability equal to

the expected value of τk (Equation 2), and the probability that the

observed genotype is RR or AA is (1−τk)/2 for each case. Based on

these observed genotypes and phenotypes, we estimated genetic

effects on phenotype following the approach used for our empirical

data, although here we jointly estimated q along with the other

parameters and assumed τk follows its expected values (Equation 2).

For each simulated data set, we performed 10,000 replicate simula-

tions.

We simulated data sets with features matching our empirical

data set to enable a direct comparison: N = 291, VP = 2.21 mm2,

μ = 21 mm and λ = 0.838. We simulated a site with allele frequency

(q) = 0.34 and additive effect (a) = 0.26 mm (similar to that shown

by SNP 5, see Table 1 and Results). To explore the effects of modi-

fying our experimental design, we simulated doubling the number of

individuals sampled, doubling the average read depth and error‐free
genotype data for all individuals (e.g., data from a SNP array). To

explore the ability of our approach to detect loci of varying effect

sizes, we simulated a range of ten additive effect sizes that corre-

sponded to SNP heritabilities ranging from 0.01 to 0.1 and calcu-

lated both the false‐positive rate and the power of our method to

detect a true positive.

2.9 | Comparison with GEMMA Bayesian Sparse
Linear Mixed Model (BSLMM)

We compared SNP‐skimming to the BSLMM implemented by

GEMMA (Zhou, Carbonetto, & Stephens, 2013; Zhou & Stephens,

2012). GEMMA requires genotype information for all individuals, but

it can take genotypes expressed as continuous genotype scores. We

therefore assigned scores based on posterior genotype probabilities

for all individuals at all sites before running GEMMA. We performed

these analyses on our empirical data set as well as a set of simulated

data sets generated for this comparison. Details of these analyses

and simulated data sets are found in Supporting Information

Appendix S4.

3 | RESULTS

3.1 | Phenotypic data

In the field‐sampled P. virgatus population, tube length and stamen

length were strongly positively correlated (r2 = 0.86; Figure 1b). Each

TABLE 1 Effects of SNPs targeted and deep sequenced on stamen filament length

SNP

Initial
scan
LRT

Initial
scan
FDR

F2
window
LRT

Amplicon
q̂

Amplicon
LRT

Amplicon
p‐value

Amplicon
â (mm)

Amplicon
h2SNP

1 22.51 0.185 N/A 0.027 0.18 0.67

2 17.07 0.245 4.558 0.53 4.44 0.035 0.26 0.015

3 22.51 0.162 23.54 0.68 6.09 0.014 0.23 0.033

4 9.01 0.706 24.27 0.75 1.27 0.26

5 22.65 0.201 23.54 0.34 5.18 0.02 0.29 0.017

6 8.99 0.707 22.89

Note. â: maximum‐likelihood (ML) estimate for additive effect, FDR: false discovery rate, h2SNP: per cent of total phenotypic variation explained by varia-

tion at the SNP, LRT: likelihood ratio test statistic, q̂: ML estimate for allele frequency of reference allele.
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of these length traits was positively correlated with tube width,

although the strength of this correlation is about half as strong as

the correlation between length traits (r2 = 0.44–0.5; Figure 1b).

Mean phenotypic values for tube length, stamen length and tube

width were 16.58 mm, 21 mm and 8.8 mm, respectively. In the same

order, the phenotypic variances were 1.41 mm2, 2.22 mm2 and

0.53 mm2.

3.2 | Genome scan for associations with floral traits

MSG on DNA extracted from 291 individuals generated a set of

620,473 filtered SNPs sequenced in at least 75 individuals (see

Methods). The probability of identifying a heterozygote in our initial

scan depended on read depth. We found a slight bias at low read

depth against heterozygotes slightly beyond the theoretical expecta-

tion, suggesting mild PCR bias from the amplification step of MSG

library prep (Supporting Information Appendix S2). We imposed an

FDR of 0.10 to declare genome‐wide significance for genetic effects

on floral traits. Only two SNPs showed an FDR < 0.10 for stamen

length. No SNPs met this FDR threshold for either tube length or

tube width.

3.3 | Deep amplicon sequencing

We successfully amplified and deep sequenced five of the six tar-

geted P. virgatus SNPs putatively associated with stamen length. The

genomic regions containing these five SNPs were each sequenced in

an average of 287 individuals with an average median read depth

per individual of 1094 reads. Overall, three of the five amplified

SNPs were significantly associated with stamen length (p‐value <

0.05; Table 1). Two of these three SNPs were also associated with

stamen length in the interspecific F2 population (Table 1). SNPs sig-

nificantly associated with phenotype had subtle effects, explaining

between 1.5 and 3.3% of the total phenotypic variance (Table 1).

One SNP (SNP 3) that was associated with stamen length did not

show genotype frequencies consistent with HWE. This site contains

a large (300 bp) indel. This size difference apparently caused prefer-

ential amplification of the shorter allele in heterozygotes, making

heterozygotes appear homozygous. Other SNPs sequenced on the

~1,000 bp amplicon did show HWE‐expected frequencies and were

also significantly associated with stamen length (Figure 2).

Two of the five amplified SNPs were not associated with stamen

length after deep sequencing. One of these (SNP 1) showed a very

strong association with phenotype in the initial scan, but after deep

sequencing nearly all individuals were homozygous for the alt allele,

even individuals previously assigned as homozygotes for the ref

allele in the initial scan. The remaining SNP (SNP 4) did not show

signs of spurious genotypes.

3.4 | Simulations of the initial genome‐wide scan

We performed simulations to examine the power of our initial scan

to detect a site with quantitative effects on phenotype. Summary

statistics for all simulations are provided in Supporting Information

Appendix S3. We simulated four different experimental designs. For

each of these, we first simulated a locus with no effect on pheno-

type to confirm that LRT values follow the chi‐square distribution

with 1 degree of freedom, which validated our use of this distribu-

tion to assign p‐values. We then simulated a locus based on our

empirical SNP 5 (h2 = 0.017, see Table 1). Simulation of an experi-

mental design matching our empirical study (291 individuals at

~0.838 × read depth) yielded relatively few replicates (~3%) return-

ing LRT values >10, an arbitrary but reasonable value for genome‐
wide significance (Figure 3a). In contrast, simulation of complete and

error‐free genotype data returned LRT values greater than 10 for

~18.5% of replicate simulations, indicating a greater power to detect

a true association (Figure 3a). We simulated the effects of doubling

the average read depth vs. doubling the number of individuals sam-

pled from a population. We found that doubling the number of sam-

pled individuals improves our power to detect a true association
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F IGURE 2 Likelihood ratio test (LRT) of
SNPs across the region surrounding SNP 3
in the initial genome scan (orange) vs. deep
sequencing amplicons (red). Arrow
indicates SNP 3
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with a greater degree (LRT > 10 for ~8.6% of simulations) compared

with doubling the read depth (LRT > 10 for 6.7% of simulations)

(Figure 3a). In addition, we found a strong positive relationship

between LRT value and additive effect: Simulation replicates with

high LRT values had substantially inflated estimated additive effects

above the value modelled in the simulation (Figure 3b).

We also simulated a range of effect sizes, assuming an experi-

mental design matching our study, and compared the proportion of

simulations that return LRT > 10 as an estimate of power. Our

power to detect a true association increases with effect size (Fig-

ure 3c). Under our design, we expect to detect a site explaining 1%

of segregating variation only 1.4% of the time. This rate increases to

roughly 50% for a site explaining 10% of segregating variation (Fig-

ure 3c). The false‐positive rate is negatively related to effect size

and is <5% for simulated SNP heritabilities above 1%. (Figure 3c).

We use the results of these simulations to discuss our empirical find-

ings below.

3.5 | Comparison with GEMMA BSLMM

We compared our SNP‐skimming method to the BSLMM imple-

mented in GEMMA. We briefly summarize the major results here,

and full details of the analyses and results are found in Supporting

Information Appendix S4. We first compared these two methods’
abilities to identify associations with stamen length in our empirical

data set. Sites identified by GEMMA as having measurable effects

on phenotype also showed reasonably high LRT values (LRT > 8).

This overlap between the two methods is reassuring and suggests

the sites identified by GEMMA also display a signal of association

using our method. However, the converse is not necessarily true:

Many sites with high LRT values do not show signs of association

with phenotype in the GEMMA analysis. For simulated data sets,

both methods found that simulated causal sites displayed, on aver-

age, more evidence for an association with phenotype relative to

simulated neutral sites, although our method is marginally better at

detecting causal sites (details found in Supporting Information

Appendix S4).

4 | DISCUSSION

4.1 | A two‐step approach can detect QTL in
natural populations

Adaptation depends on features of segregating genetic polymor-

phisms including the size of allelic effects, pleiotropy and epistasis.

These features scale up to influence trends in adaptive evolution

across larger taxonomic scales, such as parallel evolution of popula-

tions or species that show similar patterns of segregating variation

(Hohenlohe et al., 2010; Jones et al., 2012). Shallow genome

sequence data are now routinely generated for large numbers of

barcoded individuals. Extending population genomic analyses to con-

sider segregating phenotypic or fitness data must account for geno-

type uncertainty inherent in these data (Comeault et al., 2014;

Monnahan et al., 2015; Parchman et al., 2012). These advances will

streamline the identification of loci underpinning additive genetic

variation and genetic correlations, allowing us to characterize the

material basis of standing variation. SNP‐skimming combines a broad

but shallow initial genome scan with focused deep sequencing

around targeted sites. It is a simple and inexpensive approach to

localize trait‐associated genomic variants.

4.2 | The strength of association in the initial scan
predicts significance following deep sequencing

Estimates of FDR in the initial scan may be informative predictors of

whether sites remain significant following deep sequencing. Of the

four SNPs that successfully amplified and did not show spurious

genotypes after deep sequencing (SNPs 2–5), the three with high ini-

tial LRT values (SNPs 2, 3 and 5) remained significant following deep

sequencing (Table 1). The FDR for these sites in the initial scan
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â (mm)

LR
T

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

SNP heritability

R
at

e

(c)

F IGURE 3 Estimated genetic effects from simulations of our genome‐wide scan. Parameter values are given in text. (a) Density plot showing
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ranged from 0.162 to 0.245. In contrast, SNP 4 had a modest LRT

values and was not significant after deep sequencing. The FDR for

this SNP was relatively high (0.706), and perhaps, we should not be

surprised that this SNP is not associated with phenotype. For these

four sites, admittedly a small sample size, we see that LRT values in

the initial scan reliably predict LRT values in the deep sequencing

step (for sites 2–5: r2 = 0.78, p = 0.022). This suggests the best

strategy for success is the most obvious one: to choose sites with

the highest LRT values in the initial scan for deep sequencing. In our

case, it was not necessary to choose sites based on a priori knowl-

edge of the focal trait's genetic architecture in a related organism.

We expect that the success rate of our deep sequencing approach

would have been higher (i.e., more of the targeted sites would show

significant effects on phenotype) had we simply targeted sites with

greatest initial LRT values rather than choosing sites based on their

overlap with interspecific QTLs. For example, we did not choose

either of the two sites with FDR < 0.10 because they did not over-

lap with interspecific QTL.

4.3 | Effects of sampling in the initial scan over‐ or
underestimate effects on phenotype

GWAS pose an enormous multiple testing challenge and the power

to detect causal loci as statistically significant depends on effect size,

minor allele frequency and epistasis (Marjoram, Zubair, & Nuzhdin,

2014). SNPs with large effect sizes and intermediate allele frequen-

cies are more easily detected; however, the allele frequencies of seg-

regating causal loci may be low if stabilizing selection has been

historically important (Keightley & Eyre‐Walker, 2010). Thus, even

with accurate and error‐free genotype data, the loci detected in a

GWAS scan may not be a comprehensive set of those that generate

the observed phenotypic variance.

Missing data and genotype uncertainty further winnow the loci

identified from a genome scan. For quantitative traits, the proportion

of total phenotypic variation that is explained by a focal SNP may

be modest, leaving substantial residual variation unexplained by SNP

genotype. Due to missing data across individuals, we observe geno-

type for a random subset of individuals at a given site. If we were to

repeatedly subsample the population, the observed association with

phenotype would follow a distribution of LRT values, depending on

the set of genotyped individuals. As we often apply a stringent gen-

ome‐wide threshold for significance, we only detect an association if

the observed association falls in the tail of this distribution. The

majority of SNPs with quantitative effects on phenotype will not dis-

play high LRT values following the initial scan and will not be

detected by this SNP‐skimming approach. Only those SNPs geno-

typed in a subset of individuals that happen to maximize an associa-

tion between genotype and phenotype will have high LRT values

after the initial scan. In other words, a SNP must be both associated

with phenotype and lucky to be detected in the first step of our

pipeline. Simulations of our initial scan confirm that a site with quan-

titative effects on phenotype will rarely display high LRT values,

assuming the sample size and average read depth are similar to our

data set. For example, a site explaining 1.7% of the segregating vari-

ation returned LRT > 10 (a reasonable threshold for genome‐wide

significance) in only 3.08% of replicate simulations (Figure 3a, Sup-

porting Information Appendix S3). As the proportion of trait heri-

tability explained by the SNP increases, so does power to detect a

causal site (Figure 3c).

Because sites with high LRT values were genotyped in a lucky

set of individuals that maximize association with phenotype, these

sites will display inflated phenotypic effects following the initial scan.

This phenomenon, termed the winner's curse, is a well‐described fea-

ture of GWAS studies (Göring, Terwilliger, & Blangero, 2001). Our

simulations clearly demonstrate this pattern: LRT values are strongly

positively correlated with estimated additive effects (Figure 3b). On

the other hand, our initial scan underestimated the phenotypic

effects of many “unlucky” sites with true effects on phenotype.

With complete genotype data following amplicon deep sequencing,

the estimated effects of causal loci should regress towards their

expected value. After amplicon sequencing, loci with true effects on

phenotype should show reduced (but still significant) effects relative

to their estimated effects from the initial scan, and linked sites with

underestimated effects in the initial sites should become significant.

We observe this predicted pattern for the SNPs targeted for

amplicon sequencing: The three sites with significant effects on sta-

men length (SNPs 2, 3 and 5) displayed much higher LRT values in

the initial scan than they displayed following amplicon sequencing. It

is more difficult to directly observe SNPs with initially underesti-

mated effects on phenotype become significant after deep sequenc-

ing (i.e., it is impossible to target such sites based on the results of

the initial scan). Yet we found that SNPs in this category were ampli-

fied and deep sequenced along with targeted sites. For example, a

large number of SNPs were amplified and sequenced along with

SNP 3. If a causal locus is near SNP 3, we expect that sites in very

close proximity will also show an association with stamen length.

Consistent with our expectations, several sites in this local vicinity

had low LRT values in the initial scan but showed significant associa-

tion with phenotype after deep sequencing across all individuals (Fig-

ure 2).

4.4 | Spurious results at the deep sequencing stage
are easily detected

For most targeted SNPs, the deep sequencing stage of our approach

obtained nearly complete and effectively hard genotype data across

our population sample. In many cases, the most likely genotype for a

given individual changed following deep sequencing. As expected,

we saw that some individuals that were most likely homozygous in

the initial scan were inferred as heterozygotes following deep

sequencing. For two of the five SNPs that we successfully deep

sequenced, we saw signs of PCR bias or genotyping failure. One of

these (SNP 3) was sequenced on an amplicon that showed a large

(~300 bp) indel polymorphism. Amplification was biased towards the

shorter allele such that heterozygotes in the initial scan appeared

homozygous for the shorter allele after deep sequencing. Such
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incidental amplification of indel polymorphisms is easily detected by

running test PCRs on gel and should be avoided for best results.

The other site with signs of bias at the deep sequencing stage

(SNP 1) apparently converted nearly all individuals in the sample to

homozygotes for the alt allele following deep sequencing—even indi-

viduals who previously were most likely homozygous for the ref

allele in the initial scan. These data appear spurious and suggest mar-

ker failure, perhaps related to PCR primer design. Although this type

of event is not detectable until after amplicon sequencing, these

anomalies can be identified and culled from analyses. Future studies

may find that alternative methods of sequencing a targeted region

are less prone to introducing error at the deep sequencing stage of

this pipeline.

4.5 | Simulations suggest increased sample size
yields larger returns than increased sequencing depth

For a given sequencing effort, there is a trade‐off between the num-

ber of sampled individuals and the read depth per site per individual.

In simulations of our genome‐wide scan, we compared the effects of

doubling the number of sampled individuals vs. doubling the average

read depth on the power to detect loci with quantitative effects. We

found that doubling the number of sampled individuals and doubling

the read depth each increased the proportion of replicates with high

LRT values, although the effect is more pronounced when we dou-

bled the individuals (Figure 3a). Here, we modelled a data set similar

to our empirical data set and found that doubling the number of

sampled individuals increased the number of replicates returning an

LRT > 10 nearly three‐fold. Doubling the average read depth yielded

a more modest two‐fold increase in the number of replicates with

LRT > 10. This suggests that allocation of sequencing effort using

our approach should maximize the number of sampled individuals.

More importantly, this result justifies our entire approach of

sequencing a large multiplexed population at shallow read depth to

identify causal loci.

This conclusion is consistent with work by Buerkle and Gom-

pert (2013) showing that estimates of population allele frequency

are more accurate with higher numbers of individuals, at the

expense of sequencing depth. This may be an emerging theme in

population genomics—increasing the number of sampled individuals

provides a greater return on parameter estimation compared with

increasing read depth. To explain why, consider that in our empiri-

cal data set and our simulations, average read depth was 0.838 (al-

most 1). The inclusion of a single sequence read from one

additional individual at a focal SNP has a large effect on the geno-

type likelihoods at this site: It can at least rule out one of the

homozygous genotypes. The inclusion of a second read for this

individual has diminishing returns on genotype likelihoods: If the

individual is heterozygous, the new sequencing read has a 50%

probability to identify an individual as heterozygous, but apart from

this situation, the additional sequencing read does not have the

large additional effects on genotype likelihoods compared with the

initial sequencing read.

4.6 | Interpretation of results will depend on the
quality of the reference genome

SNP‐skimming does require a reference genome. As demonstrated

here, a very rough draft genome assembled into ~18 k scaffolds can

be sufficient to search for loci generating phenotypic variation. For

this purpose, one could use an even more fragmented assembly,

although the ability to detect SNPs will of course be limited if the

assembly does not cover the majority of the genome. However,

researchers aiming to make broader statements on the genetic archi-

tecture of segregating variation would benefit from a reference gen-

ome assembled into chromosomes. In our case, we cannot estimate

how many causal loci are represented by our collection of SNPs with

high LRT values. With a more complete genome assembly, one could

collapse nearby sites with high LRT values into putative causal loci

to begin to characterize the number of sites underlying segregating

variation and search for responsible genes.

4.7 | Floral variation in the P. virgatus population

Penstemon has experienced at least 12 evolutionary transitions from

bee‐adapted to hummingbird‐adapted flowers (Wessinger et al.,

2016; Wilson et al., 2007; Wolfe et al., 2006). This remarkable dis-

play of parallelism in floral trait variation may be facilitated by alleles

segregating within ancestral bee‐adapted populations that permit

rapid response to natural selection favouring hummingbird pollina-

tion. Despite the modest power of our QTL skimming approach, we

identified three SNPs that putatively explain quantitative variation in

the bee‐adapted P. virgatus population sample, indicating there are

likely many loci with subtle quantitative effects on floral dimension

segregating within this population. The three SNPs did not necessar-

ily overlap with genomic intervals containing interspecific QTLs, sug-

gesting variation in stamen length has a broad genomic basis. Thus,

adaptive change in stamen length is unlikely to be limited by avail-

able segregating variation. Furthermore, we expect the genomic

basis of adaptive transitions to longer stamen filaments would be

idiosyncratic across separate origins of hummingbird pollination. To

validate potential associations between candidate sites and pheno-

type, we are currently propagating a second, independent sample of

plants from the same P. virgatus population.

Floral tube length and stamen filament length were tightly corre-

lated across sampled individuals in the P. virgatus population. This

finding supports the hypothesis that coordinated increase in floral

tube length and stamen length associated with transitions to hum-

mingbird pollination may be aided by pre‐existing correlations

between these traits due to tight linkage or pleiotropic loci (Wes-

singer et al., 2014). In our previous interspecific cross, floral tube

width was not significantly correlated with tube length and stamen

filament length (Wessinger et al., 2014), suggesting adaptation to

hummingbird pollination in the lineage leading to P. barbatus has

involved loci specific to length vs. width traits.

Floral tube width was positively correlated with the lengths of

the tube and stamen filaments in the P. virgatus population, although
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the strength of this correlation is much weaker than the correlation

between the two length traits. Sites that putatively affect stamen

length also affect floral tube length for two of the three cases, but

do not affect floral width (Supporting Information Appendix S5).

Together, these studies suggest that, although length and width

traits can be positively correlated in bee‐adapted Penstemon species,

transitions to hummingbird pollination utilize variation that is inde-

pendent of this correlation.

5 | CONCLUSIONS

Despite the challenges inherent to within‐population QTL mapping,

our two‐step approach is capable of detecting loci with subtle

effects on quantitative traits. Our approach merits further validation

but is likely broadly useful for researchers embarking on an initial

search for loci generating segregating variation within a natural pop-

ulation. One could elaborate our method to include additional pre-

dictors of phenotype. For example, researchers studying plastic traits

in heterogeneous environments could choose to include an environ-

mental covariate. This initial study illustrates challenges at both the

shallow and deep stages that should be considered for future use of

this approach. These challenges include sampling effects in the initial

scan that limits our power to detect associations with phenotype

and biased or spurious results from deep sequencing PCR amplicons.
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