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We study the decision problem of an auction bidder who has imperfect information about rivals’ bids and

wants to maximize her worst-case payoff. This information is modeled via an uncertainty set consisting

of all possible realizations of rivals’ bids. Maximizing the bidder’s worst-case payoff over this set yields

robust bidding policies that do not depend on distributional assumptions. We study robust bidding policies

in auctions with single demand and multiple demand. In these settings, establishing the classical minmax

equality yields the construction of optimal robust bidding policies. These robust bidding policies could

provide better payoff than truthful bidding. Furthermore, compared to expected-payoff maximizing policies,

they could result in less allocation risks and provide higher payoff under adversarial realizations of rivals’

bids.
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1. Introduction

In the past few decades, there has been a tremendous growth in the use of auctions as transaction

procedures for sales and purchases of high-value assets. For example, the Federal Communications

Commission has been using spectrum auctions to sell licenses to telecommunication bandwidths

and generate billions of dollars in revenue (Gryta and Nagesh 2015). Telecom companies who

participate in spectrum auctions often have imperfect information about their rivals’ business plans

and consequently bids and bidding policies. Moreover, given high-stakes one-time nature of such

auctions (in which prices auction winners have to pay could reach multiple billions of dollars), the

bidder objective could be to maximize the worst-case payoff (rather than maximizing expected

payoff). In this paper we study this kind of a bidder decision problem in detail. More precisely, we

study optimal bidding policies for a bidder whose objective is to maximize the worst-case payoff.

We adopt the robust optimization approach (e.g. Ben-Tal and Nemirovski 2002) to model a

bidder’s preference. Under this approach, the bidder use an uncertainty set to describe all possible

realization of her rivals’ bids. This set could be flexibly specified by equality and inequality con-

straints on rivals’ bids to represent the bidder’s knowledge and belief of these bids. The bidder’s
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robust bidding problem is to determine a bidding policy that maximizes her worst-case payoff with

respect to this uncertainty set. Our modeling framework complements the traditional approach

of expected utility maximization in that it provides bidding policies that are robust with respect

to underlying probabilistic assumptions on rivals’ bids. Gilboa and Schmeidler (1989) proposed a

related preference model in which an agent maximizes her worst-case expected payoff with respect

to a family of priors. However, such an approach still relies on some probabilistic assessment of

rivals’ bids, whereas our approach is completely distribution-free.

The robust bidding problem is straightforward for the second-price auction and its Vickrey-

Clarke-Groves (VCG) auction generalization. These auction formats satisfy the incentive compat-

ibility condition, i.e., truthful-bidding (bidding one’s valuation) is a weakly-dominant strategy for

each bidder (e.g. Krishna 2009). As a result, truthful bidding is a straightforward solution to the

robust bidding problem since bidders maximize their worst-case payoff by bidding truthfully. On

the other hand, when incentive compatibility does not hold, bidding truthfully is not necessarily a

robust bidding policy, and the robust bidding problem is nontrivial.

We study the robust bidding problem in two auction formats: discriminatory and core-selecting

auctions. These auction formats are widely used in practice. Discriminatory auction, a generaliza-

tion of the first-price auction for a multi-item setting, is used, e.g., in electricity procurement and

in sales of U.S. Treasury securities. Core-selecting auction has been recently adopted for sales of

bundled items, such as spectrum licenses and airport take-off/landing rights. Two auction formats

differ in terms of allocation and payment rules, which are directly related to the manner in which

(item) supply and (bidder) demand is treated. Specifically, items could be assumed to be homoge-

nous or item heterogeneity could be handled. Similarly, bidders can be limited to unit demand, i.e.,

limiting each bidder to winning at most one-item, or could be allowed to have multiple demand

and potentially win any number of items. Table 1 summarizes the settings for supply and demand

in two auction formats.1 Analyzing the bidding problem in these auctions allows us to gain insights

into the structure and performance of robust bidding policies under various auction settings.

Discriminatory Core-selecting

Demand Unit Multiple
Supply Homogeneous Heterogeneous

Table 1 Summary of settings for studied auction formats

Our analysis shows that in discriminatory auctions, a robust bidding policy for a particular

bidder is to bid the minimal amount that guarantees winning one item, regardless of the realization

1 Note that these three auctions could be considered as “natural” modifications of a VCG auction in each of the
demand/supply settings.
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of rivals’ bids in the uncertainty set (provided positive payoff in the worst case). In core-selecting

auctions, if the bidder is single-minded (i.e., she has positive valuation for only one bundle) then

a robust bidding policy is of similar characteristic: the bidder bids the minimal amount that

guarantees winning her target bundle, regardless of the realization of rivals’ bids in the uncertainty

set. (This is true assuming that the bidder’s valuation for her target bundle is high enough so that

by bidding truthfully she still wins her target bundle regardless of the realization of rivals’ bids in

the uncertainty set; otherwise, an optimal policy is simply bidding zero.)

When a bidder has positive valuation for two or more bundles, the robust bidding problem in

core-selecting auctions is more involved. We show an example analysis of the robust bidding policy

for the case of a double-minded bidder (i.e., one with distinct valuations for two inclusive bundles).

In this case, except for scenarios where the bidder wins either of her target bundles under truthful

bidding and this allocation does not change for any realization of rivals’ bids in the uncertainty set,

bidding the minimal amount to guarantee winning either of the target bundles is not necessarily

a robust policy. In fact, we demonstrate that a robust policy corresponds to bids that maximize

the minimum of bundle-specific worst-case payoff functions. For both cases of single-minded and

double-minded bidders, establishing a minimax type of an equality is critical in demonstrating and

verifying the optimality of the presented robust bidding policies. However, such an approach has

limitations. In fact, we show in an example of a core-selecting auction with a triple-minded bidder

(i.e., one with distinct valuations for a chain of three bundles) that minimax equality does not

hold, so demonstrating optimality of candidate bidding policies for general cases would require a

different approach and the search for robust policies could become more challenging.

Throughout our analysis, we evaluate the performance of robust bidding policies by comparing

them to a couple of benchmarks. In particular, we compare payoffs under robust bidding policies

with payoffs under other bidding policies such as truthful bidding and expected-payoff maximizing

policies, assuming some known distributions of rivals’ bids over the uncertainty set. Our results

show that for non-trivial2 robust bidding policies, the bidder’s payoff is at least as large as her payoff

under truthful bidding, for all realizations of rivals’ bids in the uncertainty set. In addition, for

discriminatory and core-selecting auctions, robust bidding policies improve upon expected-payoff

maximizing policies (assuming some known distributions of rivals’ bids), as they reduce the risk

of not winning the target items. In particular, robust policies yields a higher payoff compared to

expected-payoff maximizing policies under adversarial realizations of rivals’ bids.

In obtaining the aforementioned results, we aim to shed some light on the robust bidding policies

of a single bidder, rather than pursuing an analysis of equilibrium bidding behaviors, as it often the

2 i.e., positive bid for at least one item/bundle
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case in the auction literature. We rationalize this choice with some motivating examples of first-

price auctions with two bidders and one item. When both bidders are worst-case payoff maximizers

and their rationality and uncertainty sets are mutual knowledge, a wide range of bidding profiles,

including a rather counter-intuitive one with each bidder bidding truthfully, constitutes bidding

equilibria. Multiple equilibria are also observed in other settings of bidders’ rationality, such as

when one bidder is a worst-case payoff maximizer and the other is an expected payoff maximizer

(with respect to some distributional belief). Furthermore, when moving away from the simple first-

price auction toward a more general setting of combinatorial auctions with heterogeneous items,

an equilibrium analysis could become more technically challenging. Uninformative predictions of

equilibrium behaviors and analytical tractability issues refrain us from pursuing an equilibrium

analysis of robust bidding behaviors in this paper.

The rest of the paper proceeds as follows. Section 1.1 discusses related works in the literature.

Section 2 follows with descriptions of the auction models, assumptions and some motivating exam-

ples. In § 3, we provide robust bidding policies for unit demand bidders in discriminatory auctions.

Section 4 discusses robust bidding for multiple demand bidders in core-selecting auctions. Finally,

in § 5, we conclude and provide some possible directions for future research. Proofs are relegated

to Appendix A.

1.1. Related literature

Uncertainty aversion in auctions Traditionally, in the economic literature, risk aversion has

been a fundamental concept when agents face uncertainties. For the case of auctions, numerous

works have been carried out to study risk aversion (Maskin and Riley 1984, Matthews 1987, Cox

et al. 1985, Smith and Levin 1996, Goeree et al. 2002, Campo et al. 2011). However, it has been

argued that risk aversion alone is not sufficient in explaining observed bidding behaviour (Harrison

1990, Kagel and Levin 1985). On the other hand, there is substantive evidence of uncertainty

aversion (also known as “ambiguity aversion”) in decision making (Ellsberg 1961, Camerer and

Weber 1992, Sarin and Weber 1993). In auction settings, uncertainty aversion is relevant since

the probability of winning an auction not only depends on the joint distribution of private values,

but also on the rivals’ unknown bidding strategies. Most of the previous studies on auctions with

uncertainty aversion focused on analysing equilibrium bidding behaviour (Salo and Weber 1995,

Lo 1998, Bose et al. 2006). In this paper, we adopt the decision analysis approach and focus on the

bidding problem of a bidder who is averse to uncertainty about rivals’ bids. Example applications

of the decision analysis approach to practical bidding problems were documented in Capen et al.

(1971) and Keefer et al. (1991). Rothkopf (2007) discussed the effectiveness of such an approach

over the game theoretic approach.
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Auctions with incentive compatibility issues Our study is related to the classical topic of

bidding in auctions with incentive issues(e.g. Stark and Rothkopf 1979, Milgrom and Weber 1982).

Ausubel and Cramton (2002) studied incentive to reduce demand in discriminatory auctions with

a divisible item. Day and Milgrom (2008) provided an optimal bid shading policy in core-selecting

auctions under perfect information. Beck and Ott (2013) showed that bidder may have incentives

to overbid in core-selecting auctions as well. Hoffman and Menon (2010) discussed incentive issues

in designing a centralized combinatorial exchange.

Robust optimization The modeling approach that we use lies under the framework of robust

optimization. It has been recently developed as a decision tool to deal with decision making when

the input parameters are uncertain (e.g. Ben-Tal and Nemirovski 2002, Bertsimas and Sim 2004).

Under this framework, the decision maker does not know the exact distribution of the uncertain

parameters. Instead, it is assumed that these uncertain parameters belong to an uncertainty set

that can be constructed based on historical data or an expert’s belief. The decision maker wants

to maximize her worst-case payoff with respect to this uncertainty set. There are close connec-

tions between maximizing worst-case objective over an uncertainty set and uncertainty aversion

(Bertsimas and Brown 2009). Recently, Bandi and Bertsimas (2014) adopt the robust optimization

framework to study the optimal design problem for multi-item auctions, in the spirit of an earlier

work by Myerson (1981). In our work, we focus on a particular bidder’s decision problem.

2. Model

We consider auctions that allocate m indivisible items from the set M = {1,2, . . . ,m} among n

bidders in N = {1,2, . . . , n}. The monopolistic seller is indexed by 0. Items in M can be homoge-

neous (i.e., identical) or heterogeneous (i.e., distinct). A bundle is a set of items. A bidder is said

to have unit demand if she has positive valuation for only one item. Similarly, a bidder is said

to have multiple demand if she has positive valuation for one or more bundles of items. For each

bidder j ∈N , we use vj(S) and bj(S) to denote her non-negative truthful and reported valuation

for a bundle S ⊆M , respectively. When bidder j has unit demand and the items are homogeneous,

we abuse the notation and simply write vj and bj to denote her unique valuation/bid. The auc-

tioneer uses an allocation rule to determine the set of items Sj to be allocated to bidder j (Sj

is an empty set if bidder j does not obtain any item). Similarly, the auctioneer uses a payment

rule to determine the amount pj that bidder j has to pay. We assume that bidders have quasi-

linear preferences, i.e., bidder j’s payoff is πj = vj(Sj)− pj for j ∈N . For convenience, we write

b−j = (b1, b2, . . . , bj−1, bj+1, . . . , bn) to denote the profile of bidder j’s rivals’ bids. When all bj are

scalar, the kth highest bid in b−j is denoted by b
(k)
−j . We choose to analyze the decision problem of

bidder 1. It turns out that only b
(k)
−1 are relevant to our analysis. Thus, for simplicity, we omit the
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subscript and write b(k) to denote the kth highest bid in b−1. We use 1A to denote the indicator

function of expression A, i.e., it has value one if A is true and zero otherwise. For any x ∈R, we

denote x+ = max(x,0).

2.1. Studied auction formats

Discriminatory auction In discriminatory auctions, items are homogeneous. Each bidder has

unit demand and submits a scalar bid bj. We assume that there are more bidders than auctioned

items, so n≥m. The m highest bidders get allocated one item each and pay their bids bj. When

there is a tie, bidder 1 is favored, i.e., if b1 = b(m) then bidder 1 wins an item. Thus, bidder 1 wins

an item when her bid is no less than b(m), in which case she receives a payoff of v1− b1. Bidder 1’s

payoff function is given by:

π1(b1, b−1) = (v1− b1)1b(m)≤b1
. (1)

Core-selecting auctions In core-selecting auctions, items are heterogeneous. Each bidder has

multiple demand and submits bids bj(S) for bundles S ⊆M of her interest. When S =M , we refer

to it as the global bundle. The auctioneer decides the allocation outcome by solving the winner

determination problem:

max
x

∑
j∈N

∑
S⊆M

bj(S) ·xj(S) (W )

s.t.
∑
S⊃{i}

∑
j∈N

xj(S)≤ 1, ∀i∈M,∑
S⊆M

xj(S)≤ 1, ∀j ∈N,

xj(S)∈ {0,1}, ∀(S, j) s.t. bid bj(S) was submitted.

Let wb(N,M) be the objective function of (W). In that problem, the auctioneer maximizes the

total reported value of bundles. The first constraint ensures that each item is only allocated once.

The second constraint implies that the auctioneer only accepts at most one submitted bid from a

bidder.3 Thus, each binary variable xj(S) equals to one if and only if bidder j is awarded bundle

S ⊆M . It is possible that the problem (W) has multiple optimal solutions. In such cases, we

assume a tie-breaking rule in favor of bidder 1 winning a pre-specified bundle. For an arbitrary

set of bidders C ⊆N and an arbitrary set of items S ⊆M , the function wb(C,S) is defined as the

maximum surplus generated by allocating items in S among bidders in C given the reported bids

b. We refer to the function wb as the coalition value function. When S =M , we abuse the notation

and write wb(C) instead of wb(C,M).

3 This bidding rule is referred to as the “XOR” bidding language and is commonly used in practice for spectrum
auctions.
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Next, we define the core to be the set of non-negative payoff vectors {πj}j∈N∪0 satisfying the

core constraints: ∑
j∈C∪0

πj ≥wb(C), ∀C ⊆N. (2)

The right hand side of (2) is the maximum surplus generated by allocating the items among

members in the coalition C (hereafter referred to as a blocking coalition). Thus, the constraints

(2) guarantee that no group of bidders can ensure better payoff for themselves by excluding others

from participation, i.e., there is no incentive to form a blocking coalition in the auction. The core

constraints (38) can be written succinctly as linear constraints on the payment vector {pj}j∈N of

the form:

pA≥ β, (3)

where A is a n× 2n matrix and β is a vector in R2n (see detail descriptions in Appendix A.6).

A core-selecting payment rule is a payment rule that selects a vector {pj}j∈N satisfying the core

constraint (3) and the individual rationality constraint p≤ b. For specificity, we use the quadratic

core-selecting payment rule proposed by Day and Cramton (2012), which selects a payment vector

in the core that minimizes the Euclidean distance to a reference payment vector.4 A related payment

rule is the VCG rule Vickrey (1961), Clarke (1971), Groves (1973) . Under this payment rule, each

winner j pays the opportunity cost that she imposes on other bidders:

pV CG
j =wb(N \ j,M)−wb(N \ j,M \Sj). (4)

The VCG payoff of bidder j is then simply πV CG
j = vj(Sj)−pV CG

j . It is known that VCG payment

rule satisfies incentive compatibility but may result in low seller’s revenue and is vulnerable to col-

lusive bidding Ausubel and Milgrom (2002). In contrast, core-selecting rules are robust to collusion

but may have incentive compatibility issues, as we will see in later sections. When the quadratic

rule is used with the reference payment being the vector of VCG payments, we refer to such rule

as the nearest-VCG rule.

2.2. Robust optimization formulation

In each of the aforementioned auction formats, we consider the decision problem of a particular

bidder, who we choose to be bidder 1, without loss of generality. We assume that bidder 1 has

a belief that her rivals’ bids belong to an uncertainty set U−1. Such an uncertainty set can be

constructed from historical data or an expert’s assessments.5 For discriminatory auctions, we have

U−1 ⊂ Rn−1
+ , while for core-selecting auctions, we have U−1 ⊂ R(n−1)2m

+ . For simplicity, we assume

4 For other core-selecting payment rules, see e.g., Ausubel and Baranov (2010).

5 Bandi and Bertsimas (2014) discussed several ways to construct the uncertainty set based on historical data.
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that the uncertainty set U−1 is a convex polytope, i.e., it can be specified by some linear constraints

on b−1:

U−1 = {b−1 | Pb−1 ≤ q}, (5)

where P and q are matrix and vector with appropriate dimensions. For example, U−1 can be a box

set (i.e., a hyperrectangle) that corresponds to the case where bids bj for j 6= 1 are independent

and belong to some known intervals [bj, b̄j]:

U−1 = {b−1 | bj ≤ bj ≤ b̄j,∀j 6= 1}. (6)

Given an uncertainty set U−1, bidder 1’s objective is to maximize her worst-case payoff with

respect to this uncertainty set. In other words, she needs to solve the following robust optimization

problem:

πMAXMIN
1 = sup

b1∈U1

inf
b−1∈U−1

π1(b1, b−1). (P)

In the above problem, we use U1 to refer to bidder 1’s feasible policy space. We assume no restric-

tions, except for the non-negative condition, so U1 =R+ for discriminatory auctions and U1 =R2m

+

for core-selecting auctions. We call bidding policy b1 a robust policy if it is an optimal solution to

(P).

Let πMINMAX
1 be the minimum value over U−1 of bidder 1’s maximum ex post payoff, i.e., payoff

that she can achieve using an ex post optimal policy. Thus, πMINMAX
1 is given by:

πMINMAX
1 = inf

b−1∈U−1

sup
b1∈U1

π1(b1, b−1). (7)

By minimax inequality (e.g. Boyd and Vandenberghe 2004), one has that

πMAXMIN
1 ≤ πMINMAX

1 . (8)

Thus, πMINMAX
1 provides an upper bound for the optimal objective of the robust optimization

problem (P). If (8) holds with equality, i.e.,

πMAXMIN
1 = πMINMAX

1 , (9)

then there are two implications. First, the robust policy can be viewed as an ex post optimal

policy applied for a particular worst-case bid b−1 ∈ U−1. Second, if under a policy b1 ∈ U1, bidder

1’s worst-case payoff is the same with πMINMAX
1 , then such policy must be a robust policy. The

later observation is particularly useful in proving the optimality of bidding policies in core-selecting

auctions, as we will see in § 4.
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3. Bidding with unit demand
3.1. Robust bidding in discriminatory auctions

We consider in this section the robust bidding problem (P) in discriminatory auctions. Let u(k)

be the maximum value of b(k) over the uncertainty set U−1, i.e.,

u(k) =max b(k)

s.t. b−1 ∈U−1.
(10)

When bidder 1 knows her rivals’ bids, she can best respond by bidding exactly b(m), the mth

highest bid among her rivals, if b(m) ≤ v1. The following proposition characterizes bidder 1’s robust

policy under imperfect information.

Proposition 1. In discriminatory auctions, a robust policy for bidder 1 is bRO
1 = u(m)1u(m)≤v1

.

The optimal payoff is πMAXMIN
1 = (v1−u(m))+.

Since truthful bidding always gives zero payoff, robust bidding results in a strictly better worst-

case payoff when u(m) < v1. The next example provides a comparison between robust bidding

policy and expected-payoff maximizing policy under uniform distribution assumption.

Example 1. Consider a discriminatory auction with n= 2 bidders and m= 1 item. In this case,

the discriminatory auction is a first-price auction. Bidder 1 has a belief that b2 ∈ [c, d] for some non-

negative constants c and d. According to Proposition 1, bidder 1’s robust policy is bRO
1 = d1d≤v1

.

If bidder 1’s belief is such that b2 is uniformly distributed in [c, d] and her objective is to maximize

the expected payoff, the optimal bid is:6

bEM
1 =

 d if 2d− c < v1
1
2
(v1 + c) if c≤ v1 ≤ 2d− c

0 otherwise.

Figure 1 shows a plot of bRO
1 and bEM

1 for the case where c = 0 and d = 5. There are two main

differences between these bidding policies. First, when v1 < 5, bidder 1 bids zero under bRO
1 , whereas

under bEM
1 , she bids a positive amount. Second, when v1 ≥ 5, we have bRO

1 = 5 while bEM
1 = 1

2
v1 is

an increasing function in v1. When v1 ≥ 10, the two bidding policies are the same. In Figure 2, we

show a comparison of bidder 1’s payoffs (as functions of b2) under bRO
1 and bEM

1 for different values

of v1. For v1 = 3, since v1 < 5, according to Proposition 1, bidder 1’s robust policy is bRO
1 = 0. As

a result, her payoff is πRO
1 = 0 for all realization of b2 ∈ [0,5]. On the other hand, to maximize her

expected payoff, bidder 1 bids bEM
1 = 1.5. Thus, she still gains a positive payoff of πEM

1 = 1.5 for

b2 ∈ [0,1.5]. For v1 = 8, we have bRO
1 = 5 and bEM

1 = 4. If b2 ∈ [0,4) then bidder 1’s payoffs under

bRO
1 and bEM

1 are 3 and 4, respectively. However, when b2 ∈ [4,5], bidder 1 does not win the item

if she bids bEM
1 so her corresponding payoff is πEM

1 = 0, while her payoff when bidding bRO
1 is still

πRO
1 = 3. 2
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Example 1 illustrates the fact that under robust policy bRO
1 , bidder 1 bids the minimal amount

that guarantees winning an item, if such bidding policy is profitable. As we can see, this bidding

policy is beneficial when rivals bid adversarially. Similar observations can be made for bidding

policies in multiple demand settings, as we will see in § 4.

3.2. Intermezzo: equilibrium bidding under different bidders’ rationality
assumptions

We provide several examples to illustrate potential issues as one attempts to pursue an equilibrium

analysis with different bidders’ rationality assumption. Consider a discriminatory auction with

n= 2 bidders and m= 1 item, which is a first-price sealed-bid auction. Each bidder j has valuation

vj for the item and vj is private information of bidder j. We assume that vj ∈ [0, c] for some positive

constant c that is common knowledge to both bidders. After learning her private valuation vj, each

6 See § A.1
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bidder bids bj(vj) for the item. Note that bj(vj)≤ vj since it is not profitable for bidder j to bid

above her own valuation in a first-price auction. A bidder either maximizes her expected payoff,

given some belief about the distribution of the rival bidder’s valuation, or maximizes her worst-case

payoff across all the possible realization of the rival bidder’s valuation in [0, c]. Bidder j’s payoff is

given by7

πj(b1, b2, v1, v2) = (vj − bj)1bj≥bj′ , j 6= j′ and j, j′ ∈ {1,2}. (11)

From the classical auction theory, if both bidders are expected payoff maximizers, then the

equilibrium bidding profile can be determined (e.g. Krishna 2009). For example, if each bidder

believes that her rival’s valuation is uniformly distributed over [0, c] and bidders’ rationality is

common knowledge, then the equilibrium bidding profile is

b∗j (v) = v/2, v ∈ [0, c], j ∈ {1,2}. (12)

The following example illustrates the equilibrium bidding profiles when both bidders are worst-case

payoff maximizer.

Example 2 (Both bidders are worst-case payoff maximizers). Assume that both bid-

ders believe that their rival’s valuation is within [0, c] and want to maximize their worst-case payoff

across all realization of rival’s valuation in this set. Furthermore, bidders’ rationality is common

knowledge. The equilibrium bidding functions b∗j (vj) for j ∈ {1,2} are defined by:

b∗1(v1) = arg max
b1(.)

min
v2∈[0,c]

π1(b1, b
∗
2(v2), v1, v2) (13)

b∗2(v2) = arg max
b2(.)

min
v1∈[0,c]

π2(b
∗
1(v1), b2, v1, v2) (14)

We can see that any pair of bidding functions (b∗1, b
∗
2) satisfying b∗j (c) = c and b∗j (vj)≤ vj for vj ∈ [0, c)

is an equilibrium profile. In fact, if b∗2(c) = c then for any v1 ∈ [0, c], there is a possibility that bidder

1 loses the auction since bidder 2 could bid c when her valuation is realized to be c. Hence, bidder

1’s worst-case payoff is always zero and any b1(v1)≤ v1 is her best response. Note that this result

implies both bidders bidding truthfully is also an equilibrium strategy profile. 2

The next example shows that one can also obtain multiple equilibria when a bidder is a worst-

case payoff maximizer and the other bidder is an expected payoff maximizer (with respect to some

distributional belief).

Example 3 (Worst-case payoff maximizer facing expected payoff maximizer).

Assume that bidder 1 is a worst-case payoff maximizer while bidder 2 is an expected payoff

7 The notations bj(vj) and πj(b1, b2, v1, v2) are only used within this subsection.
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maximizer who believes that bidder 1’s valuation is uniform on [0, c]. Furthermore, bidders’

rationality is common knowledge. The system of equations for equilibrium bidding functions is:

b∗1(v1) = arg max
b1(.)

min
v2∈[0,c]

π1(b1, b
∗
2(v2), v1, v2) (15)

b∗2(v2) = arg max
b2(.)

Ev1
π2(b

∗
1(v1), b2, v1, v2) (16)

Similar to the previous example, there does not exist a unique equilibrium bidding profile. For

example, the following bidding policies constitute equilibrium profiles:

b∗1(v1) is increasing and convex and b∗1(v1)≤ v1, ∀v1 ∈ [0, c], (17)

b∗2(v2) = max

{
v2−

∫ b2

0
g(b)db

g(b2)
,0

}
, ∀v2 ∈ [0, c], (18)

b∗1(c) = b∗2(c), (19)

where g(b) = 1
(b∗1)
′((b∗1)

−1(b))
(see § A.2). 2

As we can see, even in a relatively simple strategic environment like a first-price auction, having

different assumptions on each bidder’s rationality can significantly change the bidding behaviour.

We therefore choose to focus on a single bidder’s decision problem rather than an equilibrium

analysis of bidding behaviour.

4. Bidding with multiple demand

We consider in this section the bidding problem of bidder 1 in core-selecting auctions. Section 4.1

starts with a discussion of the incentive to misreport, i.e., bidding different from true valuation, in

core-selecting auctions. Section 4.2 follows with the results of bidder 1’s optimal bidding policies

under perfect information. Finally, Section 4.3 provides results of bidder 1’s robust policies when

she has imperfect information of rivals’ bids.

4.1. Relationship between VCG and the core

In core-selecting auctions, the relationship between VCG payoffs and the core provides us useful

information about whether bidders have incentive to misreport. We say VCG is in the core if VCG

payoffs satisfies core constraints (2) or, equivalently, the VCG payments satisfy core constraints

(3). If VCG is in the core then it is the unique bidder-optimal point in the core, i.e., the point in the

core where bidders’ total payment is minimized, and no bidder has the incentive to misreport.8 A

sufficient condition for VCG being in the core is the bidder-submodularity property of the coalition

value function wb, defined as follows.

8 See Ausubel and Milgrom (2002).
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Definition 1. The coalition value function wb is bidder-submodular if for all j ∈ N and all

coalitions C and C ′ satisfying 0∈C ⊆C ′, one has that wb(C∪{j})−wb(C)≥wb(C
′∪{j})−wb(C

′).

The bidder-submodularity property of coalition value function is closely related to the submod-

ularity and supermodularity properties of bid functions bj(S). Thus, it is useful to review these

definitions.

Definition 2. A set function f : 2M →R is said to be submodular if for every S,S′ ⊆M with

S ⊆ S′ and every i∈M we have that

f(S ∪{i})− f(S)≥ f(S′ ∪{i})− f(S′). (20)

Definition 3. A set function f : 2M →R is said to be supermodular if for every S,S′ ⊆M with

S ⊆ S′ and every i∈M we have that

f(S ∪{i})− f(S)≤ f(S′ ∪{i})− f(S′). (21)

If bj is submodular for some j ∈ N then bidder j’s reported valuation for having an extra item

i∈M decreases as S increases. Therefore, all goods are substitutes for bidder j (with respect to her

reported valuation). Similarly, if bj is supermodular then all goods are complements for bidder j

(with respect to her reported valuation). The following result establishes the relationship between

the bidder-submodularity property of coalition valuation and the submodularity property of bid

functions.

Proposition 2. Ausubel and Milgrom (2006) If bj is a submodular set function for all j ∈N ,

the corresponding coalition value function wb is bidder-submodular and VCG is in the core.

Interestingly, if all bid functions are supermodular, the coalition value function is also bidder-

submodular and thus VCG is also in the core. The following proposition establishes this result.

Proposition 3. If bj is a supermodular set function for all j ∈N , the corresponding coalition

value function wb is bidder-submodular and VCG is in the core.

When goods are substitutes, the marginal value of an extra bidder to a coalition is the difference

between that new bidder’s value for his assigned bundle and the opportunity cost of the coalition

for the bundle. Since this opportunity cost increases with the coalition size under substitution,

the marginal value of an extra bidder decreases as coalition size increases, which is the definition

for bidder-submodular. When goods are complements, the marginal value of an extra bidder is

the difference between his valuation for all goods and the coalition valuation for all goods, if such

difference is positive. Thus, as the coalition size increases, the valuation of the coalition for all

goods increases so the marginal value of the extra bidder decreases, which establishes the bidder-

submodularity property of the coalition value function.
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As we can see, bidders have incentive to misreport only when there are goods that are substi-

tutes for some bidders and (possibly different) goods that are complements for (possibly different)

bidders. These results extend to imperfect information as well.

Proposition 4. If the uncertainty set U−1 is such that for all b−1 ∈ U−1 the coalition value

function wv1,b−1
is bidder-submodular then truthful bidding is the optimal solution of (P).

Corollary 1. If v1 is submodular (supermodular) and {bj}j 6=1 are submodular (supermodular)

for all b−1 ∈U−1, then truthful reporting is the optimal robust policy.

In general, the bidder-submodularity property of wv1,b−1
is not guaranteed so truthful bidding

may not be an optimal solution to (P). Our subsequent analysis focuses on these cases.

4.2. Optimal bidding policies under perfect information

If bidder 1 has perfect information about rivals’ bids b−1, her VCG payoff is the maximum payoff

that she can achieve.9 There are multiple policies that bidder 1 can use to achieve such payoff. In the

next proposition, we show one such policy, which has direct generalization to imperfect information

case.10 For convenience, we assume a tie-breaking rule in which bidder 1 winning bundle S1, the

bundle that bidder 1 would win if she bids truthfully (hereafter referred to as truthful bundle), is

favored.

Proposition 5. The following policy is optimal for bidder 1:

bPI
1 (S) =


0 if S ( S1

v1(S1)−πV CG
1 if S1 ⊆ S (M

wb−1
(N \ 1) if S =M

(22)

Remark 1. Policy (22) is also optimal for bidder 1 even if she uses multiple identities, also

known as shills.11

Under policy (22), bidder 1 shades (underbids) her valuation on truthful bundle S1 and on any

other bundles that contain it, except the global bundle M . In addition, she misreports her valuation

for the global bundle and bids wv(N \ 1) for it. This bidding policy has two main effects. First, it

guarantees bidder 1 still wins bundle S1 under the assumed tie-breaking rule. Second, by bidding

high on the global bundle, bidder 1 effectively inflates her demand for other bundles. As a result,

other bidders are forced to pay for the high opportunity cost they impose on bidder 1. Since a

winner’s payment decreases if other winners’ payments increase under a bidder-optimal payment

9 See Day and Milgrom (2008).

10 For other optimal policies under perfect information, see Day and Milgrom (2008) and Beck and Ott (2013).

11 For more discussion on shill bidding in combinatorial auctions, see e.g., Ausubel and Milgrom (2006)
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rule, bidder 1 payment decreases. Notice that policy (22) can be modified to accommodate for

different tie-breaking rules. Specifically, if bidder 1 winning bundle S1 is not favored, bidder 1 can

change her bid for S where S1 ⊆ S (M to b1(S) = v1(S1)− πV CG
1 + ε for some ε > 0 arbitrarily

small. In such case, bidder 1 still wins S1 and achieves a payoff that is arbitrarily close to her VCG

payoff.

4.3. Single-minded bidder

We consider in this section the robust bidding problem (P) in which bidder 1 is single-minded,

i.e., she has positive valuation if she wins a particular bundle S1 and zero valuation otherwise:12

v1(S) = a> 0 if S ⊇ S1,

v1(S) = 0 if S + S1.
(23)

Let p̄V CG be the maximum value over the uncertainty set U−1 of bidder 1’s VCG payment if she

wins S1, i.e.,

p̄V CG = max
b−1∈U−1

wb−1
(N \ 1,M)−wb−1

(N \ 1,M \S1). (24)

If v1(S1) ≤ p̄V CG then there exists b∗−1 ∈ U−1 such that bidder 1 does not win S1 by bidding

truthfully. Bidder 1’s payoff is thus zero in that case. According to Proposition 5, there exists

an optimal bidding policy that yields the same allocation outcome for bidder 1. Thus, given b∗−1,

bidder 1’s payoff is still at most zero if she bids non-truthfully. Therefore, zero is an upperbound on

bidder 1’s worst-case payoff and bidding zero is a trivial robust policy. Consequently, without loss of

generality, we assume throughout the remainder of our analysis in this section that v1(S1)> p̄
V CG,

i.e., bidder 1’s valuation for bundle S1 is high enough so that she always wins bundle S1 by bidding

truthfully, regardless of the realization of her rivals’ bids b−1 ∈U−1. For convenience, we also assume

a tie-breaking rule such that bidder 1 winning S1 is favored. Notice that this assumption does not

affect our results, by a similar reason as in the perfect-information case. The following proposition

gives a robust policy for bidder 1.

Proposition 6. If bidder 1 is single-minded and v1(S1)> p̄
V CG then a robust policy for bidder

1 is:
bRO
1 (S) = p̄V CG, if S1 ⊆ S (M,

bRO
1 (M) = p̄V CG + min

b−1∈U−1

wb−1
(N \ 1,M \S1),

bRO
1 (S) = 0, otherwise.

(25)

The optimal worst-case payoff is πMAXMIN
1 = v1(S1)− p̄V CG.

12 Here we assume free disposal, so bidder 1’s valuation for winning S ) S1 is the same with her valuation for winning
S1
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Remark 2. Policy (25) is not uniquely optimal. For example, if b1(M) is any value in the interval

[0, p̄V CG + min
b−1∈U−1

wb−1
(N \ 1,M \S1)], then the resulting policy is also optimal. However, bidding

a higher value of b1(M) weakly increases the payoff of bidder 1 for any realization of b−1 ∈ U−1,
since it would increase the payment of other bidders and thus reduce bidder 1’s payment.

L\L\G valuation structure. We analyze the performance of the robust policy given by Propo-

sition 6 in an auction with n = 3 bidders and m = 2 identical items. In particular, we consider

the Local-Local-Global (L\L\G) valuation structure in which bidder 1 is a local bidder who is

interested in only one item while bidders 2 and 3 are local and global bidders who are interested

in winning one and two items, respectively.13 Table 2 summarizes notation: a, b, c are problem

parameters while x and y are decision variables. Note that in this particular section, we abuse the

notation and use b to refer to bidder 2’s bid on one and two items, rather than the bid profile of

all bidders.

# items v1 b1 b2 b3

1 a x b 0
2 a y b c

Table 2 Bidder valuations under the L\L\G valuation structure

We consider the simple box-type uncertainty set:

U−1 = {(b2, b3) | b̄− εb ≤ b≤ b̄+ εb, c̄− εc ≤ c≤ c̄+ εc},

where εb < b̄ and εc < c̄. Notice that in this setting the coalition value function wv1,b−1
need not to

be bidder-submodular. Bidder 1’s worst-case VCG payment defined in (24) in this case is simply

p̄V CG = maxb−1∈U−1
(c− b)+. If p̄V CG < a then according to Proposition 6, a robust bidding policy

for bidder 1 is:

(x∗, y∗) = (p̄V CG, p̄V CG + b̄− εb). (26)

Remark 3. Given the nearest-VCG payment rule, bidder 1’s payoff under robust policy (26)

is greater than her payoff under truthful bidding for any realization of b−1 in U−1 (see details in

§ A.10).

The following numerical examples further illustrate the performance of robust bidding policy

within the L\L\G structure.

13 Similar valuation structure has been used in equilibrium analysis of core-selecting auctions (Goeree and Lien 2016,
e.g.)
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Example 4. Consider a core-selecting auction with n = 3 bidders and m = 2 items. Bidders

have L\L\G valuation structure (see Table 2). Let v1 = (10,10), and U−1 = {(b2, b3) | 7≤ b≤ 13,7≤
c≤ 13}. According to Proposition 6, a robust bidding policy is bRO,1

1 = (6,13). However, as noted

earlier in Remark 2, bidding any value of y ∈ [6,13] will not change the worst-case payoff, so policy

such as bRO,2
1 = (6,6) also yields the same worst-case payoff. For a concrete scenario of rivals’ bids

defined by b= 10 and c= 10, the perfect-information policy (22) is bPI
1 = (0,10).

Figure 3 shows a comparison of bidder 1’s payoffs under the robust policy bRO,1
1 = (6,13) and

truthful policy bTR
1 = (10,10). We can see that for any realization of b1 ∈ U−1, bidder 1 receives a

larger payoff by bidding according to the robust policy bRO,1
1 instead of reporting her true valuation.

This agrees with our earlier observation in Remark 3.

Figure 4 shows a comparison of robust policies bRO,1
1 and bRO,2

1 . Note that in this case the worst-

case realization of the rivals’ bids is b= 7 an c= 13, i.e., bidder 2 bids lowest and bidder 3 bids

highest. Both policies bRO,1
1 and bRO,2

1 yield the same worst-case payoff. However, policy bRO,1
1 gives

larger payoff at other realizations of b−1 in the uncertainty set since bidder 1 bids higher on the

global bundle in this policy (recall Remark 2).

In Figure 5, we show a comparison between the robust policy bRO,1
1 and the perfect-information

policy bPI
1 . Under bPI

1 , if bidder 2 and 3 bid such that b≥ c and b≥ 10, then bidder 1 and 2 win an

item each. Since bidder 1 bids zero for one item, bidder 2 has to incur the entire payment burden

and bidder 1 is a free rider. Thus, bidder 1 extracts the entire surplus and obtains maximum payoff

in this case. However, by bidding bPI
1 , bidder 1 also faces the risks of winning the unnecessary extra

item or not winning any item. Specifically, if bidder 2 and 3 bid b < c and c≥ 10, then bidder 3

wins both items and bidder 1 receives zero payoff. Similarly, if bidder 2 and 3 bid b < 10 and c < 10

then bidder 1 wins both item and pays a high payment p1 = max(b, c). In both cases, bidder 1’s

payoff is reduced significantly. The robust policy bRO,1
1 avoids these risks by ensuring that bidder

1 always wins an item, regardless of how much bidder 2 and 3 bid. 2

Remark 4. In Example 4, if bidder 1 uses a perfect-information optimal policy (22) with respect

to the worst-case rivals’ bids b= 7 and c= 13 then she will recover robust policy bRO,1
1 = (6,13).

This is because in the single-minded setting, minimax equality (9) holds.

Example 5. Consider a core-selecting auction with similar settings as in Example 4. However,

in this case, we allow bidder 1’s valuation to vary and compare bidder 1’s payoff under the robust

policy (26) to her payoff under an expected-payoff maximizing policy. To compute the later, we

consider the case where bidder 1 has a belief that her rivals’ bids are such that b and c are

independent and the corresponding probability density functions are:

fb(b) =

{
1
18

(b− 7) if 7≤ b≤ 13
0 otherwise

(27)
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Figure 3 Illustration of Example 4 – Comparison of bidder 1’s payoffs under the robust policy bRO,11 = (6,13) and

the truthful policy bTR1 = (10,10)
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Figure 4 Illustration of Example 4 – Comparison of bidder 1’s payoffs under robust policies bRO,11 = (6,13) and

bRO,21 = (6,6)

and

fc(c) =

{
1
18

(13− c) if 7≤ c≤ 13
0 otherwise.

(28)

Note that if b and c are uniformly distributed then it turns out that bidder 1’s expected-payoff

maximizing policy is the same with her robust policy (26) and the comparison is trivial. Thus,

for illustration purpose, we consider instead the distributions fb and fc described above. Our

observations are qualitatively the same for other choices of fb and fc.

When v1 = (4,4), bidder 1’s robust policy and expected-payoff maximizing policies are bRO
1 =

bEM
1 = (0,0). Thus, bidder 1’s payoff is the same under the two policies. When v1 = (10,10), we
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Figure 5 Illustration of Example 4 – Comparison of bidder 1’s payoffs under the robust policy bRO,11 = (6,13) and

the perfect-information policy bPI1 = (0,10)

have bRO
1 = (6,13) and bEM

1 = (4,12) (see Appendix A.11 for details). Notice that fb is increasing

in b for b∈ [7,13] and fc is decreasing in c for c∈ [7,13], so under these distributional assumptions,

bidder 2 are more likely to bid high and bidder 3 are more likely to bid low, relative to the support

ranges given by U−1. As a result, under bEM
1 , bidder 1 bids low for one item in anticipation that

she would win one item with high probability and pay less as a result of her low bid. However, this

policy exposes her to the risks of not winning any item or winning both items. Figure 6 shows a

comparison of bidder 1’s payoff under bRO
1 and bEM

1 when v1 = (10,10). As we can see, bidder 1’s

payoff under bRO
1 is significantly greater than her payoff under bEM

1 at realizations of rivals’ bids in

U−1 such that bidder 1 wins both items or does not win any items by bidding bEM
1 . Figure 7 shows

a comparison of bidder 1’s payoff under bRO
1 and bEM

1 when v1 = (20,20). Similar observations can

be made regarding the payoff functions under the two policies. Note that bRO
1 is the same as in the

case of v1 = (10,10) since the policy only depends on parameters of U−1 as long as a > p̄V CG. On

the other hand, bEM
1 = (3,11) when v1 = (20,20), i.e., bidder 1 shades more on her bids compared

to the case of v1 = (10,10). 2

4.4. Double-minded bidder

We now extend our analysis to the case where bidder 1 is double-minded, i.e., she has positive

valuation for two bundles. In particular, we assume that bidder 1 is interested in two bundles S1

and S2 where ∅( S1 ( S2 ⊆M :

v1(S) = a> 0 if S1 ⊆ S ( S2,

v1(S) = a′ ≥ a if S2 ⊆ S,

v1(S) = 0 otherwise.

(29)
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Figure 6 Illustration of Example 5 – Comparison of bidder 1’s payoffs under the robust policy bRO,11 = (6,13) and

the expected-payoff maximizing policy bEM1 = (4,12) when v1 = (10,10)
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Figure 7 Illustration of Example 5 – Comparison of bidder 1’s payoffs under the robust policy bRO,11 = (6,13) and

the expected-payoff maximizing policy bEM1 = (3,11) when v1 = (20,20)

Let

p̄V CG
1 = max

b−1∈U−1

(
wb−1

(N \ 1,M)−wb−1
(N \ 1,M \S1)

)
(30)

and

p̄V CG
2 = max

b−1∈U−1

(
wb−1

(N \ 1,M)−wb−1
(N \ 1,M \S2)

)
(31)

be the maximum values of bidder 1’s VCG payment over the uncertainty set U−1 when she wins

bundle S1 and S2, respectively. As in the single-minded bidder case, if v1(S1)< p̄V CG
1 then bidder

1’s worst-case payoff is bounded above by zero, so bidding zero is a robust policy. Thus, without
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loss of generality, we assume that v1(S1)≥ p̄V CG
1 , i.e., bidder 1’s valuation for S1 is high enough so

that she always wins either S1 or S2 under truthful reporting.

A bundle is said to be the unique truthful allocation for bidder 1 if by bidding truthfully bidder

1 always wins that bundle regardless of the realization of her rivals’ bids in the uncertainty set.

The following proposition shows robust policies for bidder 1 if either S1 or S2 is her unique truthful

allocation.

Proposition 7. Let bidder 1 be double-minded with 0< p̄V CG
1 < v1(S1)≤ v1(S2):

(a) If S1 is bidder 1’s unique truthful allocation then a robust policy is:

bRO
1 (S) = p̄V CG

1 if S1 ⊆ S (M,

bRO
1 (M) = p̄V CG

1 + min
b−1∈U−1

wb−1
(N \ 1,M \S1),

bRO
1 (S) = 0 otherwise.

(32)

The optimal worst-case payoff is πMAXMIN
1 = v1(S1)− p̄V CG

1 .

(b) If S2 is bidder 1’s unique truthful allocation then a robust policy is:

bRO
1 (S) = p̄V CG

2 if S2 ⊆ S (M,

bRO
1 (M) = p̄V CG

2 + min
b−1∈U−1

wb−1
(N \ 1,M \S2),

bRO
1 (S) = 0 otherwise.

(33)

The optimal worst-case payoff is πMAXMIN
1 = v1(S2)− p̄V CG

2 .

Remark 5. Note that robust policies (32) and (33) are similar to the robust policy (25) in the

single-minded case. In fact, results from Proposition 7 can be extended to the case where bidder 1

has positive valuation for a collection of bundles {Sk}Kk=1 that satisfies ∅( S1 ( S2 ( . . .( SK . In

such case, if Sk is the unique truthful allocation for bidder 1 then a robust policy is:

bRO
1 (S) = p̄V CG

k if Sk ⊆ S (M

bRO
1 (M) = p̄V CG

k + min
b−1∈U−1

wb−1
(N \ 1,M \Sk)

bRO
1 (S) = 0 otherwise.

We now examine the case where neither S1 nor S2 is the unique truthful allocation of bidder 1.

For analytical tractability, we study this situation in an example auction setting similar to that of

the single-minded case.

LG\L\G valuation structure. Consider a core-selecting auction with n= 3 bidders and m= 2

homogeneous items. We extend the setting of § 4.3 by making bidder 1 double-minded, i.e., bidder

1 is now interested in winning either one or two items. We call this valuation structure the LG\L\G
structure. Table 3 summarizes the notation for this case (notice that bidder 1’s valuation for both

items is now a′ ≥ a instead of just a as in the L\L\G case).
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# items v1 b1 b2 b3

1 a x b 0
2 a′ y b c

Table 3 Bidder valuations under the LG\L\G valuation structure

The quantities p̄V CG
1 and p̄V CG

2 defined in (30) and (31) specialized for this case are:

p̄V CG
1 = max

b−1∈U−1

(c− b)+,

p̄V CG
2 = max

b−1∈U−1

max(b, c).

.

We assume that p̄V CG
1 <a, so bidder 1 wins either one or two items under truthful bidding. Accord-

ing to Proposition 7, if a′ ≤ a+ b̄− εb then since winning one item is the unique truthful allocation

for bidder 1, her robust bidding policy is bRO
1 = (p̄V CG

1 , p̄V CG
1 + b̄−εb). Similarly, if a+ b̄+εb <a

′ then

winning both items is bidder 1’s unique truthful allocation. As a result, her robust bidding policy

is bRO
1 = (0, p̄V CG

2 ). The optimal worst-case payoff is thus πMAXMIN
1 = a− p̄V CG

1 if a′ ≤ a+ b̄− εb
and πMAXMIN

1 = a′− p̄V CG
2 if a+ b̄+ εb <a

′.

Now consider the case when a′ ∈ (a+ b̄− εb, a+ b̄+ εb]. In this case, bidder 1 can win either

one item or both items under truthful bidding. To find the robust bidding policy for bidder 1, we

first restrict our policy space to the set U ′1 = {(x, y)∈R2
+ | x= p̄V CG

1 , y ≥ x}. We will show that by

choosing the optimal value for y in this reduced policy space U ′1, bidder 1 can obtain the highest

possible worst-case payoff given by minimax inequality, so such policy is also optimal in the original

policy space U1 =R2
+.

For any (x, y) ∈U ′1, let πWO,1
1 (y) and πWO,2

1 (y) be the worst-case payoff function when bidder 1

bids (x, y) and wins one and two items, respectively. We have:

inf
b−1∈U ′−1

π1(b1, b−1) = min
(
πWO,1
1 (y), πWO,2

1 (y)
)

The following lemma provides some properties of πWO,1
1 (y) and πWO,2

1 (y).

Lemma 1. The worst-case payoff functions πWO,1
1 (y) and πWO,2

1 (y) satisfy:

(a) πWO,1
1 (y) is piece-wise linear and increasing in y. Furthermore,

πWO,1
1 (y) = a if y≥ p̄V CG

1 + c̄+ εc.

(b) πWO,2
1 (y) is piece-wise linear and decreasing in y. Furthermore,

πWO,2
1 (y) = a′− c̄− εc if y≤ p̄V CG

1 + c̄+ εc.

In the next lemma, we show the relationship between these worst-case payoff functions and bidders’

valuations.
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Lemma 2. We have:

(a) πWO,2
1 (p̄V CG

1 + b̄− εb)≤ πWO,1
1 (p̄V CG

1 + b̄− εb) if and only if a′ ≤ a+ b̄− εb,
(b) πWO,2

1 (p̄V CG
1 + b̄+ εb)≤ πWO,1

1 (p̄V CG
1 + b̄+ εb) if and only if a′ ≤ a+ b̄+ εb.

Figure 8 shows these worst-case payoff function under different valuation scenarios. When either

winning one item or winning two items is the unique truthful allocation for bidder 1, the worst-case

payoff function corresponding to that unique allocation dominates the other (Figures 8a and 8b).

When this is not the case, the two worst-case payoff functions intersect (Figures 8c and 8d).

We now characterize of the robust bidding policy under the LG\L\G setting when a′ ∈ (a+ b̄−
εb, a+ b̄+ εb].

Proposition 8. Consider LG\L\G setting. If a′ ∈ (a+ b̄− εb, a+ b̄+ εb] then a robust bidding

policy for bidder 1 is bRO
1 = (x∗, y∗) with x∗ = p̄V CG

1 and y∗ is a solution of the equation πWO,1
1 (y) =

πWO,2
1 (y). The worst-case payoff is πMAXMIN

1 = min(a,a′− c̄− εc).

ξ+ ξ+ + b̄− ǫb ξ+ + c̄+ ǫc ξ+ + b̄+ ǫb y

Payoff
πWO,1
1 (y)

πWO,2
1 (y)

ξ+ ξ+ + b̄− ǫb ξ+ + c̄+ ǫc ξ+ + b̄+ ǫb y

Payoff

πWO,1
1 (y)

πWO,2
1 (y)

ξ+ ξ+ + b̄− ǫb ξ+ + c̄+ ǫc ξ+ + b̄+ ǫb y

Payoff

πWO,1
1 (y)

πWO,2
1 (y)

y

ξ+ ξ+ + b̄− ǫb ξ+ + c̄+ ǫc ξ+ + b̄+ ǫb y

Payoff

πWO,1
1 (y)

πWO,2
1 (y)

(a) (b)

(c) (d)

Figure 8 Worst-case payoff functions in different cases under LG\L\G setting. (a) a′ ≤ a+ b̄− εb, winning one

item always yields better worst-case payoff. (b) a+ b̄+ εb < a′, winning two items always yields better

worst-case payoff. (c) and (d) a+ b̄− εb <a′ ≤ a+ b̄+ εb, two worst-case payoff functions intersects.

Remark 6. It turns out that in this LG\L\G setting bidding truthfully is also a robust policy

as long as there exists b−1 ∈U−1 such that bidder 1 wins the global bundle under truthful bidding,

i.e., a+ b̄− εb <a′ (see Appendix A.16). This may not be true in general when S2 is not the global

bundle.
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4.5. Beyond double-minded bidders: the role of minimax equality

Demonstrating that the minimax equality (9) holds was central to our establishing of a robust

bidding policy for the double-minded bidder (Proposition 8). Thus, identifying other settings in

which minimax equality (9) holds would indicate a possibility for our approach to yield a robust

bidding policy in such settings. For example, note that if there exists a unique truthful allocation

for bidder 1, one can readily obtain minimax equality (9). Indeed, when there is a unique truthful

allocation, bidder 1’s ex post optimal policy is to bid the minimal amount to win this allocation.

Since there is only one allocation outcome for the bidder, the resulting worst-case payoff is the same

with that of robust bidding policies, so minimax equality (9) must hold. The following proposition

summarizes this for the two auction formats we analyzed.

Proposition 9. Minimax equality (9) holds in:

(a) Discriminatory auctions,

(b) Core-selecting auctions with single-minded bidders.

In contrast, when bidder 1 receives different allocations for different realizations of rivals’ bids in

the uncertainty set under truthful bidding, minimax equality (9) may not hold. The condition that

minimax equality does not hold is closely related to the convexity of level sets of bidder 1’s payoff

function (Sion 1958). We next discuss the applicability of Sion (1958) level-set based sufficient

conditions for the minimax equality. Specifically, for any λ∈R, the lower level set and upper level

set of f(x, y) are defined as follows:

LE(x,λ) = {y : y ∈ Y, f(x, y)≤ λ},

GE(λ,y) = {x : x∈X,f(x, y)≥ λ}.

Let X be a convex subset of a linear topological space, Y be a compact convex subset of a linear

topological space, and f :X ×Y →R be upper semicontinuous on X and lower semicontinuous on

Y . Suppose that

GE(λ,y) is convex for all y ∈ Y and λ∈R, (34)

and,

LE(x,λ) is convex for all x∈Xand λ∈R. (35)

Then we have Sion (1958):

min
Y

sup
X

f = sup
X

min
Y

f. (36)

The following example shows that condition (34) on the convexity of upper level sets in b1 of

bidder 1’s payoff function π1(b1, b−1) is violated in a core-selecting auction with multiple demand

settings.
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Example 6. Consider a core-selecting auction with n = 3 bidders and m = 3 homogeneous

items. Bidder 1’s valuation vector is v1 = (5,15,16.5), bidder 2’s bid vector is b2 = (5,8.5,14.5) and

bidder 3’s bid vector is b3 = (3,6,12). Figure 9 shows the upper level set in b1 of bidder 1’s payoff

function π1(b1, b−1) corresponding to level λ= 1. In this case, the upper level set is not connected,

so condition (34) is violated. 2

Figure 9 Illustration of Example 6: Non-convexity of the upper level set of in b1 of π1(b1, b−1) with λ= 1

Note that the non-convexity of level sets of the bidder’s payoff function does not exclude the

possibility of minimax equality (9) holding. However, in the next example, we show that minimax

equality (9) does not hold in a core-selecting auction where bidder 1 is triple-minded. (Recall that

the bidder is triple minded if she has three distinct positive valuations v(S1)< v(S2)< v(S3) for

some bundles S1 ⊂ S2 ⊂ S3.)

Example 7. Consider a core-selecting auction with n = 3 bidders and m = 3 homogeneous

items. Bidder 1 has valuation for one, two and three items. Bidder 2 has valuation for one and

two items, but does not have an extra value for winning the third item. Bidder 3 is only interested

in winning all items and has zero valuation for either one or two items. Table 4 summarizes the

bidder valuation structure.
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# items v1 b1 b2 b3

1 a x b 0
2 a′ y c 0
3 a′′ z c d

Table 4 Bidder valuations, Example 7

We assume that the uncertainty set U−1 is of box-type and is given by:

U−1 = {(b2, b3) | b̄− εb ≤ b≤ b̄+ εb, c̄− εc ≤ c≤ c̄+ εc, d̄− εd ≤ d≤ d̄+ εd}.

The numerical values we consider here are v1 = (a,a′, a′′) = (7,13,13.4), b̄−1 = (b̄, c̄, d̄) = (4,8,10)′,

ε = (εb, εc, εd) = 0.23 b̄−1. It is straightforward to establish that, with these parameters, bidder 1

is guaranteed to win at least one item if she bids her true valuations (and consequently bidder 3

never wins). Bidder 1’s worst-case profit functions corresponding to winning one, two and three

items, respectively, are:

πWO,1
1 (x, y, z) = min

(
a,a− 1

2
x− d̄− εd +

1

2
c∗(x, y, z) +

1

2
max(d̄+ εd, z)

)
,

πWO,2
1 (x, y, z) = min

(
a′, a′− d̄− εd +

1

2
b∗(x, y, z)− 1

2
y+

1

2
max(d̄+ εd, z)

)
,

πWO,3
1 (x, y, z) = a′′− d̄− εd,

where b∗ and c∗ are given by:

b∗(x, y, z) = max(b̄− εb, x+ c̄− εc− y, z− y),

c∗(x, y, z) = max(c̄− εc,max(y+ b̄− εb−x, z−x).

The feasible region for πWO,i
1 (x, y, z) is U

(i)
1 , for i∈ {1,2,3}. These feasible regions are given by:

U
(1)
1 = {(x, y, z)∈R3

+ | x≥ d̄− c̄+ εc + εd,

x+ c̄+ εc− b̄+ εb ≥ y,x+ c̄+ εc ≥ z},

U
(2)
1 = {(x, y, z)∈R3

+ | x≥ d̄− c̄+ εc + εd,

y≥ x+ c̄− εc− b̄− εb, y≥ z− b̄− εb},

U
(3)
1 = {(x, y, z)∈R3

+ | x≥ d̄− c̄+ εc + εd,

z ≥ x+ c̄− εc, z ≥ y+ b̄− εb}.

Similar to the case of a double-minded bidder (§ 4.4), in order to find the robust policy, it is

sufficient for bidder 1 to fix x at x∗ = d̄− c̄+ εc + εd so that she wins at least one item regard-

less of the realization of rivals’ bids b−1 ∈ U−1, and then optimize over y and z. Figure 10 shows
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πWO,1
1 (x, y, z), πWO,2

1 (x, y, z) and πWO,3
1 (x, y, z) when x= x∗. We establish (by brute force numer-

ical search) that an optimal robust policy is bRO
1 = (x∗, y∗, z∗) = (6.14,12.5,15.5), which is at the

intersection of πWO,1
1 (x, y, z) and πWO,2

1 (x, y, z). The worst-case payoff corresponding to this robust

policy is πMAXMIN
1 = 3.765. Note that πWO,1

1 (x, y, z) and πWO,3
1 (x, y, z) also intersect, but the result-

ing bidding policies are sub-optimal. We also have that πMAXMIN
1 = 3.765< 3.78 = πMINMAX

1 , so

minimax equality (9) does not hold. 2

Figure 10 Illustration of Example 7: Worst-case payoff functions corresponding to winning one, two and three

items

Example 7 illustrates the limitations of the approach used to establish robust policies for double-

minded bidders (Proposition 8). We have shown in the setting of double minded bidders that

minimax equality (9) could be used to prove the optimality of robust bidding policies. Nevertheless,

as established in Example 7, the equality may not hold in more general settings. Thus, finding

robust bidding policies might be computationally challenging in complex settings like core-selecting

auctions.

5. Concluding remarks

In this paper, we study the bidding problem of an auction bidder who has imperfect information

of rivals’ bids and wants to maximize her worst-case payoff. We model bidder’s information about

rivals’ bids via an uncertainty set: every point of the uncertainty set is a possible realization of rivals’

bids. The bidder’s objective is to maximize her worst-case payoff with respect to this uncertainty
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set. The focus on the worst-case payoff objective requires a different approach from the expected-

payoff maximizing bidder models that are prevalent in the auctions literature. Furthermore, unlike

those models, our setting allows for distribution-free analysis.

One of the main challenges with our robust optimization approach to the bidding problem is the

computational tractability. Our analysis indicates that solving a robust bidding problem involves

maximizing a non-concave, discontinuous worst-case profit function. When the profit function is

multi-dimensional, finding the robust bidding policy could be a challenging task. Nevertheless,

our analysis provides some insights that could apply when devising optimal or heuristic biding

policies to maximize worst-case payoff in other auction settings. For one simple example, if there

is a unique favorable allocation outcome for the bidder, i.e., one that yields better payoff for the

bidder than other allocation outcomes regardless of rivals’ bids realization, our results readily

apply to quite general settings: bidder’s robust policy is to bid the minimal amount that ensures

winning such allocation. If there is no such favorable allocation outcome, which may happen in

settings with heterogeneous items and/or multiple demand, robust bidding policies correspond

to the intersections of allocation-specific worst-case payoff functions. The search for optimal bids

would then be restricted to bids at the intersections of those worst-case payoff functions. When

dealing with multiple demand settings, to overcome the computational challenge of searching over

high-dimensional policy spaces, one could employ variable reduction techniques and restrict the

attention to only bids on bundles of interest – e.g., bundles with positive valuations, bundles

demanded by competitors, or the global bundle.

Finally, note that in settings we considered, minimax equality (9) holding was important for

establishing the existence of and providing descriptions of robust bidding policies. Hence, under-

standing of the settings in which minimax equality holds could be useful in finding optimal solutions

to the robust bidding problem. Similarly, in settings in which minimax equality fails to hold,

one needs to be aware of difficulties of finding and establishing such optimal robust policies, as

demonstrated in the case of multiple demand core-selecting auctions.

Appendix

A. Proofs

A.1. Example 1

Bidder 1’s payoff function is:

π1(b1, b2) =

{
v1− b1 if b1 ≥ b2
0 otherwise.

Since b2 is uniform on [c, d], bidder 1’s expected payoff as a function of b1 is:

E[π1(b1)] =


v1− b1 if d< b1
(v1−b1)(b1−c)

d−c if c≤ b1 ≤ d
0 otherwise.
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By solving first-order condition, the maximizer of E[π1(b1)] is:

bEM1 =

 d if 2d− c < v1
1
2
(v1 + c) if c≤ v1 ≤ 2d− c

0 otherwise.

A.2. Example 3

Assume that b∗2(c) =B, then any b∗1(v1) satisfying b∗1(v1) =B for v1 ≥B and b∗1(v1)≤ v1 for v1 <B is a best

response of bidder 1. Now assume that b∗1(v1) satisfies those conditions and is given. Let us derive b∗2(v2).

Note that the objective of problem (16) can be rewritten as:

Ev1 [v2− b2]1b2≥b∗1(v1)dv1 =
1

c

∫ c

0

[v2− b2]1b2≥b∗1(v1)dv1

=
1

c

∫ b2

0

[v2− b2]1b2≥b1
1

(b∗1)′((b∗1)−1(b1))
db1.

Let g(b) = 1
(b∗1)′((b∗1)−1(b))

. Also, let

f(b2) =
1

c

∫ b2

0

(v2− b2)g(b1)db1.

Taking the first and second derivatives:

f ′(b2) = (v2− b2)g(b2)−
∫ b2

0

g(b1)db1,

f ′′(b2) =−2g(b2) + (v2− b2)g′(b2).

Note that since b∗1(.) is increasing and convex, g(b)> 0 and g′(b)< 0 for b ∈ [0, c]. Thus, f ′′(b2)> 0 and the

optimal bid is uniquely determined by first order condition:

b∗2(v2) = max

{
v2−

∫ b2
0
g(b)db

g(b2)
,0

}
.

A.3. Proposition 1

If b1 < u(m), there exists b−1 ∈U−1 such that b1 < b(m) so that bidder 1 loses the auction and receives zero

payoff. Thus, bidder 1’s worst-case payoff is no more than zero if she bids b1 <u(m). On the other hand, if

b1 ≥ u(m) then bidder 1 always wins an item and receives a payoff π1(b1, b−1) = v1− b1. Hence, her optimal

policy is to bid exactly u(m) if u(m)≤ v1 and bid zero if v1 < u(m). In other words, a solution to (P) is

bRO1 = u(m)1u(m)≤v1 . The optimal worts-case payoff is thus πMAXMIN
1 = (v1−u(m))+.

A.4. Proposition 3

Since VCG is in the core if the coalition value function is bidder-submodular, it suffices to show this bidder-

submodularity property. For any coalition S, let bS(M) =maxj∈Sbj(M). Then due to supermodularity, we

have wb(S) = bS(M) and wb(S∪l) = max(bS(M), bl(M)). Therefore, wb(S∪l)−wb(S) = max(bS(M), bl(M))−
bS(M) = max(0, bl(M)− bS(M)). As a result, if 0 ∈ S ⊂ S′ then max(0, bl(M)− bS(M)) ≥max(0, bl(M)−
bS′(M)) so that wb(S ∪ l)−wb(S)≥wb(S′ ∪ l)−wb(S′). Thus, wb is bidder-submodular.

A.5. Proposition 4

For any b1 ∈ U1 and b−1 ∈ U−1, since wv1,b−1
is bidder-submodular, we have that π1(b1, b−1) ≤ π1(v1, b−1)

Ausubel and Milgrom (2006). Thus, infb−1∈U−1
π1(b1, b−1)≤ infb−1∈U−1

π1(v1, b−1) which implies

sup
b1∈U1

inf
b−1∈U−1

π1(b1, b−1)≤ inf
b−1∈U−1

π1(v1, b−1).‘

Thus, truthful reporting is the optimal solution to (P).
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A.6. Quadratic core-selecting payment rule

We can re-write (2) to be constraints on payments as follows. First, recall that Sj is the allocated bundle for

bidder j. By substituting π0 =
∑

j∈N pj and πj = bj(Sj)− pj , we get

∑
j∈W

pj ≥wb(C)−
∑
j∈C

(bj(Sj)− pj), ∀C ⊆N, (37)

where W is the set of bidders who receives nonempty bundles. After rearranging, the above constraints

become:

∑
j∈W\C

pj ≥wb(C)−
∑
j∈C

bj(Sj), ∀C ⊆N. (38)

Let βC =wb(C)−∑
j∈C bj(Sj) and β ∈R2n

be the vector of all βC ’s. Also, let A be a n×2n matrix comprising

columns aC that has the jth entry equals to zero if bidder j is in coalition C and one otherwise. The

constraints (38) are then of the form:

pA≥ β.

. Let p0 be a reference payment vector. Under this the quadratic core-selecting payment rule, the payment

vector p is the optimal solution of the following quadratic program:

min
p

(p− p0)(p− p0)T

s.t. pA≥ β, p≤ b, p1 = µ,
(Q)

where µ is defined as
µ= min

p
p1

s.t. pA≥ β, p≤ b.
(39)

The payment vector p determined by (Q) minimizes the Euclidean distance from reference payment vector p0

to the core. The quantity µ is the minimum value of total payment from bidders. Thus, the constraint p1 = µ

guarantees that the payment rule is bidder-optimal, i.e., the total payment from bidders is minimized. This

has the effect of minimizing the bidders’ total incentive to deviate, as shown by Day and Milgrom (2008).

A.7. Proposition 5

Let S1 be the bundle that bidder 1 wins when she bids truthfully. By definition, we have

wv1,b−1
(N) = v1(S1) +wb−1

(N \ 1,M \S1).

We observe that by using policy (22), bidder 1 also wins S1. In fact, the maximum reported valuation

generated by allocating S1 to bidder 1 and M \S1 to the remaining bidders is

v1(S1)−πV CG1 +wb−1
(N\ 1,M\S1) =wv1,b−1

(N)−(wv1,b−1
(N)−wb−1

(N\1))

=wb−1
(N\1),

which is equal to the maximum reported valuation generated by allocating items in M to the remaining

bidders. Under the assumed tie-breaking rule, S1 is her allocation outcome. The VCG payoffs with respect

to the reported valuation profile (b1, b−1) is

πV CGj =wb(N)−wb(N \ j) =wb−1
(N \ 1)−wb−1

(N \ 1) = 0,
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for j ∈N , and

πV CG0 =wb(N)−
∑
j∈N

πV CGj =wb−1
(N \ 1).

This VCG profile is in the core with respect to the reported bids b so bidder 1 is charged exactly her VCG

payment pV CG1 , which is a function of b−1 only. As a result, bidder 1 gets

π1 = v1(S1)− pV CG1 = v1(S1)− (v1(S1)−πV CG1 ) = πV CG1 ,

which is her VCG payoff with respect to the reported valuation (v1, b−1). Since πV CG1 is the maximum payoff

that bidder 1 can get, policy (22) is optimal.

A.8. Remark 1

Let C ⊆N be the set of bidders corresponding to bidder 1’s shills. Also, given a bid profile b, let Sj be the

bundle allocated to bidder j . We have

π0 +
∑

j∈N\C

πi =
∑
j∈N

pj +
∑

j∈N\C

(bj(Sj)− pj)

=
∑
j∈C

pj +
∑

j∈N\C

bj(Sj)

≤
∑
j∈C

pj +wb(N \C,M \∪j∈CSj),

where the last inequality follows from the definition of wb. From the core constraints, we have wb(N \S)≤
π0 +

∑
j∈N\C πi. Hence,

pV CG1 =wb(N \C)−wb(N \C,M \∪j∈CSj)≤
∑
j∈C

pj .

Thus, bidder 1 pays at least pV CG1 even when she uses shills, which implies that her payoff is at most πV CG1 .

Since bidding policy (22) gives bidder 1 this VCG payoff, it is also optimal in the extended policy space in

which bidder 1 uses shills.

A.9. Proposition 6

We first show that bidder 1’s worst-case payoff under policy (25) is at least v1(S1)− p̄V CG. By construction,

we have that

b1(S1) +wb−1
(N \ 1,M \S1)≥ b1(M) ∀b−1 ∈U−1. (40)

Furthermore, from the definition of p̄V CG, we have

b1(S1) +wb−1
(N \ 1,M \S1)≥wb−1

(N \ 1,M) ∀b−1 ∈U−1. (41)

Since b(S) = 0 for all S + S1 and wb−1
(N \1,M \S)≤wb−1

(N \1,M), the above inequality also implies that

b1(S1) +wb−1
(N \ 1,M \S1)> b1(S) +wb−1

(N \ 1,M \S), (42)

for all S + S1 and b−1 ∈U−1. The inequalities (40), (41) and (42) jointly show that it is always optimal for the

seller to allocate bundle S1 to bidder 1 and the rest of the items to other bidders. Since a bidder’s payment

can never exceed her bid, bidder 1’s payoff under policy (25) is at least v1(S1)− p̄V CG. Hence, the optimal
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worst-case payoff under robust bidding satisfies πMAXMIN
1 ≥ v1(S1)− p̄V CG. On the other hand, recall that

we have the minimax inequality (8), so πMAXMIN
1 ≤ πMINMAX

1 . For any realization of b−1 ∈ U−1, bidder 1

can response optimally by bidding according to a perfect-information optimal policy, e.g., policy (22). Under

such a policy, bidder 1 receives her VCG payoff, so we have

πMINMAX
1 = min

b−1∈U−1

(wb(N,M)−wb(N \ 1,M))

= min
b−1∈U−1

(v1(S1) +wb(N \ 1,M \S1)−wb(N \ 1,M))

= v1(S1)− max
b−1∈U−1

(wb(N \ 1,M)−wb(N \ 1,M \S1))

= v1(S1)− p̄V CG.

Since v1(S1)− p̄V CG ≤ πMAXMIN
1 ≤ πMINMAX

1 = v1(S1)− p̄V CG, we must have that πMAXMIN
1 = πMINMAX

1 =

v1(S1)− p̄V CG and the bidding policy (25) is optimal.

A.10. Remark 3

When bidders 1 and 2 win exactly one item each, their VCG payments are pV CG1 = max(0, c− b) and pV CG2 =

max(y−x, c−x) and the core constraints are p1 ≤ x, p2 ≤ b and p1 + p2 ≥ c. The projection of VCG on the

core gives us bidder 1’s payment:

p1 =

(
x− 1

2
min(x,x+ b− c) +

1

2
min(c− y,0)

)+

. (43)

The right hand side of (43) corresponds to projecting the VCG payment (pV CG1 , pV CG2 ) onto the blocking

constraint p1 + p2 ≥ c created by bidder 3’s bid on the global bundle. This term can also be written as

max(0, c− b) +
1

2
(c−max(0, c− b)−max(y−x, c−x)),

which is bidder 1’s VCG payment plus an extra amount that is half of the total surcharge that bidder 1 and 2

together have to pay to overcome the blocking global bidder.14 However, such projection does not always yield

a non-negative payment, so it is truncated at zero as in (43). By substituting (x, y) = (p̄V CG, p̄V CG + b̄− εb)
into (43), we get bidder 1’s payment under the robust policy:

pRO1 =

(
p̄V CG− 1

2
min(p̄V CG, p̄V CG + b− c) +

1

2
min(c− p̄V CG− b̄+ εb,0)

)+

(44)

Bidder 1’s payoff under the robust policy is thus given by

πRO1 = min

(
a+

1

2
min(0, b− c)− 1

2
min(c− b̄+ εb, p̄

V CG), a

)
. (45)

On the other hand, by bidding truthfully bidder 1 gets

πTR1 = min

(
a+

1

2
min(0, b− c)− 1

2
min(c, a), a

)
. (46)

Since min(c− b̄+ εb, p̄
V CG) = c− b̄+ εb ≤min(c, a), we have that πRO1 ≥ πTR1 for all realization of b−1 ∈U−1.

14 See e.g., Goeree and Lien (2016).
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A.11. Example 5

Bidder 1’s payoff function is:

π1(x, y, b, c) =


0 if x+ b < c and y < c

min
(
a,a−x+ 1

2
min(x,x+ b− c)− 1

2
min(c− y,0)

)
if c≤ x+ b and y≤ x+ b

a−max(b, c) if x+ b < y and c≤ y

(47)

Since b and c are independent and distributed according to fb and fc given by (27) and (28), we have:

E[π1(x, y, b, c)]

=
1

324

∫ b̄+εb

max(y−x,̄b−εb)

∫ min(x+b,c̄+εc)

c̄−εc
π1

1(x, y, b, c)(b− 7)(13− c) dc db

+
1

324

∫ min(y−x,̄b+εb)

b̄−εb

∫ min(y,c̄+εc)

c̄−εc
π2

1(b, c)(b− 7)(13− c) dc db,

where π1
1(x, y, b, c) =

(
a,a−x+ 1

2
min(x,x+b−c)− 1

2
min(c−y,0)

)
and π2

1(b, c) = a−max(b, c). The expected-

payoff maximizing policy bEM1 can then be obtained by choosing (x, y) that maximizes E[π1(x, y, b, c)] over

R2
+.

A.12. Proposition 7

(a) Bidder 1 has unique truthful allocation S1 if and only if, for all b−1 ∈U−1:

v1(S1) +wb−1
(N \ 1,M \S1)≥ v1(S2) +wb−1

(N \ 1,M \S2), (48)

and

v1(S1) +wb−1
(N \ 1,M \S1)≥wb−1

(N \ 1,M), ∀b−1 ∈U−1. (49)

We will prove that similar to the single-minded case, the worst-case payoff of bidder 1 under the robust

policy bRO1 is at least as large as the upper bound provided by minimax inequality and thus bRO1 must be

optimal. First, given policy bRO1 , we can partition uncertainty set U−1 into two disjoint subsets U
(1)
−1 and U

(2)
−1

such that bidder 1 always wins Si on the set U
(i)
−1 for i ∈ {1,2}. The worst-case payoff under policy bRO1 is

given by

inf
b−1∈U−1

π1(bRO1 , b−1) = min

(
inf

b−1∈U
(1)
−1

(v1(S1)− p(1)
1 ), inf

b−1∈U
(2)
−1

(v1(S2)− p(2)
1 )

)

where p
(1)
1 and p

(2)
1 denote the corresponding payments for bidder 1. Note that by individual rationality , we

have p
(1)
1 ≤ p̄V CG1 and p

(2)
1 ≤ p̄V CG1 . In addition, v1(S1)≤ v1(S2), so we have

inf
b−1∈U−1

π1(bRO1 , b−1)≥ v1(S1)− p̄V CG1 .

Since πMAXMIN
1 ≥ inf

b−1∈U−1

π1(bRO1 , b−1), we have πMAXMIN
1 ≥ v1(S1)− p̄V CG1 . On the other hand, if we let

pV CG1 (S1) and pV CG1 (S2) be bidder 1’s VCG payment when she wins S1 and S2, respectively, then the minmax

payoff is
πMINMAX

1 = inf
b−1∈U−1

max
(
v1(S1)− pV CG1 (S1), v1(S2)− pV CG1 (S2)

)
= v1(S1)− p̄V CG1 ,
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where the last equality follows directly from the condition (48) that guarantees bidder 1 always win bundle

S1 under truthful bidding. Finally, by minimax inequality, we have πMAXMIN
1 ≤ πMINMAX

1 . As a result, the

minimax equality (9) must hold and bRO1 is the optimal solution to (P).

(b) We observe that under policy bRO1 defined in (33), bidder 1 always wins S2. As a result, the optimality

follows directly from minimax inequality argument analogous to the proof of Proposition 6.

A.13. Lemma 1

When bidder 1 wins one item, her payment is given by (43). Recall that when (x, y)∈U ′1, we have x= p̄V CG1 .

As a result, πWO,1
1 (y) is given by

πWO,1
1 (y) = inf min{a,a− p̄V CG1 +

1

2
min(p̄V CG1 , p̄V CG1 + b− c) +

1

2
(y− c)+}

s.t. b−1 ∈U−1

y≤ p̄V CG1 + b.

(50)

The objective function on the right hand side is increasing in b and decreasing in c so the worst-case scenario

corresponds to b∗ = max(b̄− εb, y− p̄V CG1 ) and c∗ = c̄+ εc. Substituting these values into (50), we have

πWO,1
1 (y) = min{a,a− p̄V CG1 +

1

2
min

(
p̄V CG1 , (y− c̄− εc)+

)
+

1

2
(y− c̄− εc)+}. (51)

Similarly, when bidder 1 wins both items, her payment is max(b, c), so πWO,2
1 (y) is given by

πWO,2
1 (y) = inf {a′−max(b, c)}

s.t. b−1 ∈U−1

p̄V CG1 + b < y.

(52)

In this case, the worst-case bids are b∗ = min(b̄+ εb, y− p̄V CG1 ), c∗ = c̄+ εc so we have

πWO,2
1 (y) = a′−max{min(b̄+ εb, y− p̄V CG1 ), c̄+ εc}. (53)

We can see that πWO,1
1 (y) is a piece-wise linear increasing function in y while πWO,2

1 (y) is a piece-wise linear

decreasing function in y. Furthermore, one can directly verify that πWO,1
1 (y) = a for y ≥ p̄V CG1 + c̄+ εc and

πWO,2
1 (y) = a′− c̄− εc for y≤ p̄V CG1 + c̄+ εc.

A.14. Lemma 2

From (51) and (53), we have the following identities:

πWO,1
1 (p̄V CG1 + b̄− εb)

= min(a,a− p̄V CG1 +
1

2
min(p̄V CG1 , p̄V CG1 − c̄− b̄+ εb− εc) +

1

2
(p̄V CG1 − c̄− b̄+ εb− εc))

= min(a,a− 1

2
(p̄V CG1 + c̄+ b̄− εb + εc)),

πWO,2
1 (p̄V CG1 + b̄− εb) = a′−max(min(b̄+ εb, b̄− εb), c̄+ εc)

= a′−max(b̄− εb, c̄+ εc),

πWO,1
1 (p̄V CG1 + b̄+ εb) = min

(
a,a+

1

2
min(p̄V CG1 , p̄V CG1 − p̄V CG + 2εb)−

1

2
(p̄V CG1 + p̄V CG− 2εb)

)
,

πWO,2
1 (p̄V CG1 + b̄+ εb) = a′−max(b̄+ εb, c̄+ εc).

There are three cases to consider:
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1. b̄+ εb ≤ c̄+ εc:

We have

πWO,1
1 (p̄V CG1 + b̄− εb) = a− (c̄− b̄+ εb + εc),

πWO,2
1 (p̄V CG1 + b̄− εb) = a′− c̄− εc,

πWO,1
1 (p̄V CG1 + b̄+ εb) = a− (c̄− b̄− εb + εc),

πWO,2
1 (p̄V CG1 + b̄+ εb) = a′− c̄− εc.

2. b̄− εb ≤ c̄+ εc < b̄+ εb:

We have

πWO,1
1 (p̄V CG1 + b̄− εb) = a− (c̄− b̄+ εb + εc),

πWO,2
1 (p̄V CG1 + b̄− εb) = a′− c̄− εc,

πWO,1
1 (p̄V CG1 + b̄+ εb) = a,

πWO,2
1 (p̄V CG1 + b̄+ εb) = a′− b̄− εb.

3. c̄+ εc < b̄− εb:

We have

πWO,1
1 (p̄V CG1 + b̄− εb) = a,

πWO,2
1 (p̄V CG1 + b̄− εb) = a′− b̄+ εb

πWO,1
1 (p̄V CG1 + b̄+ εb) = a

πWO,2
1 (p̄V CG1 + b̄+ εb) = a′− b̄− εb

In all three cases, one can verify that πWO,2
1 (p̄V CG1 + b̄− εb) ≤ πWO,1

1 (p̄V CG1 + b̄− εb) is equivalent to a′ ≤
a+ b̄− εb and πWO,2

1 (p̄V CG1 + b̄+ εb)≤ πWO,1
1 (p̄V CG1 + b̄+ εb) is equivalent to a′ ≤ a+ b̄+ εb.

A.15. Proposition 8

We first consider the case when bidder 1 bids in the restricted policy space U ′1 = {(x, y)∈R2
+ | x= p̄V CG1 , y≥

x}. When a′ ∈ (a+ b̄− εb, a+ b̄+ εb], by Lemma 2, we have πWO,1
1 (p̄V CG1 + b̄− εb)<πWO,2

1 (p̄V CG1 + b̄− εb) and

πWO,1
1 (p̄V CG1 + b̄+ εb)≥ πWO,2

1 (p̄V CG1 + b̄+ εb). Due to the monotonicity of πWO,1
1 (y) and πWO,2

1 (y) (Lemma

1), the optimal choice of y (with respect to the restricted space U ′1) is at the intersection of πWO,1
1 (y) and

πWO,2
1 (y). To determine the optimal worst-case payoff with respect to the restricted space U ′1, we recall

that πWO,1
1 (y) is constant for y ≥ p̄V CG1 + c̄+ εc and πWO,2

1 (y) is constant for y ≤ p̄V CG1 + c̄+ εc. Thus, at

the intersection point of these two payoff functions, bidder 1’s payoff is equal to min{πWO,1
1 (p̄V CG1 + c̄ +

εc), π
WO,2
1 (p̄V CG1 + c̄+ εc)}= min(a,a′ − c̄− εc) (see Figure 8c and 8d). Since this is a lower bound for the

optimal worst-case payoff on the original policy space U1 =R2
+, one has that

min(a,a′− c̄− εc)≤ πMAXMIN
1 (54)
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We now show that the above lower bound is the same with the upper bound on πMAXMIN
1 provided by

the minimax inequality. For any b−1 ∈ U−1, bidder 1’s best response payoff is her VCG payoff. Thus,

sup
b1∈U1

π1(b1, b−1) = max(a+ b, a′)−max(b, c). As a result, we have

πMINMAX
1 = inf

b−1∈U−1

sup
b1∈U1

π1(b1, b−1)

= inf
b−1∈U−1

(max(a+ b, a′)−max(b, c))

= min


inf a′−max(b, c),

s.t. b < a′− a

b−1 ∈U−1

inf a− (c− b)+

s.t. a′− a≤ b

b−1 ∈U−1


= min{a′−max(a′− a, c̄+ εc), a− (c̄+ εc− a′+ a)+}

= min(a,a′− c̄− εc),
where the second last equality follows by substituting the minimizing values for b and c. By minimax

inequality, we have πMAXMIN
1 ≤ πMINMAX

1 = min(a,a′ − c̄− εc). Together with (54), we have πMAXMIN
1 =

min(a,a′− c̄− εc) and the policy (x∗, y∗) is optimal.

A.16. Remark 6

Let πWO,TR
1 be her worst-case payoff under truthful bidding. We want to show that if a+ b̄− εb < a′ then

this truthful worst-case payoff is the same with the optimal worst-case payoff from robust bidding, i.e.,

πWO,TR
1 = πMAXMIN

1 . (55)

First let us consider the case when a+ b̄+ εb < a′. By reporting truthfully, bidder 1 always wins two items,

so her worst-case payoff is

πWO,TR
1 = a′−max(b̄+ εb, c̄+ εc),

On the other hand, according to Proposition 7, we have πMAXMIN
1 = a′−max(b̄+εb, c̄+εc). Hence, πWO,TR

1 =

πMAXMIN
1 .

Now let us assume that a+ b̄− εb <a′ ≤ a+ b̄+ εb. By Proposition 8, πMAXMIN
1 = min(a,a′− c̄− εc). There

are three possible cases to be considered:

1. b̄+ εb ≤ c̄+ εc:

By reporting truthfully, bidder 1’s worst-case payoffs when winning one and two items are respectively:

πWO1,TR
1 = min(a,

1

2
min(a,a′− c̄− εc) +

1

2
(a′− c̄− εc))

= min(a,a′− c̄− εc),

πWO2,TR
1 = a′−max(min(a′− a, b̄+ εb), c̄+ εc)

= a′− c̄− εc.

Hence, bidder 1’s worst-case payoff is

πWO,TR
1 = min(πWO1,TR

1 , πWO2,TR
2 ) = min(a,a′− c̄− εc)

which is the same with πMAXMIN
1 .
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2. b̄− εb ≤ c̄+ εc < b̄+ εb:

Similar to the previous case, by reporting truthfully, bidder 1’s worst-case payoffs when winning one

and two items are respectively:

πWO1,TR
1 = min(a,a′− c̄− εc),

πWO2,TR
1 = a′−max(min(a′− a, b̄+ εb), c̄+ εc).

Now we prove that min(πWO1,TR
1 , πWO2,TR

2 ) = min(a,a′ − c̄ − εc). If a′ − c̄ − εc < a then πWO1,TR
1 =

πWO1,TR
1 = a′ − c̄ − εc so we indeed have min(πWO1,TR

1 , πWO2,TR
2 ) = min(a,a′ − c̄ − εc). On the

other hand, if a ≤ a′ − c̄ − εc then πWO1,TR
1 = a and πWO2,TR

1 = a′ − min(a′ − a, b + εb) ≥ a, so

min(πWO1,TR
1 , πWO2,TR

2 ) = a= min(a,a′− c̄− εc). Therefore, πWO,TR
1 = πMAXMIN

1 .

3. c̄+ εc < b̄− εb:
In this case, the worst-case payoffs of bidder 1 when winning one and two items are πWO1,TR

1 =

πWO2,TR
1 = a= min(a,a′− c̄− εc). Thus, we also have πWO,TR

1 = πMAXMIN
1 , which completes our proof.

A.17. Proposition 9

(a) For each b−1 ∈U−1, a best response of bidder 1 is to bid

bBEST1 = b(m)1b(m)≤v1 .

The maximum payoff of bidder 1 given b−1 is

π1(bBEST1 , b−1) = (v1− b(m))1b(m)≤v1 . (56)

Minimizing the above payoff function over the uncertainty set U−1, one gets that πMINMAX
1 = (v1−u(m))+,

which is exactly the same with πMAXMIN
1 according to Proposition 1.

(b) Minimax equality (9) follows directly from the proof of Proposition 6.
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