

ALiCE:
ARTIFICIAL LIFE, CULTURE & EVOLUTION

ISIS 170 / CompSci 107 / VMS 172
Fall 2012

 C++ & Windows API

 Language Guide

C++ Basics

file:///C|/Users/ng46/Desktop/handout/C++%20Basics.htm[1/11/2012 12:25:35 PM]

C++ Language Basics

C++ Statements

=

Assigns what
is on the right
side of the =
to what is on
the left. If a
was 12, then a
now becomes
25.

a = a + 13;

==

Asks whether
what is on the
right of the =
is the same as
what is on the
left. If a is
25, then the
statement is
evaluated as
false .

 (a == 56)

()

Groups code to
clear up any
ambiguities in
the order in
which they are
evaluated.
Also encloses
the
parameters of
a function call.

(3+6) * (-2-a) / 5
random(6);

{}
Groups larger
blocks of
code.

for (i = 0; i < 10; i++)
 {
 sum = sum + i;
 }

[]

An array
subscript, the
elements
within a list or
table.

x[23] = 6;

;
Terminates
every
statement.

x = x * x;

Shorthand Operators

++ Increment i++; is the same
as i = i + 1;

-- Decrement i--; is the same
as i = i - 1;

+= b +=
100;

is the same
as b = b + 100;

Operators in
order of Precedence
() Function call

[] Array subscript

-> Indirect component
selector

. Direct component
selector

! Logical negation

+ Plus

- Minus

() Expression
parentheses

* Multiply

/ Divide

% Remainder (modulus
divide)

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal
to

== Equal to

!= Not equal to

&& Logical and

|| Logical or

= Assignment

C++ Basics

file:///C|/Users/ng46/Desktop/handout/C++%20Basics.htm[1/11/2012 12:25:35 PM]

-= c -= 10; is the same
as c = c - 10;

switch statements
if/else commands

while loops
do-while loops

for loops
nested for loops
break statement
goto statement

continue statement
return statement

switch statements enable multiple decision branches:

switch (year) {
 case 1: {
 Edit1->Text = "You are a Freshman.";
 break;
 }
 case 2: {
 Edit1->Text = "You are a Sophomore.";
 break;
 }
 case 3: {
 Edit1->Text = "You are a Junior.";
 break;
 }
 case 4: {
 Edit1->Text = "You are a Senior.";
 break;
 }
 default: {
 Edit1->Text = "Are you a Grad?";
 }
}

Note: The "break;" statements transfer control below and outside the scope of the "switch."

if / else commands execute blocks of code only if the value in parentheses is true:
A single block of code may be executed:

if (gpa > 3.25) {
 Edit1->Text = "That's better than good.";
}

Any or all blocks of code may be executed:

if (zipCode == 90290) {
 Edit1->Text = "You live in Topanga.";
}
if (zipCode == 27708) {
 Edit1->Text = "You live near Duke.";
}
if (zipCode == 90077) {
 Edit1->Text = "You live in Beverly Glen.";
}
if (zipCode == 27278) {
 Edit1->Text = "You live in Hillsborough.";
}
if (sex == 0) {
 Edit2->Text = "You are female.";
}

http://www.duke.edu/web/isis/gessler/borland/cpp.htm#switch
http://www.duke.edu/web/isis/gessler/borland/cpp.htm#if/else
http://www.duke.edu/web/isis/gessler/borland/cpp.htm#while
http://www.duke.edu/web/isis/gessler/borland/cpp.htm#do-while
http://www.duke.edu/web/isis/gessler/borland/cpp.htm#for
http://www.duke.edu/web/isis/gessler/borland/cpp.htm#nestedfor
http://www.duke.edu/web/isis/gessler/borland/cpp.htm#break
http://www.duke.edu/web/isis/gessler/borland/cpp.htm#goto
http://www.duke.edu/web/isis/gessler/borland/cpp.htm#continue
http://www.duke.edu/web/isis/gessler/borland/cpp.htm#return

C++ Basics

file:///C|/Users/ng46/Desktop/handout/C++%20Basics.htm[1/11/2012 12:25:35 PM]

if (age > 30) {
 Edit3->Text = "You can't be trusted.";
}

Only one of the two blocks of code will be executed:

if (hunger > 50) {
 searchForFood();
}
else {
 searchForMate();
}

Only one of the blocks of code will be executed:

if (hungerForChocolate > 10) {
 goForChocolate();
}
else if (thirstForWater > 50) {
 goForWater();
}
else if (wakefulness < 70) {
 goForCoffee();
}
else if (thirstForWater < 30) {
 goForWater();
}
else {
 goHome();
}

while loops test a condition before entering the code block.
The code is never executed unless the condition is met.

while (runWayClear == true) {
 allowAircraftToLand();
}

You will never allow an aircraft to land as long as the runway is not clear.

do-while loops test a condition after leaving the code block.
The code is always executed once.

do {
 dance();
}
while (musicStopped == false);

You will always have one dance, even if the music has stopped.

for loops take three parameters enabling you to initialize, terminate and increment the loop
counter:

Assuming you wished to do something with each agent from id 23 to 79,
setting first to 23 and last to 79 would do the job.

If you wanted every odd numbered agent from 23 to 79, then the last parameter should be id = id

C++ Basics

file:///C|/Users/ng46/Desktop/handout/C++%20Basics.htm[1/11/2012 12:25:35 PM]

+ 2:

for (int id = first; id <= last; id = id + 1) {
 // these agents increase in age
 agent[id].age ++;
}

nested for loops
allow you to cycle through all the cells in a 2d grid.
for (row = 0; row < 500; row ++) {
 for (column = 0; column < 500; column ++) {
 // make resource grow
 resource[row][column] ++;
 }
}
// grow food in every cell in the world

The break statement causes an immediate exit from a switch or a loop:

for (student = 0; student < 500; student++) {
 if (score[student] == 99) break;
}
// the first student with a "99" score
// or student 500 will be shown

Edit1->Text = student;

The goto statement may be used to break out of a double or more deeply nested loop:

for (row = 0; row < 500; row ++) {
 for (column = 0; column < 500; column ++) {
 // look for row and column containing 77
 if (77 == cell[row][column]) {
 goto exit;
 }
 }
}
exit:
// we have now found the row and column
// of the first cell containing "77"

The continue statement returns you to the loop's beginning,
skipping statements that follow it and incrementing the loop counter:

for (student = 0; student < 500; student++) {
 if (score[student] < 50) continue;
 score[student] = score[student] * 1.2;
 bonus[student] = true;
 bonusesAwarded++;
 notify(student);
 notify(professor);
}
// students with scores of "50" or
// higher receive bonus points

The return statement causes an immediate exit from a function,
returning the value of "sum" as an integer :

int addTwoNumbers (int a, int b) {
 int sum = a + b;
 return sum;
}

Functions

file:///C|/Users/ng46/Desktop/handout/Functions.htm[1/11/2012 12:27:02 PM]

C++ Functions
Think of functions as agents: they sense, think and act.

By convention, any functions that you declare and define should be named with a lower-case initial letter.

Functions are the jobs you need to coordinate in order to get a larger project done. As a programmer, think of yourself as
the manager of an enterprise, the general of an army or the director of a movie. We'll pursue the cinematic metaphor.
Imagine yourself as the director of a movie. You are in charge of everyone. You coordinate the work of the actors,
cameramen, focus pullers, extras, carpenters, electricians, set decorators, prop handlers and sound recorders. Each has a job
to do, and each may delegate smaller jobs to those beneath them. But you are in command of the big picture. It is your job
to decide what is to be done, how to do it and who to assign to each task.

When you write an application, you are the director of a complex set of functions, your agents to whom you have assigned
these specific tasks. Think of C++ functions as your agents. It is up to you to specify what each wil do and how. As as the
creator and programmer of an artificial world, it is your responsibility to identify the jobs that need to be done, to describe
each job or process as a C++ function, and to organize these functions and their relationships to one another in order to
accomplish the task at hand. Think of your application as an organized group of functions; think of it as the social
organization of your crew of employees:

Each one has a name (functionName).
Each one has one or more jobs to do (the body of the function) .
Each one may, or may not, when it is called, receive further data to help it do its job (its parameters).
Each may, or may not, reply directly to whoever called it (its returnValue).

For further flexibility, any function, may call any other function, just as any crew member may call upon another for
assistance. You must organize all of this. You must describe the "chain of command:"

The Director calls, "Lights 3." (A function call with one parameter and one return value.)

The lighting person throws the switch on one flood and two spots, and reports back when this is done.

The Director calls, "Camera 2, 5." (A function call with two parameters and one return value.)

Cameraman 2 starts his camera rolling...
Cameraman 5 starts his camer rolling...
They respond that they have done so...

The Director calls, "Action." (A function call with no parameters and no return value.)

The actors begin to follow their scripts, the key grip pushes the camerman in his dolly along the track, the sound
person moves her microphones overhead...
And each person cues others to begin their jobs: extras swarm around the lead actors, assistants keep the cables
from tangling, the continuity person takes notes...
No one responds directly to the Director...

These calls to action are called function calls in programming.

An Abstract Overview

A function may accept parameters, do something in its body, and directly return only one value.
However, it may also change the values of any number of global variables and the properties of any number of components.

// An abstract description of a function:
returnType functionName (parameters) {
 // do this (the function body)
 return returnValue;
}

Functions

file:///C|/Users/ng46/Desktop/handout/Functions.htm[1/11/2012 12:27:02 PM]

It might be helpful to think of a function as an agent with a name, who can sense, think, and act:

// Thinking of a function as an agent:
reply functionName (instructions) {
 // do something (thought and action)
 return reply;
}

Or you may wish to think of a function as black box with a name, which has inputs and one output:

// Thinking of a function as a black box:
(output) functionName (inputs) {
 // do something (action and output)
 return returnValue;
}

You call a function by calling its name followed by the parameters, if there are any, in parentheses.

In summary:

Each function has a name you call it by (i.e. its functionName).
You can give it additional data when you call if you wish to do so (i.e. its
parameters).
It will do its job.
You can wait for it to report on what it's done (i.e. its returnValue) or simply
assume that it has done its job.

An concrete example of a function with no returnValue and no parameters:

To indicate that the function expects no parameters and returns no returnValue, we insert the word void where the
parameters would otherwise be.

// Ready to shoot!

void shooTheScene (void) {
 quietOnTheSet();
 lights();
 camera();
 action();
}

To call it we simply yell:

shootTheScene();

An concrete example of a function with one returnValue but no parameters:

To indicate that the function returns a returnValue but expects no parameters, we insert the data type
of the returnValue before the function name and the word void where the parameters would otherwise be.

// Is there enough film in the camera?
int howMuchFilmIsLeft (void) {
 int feetLeft = 1000 - feetUsed;
 return feetLeft;
}

Functions

file:///C|/Users/ng46/Desktop/handout/Functions.htm[1/11/2012 12:27:02 PM]

Since the function has an integer return value, we can use the function call itself as a variable in another statement:
The function call will be replaced by its return value, the number of feet that are left.

if(howMuchFilmIsLeft() < 50) reloadTheCamera();

In other words, if there are less than 50 feet of film left, tell the cameraman to reload.

An concrete example of a function with no returnValue but several parameters:

To indicate that the function expects no returnValue but does take parameters, we insert the word void
where the returnValue would otherwise be and data types and variable names of the parameters .

// On to the next scene!
void prepareForNextScene (int act, int scene) {
 intScriptPage = act * 10 + scene;
 placesEveryone();
}

To call it we may simply say:

prepareForNextScene(3, 4);

An concrete example of a function with one returnValue and several parameters:

To indicate that the function expects one boolian (true or false) returnValue and two parameters, we insert the data
type

of the returnValue bool and data types and variables int of the two parameters .

// Get the actors on stage!
bool actorsToYourMarks (int femaleLead, int maleLead) {
 while (femaleLead == notReady) {rehearse()};
 while (maleLead == notReady) {rehearse()};
 bool allReady = true;
 return allReady;
}

Since the function has a boolean returnValue, we can use the function call itself as a variable in a larger statement:
The function call will be replaced by its return value, and we can call action().

if(actorsToYourMarks(11, 27)) action();

In other words, as long as the male and female leads are not ready, they should rehearse.
When they are ready, we will call for action.

Graphics Commands

file:///C|/Users/ng46/Desktop/handout/Graphics%20Commands.htm[1/11/2012 12:28:35 PM]

Color Graphics Language

Color
Theoryxxxxxxx
Understanding
Color Spaces

Color is
represented by
three variables,
with values from 0
to 255:
red, green, blue.

The gamut of color
is often displayed
as a color cube
with three
dimensions:
red, green, blue.

The 8 corners of
the color cube are
shown in the
rightmost column ->

RED
value

GREEN
value

BLUE
value Result Notation BGRX

hex code

255 255 255 WHITE W 0xFFFFFF

255 0 0 RED
Additive

Primaries:
RGB

0x0000FF

0 255 0 GREEN 0x00FF00

0 0 255 BLUE 0xFF0000

0 255 255 CYAN
SubtractiveX
Primaries:

CMY

0xFFFF00

255 0 255 MAGENTA 0xFF00FF

255 255 0 YELLOW 0x00FFFF

0 0 0 BLACK K 0x000000

Color Constants
Windows recognizes these color constants, representing the corners of the color cube (top row), plus darker variants
(bottom row).
Windows also recognizes other colors (see the color combo-box in the properties tab of most visual components).

clRed
additive
primary
RED

clLime
additive
primary
GREEN

clBlue
additive
primary
BLUE

clAqua
subtractive
primary
CYAN

clFuchsia
subtractive
primary

MAGENTA

clYellow
subtractive
primary
YELLOW

clBlack
BLACK

clWhite
WHITE

clMaroon clGreen clNavy clTeal clPurple clOlive clGray clSilver

All coordinates on your display are measured in pixels from the top left corner of the component.

the top left pixel has the coordinates 0, 0
x is the distance to the right or east
y is the distance down or south

Form Component
The Form component is the entire Window of your application. You can draw anywhere on a Window using Form1-
>Canvas.

PaintBox Component
The PaintBox component defines a smaller region within the Window on which your application can draw.
All measurements are relative to the top left corner of the PaintBox.
A PaintBox is useful for maintaining multiple visualizations on the screen at one time. Use it as you would use
Form1->Canvas.

http://www.sscnet.ucla.edu/geog/gessler/topics/color-spaces.htm
http://www.sscnet.ucla.edu/geog/gessler/topics/color-spaces.htm

Graphics Commands

file:///C|/Users/ng46/Desktop/handout/Graphics%20Commands.htm[1/11/2012 12:28:35 PM]

Canvas Shape Methods

Canvas->Ellipse(x1, y1, x2, y2);
where x1 and y1 represent the top left corner of the object, and x2 and y2 the bottom right
Canvas->MoveTo(x, y);
moves the cursor to x and y in order to begin a LineTo() command
Canvas->LineTo(x, y);
draws a line to x and y
Canvas->Rectangle(x1, y1, x2, y2);
where x1 and y1 represent the top left corner of the shape and x2 and y2 the bottom right
Canvas->RoundRect(x1, y1, x2, y2, x3, y3);
where x3 and y3 represent the diameters of curvature of the rounded corners
Canvas->TextOut(x, y, "string");
writes the specified string beginning at position x and y
Refresh();
clears the canvas without resetting the Brush and Pen values

Canvas Polygons and Polylines

TPoint points[6];
creates an array of six TPoint objects with elements numbered from 0 to 5
points[0].x = 40; points[0].y = 10;
points[1].x = 20; points[1].y = 60;
points[2].x = 70; points[2].y = 30;
points[3].x = 10; points[3].y = 30;
points[4].x = 60; points[4].y = 60;
points[5].x = 40; points[5].y = 10;
fills the array with x and y values
Canvas->Polyline(points,5);
draws a line with the current Pen color beginning with points element [0] and ending with points element
[5]
Canvas->Polygon(points, 5);
draws a line with the current Pen color and fills it with the current Brush color beginning with points element
[0] and ending with points element [5]

Canvas Puting Pixels

Canvas->Pixels[x][y] = clBlue;
puts a blue pixel at coordinate x and y.
any color constant designated by the prefix letters (not numerals) "cl" may be used.
Canvas->Pixels[x][y] = 0xFF0000;
puts a pixel at coordinate x and y given by the hexadecimal byte values of its Blue, Green, and Red
coordinates in the color cube.
Canvas->Pixels[x][y] = static_cast<TColor>(RGB(red, green, blue));
puts a pixel at coordinate x and y given by the decimal (0-255) byte values of its Blue, Green, and Red
coordinates in the color cube.
Canvas->Pixels[x][y] = static_cast<TColor>(colorRamp(range, value));
puts a pixel at coordinate x and y given by the a numerical value along a range of numerical values (see
colorRamp()).

Getting Pixels

int color, red, green, blue;
declares variables to receive colors
color = Form1->Canvas->Pixels[X][Y];
retrieves the RGB color triplet
red = GetRValue(color);

http://www.duke.edu/web/isis/gessler/borland/colorRamp.txt

Graphics Commands

file:///C|/Users/ng46/Desktop/handout/Graphics%20Commands.htm[1/11/2012 12:28:35 PM]

retrieves the Red color component
green = GetGValue(color);
retrieves the Green color component
blue = GetBValue(color);
retrieves the Blue color component

Properties

Canvas->Pen->Color = clBlack;
where Pen is the outline color. Black is the default
Canvas->Pen->Style = psSolid;
where Style can be psSolid, psClear, psDash, psDot, psDashDot or psDashDotDot. Solid is the
default
Canvas->Pen->Width = 1;
if Width is greater than one, then Style may revert to psSolid. One is the default
Canvas->Brush->Color = clWhite;
where Brush is the fill color. White is the default
Canvas->Brush->Style = bsSolid;
where Style can be bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal,
bsCross or bsDiagonalCross. Solid is the default

Variables

file:///C|/Users/ng46/Desktop/handout/Variables.htm[1/11/2012 12:29:38 PM]

Variables

Variable Type Description Size in Bytes Range from Range to
char Character 1 -128 127

unsigned char Unsigned Character 1 0 255

short Short Integer 2 -32, 768 32,767

unsigned short Unsigned Short Integer 2 0 65,535

int

long

Integer

Long Integer
4 -2,147,483,648 2,147,483,647

unsigned int

unsigned long

Unsigned Integer

Unsigned Long Integer
4 0 4,294,967,296

float Floating Point (Real) 4
-3.4E308

-3.4 x 10^308

3.4E38

-3.4 x 10^308

double Double Floating Point (Real) 8
-1.7E308

-1.7 x 10^308

1.8E308

1.8 x 10^308

bool Boolean (true or false) 1 false true

Upper and Lower-Case Variable Names
By convention, if you declare and define a variable, you should give it a name beginning with a lower-case letter.

Variable Arrays
A variable may hold a single value like: myAge

A one-dimensional list of the ages of 25 students in this class: studentAge[25] with indices ranging from 0 to 24.
A two-dimensional table of the position of pieces on a chess board: chessGame[8][8] with indices ranging from 0 to 7.

Indices are always set off by square brackets [] and we always begin counting index values at zero.

Variable Scope

Variables

file:///C|/Users/ng46/Desktop/handout/Variables.htm[1/11/2012 12:29:38 PM]

	cover-sheet
	C++ Basics
	Local Disk
	C++ Basics

	Functions
	Local Disk
	Functions

	Graphics Commands
	Local Disk
	Graphics Commands

	Variables
	Local Disk
	Variables

	tektronix-ascii

