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Abstract. We consider a basic model of a risk-neutral principal incentivizing a risk-neutral
agent to exert effort to raise the arrival rate of a Poisson process. The effort is costly to
the agent, is unobservable to the principal, and affects the instantaneous arrival rate.
Each arrival yields a constant revenue to the principal. The principal, therefore, devises
a mechanism involving payments and a potential stopping time to motivate the agent to
always exert effort. We formulate this problem as a stochastic optimal control model with
an incentive constraint in continuous time over an infinite horizon. Although we allow
payments to take general forms contingent on past arrival times, the optimal contract has
a simple and intuitive structure, which depends on whether the agent is as patient as or
less patient than the principal toward future income.

History: Accepted by Manel Baucells, decision analysis.
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1. Introduction
The problem of managing incentives when agents’
actions are unobservable frequently arises in the pri-
vate and public sectors. A firm needs to continuously
motivate its sales force or research and development
(R&D) team to work hard; a research university’s rep-
utation hinges on output of its faculty’s productive
effort; government agencies need to be held account-
able for achieving progress milestones; fundraising
groups are responsible for turning up donors over time
for political campaigns, charity organizations, or aca-
demic institutions. These diverse settings share some
common features: incentives need to be managed over
a long period of time; observable consequences from
agents’ efforts are uncertain; therefore, contracts need
to be based on realized consequences over time.

In this paper, we study a stylized incentive man-
agement model over an infinite time horizon. In par-
ticular, we consider a risk-neutral principal optimally
incentivizing a risk-neutral agent to increase the arrival
rate of a Poisson process. Arrivals may correspond to
new customers, R&D results, academic publications,
successes in achieving public policy milestones, new
donations, etc. Each arrival yields a certain “revenue”
to the principal. The agent, if exerting effort, is able
to increase the arrival rate from a base level to a high
level. Because the agent bears the cost of effort, which
is unobservable to the principal, the two players’ incen-
tives are misaligned. Therefore, the principal needs to
design a contract to optimally induce and compensate
for the agent’s efforts.

We allow the compensation to take general forms,
as long as at any point in time it is contingent on

information available to the principal—that is, past
arrival times. In particular, we allow payments to be in
the form of instantaneous amounts at various points
in time (bonuses) or a flow with a time-varying rate
(salaries). Besides the “carrot” of payments, we also
allow the principal to use the “stick” of terminating the
contract. The threat of termination, therefore, is also
contingent on past arrival times. The principal designs
and commits to a contract that combines payments and
a potential termination time to induce effort from the
agent. In an extension of the basic model, we allow the
principal to find a replacement agent at a fixed cost on
terminating the focal agent, which does not change the
nature of our results.

We formulate the problem as a dynamic optimiza-
tion model with an incentive constraint, and demon-
strate that the optimal contract takes a simple form,
despite the generality of contract design allowed.
Specifically, first consider the case that the principal
and the agent have the same patience level toward
future payoffs. Under an optimal contract, the prin-
cipal should keep track of a “performance score,”
which is essentially the agent’s total promised future
utility (Spear and Srivastava 1987). Before reaching a
fixed upper threshold, the performance score takes an
upward jump of a fixed magnitude on each arrival
and keeps decreasing between arrivals, while no pay-
ment is made. If the score decreases to zero before it
could jump to the threshold, the contract terminates.
If the performance score reaches the upper threshold
with a jump less than the fixed magnitude of earlier
jumps, then the clipped jump is the amount of the
first payment. From that point on, the performance
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score is maintained at the threshold level, while each
future arrival yields an instantaneous payment that
equals the magnitudes of earlier jumps. Therefore, the
initial phase of the contract resembles an “internship”
period with uncertain length, during which arrivals
may occur but the agent is not paid. See Figure 1 in
Section 3.1 for a depiction of sample paths following
this optimal contract.

This contract is simple and bears intuitive interpre-
tations. First of all, it is not surprising that the optimal
contract provides a reward for each arrival. Second, the
starting time of payments depends on the timing of
earlier arrivals. The longer interarrival times are, the
later payments may start. Furthermore, there are two
absorbing states following this contract. With luck, the
performance score reaches the upper threshold, which
is an absorbing state, and ensures the agent to be paid
for all future arrivals. If the interarrival time becomes
too long, the system falls into the other absorbing state,
the performance score decreases to zero, and the con-
tract terminates.

If the agent is less patient than the principal, on the
other hand, the optimal contract is somewhat different.
The performance score follows a very similar dynamic
as in the equal patience case with jumps on and
decreases between arrivals. The upper threshold on
which payment starts is lower than the level that would
ensure performance score not to decrease. Such a lower
upper threshold allows the impatient agent to start get-
ting paid earlier, at the cost of the performance score
always decreasing after each upward jump, including
those that yield payments. Consequently, the agent is
always subject to the threat of termination. In this case,
unlike the equal time discount case, there is not a clear
“initial internship” period, because there could be peri-
ods of payments on arrival followed by no payment on
arrival. See Figure 5 in Section 4.3 for a sample path for
this case.

There has been a proliferation of continuous-time
moral hazard models in recent years since the seminal
paper, Sannikov (2008), that proposes a martingale rep-
resentation of the incentive compatibility constraint.
In his model, the uncertain outcome of an agent’s effort
follows a Brownian motion, which is a natural mod-
eling choice for problems in areas such as corporate
finance (see, e.g., DeMarzo and Sannikov 2006, Biais
et al. 2007, Shi 2015, to name a few). While our absorb-
ing states are similar to the corresponding results on
retirement in Sannikov (2008), the structure of our pay-
ment contract is quite different and, arguably, simpler
and cleaner to describe and control, due to the obvi-
ous distinction between Brownian motions and Poisson
processes.

Biais et al. (2010) apply similar techniques on a
model in which the agent’s effort influences the rate of
a Poisson process, rather than the drift of a Brownian

motion. In their model, arrivals are “bad” outcomes
(large risks). The corresponding contract structure,
therefore, rewards the agent only if the interarrival
time is longer than a threshold, which is different from
ours, in which arrivals are “good.” Myerson (2015)
studies a model in a political economy setting, in which
arrivals are also bad. Note that the distinction between
outcomes being good and bad in this problem is far
from superficial. In fact, the optimal contract struc-
tures are quite different. To incentivize longer interar-
rival times between bad outcomes, the optimal contract
starts a flow of payment only if the interarrival time is
longer than a certain threshold. Therefore, the longer
the interarrival time is, the more the agent is paid. Such
a contract structure is clearly different from the one
described above for our case.

Besides differences in problem settings and some
additional features of the model in Myerson (2015),
another fundamental distinction with Biais et al. (2010)
is that Myerson (2015) assumes that the principal and
agent have the same patience level. In this case, to avoid
unboundedness of the optimal solution, Myerson
(2015) has to introduce an upper bound on the credi-
bility of the principal’s promise. The optimal contract,
in turn, critically depends on this upper bound. Such
a problem does not arise in Biais et al. (2010), which
assumes that the agent is less patient. In our setting,
where arrivals are “good” outcomes, we do not need
to introduce an arbitrary upper bound. And we study
both equal and less patient agent cases.

Various recent papers also consider moral hazard
models with “good” Poisson arrivals, although the
numbers of arrivals in these models are often finite.
Mason and Välimäki (2015), for example, consider a
model with a single Poisson arrival, which represents
the completion of a project. Varas (2017) also consid-
ers a single Poisson arrival, which is unobservable
to the principal. Therefore, the model contains both
moral hazard and adverse selection issues. The arrival
rate is affected by both the agent’s hidden effort and
imperfectly observable quality of the project. The agent
can fake the arrival, which has to be taken into con-
sideration in the contract. The model of Green and
Taylor (2016) contains two stages (arrivals) to complete
a project, which are also unobservable to the principal.
The contract needs to induce effort as well as truthful
revelation of the arrivals. Shan (2017) also considers
arrivals as progress milestones for a project, which are
publicly observable. The number of such milestones is
not limited to two but is finite and exogenously deter-
mined. The paper also considers cases with multiple
agents, whose efforts could either substitute or comple-
ment other agents’. Our model differs from the single
agent model in Shan (2017) on two aspects. First, we
consider an infinite horizon Poisson process, instead of
a finite number of arrivals. Second, while Shan (2017)
assumes that the principal and agent share the same
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time discount, we also study the case in which the
agent is less patient than the principal. In Hidir (2017),
arrivals represent experimental results which could
only occur if the agent exerts effort, are unobservable
to the principal, and could be either good or bad sig-
naling potential quality of a project. The first good sig-
nal indicates the project is of high quality, at which
point no more experimentation effort from the agent is
needed. Cumulation of bad signals decreases the prior
probability of high quality, and eventually also induces
termination of the contract. Therefore, the number of
arrivals allowed before termination is also finite.

More generally, the core idea of formulating dy-
namic mechanism design problems recursively as dis-
crete time stochastic dynamic programming models
with agents’ promised utility as state variables is rooted
in Abreu et al. (1990) for repeated games and Spear and
Srivastava (1987) for moral hazard, further developed
in Thomas and Worrall (1990) and Fernandes and Phe-
lan (2000) for adverse selection problems, and widely
adopted in the economics and finance literature.

The dynamic contracting problem has also been a
subject of recent studies in the OR/MS literature (see,
e.g., Zhang 2012a, b; Li et al. 2012; Belloni et al. 2016).
The model that is related to ours, in terms of moral
hazard problem with Poisson arrivals, is Plambeck and
Zenios (2003). They study a more sophisticated make-
to-stock queuing system with risk averse players in a
finite time horizon. Although the model also includes
contingent instantaneous and flow payment schemes,
the focus of the paper is on the second-best produc-
tion decisions. Therefore, the paper does not contain
an explicit expression of the dynamic payment scheme
beyond in the first-best setting.

2. Model
Consider a continuous time setting, in which a princi-
pal receives a stream of Poisson arrivals with rate

¯
µ in

the base case. Each arrival generates a fixed revenue R
to the principal. The principal can choose to contract
an agent to raise the arrival rate to a higher level µ,
only if the agent exerts effort. The effort costs the agent
a rate of c per unit of time and is unobservable by the
principal. We denote the effort process by the agent as
⌫ ⇤ {⌫t}t2[0,1), with ⌫t 2 {µ,

¯
µ}. Both the principal and

the agent are assumed to be risk-neutral and discount
future cash flows. The time discount rates are r and
⇢ for the principal and agent, respectively. We assume
that ⇢ � r > 0. That is, the principal is no less patient
than the agent.

Define the ratio between the cost of effort c and the
difference in arrival rate �µ :⇤ µ�

¯
µ,

� :⇤ c
�µ
. (1)

The value � is significant in the optimal contract. In
fact, if the principal pays a bonus � to the agent for each

arrival, at any point in time, the higher expected value
of the bonus during the next � time units, ��µ�, offsets
the agent’s cost of exerting effort, c�. Therefore, paying
such a bonus provides the incentive for the agent to
exert effort.

We assume that
�  R, (2)

which ensures that exerting effort is socially optimal.
We assume that the principal has the power to com-

mit to a long term payment contract based on all of the
information accessible to the principal at any point in
time. Such information includes all of the arrival times.
The arrival rate is determined by the effort process
⌫. And the agent can adjust the effort level according
to the arrival process. More formally, at any time t 2
[0,1), we denote N ⇤ {Nt}t�0 to represent the count-
ing process that represents the number of arrives up to
and including time t. We also let F N be the filtration
generated by the process N . And the effort process ⌫ is
F N-predictable.

Next, we let L ⇤ {Lt}t�0 be a F N-adapted process
that tracks the principal’s cumulative payment to the
agent. In particular, at any time t, the payment can be
an instantaneous payment It , or a payment rate lt , such
that dLt ⇤ It + lt dt. We assume that the agent has lim-
ited liability, so that payments from the principal to
the agent have to be nonnegative, i.e., It � 0 and lt � 0.
This is not a strong assumption, because in many prac-
tical settings the agent is liquidity constrained. In fact,
without such a limited liability assumption, it is well
known that the dynamic contracting problem becomes
trivial—the principal simply sells out the enterprise to
the agent up front, which allows the agent to imple-
ment the first-best control policy afterward.

As part of the contract, the principal can also stop
the interaction with the agent at any time, ⌧ that we
assume to be an F N-stopping time. If ⌧ <1, the princi-
pal terminates the collaboration with the agent, while
if ⌧ ⇤ 1 the collaboration continues throughout the
infinite time horizon.

2.1. Agent Utility and Incentive-Compatible
Contracts

Given a dynamic contract � ⇤ (L, ⌧) and an effort pro-
cess ⌫, the expected discounted utility of the agent is

u(�, ⌫)⇤ ⇧⌫


π ⌧

0
e�⇢t (dLt � c ⌧{⌫t ⇤ µ}dt)

�

, (3)

in which the expectation ⇧⌫ is taken with respect to
probabilities generated from the effort process ⌫.

We focus on incentive-compatible contracts that induce
the agent to always maintain a high arrival rate ⌫̄ :⇤
{⌫t ⇤ µ}t�0. That is, a contract � is called incentive com-
patible (IC) if

u(�, ⌫̄) � u(�, ⌫), 8 ⌫. (IC)
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We also define the agent’s continuation utility at
time t as the following:

Wt(�, ⌫)

⇤⇧⌫


π ⌧

t
e�⇢(s�t) (dLs � c⌧{⌫s ⇤µ}ds)

�

�

�

�

F N
t

�

⌧{t < ⌧}. (4)

Therefore, W0(�, ⌫) ⇤ u(�, ⌫) and the agent’s continua-
tion utility is zero after termination. Note that because
⌧ is an F N stopping time, the event {t < ⌧} is F N

t -
measurable. So is random variable Wt .

It is clear that if a contract � satisfies Wt(�, ⌫̄) �
Wt(�, ⌫) for any effort process ⌫ and time t, con-
straint (IC) is satisfied. In fact, the (IC) constraint is
equivalent to the seemingly more restrictive condi-
tion that the agent prefers exerting effort at any time
and under any contingency, as stated in the following
lemma.

Lemma 1. Any contract � that satisfies the constraint (IC)
must also satisfy that at any time t, Wt(�, ⌫̄) � Wt(�, ⌫)
almost surely for any effort process ⌫.

2.2. Principal Utility
In this paper, we focus on finding optimal incentive-
compatible contracts, so that the agent prefers the effort
process ⌫̄. To that end, we denote U(�) to represent the
expected discounted profit of the principal following an
incentive-compatible contract � and the corresponding
agent’s effort process ⌫̄. On terminating the agent, the
principal is left with only the baseline revenue,

¯
v :⇤ ¯

µR

r
, (5)

from the low rate arrivals. In Section 5.2, we extend the
model to allow the principal to contract with another
identical agent at a fixed cost. The structure of the opti-
mal contract is the same as the basic model.

Overall, the principal’s utility under an incentive-
compatible contract � is

U(�)⇤ ⇧⌫̄


π ⌧

0
e�rt (RdNt � dLt)+ e�r⌧

¯
v
�

. (6)

For the rest of the paper, we omit superscript ⌫̄ in the
expectation under incentive-compatible contracts.

2.3. A Simple Incentive-Compatible Contract
Before we turn to the optimal contract, it is worth
studying a simple incentive-compatible contract, �̄.
According to contract �̄, the agent receives an instan-
taneous payment � after each arrival, while the flow
payment is kept at zero (i.e., dLt ⇤ � dNt); and the prin-
cipal never terminates the contract (⌧ ⇤1). It is easy to
verify that contract �̄ satisfies (IC). In fact, the (IC) con-
straint is binding under this contract, because the agent
is always indifferent between exerting or not exerting

effort. Following this contract, the agent’s continuation
utility at any time t is

Wt(�̄, ⌫̄)⇤ w̄ :⇤
µ�� c
⇢
. (7)

It is worth noting that under the contract �̄, the agent
is indifferent between exerting effort or not, but still
receives a nonnegative utility w̄ because of the base-
case arrival rate

¯
µ. In the special case where

¯
µ ⇤ 0, we

have µ� ⇤ c, and, therefore, w̄ ⇤ 0.
The principal’s utility under contract �̄ is, therefore,

U(�̄)⇤ Ū :⇤
µ(R � �)

r
. (8)

It is clear that because the contract �̄ always induces
full effort from the agent, it achieves the first-best out-
come. However, it is not clear, at this point, if contract
�̄ is the optimal dynamic contract. Starting from the
next section, we propose a different dynamic incentive-
compatible contract that outperforms �̄ and, in fact, is
the optimal contract for the principal.

3. Equal Time Discount
In this section, we assume that the principal and
agent’s time discount rates are the same. We use r to
represent the time discount rate. We first propose a
particular contract, �⇤, and show that it is incentive
compatible and optimal. All proofs for this section are
presented in Appendix B.

3.1. Optimal Contract �⇤
We first provide a heuristic description of contract �⇤
before providing a rigorous mathematical definition.
This contract keeps track of a “performance score” wt
over time for the agent. (The reason that we use the
letter w here is because under the optimal contract,
this performance score corresponds to the agent’s con-
tinuation utility.) Starting from an initial performance
score w0 < w̄, this performance score keeps decreas-
ing (the exact form to be specified later) until either
there is an arrival or the score reaches zero. When-
ever the score wt reaches zero, the contract terminates.
If an arrival occurs at time t with wt > 0, on the other
hand, the performance score wt takes an upward jump
of min{�, w̄ � wt}, and the agent receives an instan-
taneous payment of (wt + � � w̄)+. If wt + � � w̄, the
performance score remains at w̄; otherwise, the perfor-
mance score again decreases, as described above.

Figure 1 depicts sample trajectories of such a pol-
icy. In particular, the solid curve represents one sam-
ple trajectory, which starts the performance score
at w0 ⇤ w⇤. The performance score keeps decreasing
between arrivals. Each of the first two arrivals induces
an upward jump of � in the performance score. The
performance score jumps to w̄ with third arrival, which
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Figure 1. (Color online) Sample Trajectories of Performance
Score wt with r ⇤ 1, c ⇤ 1, R ⇤ 0.4,

¯
µ ⇤ 2, and µ ⇤ 5
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Notes. In this case, w̄ ⇤ 0.667 and � ⇤ 0.333. The policy starts from
w0 ⇤ w⇤ ⇤ 0.074. The solid curve depicts a sample trajectory under
which the agent’s performance score reaches w̄. The dashed curve
depicts another sample trajectory under which the performance
score reaches zero, when the collaboration between the principal and
the agent dissolves. The vertical dotted lines depicts the payments
according to the first sample trajectory.

also yields the first payment to the agent, at a level
that equals to � minus the height of the jump. After
this point in time, the performance score remains at w̄.
Each later arrival yields a payment of � to the agent.
The figure depicts three such arrivals along this sample
trajectory.

The dashed curve in Figure 1 represents another
sample trajectory. The performance score also starts at
the same w⇤. There is only one arrival before the per-
formance score decreases to zero, at time ⌧.

Similar to contract �̄, according to contract �⇤, each
payment occurs at the time of an arrival, and all pos-
itive payments, except for the first one, are instan-
taneous and fixed at level �. Positive payments only
start after the performance score reaches w̄. Before the
performance score may reach w̄ due to the upward
jumps, however, it could decrease to zero, which ter-
minates the interaction between the principal and the
agent.

In the special case when the base case arrival rate

¯
µ ⇤ 0, because the agent’s utility w̄ ⇤ 0, the initial
dynamic phase described above does not appear any
more. Therefore, contract �⇤ reduces to �̄. If the base-
case arrival rate

¯
µ is positive, the principal cannot dis-

tinguish whether an arrival is due to the agent’s effort.
Only in this case the agent receives positive expected
utility, w⇤.

Now, we specify how the performance score wt
(which is also the agent’s continuation utility) de-
creases over time between arrivals. We first derive the
expression pretending that the principal observes the

effort process. The result turns out to not require the
principal to observe the effort process anyway.

To this end, we consider a small time interval
[t , t + �). Because the principal is assumed, for the
moment, to observe the effort level ⌫t , with probability
⌫t� + o(�) we have one Poisson arrival. This yields a
payment (wt + �� w̄)+ and a continuation performance
score min{wt + �, w̄} at the end of the time interval.
With probability 1� ⌫t� + o(�), on the other hand, the
performance score becomes wt+�. Also considering the
cost of effort c� during the time interval and the time
discount factor r, we have the following discrete time
approximation of the continuation value for the agent:

wt ⇤�c ⌧⌫t⇤µ
�+ [⌫t�+ o(�)]

· [(wt + �� w̄)+ +min{wt + �, w̄}]
+ [1� (r + ⌫t)�+ o(�)]wt+� . (9)

Following the standard procedure of dividing both
sides of the above equation with �, assuming that
wt is differentiable in t, and taking the limit of � to
zero, Equation (9) becomes the following differential
equation:

dwt

dt
⇤ rwt + c ⌧⌫t⇤µ

�⌫t�.

It can be verified that

c ⌧⌫t⇤µ
�⌫t� ⌘ c � µ� ⇤�rw̄. (10)

Therefore, if there is no arrival at time t, the perfor-
mance score changes according to

dwt

dt
⇤ r(wt � w̄). (11)

If there is an arrival at time t—that is, dNt ⇤

1—the performance score wt takes an upward jump
of min{w̄ � wt , �}, as mentioned earlier. Together
with (11), and the fact that wt is kept at zero when-
ever it reaches zero, we obtain the following expres-
sion, which describes how wt changes over time when
wt 2 [0, w̄].1

dwt ⇤ [r(wt � w̄)dt +min{w̄ � wt , �}dNt]⌧wt>0 . (DW)

We call this Equation (DW), which stands for “dynam-
ics of w” under the optimal contract. Note that if
wt ⇤ w̄ at some time t, (DW) guarantees that for any
future time s > t, ws is maintained at w̄. When the
performance score wt is lower than w̄, however, it
keeps decreasing before the next arrival. This smooth
decrease balances the potential upward jump when-
ever there is an arrival, such that the performance
score keeps track of the agent’s total future utility,
which is often referred to as the “promised utility” or
“promised value” in the literature (see, e.g., Ljungqvist
and Sargent 2004).
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Remark 1. Note that managing the performance score
wt according to (DW) is quite easy. At each point in
time t, wt remains a constant if it equals w̄. For wt < w̄,
if there is no arrival, the slope at which wt changes
is r(wt � w̄), which is always negative, and uniquely
determined at any level of wt .

Finally, note that process wt following (DW) depends
on the effort process only through the arrival pro-
cess N , which is observable by the principal. There-
fore, (DW), together with an initial value w0, uniquely
specifies a performance score process that can be
legitimately maintained by a principal observing the
arrivals but not the effort process for the contract.

Now, we provide a formal definition of the con-
tract �⇤.
Definition 1. Contract �⇤ ⇤ (L⇤ , ⌧⇤) is generated from
a process {wt}t�0 following (DW) with a given w0 2
[0, w̄], such that dL⇤

t ⇤ (wt + � � w̄)+dNt and ⌧⇤ ⇤
min{t: wt ⇤ 0}, in which the counting process N
in (DW) and dL⇤

t is generated from the agent’s effort
process ⌫. When necessary in the context, we use nota-
tions �⇤(w0) to highlight input w0.

We now formally show that the performance score
process wt as defined in Definition 1, which is an F N

t -
adapted random variable, is, in fact, the agent’s contin-
uation utility under contract �⇤. And this is true regard-
less of the effort process ⌫, because agent’s efforts are
exactly compensated by level � bonuses, either in the
form of payments or upward jumps of promised utility.
Lemma 2. For any w0 2 [0, w̄], effort process ⌫, and time t,
Wt(�⇤ , ⌫)⇤ wt almost surely.

Lemma 2 implies that u(�⇤(w), ⌫) ⇤ w at time zero.
That is, contract �⇤ starting with an initial performance
score w delivers the agent a utility w. This also implies
that u(�⇤(w), ⌫) ⇤ u(�⇤(w), ⌫̄), regardless of the effort
process ⌫. Therefore, contract �⇤ is incentive compat-
ible. (In fact, constraint (IC) is binding according to
contract �⇤.)

3.2. Principal’s Value Function F(w)
Similar to the previous section, we first derive, heuris-
tically, a differential equation for the principal’s value
function following contract �⇤ before formal mathemat-
ical statements. Specifically, we denote a time homoge-
neous function F(w) to represent the principal’s value
function, as a function of the agent’s continuation value
(performance score) w.

Consider a small time interval [t , t + �]. Under the
incentive-compatible contract �⇤, the agent exerts effort,
which yields an arrival rate µ. Therefore, with prob-
ability µ� + o(�), there is an arrival, which brings a
revenue R and incurs a payment (wt + � � w̄)+ in this
time interval. Correspondingly, the performance score
increases to min{wt + �, w̄}. If there is no arrival in

the time period, on the other hand, the net utility in
the period is zero and the performance score evolves
to wt+�. Overall, we have the following discrete time
approximation for the principal’s value function:

F(wt)⇤ [µ�+ o(�)]
· [R � (wt + �� w̄)+ + F(min{wt + �, w̄})]
+ [1� (µ+ r)�+ o(�)]F(wt+�).

Following the standard derivation of assuming F(w) to
be differentiable, taking its Taylor expansion, dividing
both sides by �, taking the limit of � approaching zero,
and, finally, replacing dwt/dt with r(wt � w̄) following
(DW) when there is no jump at time t, we obtain the
following differential equation for F(w):

(c � µ�+ rw)F0(w)⇤ (µ+ r)F(w)� µ[R � (w + �� w̄)+
+ F(min{w + �, w̄})]. (12)

The boundary condition is F(0) ⇤
¯
v, in which

¯
v is

defined in (15), reflecting that the principal faces a
base-case arrival stream with rate

¯
µ without an agent.

(This boundary condition is revised in the extension
studied in Section 5.2, where we allow the principal to
replace the agent with a new one at a fixed cost.)

It is informative to consider the total value function
of principal and agent, V(w)⇤F(w)+w. Following (12),
we obtain a differential equation for V(w):

0⇤ (µ+ r)V(w)� µV(min{w + �, w̄})
+ r(w̄ � w)V0(w)+ (c � µR). (13)

Lemma 3. Differential equation ���� with boundary condi-
tion V(0) ⇤

¯
v has a unique solution V(w) on [0, w̄], which

is increasing and strictly concave. Furthermore,

V(w)⇤ V̄ :⇤
µR � c

r
, 8w � w̄. (14)

Consequently, differential equation (12) also has a
unique solution F(w), which is concave on [0, w̄].

Finally, we formally show that function F(w) is
indeed the value function of the principal under con-
tract �(w) starting from performance score w.

Proposition 1. Starting from any w0 2 [0, w̄], we have
U(�⇤)⇤ F(w0).

Figure 2 depicts the societal value function V(w)
and the principal’s value function F(w), with the same
model parameters as behind Figure 1. To implement
the contract, the principal needs to designate an initial
performance score w0. Clearly, this initial performance
score should be set at w⇤, the maximizer of the princi-
pal’s value function F(w), as depicted in Figure 2. The
fact that the initial performance score w⇤, which is also
the agent’s expected utility of entering the contract, is
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Figure 2. (Color online) Value Functions with r ⇤ 1, c ⇤ 1,
R ⇤ 0.4,

¯
µ ⇤ 2, and µ ⇤ 5
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Note. In this case, w̄ ⇤ 0.667, w⇤ ⇤ 0.074, V̄ ⇤ 1,
¯
v ⇤ F(0) ⇤ V(0) ⇤ 0.8,

F(w⇤)⇤ 0.8266, and Ū ⇤ 0.333.

positive, guarantees that the agent is willing to partici-
pate. And, clearly, value w⇤ corresponds to the agent’s
information rent.

In the example behind Figure 2, if the principal
implements contract �̄ from the very beginning, the
principal losses

¯
v � Ū ⇤ 0.467, compared with not hir-

ing the agent at all (
¯
v is defined in (5) and Ū in (8)).

Contract �⇤(w⇤), on the other hand, yields an expected
benefit of F(w⇤)�

¯
v ⇤ 0.0266 to the principal. In the next

subsection, we prove that contract �⇤ not only improves
on �̄ but is, in fact, optimal.
Remark 2. Figure 2 confirms Lemma 3 that both func-
tions V and F are concave. Concavity is crucial in
proving optimality of contract �⇤, which comes in the
next subsection. Concavity of F allows us to argue
that the incentive compatibility constraint is binding
at optimality. That is, on each arrival, the upward
jump of promised utility or the payment can be set
exactly at �, and no more. Although it may appear
intuitive that upward jumps/payments should be kept
as low as possible, as long as they provide the incen-
tive for effort, without concavity this may not hold.
Hypothetically, the principal may want to take on
an upward jump higher than � to raise the agent’s
promised utility further away from zero to avoid ter-
minating the contract too soon. Should this happen,
the optimal contract structure would almost certainly
be much more complex. Our result shows that, for-
tunately, under condition (2), the value function is
indeed concave and the optimal contract structure
simple.

3.3. Optimality
In this subsection, we show that the contract �⇤ pro-
posed in the previous section is indeed optimal. In the

next proposition, we show that function F introduced
in the last section is an upper bound for the princi-
pal’s utility under any incentive-compatible contract �.
Similar to Biais et al. (2010), our proof relies on first
summarizing the dynamics of promised utilities under
any incentive-compatible contracts, as presented in
Lemma 6 in Appendix B.5. The inequality in Proposi-
tion 2 then follows from concavity of function F.

Proposition 2. For any contract � that satisfies (IC), we
have F(u(�, ⌫̄)) � U(�).

Proposition 2 implies that if the agent’s initial contin-
uation utility under an incentive-compatible contract �
is w, then function F(w) is an upper bound to the prin-
cipal’s utility U(�) under contract �. This, combined
with Proposition 1, implies that contract �⇤ that we pro-
posed in the last section is optimal, as stated in the
following theorem.

Theorem 1. Assume that ⇢ ⇤ r. Let strictly concave func-
tion F(w) be the unique solution to the differential equa-
tion ���� on [0, w̄] with boundary condition F(0) ⇤

¯
µR/r,

and let w⇤ be the unique maximizer of F(w) on [0, w̄].
Then, �⇤(w⇤) is an optimal incentive-compatible dynamic
contract. That is, U(�⇤(w⇤)) � U(�) for any contract � that
satisfies (IC).

Similar to general mechanism design settings, the
optimal contract �⇤ is not efficient. This is because
there is a chance that the agent is terminated, leaving
the system with only the base-case low arrival rate

¯
µ.

Therefore, compared with the contract �̄, the optimal
contract not only shifts some of the agent’s surplus to
the principal, but also introduces some “waste” to the
system in the form of firing the agent. The only case
that the optimal contract achieves the first-best solu-
tion is when

¯
µ ⇤ 0. In this case, the payment � for each

arrival exactly compensates the effort cost.
It is worth pointing out that when the two players’

time discounts are the same, the optimal contract is
not unique. In fact, the principal can delay a payment
to a later time, as long as corresponding interests are
paid. It is intuitive that because the two players dis-
count future income in the same way, the principal’s
benefit from the delay exactly offsets the interest the
agent would demand.

In theory, all payments can be delayed into the future
infinitely, and the corresponding magnitudes of the
payment also becomes infinite. This is similar to, how-
ever not exactly the same as, the so-called “infinite
back-loading” issue discussed in Myerson (2015) for
equal time discount models. Myerson (2015) has to
introduce an upper bound on the agent’s promised
utility for the model to be sound. In turn, the opti-
mal contract in Myerson (2015) critically depends on
this upper bound. We do not need to introduce such
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Figure 3. (Color online) Probability of the Performance Score Reaching Zero and the Expected Time of the Performance Score
Reaching Either w̄ or zero, Starting from Any Initial Score w0
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Note. Here, r ⇤ 1, c ⇤ 1, R ⇤ 0.4,
¯
µ ⇤ 2, and µ ⇤ 5. In this case, w̄ ⇤ 0.667 and w⇤ ⇤ 0.074.

an upper bound in our setting, where the arrivals are
good outcomes.

Our specific contract �⇤ is provably optimal and
has the advantage of being simple. When the agent
is less patient than the principal, however, the agent
demands higher interests for delayed payments. Intu-
itively, it would cost the principal more to delay pay-
ments, which mitigates the infinite back-loading issue.
In the next section, we study this case in more details.

Before we proceed, we present some results from
numerical computation to gain further insights into
the optimal contract. The (delayed) differential equa-
tion (13) can be solved as a system of linear equa-
tions on a grid. We leave the detailed procedures to
Appendix G.1.

Figure 3 demonstrates the probability of the collab-
oration stopping at w ⇤ 0 from any initial performance
score w0, as well as the expected time until the per-
formance score reaching either zero or w̄. As we can
see from the figure, the higher the initial performance
score w0, the higher the probability of the score eventu-
ally reaching w̄ (the lower the probability of the score
ending at zero).

The expected time until reaching either absorbing
state, however, is not monotone in the initial perfor-
mance score w0. This is intuitive because if the initial
performance score is very high, it takes little time to
reach the upper bound w̄. If it is very low, on the other
hand, it also takes little to reach the lower bound zero.
The expected time is not smooth in the initial score,
reflecting the change between likely reaching the upper
bound and the lower bound when w0 changes.

Furthermore, the expected time is not even contin-
uous at the upper bound w̄. This is because if the
promised utility is already at w̄, the expected time to
reach it is zero. If the promised utility is at any point

below w̄, however, it requires at least one arrival for the
promised utility to reach w̄. Therefore, in the limit as
the promised utility approaches w̄, the expected time
to reach w̄ is exactly the expected value of a Poisson
arrival, 1/µ.

4. Di�erent Time Discount
In this section, we generalize the model to allow the
agent’s time discount rate ⇢ to be strictly larger than the
principal’s discount rate r. That is, the principal is more
patient than the agent. Intuitively, a less patient agent
prefers earlier payment. This implies that the optimal
contract may lower the payment threshold from w̄ so
that the agent starts receiving payment earlier. In this
section, our approach reveals that the optimal pay-
ment threshold, which is denoted as ŵ, is indeed lower
than w̄. Furthermore, the threshold ŵ is no longer an
absorbing state when r < ⇢.

For this case, however, we are not able to use the
“guess and verify” approach described in the last sec-
tion to show the result. In fact, even if one has a
correct guess of the optimal contract structure and
obtain its value function through a Hamilton–Jacobi–
Bellman (HJB) differential equation, we are not able to
directly establish that such a function is concave, as in
Lemma 3. And, in our setting, concavity is crucial for
establishing optimality of simple contract structure, as
argued in Remark 2. Therefore, in this section, we have
to rely on a different approach, based on constructing
a discrete time approximation and its upper concave
envelope. Proofs of all results in this section are pre-
sented in Appendices C–E.

4.1. Discrete Time Approximation
In the discrete time approximation, we consider a very
small time interval �. Denote � ⇤ e�r� and % ⇤ e�⇢� to



Sun and Tian: Optimal Contract to Induce Continued E�ort
Management Science, 2018, vol. 64, no. 9, pp. 4193–4217, © 2017 INFORMS 4201

represent the principal and agent’s discount factors,
respectively. Therefore � � %. In each time period, if the
agent exerts effort, it costs the agent c� and there is a
probability µ� that an arrival occurs in a period. With
no effort from the agent, the probability of an arrival
is

¯
µ�.
We can represent the contract design problem as

the following infinite horizon discrete time dynamic
program. In particular, denote F�(w) to represent the
principal’s value function, as a function of the agent’s
utility w. In each time period, the principal first decides
whether to pay off the promised utility w to the agent
and terminate the contract. The corresponding princi-
pal’s utility is

¯
v� � w, in which

¯
v� is the discrete time

counterpart of
¯
v, the principal’s baseline revenue with

no effort from the agent,

¯
v� :⇤ ¯

µR�

1� � , with lim
�#0 ¯

v� ⇤ ¯
v , (15)

in which
¯
v is defined in (5). (Again, this boundary con-

dition is revised if the principal can replace the agent
with a new one at a fixed cost, to be discussed in Sec-
tion 5.2.)

If, on the other hand, the strategic interaction is to
continue, then the principal decides on payment I if an
arrival occurs, and on payment l if there is no arrival,
as well as the corresponding promised continuation
utilities to the agent, wA and wN , respectively. The prin-
cipal’s Bellman equation is, therefore,

F�(w)⇤max
n

¯
v� � w , max

(I , l ,wA ,wN )2⇧w

µ�[R � I + �F�(wA)]

+ (1� µ�)[�l + �F�(wN)]
o

, (16)

in which the feasible region ⇧w is defined as

�c�+ µ�(I + %wA)+ (1� µ�)(l + %wN)
�

¯
µ�(I + %wA)+ (1�

¯
µ�)(l + %wN), (IC�)

�c�+ µ�(I + %wA)+ (1� µ�)(l + %wN)⇤ w , (PK�)
I , l , wA , wN � 0. (IR�)

Here, the incentive compatibility constraint (IC�) is a
discrete time counterpart of the recursive representa-
tion of the continuous time incentive-compatible con-
straint as described in Lemma 1. It can be equivalently
stated as

I + %wA � l � %wN � �.
A binding (IC�) constraint, together with the promise-
keeping constraint (PK�), correspond to the dyna-
mic (DW) in the continuous time model. Finally, the
outer maximization in (16) represents the principal’s
decision on whether to pay off the promised utility to
the agent and terminate the contract.

Note that the feasible region ⇧w is nonempty only
for w �

¯
w�, in which

¯
w� :⇤ �(µ�� c), with lim

�#0 ¯
w� ⇤ 0. (17)

Therefore, we must have F�(w)⇤
¯
v� � w for w 2 [0,

¯
w�).

That is, if the promised utility becomes too low, the
principal can only pay off the promised utility to the
agent and terminates the contract.

Similar to the treatment of the continuous time
model, we further define the societal value function
V�(w) ⇤ F�(w)+ w. Value function V� satisfies the Bell-
man equation V� ⇤ T�V�, in which the operator T� is
defined for any bounded function J to be (T� J)(w)⇤

¯
v�

for w 2 [0,
¯
w�), and, for w �

¯
w�,

(T� J)(w)⇤�c�+ max
(I , l ,wA ,wN )2⇧w

{µ�[R+� J(wA)� (�� %)wA]

+ (1�µ�)[� J(wN)� (�� %)wN]}. (18)

To this end, we first present the following character-
ization of the optimal solution of the optimization in
the T� operator, if function J is concave.

Proposition 3. For any concave and nondecreasing func-
tion J on [0,1), such that J(0) ⇤

¯
v�, and J(w) remains a

constant for w large enough, define quantity ŵ�(J) to be the
maximum point at which (�� %)/� is a superderivative of J.
Also define quantity w̄�(J)⇤ %ŵ�(J)+ ¯

w�.
We have the following characterization of the optimal solu-

tion (I⇤� , l⇤� ,wA
⇤
� ,wN

⇤
�)J(w) to (T� J)(w)�

• For w � w̄�(J),

(I⇤� , l⇤� ,wA
⇤
� ,wN

⇤
�)J(w)

⇤ (�+ (w � w̄�(J)), (w � w̄�(J)), ŵ�(J), ŵ�(J)). (19)

• For w  w̄�(J),

(I⇤� , l⇤� ,wA
⇤
� ,wN

⇤
�)J(w)⇤

✓

(w �
¯
w� + �� %ŵ�(J))+ , 0,

min
⇢

w �
¯
w� + �

%
, ŵ�(J)

�

,
w �

¯
w�

%

◆

. (20)

Furthermore, (T� J)(w) takes a constant value for all w �
w̄�(J).

Proposition 3 provides an important building block
for the optimal contract and optimal value function in
the continuous time, and deserves elaboration. First,
the threshold ŵ�(J) is the point at which the slope
of function J is at (� � %)/�, which approaches zero
as � approaches zero. Therefore, in the limit, ŵ�(J)
approaches to the point at which function J becomes
“flat.” Furthermore, because % approaches one and w�
approaches zero as � approaches zero, ŵ�(J) and w̄�(J)
converge to the same quantity, call it ŵ, in the limit.
This is very similar to w̄’s role in the equal discount
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factor case. However, a key difference that we will for-
mally demonstrate later is that ŵ is, in fact, smaller
than w̄. Putting this difference aside, in the limit as �
approaches zero, it is clear that the optimal solution in
Proposition 3 resembles the structure of contract �⇤.

Furthermore, it is worth investigating intuitions
behind the formulas of the optimal solution. To max-
imize social welfare, Equation (18) implies that, ide-
ally, wN and wA should satisfy J0(w) ⇤ (� � %)/�—i.e.,
w⇤

N� ⇤ w⇤
A� ⇤ ŵ�(J). This explains the solution in (19).

To provide the right incentive to the agent, however,
constraint (PK�) and binding (IC�) imply that l+ %wN ⇤

w �
¯
w� and I + %wA ⇤ � + w �

¯
w�. Intuitively, current

payments I and l and discounted future payments %wA
and %wN are equally effective in providing incentives
to the agent, as long as the difference in the total pay-
ments is kept at �. From the perspective of the social
welfare, however, it is more beneficial to differentiate
current payment and future ones, as seen in the opti-
mal solution (19). A problem occurs when w is so low
that the resulting payment l would be negative, violat-
ing the agent’s limited liability. In this case, the prin-
cipal has to set l⇤� to be zero, and let %w⇤

N� ⇤ w �
¯
w�,

as in (20), and, if needed, truncate I⇤� at zero as well.
The requirement that %w⇤

N� � 0 is consistent with our
earlier claim that only promised utility w �

¯
w� can be

supported by any incentive-compatible contract.
The following lemma presents some further proper-

ties of the operator T�.

Lemma 4. For any � > 0 and bounded, nondecreasing and
concave function J, function T� J is nondecreasing on [0,1),
concave on [

¯
w� ,1), while taking value

¯
v� on [0,

¯
w�).

Therefore, function T� J is, in general, not concave on
[0,1), which implies that the optimal value function V�

in this discrete time model is not concave. To proceed,
we propose the following “concavification” operator⇤,
for any bounded function J that is nondecreasing on
[0,1), concave on [

¯
w� ,1), and satisfies J(w) ⇤

¯
v� for

w 2 [0,
¯
w�):

(⇤J)(w)⇤ min
a , b: ax+b� J(x),8 x�0

{aw + b}, 8w � 0.

Therefore, function ⇤J is the concave upper envelope
of function J on [0,1). Further define operator ⌥� ⇤
⇤ � T�, which takes the concave upper envelope after
a step of value iteration T�. Lemma 7 in the appendix
verifies that operator ⌥� has a fixed point, which is
clearly a concave function. As we will show later in
the paper, in the limit as � approaches zero, the opti-
mal value function V� uniformly converges to the fixed
point of operator ⌥�, which is concave. (This concavi-
fication approach corresponds to an approach in game
theory that allows the principal to use a mixed strategy
that randomizes between decisions for two state values
as long as the expectation of the two states is w.)

Let concave function J� be the fixed point of the con-
cavified operator ⌥�, which, due to its being an upper
envelope, must be an upper bound of the optimal value
function. Use J� in place of J, Proposition 3 establishes
a feasible policy for w �

¯
w�. Repeatedly using this pol-

icy yields a lower bound for the optimal value function
for the principal. In the next subsection, we establish
that the upper bound and lower bound uniformly con-
verge to each other as the time step � approaches zero,
which implies that the continuous time optimal value
function is indeed concave, even though the discrete
time optimal value function is not.

4.2. Converging to Continuous Time:
Optimal Value Function

First, we provide a heuristic derivation for the HJB
equation for the optimal value function. To this end,
consider policy (I⇤� , l⇤� ,wA

⇤
� ,wN

⇤
�)J� derived from the

concave upper envelope J� following Proposition 3.
In particular, consider the value function  � from
repeated using this policy over an infinite horizon for
w �

¯
w�. That is,  �(w)⇤

¯
v� for w 2 [0,

¯
w�] and  �(w)⇤

(⌅� �)(w) for w �
¯
w�, in which the dynamic program-

ming operator ⌅� for any function J is defined as

(⌅� J)(w)⇤ �(µR � c)+ µ�[� J(wA
⇤
�)� (�� %)wA

⇤
�]

+ (1� µ�)[� J(wN
⇤
�)� (�� %)wN

⇤
�]. (21)

Note that since the function J satisfy the conditions of
Proposition 3, the operator ⌅� corresponds to the oper-
ator T� defined in (18), with the max operator replaced
with the optimal policy. However, because T� J is no
longer concave, the fixed point V� of operator T� is dif-
ferent from the fixed point  � of operator ⌅�. In fact,
because ⌅� corresponds to a fixed policy while T� con-
tains maximization, function  � is a lower bound of V�.

Following the standard heuristic procedure of divid-
ing both sides of the Bellman equation  � ⇤⌅� � with
� and letting � approach zero, while assuming (to be
verified later in the proof) that the value function  �
converges to a differentiable function Vd and ŵ�( �)
converges to a quantity ŵ, we obtain the following
stochastic differential equation for the optimal value
function.

0⇤ (r + µ)Vd(w)� µVd(min{w + �, ŵ})
+ ⇢(w̄ � w)V0

d(w)+ (c � µR)+ (⇢� r)w , (22)
with boundary conditions Vd(0)⇤ ¯

v ,

and Vd(ŵ)⇤ V̄d :⇤ V̄ +
r � ⇢

r
ŵ ,

(23)

in which V̄ is defined in (14). It is clear that if ⇢ ⇤ r and
ŵ ⇤ w̄, then Equation (22) reduces to (13).

The next proposition formally establishes the exis-
tence and uniqueness of its solution.
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Proposition 4. If r < ⇢, for any w̃ 2 [0, w̄), there exists a
unique function Ṽw̃ that solves the differential equation ����
on [0, w̃] with boundary condition Ṽw̃(w̃)⇤ V̄ + w̃(r�⇢)/r.
Furthermore, Ṽw̃(0) is monotonically decreasing in w̃, and
the derivative of function Ṽw̃ at point w̃ is zero.

Therefore, there exists a unique value ŵ in [0, w̄) and
a unique function Vd that satisfy the differential equation
���� on [0, ŵ] with boundary conditions ����. Furthermore,
V0

d(ŵ)⇤ 0.

Note that from the differential equation (22), we can-
not directly establish that the solution Vd is concave.
However, recall that function J�, which is the fixed
point of the concavified operator⌥�, and, obviously, an
upper bound of V�, is concave. The following Propo-
sition 5 states that function V�’s upper bound, J�, and
lower bound,  �, uniformly converge to each other as
� approaches zero. Consequently, the limit of V� con-
verges to a concave function. Furthermore, function J�
also uniformly converges to Vd . Therefore, function Vd
is the limit of V�, and is concave. This is a crucial
step to show that Vd is the optimal value function.
Arguments in Biais et al. (2007) are useful in proving
the uniform convergence result, which is presented in
Appendix D.2.

Proposition 5. We have

lim
�#0

k � � J�k ⇤ lim
�#0

kVd � J�k ⇤ 0.

Figure 4 depicts function Vd(w), as well as function
Fd(w) :⇤ Vd(w)� w, similar to Figure 2. Both functions
are concave, as implied by Proposition 5. The detailed
procedure to obtain the function Vd and threshold ŵ is
presented in Appendix G.2.

Figure 4. (Color online) Value Functions with r ⇤ 0.9, ⇢ ⇤ 1,
c ⇤ 1, R ⇤ 0.39,

¯
µ ⇤ 2, and µ ⇤ 5
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Note. In this case, w̄ ⇤ 0.667 (not depicted in the figure), ŵ ⇤ 0.384,
w⇤

d ⇤0.039, V̄d ⇤1.0129,
¯
v ⇤Vd(0)⇤Fd(0)⇤0.8679, and Fd(w⇤

d)⇤0.8735.

As � approaches zero, the optimal solution (20) for
the promised utilities also converges to a stochastic dif-
ferential equation, which is similar to (DW). We for-
mally establishes this in the next subsection.

4.3. Continuous Time Limit: Promised Utility
Process and Optimal Contract

Similar to before, we first provide a heuristic deriva-
tion of the promised utility expression in continuous
time—again, following Proposition 3—before formally
establishing its optimality. Denote wt and wt+� to rep-
resent the agent’s promised utilities at times t and t+�,
respectively, such that wt  w̄�(J�) and wt+� is either
wA

⇤
� or wN

⇤
� following (I⇤� , l⇤� ,wA

⇤
� ,wN

⇤
�)J� (wt). If there is

no arrival, then wt+� ⇤wN
⇤
�. It is clear that if wt  w̄�(J�),

we have wt+� < wt , and,
dwt

dt
⇤ lim

�#0

wt+� � wt

�
⇤ lim

�#0

1
�

✓

wt � ¯
w�

%
� wt

◆

⇤ ⇢wt � (µ�� c)⇤ ⇢(wt � w̄).
If there is an arrival, then wt+� ⇤ wA

⇤
�, and, correspond-

ingly,
dwt ⇤ lim

�#0
(wt+� � wt)⇤min{�, ŵ � wt}.

Therefore, the agent’s utility process wt , following the
policy described in Proposition 3, converges to the fol-
lowing process:

dwt ⇤ [⇢(wt � w̄) dt +min{�, ŵ � wt} dNt]⌧wt>0 ,
(DWd)

in which ŵ < w̄ for r < ⇢.2
Similar to the contract �⇤ defined for the same time

discount case, we propose the following contract �⇤d .
Definition 2. Contract �⇤d(w0) ⇤ (L⇤ , ⌧⇤) is generated
from a process {wt}t�0 following (DWd) with a given
w0 2 [0, ŵ], in which ŵ is determined according
to Proposition 4, dL⇤

t ⇤ (wt + � � ŵ)+dNt and ⌧⇤ ⇤
min{t: wt ⇤ 0}. Here, the counting process N in (DWd)
and dL⇤

t is generated from the agent’s effort process ⌫.
Figure 5 depicts a sample trajectory of the perfor-

mance score process wt under the optimal contract
�⇤d(w⇤

d). In this sample path, the contract lasts ⌧ ⇤ 2.24
time units before being terminated when the agent’s
utility (performance score) decreases to zero. During
the time period when the agent is hired, there are seven
arrivals, which yield five payments at various amounts.
The sooner an arrival occurs after the previous one, the
higher the corresponding payment.

The proof of Lemma 2 already establishes the fol-
lowing result.
Lemma 5. For any w0 2 [0, ŵ], effort process ⌫, and time t,
Wt(�⇤d(w0), ⌫)⇤ wt almost surely.

In light of Lemma 1, Lemma 5 implies that the con-
tract �⇤d is incentive compatible in this setting.

Now, we are ready to establish the proof of opti-
mality.
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Figure 5. (Color online) A Sample Trajectory of Performance
Score wt According to �⇤d with r ⇤ 0.9, ⇢ ⇤ 1, c ⇤ 1, R ⇤ 0.39,
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Notes. In this case, w̄ ⇤ 0.667, ŵ ⇤ 0.384, and � ⇤ 0.333. The policy
starts from w0 ⇤ w⇤

d ⇤ 0.039. The solid curve depicts a sample trajec-
tory of the performance score. The dotted lines depicts the payments.

4.4. Optimality for the Continuous Time Model
Define concave function Fd(w) ⇤ Vd(w) � w, in which
Vd is the unique solution of (22)–(23). Similar to Propo-
sitions 1 and 2, we have the following results, which
establish that Fd(w) is indeed the principal’s value
function under the optimal contract.
Proposition 6. �. Starting from any w0 2 [0, ŵ], we have
U(�⇤d(w0))⇤ Fd(w0).

�. For any contract � that satisfies �IC�, we have
Fd(u(�, ⌫̄)) � U(�).

Again, the proof for the inequality in Item 2 of Propo-
sition 6 relies critically on the concavity of value func-
tion Fd(w).

Summarizing the results above, we have the follow-
ing main result for the paper.
Theorem 2. Assume that ⇢ � r. Let concave func-
tion Vd(w) and ŵ 2 [0, w̄] be uniquely determined by
����–����. Further define Fd(w) ⇤ Vd(w) � w and w⇤

d 2
argmaxw2[0, ŵ] Fd(w). Then, �⇤d(w⇤

d) according to Defini-
tion � is an optimal incentive-compatible dynamic con-
tract. That is, U(�⇤d(w⇤

d)) � U(�) for any contract � that
satisfies (IC).

It is clear that there are three main distinctions
between the optimal contract �⇤d when ⇢ > r, compared
with �⇤ when ⇢ ⇤ r.

First, the threshold ŵ at which payments are made
is lower than w̄, which implies that the agent is getting
paid earlier. As discussed in the beginning of this sec-
tion, this is intuitive because the agent is less patient
and, therefore, values earlier payments.

Second, in contrast with the equal discount case, the
threshold ŵ is no longer an absorbing state. This is

because under the promise-keeping constraint (DWd),
the promised utility wt keeps decreasing (with deriva-
tive ⇢(wt � w̄)) as long as wt is lower than w̄. When
⇢ > r, we have ŵ < w̄, and the promised utility wt never
goes above ŵ. Therefore, the promised utility can-
not stay at ŵ and always decreases between arrivals.
When r ⇤ ⇢, in which case ŵ ⇤ w̄, however, the dynam-
ics (DW) implies that if wt reaches the upper threshold
w̄, the slope ⇢(wt � w̄) ⇤ 0. Therefore, the promised
utility always stays at w̄, which is an absorbing state.

Third, because of the previous discussion, in the case
of ⇢ > r, the contract terminates within finite time with
probability one. The exact number of arrivals before
termination, however, is random and unbounded.

Finally, it is worth mentioning that in the equal dis-
count case, condition (2) guarantees that the principal
always wants to induce effort. However, when the time
discounts between the two players are different, it may
be optimal for the principal to allow the agent to shirk.

A rigorous description of the optimal contract that
allows shirking appears to be quite intricate. Zhu (2013)
derives such an optimal contract for the Brownian
motion model. It is unclear if an exact description of
the optimal contract in Zhu (2013), which involves fre-
quently starting and stopping the effort process, is
managerially relevant, or is true for the Poisson pro-
cess model. Therefore, we leave studies of optimal or
close to optimal contracts allowing shirking to future
research.

5. Generalizations and Extensions
In this section, we present a number of generalizations
and extensions of our model and results.

5.1. Alternative Interpretations of
Contract Termination

In the basic interpretation of the current model, the
principal permanently terminates the contract with the
agent when the promised utility reaches zero. In fact,
alternative interpretations allow our model to represent
a wider range of real-life situations, so that the model is
not as limited as it may appear at the first sight.

Terminating the contract with an agent is equivalent
to keeping the agent working while not inducing costly
effort. Therefore, our model can be slightly extended
for an agent to have two levels of effort. The lower
effort level is observable, incurs a cost rate

¯
c, and yields

a lower arrival rate
¯
µ; the higher effort level, on the

other hand, is not observable, incurs a cost
¯
c + c, and

yields a higher arrival rate µ. In this case, the principal
always pays a flow of salary at rate

¯
c, as long as

¯
c < R

¯
µ.

According to our results, any additional payments are
instantaneous (bonus) and after arrivals. Therefore, the
corresponding optimal contract follows the same struc-
ture as �⇤ and �⇤d for the equal and different time dis-
count rate cases, respectively, with the additional flow
payment

¯
c.
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In this case, the principal never “terminates” the con-
tract with the agent. Instead, if the performance score
reaches zero, the agent reverts to working at the lower
effort level and loses any future opportunity of earning
bonuses.

This new interpretation of our slightly gener-
alized model is somewhat related to salary-plus-
commission sales compensation plans and cost-plus-
reimbursement contracts that are commonly seen in
practice.

The key reason for committing to potentially ter-
minating the contract with an agent is to provide a
threat for bad performances. In practice, the principal
may have access to a pool of agents and, therefore, can
replace a terminated agent with a new one. We discuss
this extension of our model in more details in the next
subsection.

Finally, if we do not allow the principal to ever ter-
minate the contract with the agent, contract �̄, which
pays a bonus � for each arrival, is, in fact, optimal. (The
proof is in Appendix F.1.)

Proposition 7. Contract �̄ maximizes U(�) among incen-
tive-compatible contracts � with ⌧ ⇤1.

That is, if the agent cannot be terminated, then the
principal can do no better than start paying bonuses
from the very beginning.

5.2. Replacing the Agent on Termination
Having the opportunity of replacing the focal agent
with a new one is beneficial to the principal. This is
because instead of facing the lower arrival rate

¯
µ after

terminating the previous agent, the principal can con-
tinuously enjoy the high effort level and arrival rate µ.

With only a single agent, always achieving this high
arrival rate µ requires that the principal rely on con-
tract �̄, as indicated in Proposition 7. Having access to
replacements, however, allows the principal to do bet-
ter with dynamic contracts.

Consider an extension of our current model, which
allows the principal to replace an agent with a new
one at a fixed cost k. That is, the principal may
choose to incur this replacement cost, or not if k is too
high. Formally, at the stopping time ⌧, the principal
chooses between replacing the agent with a new con-
tract, which yields utility U(�)� k, and terminating the
contract without replacement, which yields utility

¯
v.

Therefore, this extension departs from the basic model
introduced in Section 2 only in the definition of the
principal’s utility (6):

U(�)⇤ ⇧



π ⌧

0
e�rt (RdNt � dLt)+ e�r⌧ max{U(�)� k ,

¯
v}
�

.

(24)
If the fixed cost k is high enough, such that Fd(w⇤

d)�
k <

¯
v, in which Fd is the principal’s value function

described in Theorem 2, and w⇤
d is its maximizer, then it

is clear that the principal never takes this replacement
option. For example, for the model parameters behind
Figure 4, as long as the fixed cost k of replacing an
agent is higher than Fd(w⇤

d)� ¯
v ⇤ 0.0056, the principal

has no incentive to replace a terminated agent.
If k is not so high, replacement makes sense. The cor-

responding analysis in Section 3 for the equal discount
case remains largely intact. We only need to revise
the boundary conditions for the HJB equations (12)
and (13) accordingly. Specifically, we can establish an
updated version of Lemma 3, which states that there
exists a unique function V that satisfies the HJB equa-
tion (13) and V(0) ⇤ max{V(w⇤) � w⇤ � k ,

¯
v}, in which

w⇤ 2 argmaxw V(w) � w is the initial promised utility
of a new contract. (See Proposition 9 in Appendix F.2.)
Furthermore, function V is increasing and strictly con-
cave on [0, w̄]. This allows us to prove all of the other
results for the equal time discount case. Consequently,
the corresponding optimal contract retains the same
structure in this extension. The only change in the opti-
mal contract is the initial promised utility level w⇤ and,
therefore, the length of the initial internship period for
each agent.

The update for the different time discount case
of Section 4 is more substantial. We need to start
with defining the HJB equation (22) with the new
boundary condition Vd(0) ⇤ max{Vd(w⇤

d) � w⇤
d � k ,

¯
v},

in which w⇤
d 2 argmaxw Vd(w) � w, and show that its

solution exists and is unique. (See Proposition 10 in
Appendix F.2.) After this, all of the dynamic program-
ming operators and their fixed points in this section
are defined with the boundary condition values

¯
v or

¯
v� replaced with Vd(0). Because all current results in
this section do not depend specifically on the bound-
ary condition value (due to the free parameter

¯
µ in the

base case), they still hold with this new boundary con-
dition. Therefore, function Vd is concave, and the fixed
point of the discrete time approximation dynamic pro-
gramming operator ⌥� uniformly converges to Vd . The
concavity of function Vd further implies its optimality.
This proof strategy allows us to establish that strategy
�⇤d defined in Definition 2 is still optimal for the contin-
uous time model with the appropriate initial promised
utility. Here, not only the initial promised utility w⇤,
but also the upper bound ŵ, which is obtained together
with function Vd from the differential equation (22)
with the new initial condition, increases with the
replacement cost k.

Technicalities aside, it is important to consider the
intuitions behind. First, our basic model formulation
does not rule out the possibility that the principal pays
off the promised utility wt in a lump-sum payment to
terminate or replace an agent. Our result shows, how-
ever, that this is never optimal. That is, the principal
is always better off running the promised utility down
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to zero before terminating the agent, with or without
replacement.

Second, if k is not too high, the principal is able
to always enjoy the high arrival rate µ forever while
replacing agents along the way. Therefore, replacement
opportunities allow the principal to impose a threat to
induce continuous effort from agents without resorting
to contract �̄—i.e., paying � for each arrival. Specifi-
cally, consider the equal discount rate case. According
to the optimal dynamic contract structure, the princi-
pal starts payment only after an agent is lucky enough
to drive the promised utility to the threshold w̄. All
previous arrivals, including all arrivals under previous
agents, are not paid for.

5.3. Agent More Patient Than Principal
In most of the dynamic contract literature that we cited,
the principal is assumed to be either more patient than
or as patient as the agent. This is because, in practice,
the principal, who is the contract designer, often enjoys
a stronger financial position than the agent.

Our paper is one of the few that compare the cases
between r ⇤ ⇢ and r < ⇢. To complete the discussion, it
is worth considering what happens if the agent is more
patient, or r > ⇢.

In this case, for any payment that may occur at a
time t, the principal is always better off delaying it to a
future time, while paying an interest according to the
agent’s time discount rate. The principal is better off
because the additional interest payment in the future
is discounted more heavily by the impatient principal.
Such a “time arbitrage” opportunity implies that the
principal should never pay the agent while pushing all
potential payments into the future.

The objective function in (18) helps us seeing this
through in the discrete time approximation. Because
� � % < 0 now, the ideal future promised utility wN
and wA should be set to positive infinity. Limited lia-
bility, again, dictates that current period payments I
and l should be set at zero, while (discounted) future
promise %wN at w�

¯
w� and %wA at w�

¯
w�+�, following

(PK�) and binding (IC�).
In the continuous time, following (DW), the agent’s

promised utility wt should change according to the fol-
lowing condition,

dwt ⇤ ⇢(wt � w̄) dt + � dNt ,

which keeps increasing after wt reaches w̄.
Such a model clearly does not reflect reality. To make

the model more useful, we may follow the approach
of Myerson (2015) and introduce an arbitrary upper
bound, call it W̄ , on the promised utility wt . After the
promised utility wt reaches W̄ , the principal has to pay
to keep wt at the upper bound. In this case, payments
include not only an instantaneous payment (bonus) �
for each arrival, but also a flow payment (salary) to

maintain the agent’s promised utility at W̄ . The salary
level, l, must satisfy

l + µ�� c
⇢

⇤ W̄ ,

which implies that l ⇤ ⇢(W̄ � w̄). The salary, therefore,
depends on the modeling choice of the upper bound
W̄ . The upper bound w ⇤ W̄ and w ⇤ 0 are the two
absorbing states in this case.

6. Concluding Remarks
We study a basic dynamic moral hazard problem in
continuous time over an infinite time horizon, in which
the agent’s effort increases the arrival rate of a Poisson
process. The optimal contract structure is simple and
intuitive, and depends on whether the agent is as
patient as or less patient than the principal. In partic-
ular, the agent’s promised utility (performance score)
is a sufficient statistic of the entire history of arrival
times. Although we allow general payment structures,
the optimal contract only involves compensating the
agent with bonuses on arrivals. This makes intuitive
sense because bonuses on arrival motivate the agent to
exert effort for higher frequency of compensations. The
bonus is set at a level that makes the agent indiffer-
ent between exerting effort or not—that is, the incen-
tive compatibility constraint is binding at optimality.
This is consistent with long-held intuitions from linear
optimization. Furthermore, the optimal contract delays
actual payments until an arrival carries the agent’s
promised utility above a threshold. This delay, clearly,
is beneficial to the principal. It does not dilute the
agent’s incentive to exert effort, because the agent’s
future promised utility takes an upward jump at each
arrival.

Our analysis reveals a key difference between op-
timal contracts for good outcomes, where efforts
increase the arrival rate, versus bad outcome, where
efforts decrease the arrival rate. With bad outcomes,
to maintain incentive compatibility, a bad outcome
requires the agent’s promised utility to take a down-
ward drop. However, limited liability prevents such
a drop when the agent’s promised utility is already
lower than the magnitude of the drop. Therefore, even
in continuous time limit, such as in Biais et al. (2010)
and Myerson (2015), the incentive-compatibility con-
straint and promise-keeping constraint are not simul-
taneously satisfied when the agent’s promised utility
is lower than a threshold corresponding to our �. This
lack of severe punishment significantly undermines
the effectiveness of adjusting payments to induce effort
in this region. As a result, when the promised utility
is running low, the optimal contract in Myerson (2015)
involves randomizing between terminating the agent
and continuation at a higher promised utility. In Biais
et al. (2010), smaller promised utility is achieved by
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allowing the principal to adjust the size of the firm.
In fact, without randomization/downsizing the firm
in the model, the principal’s value function may not
be concave. Consequently, the incentive compatibility
constraint may not be binding at optimality, render-
ing the optimal contract structure no longer tractable
or interesting. In our continuous time model with
good arrivals, the principal never needs such random-
ization. In fact, the concavification approach in our
discrete time approximation of Section 4 is equiva-
lent to randomization. We show that in the limit as
the discrete time intervals approach zero, random-
ization/downsizing disappears from the optimal con-
tract. This finding also highlights the importance of
continuous time modeling in our setting: despite more
involved analysis, abstracting the model into continu-
ous time reveals simpler and cleaner results.

Our results and analysis also shed lights on some
commonly used contract forms in practice that moti-
vate higher arrivals rates over time. For instance, unob-
servable efforts are often evaluated by counting the
cumulative number of arrivals during a fixed time
window, instead of the random time window that we
mentioned in the introduction. For example, a sales
person’s annual bonus level is often based on the num-
ber of clients brought in during the year. Our analysis
and results shed some light on why these contract
structures may not be optimal. The key issue is that a
fixed time window may make it harder to incentivize
an agent to fully exert effort toward the end of the
window. Instead, toward the end of the time window,
the agent has an incentive to continue exerting effort
for more arrivals only if the number of the arrivals
that have already occurred is “hanging in the bal-
ance.” This may not be in the best interest of the
principal.

Our model serves as a foundation for many dynamic
contract design problems that involve time epochs
in more general managerial settings. For example, in
an equipment maintenance/repair setting, a principal
needs to incentivize an agent to exert effort to repair
whenever the equipment is down, so that episodes
of equipment downtime are kept as short as possi-
ble. In this case, “good arrivals” correspond to the
machine coming back online. More generally, in a ven-
dor managed inventory (VMI) setting similar to the one
described in Plambeck and Zenios (2003), a principal
hires an agent to run a production process that can be
modeled as a queuing control system. Each “arrival”
in our paper corresponds to a “departure” in such a
queuing system. According to an optimal contract, the
agent’s compensation depends on not only past depar-
ture times, but also queue lengths. We believe that the
results and insights obtained in our paper shed light
on designing the optimal payment contract schemes
for these more general settings.

Finally, it is also interesting to study the case where
the agent is risk averse, similar to considerations in
Thomas and Worrall (1990) and Sannikov (2008).
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Appendix A. Summary of Notations
Model Parameters

R: revenue to the principal for each arrival.

¯
µ and µ: base case and high arrival rates, respectively.

c: cost of effort per unit of time.
⌫ and ⌫̄: generic and full effort process.
r and ⇢: principal and agent’s discount rates.

Contracts and Utilities
I and l: instantaneous and flow payments, respectively.

L: payment process dLt ⇤ It + lt dt.
⌧: stopping time.
�: generic contract, �⇤ (L, ⌧).
�̄: a contract that pays � for each arrival.

�⇤ and �⇤d : optimal contracts for equal and different
discount cases, respectively.

u and U: agent’s and principal’s utilities, respectively.
wt and Wt : agent’s performance score following �⇤ and

continuation utility, respectively.
wA and wN : future promised utility if there is an arrival and

no arrival, respectively, for the discrete time
approximation.

Derived Quantities
�: defined in (1).

¯
v: defined in (5).

w̄ and Ū: defined in (7) and (8), respectively.
V̄ and V̄d : defined in (14) and (23), respectively.

w⇤ and w⇤
d : maximizers of function F(w) and Fd(w),

respectively.
ŵ: determined in Proposition 4.

Value Functions
J: a generic function.
F: unique solution to differential equation (12) with

boundary condition F(0)⇤
¯
v.

V : societal value function for equal time discount, unique
solution to differential equation (13) with boundary
condition V(0)⇤

¯
v.

Vd : societal value function for different time discount,
unique solution to differential equation (22) with
boundary condition Vd(0)⇤ ¯

v and Vd(ŵ)⇤ V̄d .
Fd : principal’s value function for different time discount,

Fd(w)⇤ Vd(w)� w.

Discrete Time Approximation
�: time interval.

� and %: principal’s and agent’s discount factors,
respectively.

F� : principal’s value function, defined in (16).
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ŵ� and w̄� : thresholds defined in Proposition 3.
T� and ⌅� : dynamic programming operators defined

in (18), and with a fixed policy from
Proposition 3, respectively.

V� and  � : fixed point functions of operators T� and ⌅� ,
respectively.

⇤: concavification operator.
⌥� : convolution of the dynamic programming

operator T� and concavification operator ⇤,
⌥� ⇤⇤ �T� .

J� : fixed point function of operator ⌥� .

Appendix B. Proofs in Section 3
B.1. Proof of Lemma 1
Suppose otherwise. There must exist a process ⌫̂ :⇤ {⌫̂s}s�0,
a time t, and a positive measure event A 2 F N

t such that
Wt(�, ⌫̄)<Wt(�, ⌫̂). Construct a new effort process ⌫̌⇤ {⌫̌s}s�0,
such that ⌫̌s ⇤ ⌫̄s ⇤ µ for s < t. At time t, if the state of the
world is in A, then ⌫̌s ⇤ ⌫̂s for s � t; otherwise, ⌫̌s ⇤ ⌫̄s ⇤ µ for
s � t.

Note that, generally,

u(�, ⌫)⇤ ⇧[Bt(�, ⌫)+ e�⇢tWt(�, ⌫)],

in which Bt(�, ⌫) ⇤
Ø t^⌧

0 e�⇢s (dLs � c ⌧{⌫s ⇤ µ}ds), which is
F N

t -measurable.
From the construction of ⌫̌, we have Bt(�, ⌫̌) ⇤ Bt(�, ⌫̄)

almost everywhere with respect to F N
t .

Therefore,

u(�, ⌫̌)⇤ ⇧[Bt(�, ⌫̌)]+ e�⇢t{⇣ (A)⇧[Wt(�, ⌫̂) | A]
+ (1�⇣ (A))⇧[Wt(�, ⌫̄) | ¬A]}

> ⇧[Bt(�, ⌫̄)]+ e�⇢t{⇣ (A)⇧[Wt(�, ⌫̄) | A]
+ (1�⇣ (A))⇧[Wt(�, ⌫̄) | ¬A]} ⇤ u(�, ⌫̄).

Therefore, � cannot satisfy (IC). Q.E.D.

B.2. Proof of Lemma 2
Here, we show a more general result for a contract �0⇤ (L0, ⌧0)
that is generated from a process {wt}t�0 as follows:

dwt ⇤ [⇢(wt � w̄) dt +min{w̃ � wt , �}dNt]⌧wt>0 , (DW’)

in which w̃  w̄, and w0 2 [0, w̄]. The payment process dL0
t ⇤

(wt + � � w̃)+dNt and the stopping time ⌧0 ⇤ min{t: wt ⇤ 0}.
The counting process N in (DW’) and dL0

t is generated form
an effort process ⌫.

For any t 2 [0, ⌧0], we have

e�⇢t wt ⇤ w0e⇢0
+

π t

0
d(e�⇢s ws)

⇤ w0 +

π t

0
ws de�⇢s

+

π t

0
e�⇢s dws

⇤ w0 +

π t

0
ws(�⇢)e�⇢s ds

+

π t

0
e�⇢s[⇢(ws � w̄) ds +min{w̃ � ws , �}dNs]

⇤ w0 +

π t

0
e�⇢s[cds + �(dNs � µ ds)� dL0

s],

in which the third equality follows from (DW’) and the fourth
equality from the definition of L0.

Because wt is bounded in [0, w̄], and w⌧0 ⇤ 0 if ⌧0 <1, we
have e�r⌧0w⌧0 ⇤ 0, and

e�⇢⌧
0
w⌧0 ⇤ w0 +

π ⌧

0
e�⇢s [cds + �(dNs � µ ds)� dL0

s].

Therefore,

e�⇢t wt ⇤

π ⌧0

t
e�⇢s[dL0

s � cds � �(dNs � µ ds)].

Taking conditional expectation on both side, and noting that
wt is F N

t -adapted, we obtain

e�⇢t wt ⇤ ⇧



π ⌧0

t
e�⇢s [dL0

s � cds � �(dNs � µ ds)]
�

�

�

�

F N
t

�

⇤ ⇧



π ⌧0

t
e�⇢s [dL0

s � c ⌧⌫s⇤µ ds � �(dNs � ⌫s ds)]
�

�

�

�

F N
t

�

⇤ ⇧



π ⌧0

t
e�⇢s (dL0

s � c ⌧⌫s⇤µ ds)
�

�

�

�

F N
t

�

⇤ e�⇢tWt(�0, ⌫),

in which the second equality follows from the identity (10)
and the third equality from the (potentially nonhomoge-
neous) Poisson process, which implies that

⇧[N⌧0 � Nt | F N
t ]⇤ ⇧



π ⌧0

t
⌫s ds

�

�

�

�

F N
t

�

. Q.E.D.

B.3. Proof of Lemma 3
Recall that function V satisfies differential equation (13).

Case 1: w̄� (
¯
µr). Rearrange Equation (13) as

(r + µ)V(w)� rV0(w)(w � w̄)+ c � µR ⇤ µV(w̄). (B.1)

Consider the above equation in [0, w̄), it is a linear ordinary
differential equation with boundary condition. The solu-
tion is

V(w)⇤ V(w̄)+ c1(w̄ � w)(r+µ)/r if w 2 [0, w̄],

with c1 ⇤ (
¯
v� V̄)w̄�(r+µ)/r < 0. (Our initial assumption of R > �

is equivalent to
¯
v < V̄ .)

Then, with V0(w) ⇤ �c1(r + µ)(w̄ � w)µ/r/r > 0, V00(w) ⇤
c1(r + µ)µ(w̄ � w)(µ�r)/r/r2 < 0 for w 2 [0, w̄]. Hence, V is
increasing and strictly concave in [0, w̄]. Furthermore, it can
be verified that V(w̄) ⇤ V̄ , V0(w̄�) ⇤ 0, and V(w) ⇤ V̄ for w 2
[w̄ ,1) solves (13).

Case 2: w̄ > � (
¯
µ > r). Rearrange Equation (13) as

(r + µ)V(w)� rV0(w)(w � w̄)+ c � µR ⇤ µV(w̄)
for w 2 [w̄ � �,1), (B.2)

(r + µ)V(w)� rV0(w)(w � w̄)+ c � µR ⇤ µV(w + �)
for w 2 (0, w̄ � �). (B.3)

We then show the result according to the following steps.
1. Demonstrate the solution of (B.2) as a parametric func-

tion Vb , with parameter b.
2. Show that the solution of (B.3) is unique and twice con-

tinuously differentiable for any b, also called Vb .
3. Show that the Vb is convex and decreasing for b > 0 and

concave and increasing for b < 0.
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4. Show that Vb(0) is increasing in b for b < 0, which
implies that the boundary condition Vb(0)⇤ ¯

v uniquely deter-
mines b, and therefore the solution of the original differential
equation.

Step 1. The solution to the linear ordinary differential
equation (B.2) on [w̄ � �, w̄) must have the following form,
for any scalar b.

Vb(w)⇤ V̄ + b(w̄ � w)(r+µ)/r for w 2 [w̄ � �, w̄). (B.4)

Also, define Vb(w) ⇤ V̄ for w 2 [w̄ ,1), which satisfies (B.2),
so that Vb is continuously differentiable on [w̄ � �,1).

Step 2. Using (B.4) as the boundary condition, we show
that differential equation (B.3) has a unique solution (also
called Vb(w), on (0, w̄ � �)), which is continuously differ-
entiable. In fact, differential equation (B.3) is equivalent to
a sequence of initial value problems over the intervals [w̄ �
(k + 1)�, w̄ � k�), k ⇤ 1, 2, . . . . This sequence of initial value
problems satisfy the Cauchy–Lipschitz theorem and, there-
fore, bear unique solutions. Also, computing V0

b(w̄ � �)
from (B.4), and comparing it with (B.3), we see that Vb is
continuously differentiable at w̄ � �, and therefore on [0,1).

Further, deriving the expressions for V00
b (w) following (B.3)

and (B.4), respectively, confirms that Vb is twice continuously
differentiable on ([0,1)). In particular, (B.3) implies that

V00
b (w)⇤

µ[V0
b(w + �)�V0

b(w)]
r(w̄ � w) . (B.5)

Step 3. Next, we argue that to satisfy the boundary con-
dition Vb(0) ⇤ ¯

v, we must have b < 0. Equivalently, we show
that if b > 0, Vb must be convex and decreasing, which vio-
lates Vb(0) ⇤ ¯

v < V̄ ⇤ Vb(w̄). In fact, if b > 0, (B.4) implies
that Vb is decreasing and convex on [w̄ � �, w̄), and there-
fore V00

b (w) > 0 on this interval. Assume that there exists w̌ 2
[0, w̄ � �), such that V00

b (w̌)  0, then Vb twice continuously
differentiable implies that there must w̃ ⇤max{w 2 [0, w̄��) |
V00

b (w) ⇤ 0}, and V00
b (w) > 0, 8w > w̃. Equation (B.5) implies

that V0
b(w̃ + �)⇤ V0

b(w̃). However, it contradicts with

V0
b(w̃ + �)⇤ V0

b(w)+
π �

0
V00

b (w̃ + x) dx >V0
b(w̃).

Therefore, we must have V00
b (w) > 0, and Vb is decreasing on

[0, w̄) if b > 0. In case b ⇤ 0, Vb(w) is a constant following (B.3)
and (B.4), which also contradicts the boundary condition.
Therefore, we must have b < 0.

The same logic implies that for b < 0, Vb must best be
increasing and strictly concave on [0, w̄).

Step 4. Finally, we show that Vb(0) is strictly increasing in b
for b < 0, which allows us to uniquely determine b that sat-
isfies Vb(0) ⇤ ¯

v. For any b1 < b2 < 0, it can be verified that
Vb1 (w)<Vb2 (w), V0

b1
(w)>V0

b2
(w), for w 2 [w̄��, w̄) from (B.4).

We claim that V0
b1
> V0

b2
8w 2 [0, w̄]. Otherwise, because

Vb1 � Vb2 is continuously differentiable, there must exist
w0 ⇤ max{w | V0

b1
(w) ⇤ V0

b2
(w),w 2 [0, w̄ � �)} and V0

b1
(w) >

V0
b2
(w) 8w > w0. Equation (B.3) implies that µ(Vb1 (w0 + �) �

Vb2 (w0 + �)) ⇤ (⇢ + µ)(Vb1 (w0) � Vb2 (w0)). However, it contra-
dicts with

0 >Vb1 (w0
+ �)�Vb2 (w0

+ �)

⇤ Vb1 (w0)�Vb2 (w0)+
π �

0
[V0

b1
(w0

+ x)�V0
b2
(w0

+ x)] dx.

Therefore, we must have V0
b1
(w)�V0

b2
(w)> 0, 8w 2 [0, w̄), and

it implies that Vb1 (w)� Vb2 (w) < 0, 8w 2 [0, w̄). This implies
that Vb(0) is strictly increasing in b for b < 0. Because

¯
v(0) ⇤

V̄ ⇤ (µR � c)/r and lima!�1 Vb(0) < Vb(w̄ � �) ⇤ �1, there
must exist a unique b⇤ < 0 such that Va⇤ (0) ⇤ ¯

v ⇤

¯
µR/r. And

Va⇤ is strictly concave and increasing in [0, w̄]. Q.E.D.

B.4. Proof of Proposition 1
Consider a process wt according to (DW), in which the count-
ing process Nt is generated from the effort level µ. Following
Itô’s Formula for jump processes (see, e.g., Bass 2011, Theo-
rem 17.5),

dF(wt)⇤ F0(wt)r(wt � w̄) dt

+ [F(wt +min{w̄ � wt , �})� F(wt)] dNt . (B.6)

Therefore, for any T  ⌧⇤, we have

e�rT F(wT)⇤ e0r F(w0)+
π T

0
F(wt) de�rt

+

π T

0
e�rt dF(wt)

⇤F(w0)+
π T

0
e�rt{[rwt �µ�+ c]F0(wt)� rF(wt)} dt

+

π T

0
e�rt(F(wt +min{w̄ �wt , �})�F(wt)) dNt .

Applying Equation (12) to replace F0(wt), we have

e�rT F(wT)⇤F(w0)

+

π T

0
e�rt[F(min{wt + �, w̄})�F(wt)] (dNt �µ dt)

+

π T

0
e�rt[(w + �� w̄)+�R]µ dt

⇤F(w0)+
π T

0
e�rt[F(min{wt + �, w̄})�F(wt)

+R� (wt + �� w̄)+] (dNt �µ dt)

�
π T

0
e�rt (R dNt � dL⇤

t).

Taking expectation on both sides, and noting that F(w⌧⇤ ) ⇤
F(0)⇤

¯
µR/r, we have

U(�⇤)⇤ F(w0)+ ⇧



π T

0
e�rt[F(min{wt + �, w̄})� F(wt)

+R � (wt + �� w̄)+] (dNt � µ dt)
�

. (B.7)

Because

|F(min{wt + �, w̄})� F(wt)+R � (wt + �� w̄)+ | <1,

the process {Ms}s�0, defined as

Ms :⇤
π s

0
e�rt[F(min{wt + �, w̄})� F(wt)

+R � (wt + �� w̄)+] (dNt � µ dt),

is a martingale, which implies that the expectation term in
(B.7) is zero following the optional stopping theorem, and
hence the result. Q.E.D.
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B.5. Proof of Proposition 2
First, we show the following technical lemma, similar to
Lemma 1 in Biais et al. (2010).
Lemma 6. For any contract � and effort process ⌫, the agent’s
continuation utility Wt �defined in ���� satisfies the following dif-
ferential equation.

dWt(�, ⌫)⇤ [rWt(�, ⌫)+ c ⌧{⌫t ⇤ µ}]dt
�Ht(�, ⌫)[⌫t dt � dNt]� dLt t 2 [0, ⌧), (B.8)

in which the counting process N is generated from the effort process
⌫ and {Ht}t�0 is an F N -predictable process.

In particular, contract � satisfies (IC) if and only if Ht(�, ⌫̄) � �
for all t � 0.
Proof. For a generic contract � and effort process ⌫, we intro-
duce the agent’s total expected utility conditioned on the
information available at time t as the following F N

t -adapted
random variable,

ut(�, ⌫)⇤ ⇧



π ⌧

0
e�rs (dLs � c ⌧{⌫s ⇤ µ}ds)

�

�

�

�

F N
t

�

⇤

π t^⌧

0
e�rs (dLs � c ⌧{⌫s ⇤ µ}ds)+ e�rtWt(�, ⌫). (B.9)

Therefore, u0(�, ⌫)⇤ u(�, ⌫).
Process {ut}t�0 is an F N -martingale. Define process

M⌫
t ⇤ Nt �

π t

0
⌫s ds , (B.10)

which is also an F N -martingale. Following martingale rep-
resentation theorem, there exists an F N -predictable process
H(�, ⌫)⇤ {Ht(�, ⌫)}t�0 such that

ut(�, ⌫)⇤ u0(�, ⌫)+
π t^⌧

0
e�rs Hs(�, ⌫) dM⌫

s , 8 t � 0. (B.11)

Differentiating (B.9) and (B.11) with respect to t yields

dut ⇤ e�rt Ht(�, ⌫) dM⌫
t ⇤ e�rt(dLt � c ⌧{⌫t ⇤ µ}dt)

� re�rtWt(�, ⌫) dt + e�rt dWt(�, ⌫),
which implies (B.8).

Denote ũt(�, ⌫0, ⌫) to be a F N
t -measurable random vari-

able, representing the agent’s total payoff following an effort
process ⌫0 before time t and ⌫ after t—that is,

ũt(�,⌫0,⌫)⇤
π t^⌧

0
e�rs (dLs�c⌧{⌫0⇤µ}ds)+e�rtWt(�,⌫). (B.12)

Therefore,

ũ0(�, ⌫0, ⌫)⇤ u0(�, ⌫)⇤ u(�, ⌫), (B.13)
⇧[ũ⌧(�, ⌫0, ⌫) | F N

0 ]⇤ u(�, ⌫0), and (B.14)
⇧[ũt(�, ⌫, ⌫) | F N

0 ]⇤ u(�, ⌫), 8 t � 0. (B.15)

For any given sample trajectory {Ns}0st and effort pro-
cesses ⌫ and ⌫̄,

ũt(�, ⌫, ⌫̄)⇤ ut(�, ⌫̄)+
π t^⌧

0
e�rs c(1� ⌧{⌫s ⇤ µ}) ds

⇤ u0(�, ⌫̄)+
π t^⌧

0
e�rs Hs(�, ⌫̄) dM ⌫̄

s

+

π t^⌧

0
e�rs c(1� ⌧{⌫s ⇤ µ}) ds

⇤ u0(�, ⌫̄)+
π t^⌧

0
e�rs Hs(�, ⌫̄) dM⌫

s

+

π t^⌧

0
e�rs Hs(�, ⌫̄)(⌫s � µ) ds

+

π t^⌧

0
e�rs c(1� ⌧{⌫s ⇤ µ}) ds

⇤ u0(�, ⌫̄)+
π t^⌧

0
e�rs Hs(�, ⌫̄) dM⌫

s

+

π t^⌧

0
e�rs�µ(⌧{⌫s ⇤ µ}� 1)[��+Hs(�, ⌫̄)] ds ,

where the first equality follows from (B.9), the second equal-
ity follows (B.11), the third equality follows from (B.10),
and the fourth equality follows from (1) and straightforward
derivations.

Consider any two times t0 < t,

⇧[ũt(�, ⌫, ⌫̄) | F N
t0 ]

⇤ u0(�, ⌫̄)+
π t0^⌧

0
e�rs Hs(�, ⌫̄) dM⌫

s

+

π t0^⌧

0
e�rs�µ(⌧{⌫s ⇤ µ}� 1)[��+Hs(�, ⌫̄)] ds

+ ⇧



π t^⌧

t0^⌧
e�rs�µ(⌧{⌫s ⇤ µ}� 1)[��+Hs(�, ⌫̄)] ds

�

�

�

�

F N
t0

�

⇤ ũt0(�, ⌫, ⌫̄)

+ ⇧



π t^⌧

t0^⌧
e�rs�µ(⌧{⌫s ⇤ µ}� 1)[��+Hs(�, ⌫̄)] ds

�

�

�

�

F N
t0

�

.

(B.16)

If Hs(�, ⌫̄) � � for all s � 0, then (B.16) implies that
⇧[ũt(�, ⌫, ⌫̄) | F N

t0 ]  ũt0(�, ⌫, ⌫̄). Therefore, {ũt}t�0 is a super-
martingale. Take t0 ⇤ 0, we have

u(�, ⌫̄)⇤ ũ0(�, ⌫, ⌫̄) � ⇧[ũ⌧(�, ⌫, ⌫̄) | F N
0 ]⇤ u(�, ⌫),

in which the first equality follows from (B.13) and the
last equality from (B.14), while the inequality follows from
the Doob’s optional stopping theorem. Therefore, the agent
prefers the effort process ⌫̄ to any other effort process ⌫,
which implies that � satisfies (IC) if Hs(�, ⌫̄) � � for all s � 0.

If, on the other hand, Hs(�, ⌫̄) < � for s belonging to a
positive measure set ⌦ ⇢ [0, t], define effort process ⌫ to be
such that

⌫s ⇤

⇢

µ, Hs(�, ⌫̄)� �

¯
µ, Hs(�, ⌫̄)< � for s 2 [0, t], and ⌫s ⇤µ for s > t .

Therefore, ũt(�, ⌫, ⌫̄) ⇤ ũt(�, ⌫, ⌫), and ⇧[
Ø t^⌧

0 e�rs�µ(⌧{⌫s ⇤

µ} � 1)[�� + Hs(�, ⌫̄)] ds | F N
0 ] > 0. Equation (B.16) then

implies that ⇧[ũt(�, ⌫, ⌫̄) | F N
0 ] > ũ0(�, ⌫, ⌫̄) and, therefore,

u(�, ⌫̄)⇤ ũ0(�, ⌫, ⌫̄) < ⇧[ũt(�, ⌫, ⌫̄) | F N
0 ]

⇤ ⇧[ũt(�, ⌫, ⌫) | F N
0 ]⇤ u(�, ⌫),

in which the last equality follows from (B.15). Therefore, the
agent prefers effort process ⌫0 over ⌫̄, which implies that �
does not satisfy (IC) if Hs(�, ⌫̄)< � for some s 2 [0, t]. Q.E.D.

Now, we prove Proposition 2. In this proof, we suppress
Wt and Ht ’s dependence on (�, ⌫̄) in the expressions, in which
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contract � ⇤ (L, ⌧) satisfies (IC). Further, express a general
payment process as

dLt ⇤ dSC
t + dSD

t + (Wt + �� w̄)+dNt , (B.17)
in which SC is a continuous process and SD captures the
jumps.

Now, consider the decomposition of e�rT F(WT) for any T 2
[0, ⌧]. Following the Itô’s Formula for jump processes (see,
e.g., Bass 2011, Theorem 17.5) and (B.8), we obtain
e�rT F(WT)

⇤ e�r0F(W0)+
π T

0
e�rt{[rWt �µHt + c]F0(Wt)� rF(Wt)} dt

�
π T

0
e�rt F0(Wt) dSt

C

+

π T

0
e�rs {F[Ws + (Hs � (Ws + �� w̄)+)dNs � dSD]�F(Wt)}

⇤F(W0)+
π T

0
e�rt[F(Wt + (Ht � (Wt + �� w̄)+))

�F(Wt)](dNt �µdt)+A1 +A2 , (B.18)
where A1 is a standard integral with respect to time,

A1 ⇤

π T

0
e�rt{[rWt � µHt + c]F0(Wt)� rF(Wt)

� µ[F(Wt)� F(Wt +Ht � (Wt + �� w̄)+)]} dt , (B.19)
A2 accounts for changes in cumulative transfers,

A2 ⇤�
π T

0
e�rt F0(Wt)dSt

C

+

π T

0
e�rt [F(Wt + (Ht � (Wt + �� w̄)+)dNt � dSD

t )

� F(Wt + (Ht � (Wt + �� w̄)+)dNt)].
Further consider first A1.

A1 ⇤

π T

0
e�rt{[rWt � µHt + c]V0(Wt)� c � rV(Wt)

� µ[V(Wt)�V(Wt +Ht � (Wt + �� w̄)+)
� (Wt + �� w̄)+]} dt


π T

0
e�rt{[rWt � µ�+ c]V0(Wt)� c � rV(Wt)

� µ[V(Wt)�V(Wt + �� (Wt + �� w̄)+)
� (Wt + �� w̄)+]} dt

⇤ µ
π T

0
e�rt[(Wt + �� w̄)+ �R] dt , (B.20)

in which the inequality follows from function V being
increasing concave and V0(w) ⇤ 0 for w � w̄, and Ht�� for
incentive-compatible � from Lemma 6; the last equality fol-
lows from (13).

Now, consider A2. Because F is concave, we have
π T

0
e�rt [F(Wt + (Ht � (Wt + �� w̄)+) dNt � dSD

t )

� F(Wt + (Ht � (Wt + �� w̄)+) dNt)]


π T

0
�e�rt F0(Wt� + (Ht � (Wt + �� w̄)+) dNt) dSD

t


π T

0
e�rt dSD

t ,

in which the last inequality follows from F0� � 1 (following
Lemma 3). Apply F0� � 1 again, we establish that

A2
π T

0
e�rt dSt

C
+

π T

0
e�rt dSD

t . (B.21)

Substituting the upper bounds (B.20) and (B.21) for A1 and
A2, respectively, into (B.18), and applying (B.17), we have

F(W0) � e�rT F(WT)+
π T

0
e�rt(RdNt � dLt)+ T , (B.22)

in which

 s ⇤

π s

0
e�rt[F(Wt)� F(Wt +Ht � (Wt + �� w̄)+)

�R + (Wt + �� w̄)+] (dNt � µ dt) (B.23)

is a martingale, because for each t�0,

⇧



π t^⌧

0
|e�rs[F(Ws)� F(Ws +Hs � (Ws + �� w̄)+)

�R + (Ws + �� w̄)+]| ds
�

 ⇧



π t^⌧

0
(e�rs |R + 2V̄ | +Ws) ds

�

<1.

Following the optional stopping theorem, ⇧[ T]⇤ 0.
Take expectation in (B.22) conditional on F N

0 , we have

F(W0) � ⇧



e�r⌧F(W⌧)+
π ⌧

0
e�rt (R dNt � dLt)

�

⇤ ⇧



e�r⌧F(0)+
π ⌧

0
e�rt (R dNt � dLt)

�

⇤ U(�).

Note that W0(�, ⌫̄) ⇤ u(�, ⌫̄), which completes the proof.
Q.E.D.

Appendix C. Proofs and Supplementary Materials
for Section 4.1

C.1. Proof of Proposition 3
For simplicity of exposition, we suppress the dependence on
J in this proof. Optimization of (T� J)(w) is a concave maxi-
mization over a set of linear constraints. Therefore, the KKT
condition is necessary and sufficient for optimality. It is clear
that (I⇤� , l⇤� ,wA

⇤
� ,wN

⇤
�) 2⇧w with the constraint (IC�) binding.

Because wA
⇤
�  ŵ� and wN

⇤
�  ŵ� , concavity of J implies that

� J(wA
⇤
�)0 � (�� %) � 0 and � J(wA

⇤
�)0 � (�� %) � 0. Therefore, it

remains to verify that there exist y � 0 and z such that

%(µ�z � y)⇤ µ�[� J(wA
⇤
�)0 � (�� %)], and

%[(1� µ�)z + y]⇤ (1� µ�)[� J(wN
⇤
�)0 � (�� %)],

which is satisfied with

y ⇤
�
%
µ�(1� µ�)[J(wN

⇤
�)0 � J(wA

⇤
�)0],

z ⇤
�
%
[µ� J(wA

⇤
�)0 + (1� µ�)J(wN

⇤
�)0]�

�� %
%
.

Because wA
⇤
� and wN

⇤
� remain the same for w � w̄�(J), the non-

decreasing function (T� J)(w) reaches its maximum at w̄�(J).
Q.E.D.
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C.2. Proof of Lemma 4
Consider the optimal decision (I , l ,wA ,wN ) for the optimiza-
tion (T� J)(w) for w �

¯
w� . For any w0 > w, it is clear that

(I +w0 �w , l + (w0 �w),wA ,wN ) 2⇧w0 and the objective func-
tion value remains the same, which implies that (T� J)(w) is
nondecreasing on [

¯
w� ,1). Furthermore, (�, 0, 0, 0) 2⇧

¯
w and

the corresponding objective function value is higher than
¯
v� ,

which implies monotonicity on [0,1).
For any w1 and w2 in [

¯
w� ,1) and � 2 [0, 1], denote (I i , l i ,

wi
A ,w

i
N ) to represent the optimal solution to the optimization

problem (T� J)(wi) for i ⇤ 1, 2. Further define

w�
⇤ �w1

+ (1� �)w2 , I� ⇤ �I1
+ (1� �)I2 ,

l� ⇤ �l1
+ (1� �)l2 , w�

A ⇤ �w1
A + (1� �)w2

A ,

and w�
N ⇤ �w1

N + (1� �)w2
N .

It is clear that (I� , l� ,w�
A ,w

�
N ) 2⇧w� . Furthermore,

�(T� J)(w1)+ (1� �)(T� J)(w2)
⇤ µ�[R � I� + �(� J(w1

A)+ (1� �)J(w2
A))]

+ (1� µ�)[�l� + �(� J(w1
N )+ (1� �)J(w2

N ))]
� (�/%)c�� (�/% � 1)(w� � µ�I� � (1� µ�)l�)

 µ�[R � I� + � J(w�
A)]+ (1� µ�)[�l� + � J(w�

N )]
� (�/%)c�� (�/% � 1)(w� � µ�I� � (1� µ�)l�)

 (T� J)(w�),

where the first inequality follows from the concavity of func-
tion J, and the second inequality follows from the feasibility
of w� . Q.E.D.

C.3. A Lemma on the Convergence of Operator ⌥�
For any positive integer k, define ⌥k

� J ⇤ ⌥�(⌥k�1
� J), starting

with ⌥1
� ⇤⌥� .

Lemma 7. The following limit exists and is the same for any
bounded function J�

J� ⇤ lim
k!1

⌥k
� J.

Furthermore, function J� has the following properties�
��� J� is the unique solution to the recursive equation J ⇤ ⌥� J

among bounded functions�
��� J� is increasing and concave, and J�(0)⇤ ¯

v� .

Proof. Because both operators T� and ⇤ are monotone, the
operator ⌥� is also monotone. Furthermore, it is not hard
to verify that ⌥� J  ⌥�(J + ⇠e)  ⌥� J + �⇠e, for any positive
constant ⇠ and the constant function e that takes value one.
Therefore, ⌥� is a contraction mapping, which implies the
existence and uniqueness of the limit, and the solution to the
fixed point equation.

Lemma 4 implies that function J� is increasing and con-
cave, and J�(0)⇤ ¯

v� . Q.E.D.

C.4. More on Concavification
Figure C.1 depicts the concavification procedure in the limit.
In particular, consider function J ⇤ T� J� . There are two pos-
sibilities for the relationship between functions J (the solid
curves) and J� ⇤ ⇤J (the dashed curves). The top subfigure
depicts the first possibility, where the ratio [J�( ¯

w�)� ¯
v�]/ ¯

w� is
less than the slope of the J function at

¯
w� . Consequently, the

Figure C.1. (Color online) An Illustration of the
Concavification Procedure

(TÑJÑ)(wÑ)

wÑ

vÑ

vÑ

(TÑJÑ)(wÑ)

vÑ

vÑ

wa
Ñ

 = wÑ wa
Ñ

TÑJÑ

JÑ

concavified function J� is strictly higher than J on the interval
[
¯
w� ,wa

�), in which

wa
� :⇤min{w: J�(w)⇤ (T� J�)(w),w �

¯
w�}. (C.1)

And we have wa
� > ¯

w� . The bottom subfigure of Figure C.1, on
the other hand, depicts another possibility, where the ratio
[J�( ¯

w�) � ¯
v�]/ ¯

w� is larger than the slope of the J function
at

¯
w� . In this case, with the same definition (C.1) for wa

� , we
have wa

� ⇤ ¯
w� .

Later, we show that as � approaches zero, so does wa
� .

Appendix D. Proof and Supplementary Materials
in Section 4.2

D.1. Proof of Proposition 4
We show the proposition in the following two steps.

1. For any such that w̃ < w̄, there exists a unique continu-
ously differentiable function Vw̃ that satisfies (22) with w̃ in
place of ŵ, and the boundary condition at w̃ while ignoring
the boundary condition at zero.

2. Function Vw̃(0) is strictly decreasing in w̃, which implies
that there exists a unique ŵ 2 (0, w̄) such that Vŵ satisfies (22)
with the boundary condition Vŵ(0)⇤ ¯

v.
Step 1. For any w̃ < w̄, consider the following differential

equation
⇢(w̄ � w)V0

w̃(w)+ (r + µ)Vw̃(w)
⇤ rV̄ + µVw̃(min{w + �, w̃})� (⇢� r)w ,

with the boundary condition Vw̃(w̃)⇤ V̄ +
r � ⇢

r
w̃.

(D.1)

Case 1: w̃  � (
¯
µ  r). Rearrange Equation (D.1) as

(r + µ)Vw̃(w)� ⇢V0
w̃(w)(w � w̄)� rV̄ + (⇢� r)w ⇤ µVw̃(w̃).

(D.2)
The above function is a linear ordinary differential equation
with boundary condition that has a unique solution.

Case 2: w̃ > �. Rearrange Equation (D.1) as

(r + µ)Vw̃(w)� ⇢V0
w̃(w)(w � w̄)� rV̄ + (⇢� r)w

⇤ µVw̃(w̃) for w 2 [w̃ � �, w̃], (D.3)

(r + µ)Vw̃(w)� ⇢V0
w̃(w)(w � w̄)� rV̄ + (⇢� r)w

⇤ µVw̃(w + �) for w 2 (0, w̃ � �). (D.4)
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The solution to the linear ordinary differential equation (D.3)
must have the following form,

Vw̃(w)⇤ ⇢� r
r + µ� ⇢ (w̄ � w)+ µVw̃(w̃)+ rV̄ + (r � ⇢)w̄

r + µ
+ bw̃(w̄ � w)(r+µ)/⇢ if w 2 [w̃ � �, w̃],

with bw̃ ⇤ ((r � ⇢)/(r + µ � ⇢))(⇢/(r + µ))(w̄ � w̃)(⇢�r�µ)/⇢

from the boundary condition. And we have V0
w̃(w̃�) ⇤ 0 ⇤

V0
w̃0(w̃+) ⇤ 0. Therefore, Equation (D.4) is reduced to a

sequence of initial value problems over the intervals [w̃ �
(k + 1)�, w̃ � k�), k 2 � \ {0} that satisfy the assumptions of
the Cauchy–Lipschitz theorem and, therefore, bear unique
continuously differentiable solutions.

Finally, the delayed differential equation (D.1) becomes
an ordinary differential equation for w > w̃, which bears a
unique solution. It is easy to verify that Vw̃(w) maintaining at
Vw̃(w̃) solves this differential equation and, therefore, is the
solution to (D.1) for w � w̃.

Step 2. In this step, we show that Vw̃(0) is strictly decreas-
ing in w̃. It is sufficient to show that if w̃1 < w̃2 2 (0, w̄), then
Vw̃1 (w) > Vw̃2 (w) for w 2 [0, w̃1]. An equivalent argument is:
if w̃1 < w̃2 2 (0, w̄) and w̃2 � w̃1�/2, then Vw̃1 (w)>Vw̃2 (w) for
w 2 [0, w̃1].

Because for any w̃ 2 (0, w̄), Vw̃ is continuously differen-
tiable, Vw̃1 (w) � Vw̃2 (w) must also be continuously differen-
tiable. In the interval [w̃1 � �/2, w̃1], Vw̃1 (w) > Vw̃2 (w) and
V0

w̃1
(w)<V0

w̃2
(w) since bw̃1 > bw̃2 . In the interval [w̃1 , w̃1+�/2],

on the other hand, Vw̃1 (w) > Vw̃2 (w) and 0 ⇤ V0
w̃1
(w) < V0

w̃2
(w)

since Vw̃1 (w̃1) >Vw̃2 (w̃2).
Now, we claim that V0

w̃1
(w) < V0

w̃2
(w) 8w 2 [0, w̃1]. Other-

wise, because Vw̃1 (w)�Vw̃2 (w) is continuously differentiable
there must exists w̃0 ⇤ max{w | V0

w̃1
(w) � V0

w̃2
(w) ⇤ 0}. Then,

we obtain µ(Vw̃1 (w̃0 + �) � V0
w̃2
(w̃0 + �)) ⇤ (r + µ)(Vw̃1 (w̃0) �

Vw̃2 (w̃0)). However, it contradicts with

0 <Vw̃1 (w̃0
+ �)�Vw̃2 (w̃0

+ �)

⇤ Vw̃1 (w̃0)�Vw̃2 (w̃0)+
π �

0
V0

w̃1
(w̃0

+ x)�V0
w̃2
(w̃0

+ x) dx.

Then, we must have V0
w̃1
(w) < V0

w̃2
(w),V0

w̃1
(w) > V0

w̃2
(w) 8w 2

[0, w̃1]. Hence, Vw̃(0) is strictly decreasing with w̃. And if
w̃ ⇤ 0, then the boundary condition states that Vw̃(0)⇤ V̄ >

¯
v.

If we let w̃ ! w̄, then bw̃ !�1, Vw̃(w̃ � �)!�1. Continuity
of Vw̃ implies Vw̃(0)!�1.

Therefore, there must exist a unique ŵ 2 (0, w̄) that satisfies
the boundary additional condition Vŵ(0)⇤ ¯

v. Q.E.D.

D.2. Additional Results Before Showing Proposition 5
To prove Proposition 5, we first argue that the limit of
 � , which is the value function of repeatedly using policy
(I⇤� , l⇤� ,wA

⇤
� ,wN

⇤
�)J� , exists and uniformly converges to func-

tion Vd , the solution to the differential equation (22)–(23), a
step that resembles Lemma 7 of Biais et al. (2007). Define
norm k · k� as the L1 norm for a function on domain [

¯
w� ,1).

Proposition 8. We have

ŵ ⇤ lim
�#0

ŵ�(Vd)⇤ lim
�#0

w̄�(Vd), and lim
�#0

k⌅�Vd �Vd k�
�

⇤ 0,
(D.5)

which further implies that

lim
�#0

kVd � �k0 ⇤ 0. (D.6)

Proof. First, it is worth mentioning that because Vd is
bounded and nondecreasing, and remains a constant on
[ŵ , w̄], (22); and its derivative is nonnegative and bounded
from above by V0

d(w̃) for some w̃ 2 [0, ŵ].
Following the definition of ŵ�(J) and w�(J), it is easy to

establish that ŵ ⇤ lim�#0 ŵ�(Vd) ⇤ lim�#0 w̄�(Vd). To prove the
second part of (D.5), define ��(w)⇤⌅�Vd(w)�Vd(w). There-
fore, for w 2 [

¯
w� , w̄�(Vd)], we have

��(w)⇤ (µR � c)�+ µ�


�Vd

✓

min
⇢

ŵ�(Vd),
w �

¯
w� + �

%

�◆

� (�� %)min
⇢

ŵ�(Vd),
w �

¯
w� + �

%

��

+ (1� µ�)


�Vd

✓

w �
¯
w�

%

◆

� (�� %)w �
¯
w�

%

�

�Vd(w)

⇤ �



(µR � c)+ µVd

✓

min
⇢

ŵ�(Vd),
w �

¯
w� + �

%

�◆�

+ (1� µ�)�


Vd

✓

w �
¯
w�

%

◆

�Vd(w)
�

+ [(1� µ�)�� 1]Vd(w)� (1� µ�)(�� %)w �
¯
w�

%

� (�� %)µ�min
⇢

ŵ�(Vd),
w �

¯
w� + �

%

�

.

Replacing µR� c using (22), noting that
¯
w� ⇤ �⇢w̄, and using

the mean value theorem and the upper bound V0
d(w̃), we have

|��(w)|
�

 µ
�

�

�

�

Vd

✓

min
⇢

ŵ�(Vd),
w � �⇢w̄ + �

%

�◆

�Vd(min{ŵ ,w + �})
�

�

�

�

+V0
d(w̃)

�

�

�

�



1� (1�µ�)�
%

�

⇢w̄ +



(1�µ�)� 1� %
�%

�⇢
�

w
�

�

�

�

+

�

�

�

�

r +µ(1��)� 1��
�

�

�

�

�

Vd(w)+ (�� %)1�µ�
%

⇢w̄

+
1�µ�
%

�

�

�

�

�� %
�

� (⇢� r)
�

�

�

�

w

� (�� %)µmin
⇢

ŵ�(Vd),
w �

¯
w� + �

%

�

 µV0
d(w̃)max

⇢

|ŵ�(Vd)� w̄ |,
�

�

�

�

w̄�(Vd)� �⇢w̄ + �

%
� [w̄�(Vd)+ �]

�

�

�

�

,

�

�

�

�

�� �⇢w̄
%

� �
�

�

�

�

�

+V0
d(w̃)



�

�

�

�

1� (1�µ�)�
%

�

�

�

�

⇢w̄ +

�

�

�

�

(1�µ�)� 1� %
�%

�⇢
�

�

�

�

w̄�(Vd)
�

+

�

�

�

�

r +µ(1��)� 1��
�

�

�

�

�

V̄d + (�� %)1�µ�
%

⇢w̄

+
1�µ�
%

�

�

�

�

�� %
�

� (⇢� r)
�

�

�

�

w̄�(Vd)

+ (�� %)µmin
⇢

ŵ�(Vd),
w̄�(Vd)� ¯

w� + �

%

�

. (D.7)

Note that the right-hand side of inequality (D.7) does not
depend on w and approaches zero with �.

For w 2 [w̄�(Vd),1), we have

��(w)⇤ (µR � c)�+ �Vd(ŵ�(Vd))� (�� %)ŵ�(Vd)�Vd(w).
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Therefore, following (23), and again using the mean value
theorem, for some w0 between ŵ and ŵ�(Vd), we have

��(w)
�

 (µR � c)+ �
�
[Vd(ŵ)+V0

d(w0)|ŵ�(Vd)� ŵ |]

� (�� %)
�

ŵ�(Vd)�
Vd(ŵ)
�

⇤ (µR � c)+ �� 1
�

✓

V̄ +
r � ⇢

r
ŵ
◆

� �� %
�

ŵ�(Vd)

+
�
�
|ŵ � ŵ�(Vd)|V0

d(ŵ�(Vd)). (D.8)

The right-hand side of (D.8) does not depend on w, and con-
verges to zero with �, because

lim
�#0

(µR� c)+ ��1
�

✓

V̄ +
r �⇢

r
ŵ
◆

� �� %
�

ŵ�(Vd)⇤0, and

lim
�#0

�
�
|ŵ � ŵ�(Vd)|V0

d(ŵ�(Vd))⇤ lim
�#0

|ŵ � ŵ�(Vd)|V00
d (ŵ�(Vd))⇤0.

Following similar logic,

��(w)
�

� (µR � c)+ �
�
[Vd(ŵ)�V0

d(w00)|ŵ�(Vd)� ŵ |]

� �� %
�

ŵ�(Vd)�
1
�

Vd(w̄�(Vd))

� (µR � c)+ �� 1
�

✓

V̄ +
r � ⇢

r
ŵ
◆

� �� %
�

ŵ�(Vd)

� �
�

V0
d(ŵ�(Vd))|ŵ�(Vd)� ŵ |

� 1
�
|ŵ � w̄�(Vd)|V0

d(w̄�(Vd)). (D.9)

Similarly, the right-hand side of (D.8) does not depend on w
and converges to zero with �.

Together with (D.7)–(D.9), we establish the relation
lim�!0 k⌅�Vd �Vd k�/� ⇤ 0.

Finally, we prove (D.6). Following the triangle inequality
and contraction property of the DP operator, we have

k � �Vd k�  k⌅� � �⌅�Vd k� + k⌅�Vd �Vd k�
 �k � �Vd k� + k⌅�Vd �Vd k� , (D.10)

which implies that

k � �Vd k� 
�

1� �
k⌅�Vd �Vd k�

�
,

the right-hand side of which converges to zero with �, fol-
lowing (D.5). If

k � �Vd k0 ⇤ max
w2[

¯
w� ,1)

{| �(w)�Vd(w)|} ⇤ k � �Vd k� ,

Equation (D.6) follows directly. If, on the other hand,

k � �Vd k0 ⇤ max
w2[0,

¯
w� )

{| �(w)�Vd(w)|}

along a subsequence of �’s that goes to zero, then k ��Vd k0 
|
¯
v� � Vd(w�)|, which also converges to zero. Therefore,  �

converges to Vd uniformly along this subsequence. This com-
pletes the proof. Q.E.D.

Because the function  � is the value function of a partic-
ular policy, it is a lower bound of the optimal value func-
tion. Next, we establish that in the limit,  � and the concave

upper envelope of the optimal value function, J� , converge
uniformly to each other. This establishes that Vd is the limit
of the optimal value function and is concave.

To this end, we first show the following lemma, which
implies that the effect of concavification diminishes as �
approaches zero.

Lemma 8. We have

lim
�#0

(T� J�)( ¯
w�)⇤ ¯

v , lim
�#0

wa
� ⇤ 0, lim

�#0
J�(wa

�)⇤ ¯
v , (D.11)

and

limsup
�#0

J�(wa
�)� ¯

v�
wa
�

 r + µ
r
�µR � c
µ�� c

. (D.12)

Proof. Define

v̄� ⇤
�[(µR � c)� (�� %)(µ�� c)]

1� � , and

J(w)⇤
(

(v̄� � ¯
v�)(w/

¯
w�)+ ¯

v� , 0  w <
¯
w� ,

v̄� , w �
¯
w� .

(D.13)

It is clear that⌥� J  J. Therefore, J� ⇤ limk!1⌥
k
� J  J. Follow-

ing (20) and the definition of
¯
v� ,

(T� J�)( ¯
w�)� ¯

v�  (T� J)(
¯
w�)� ¯

v�
⇤ �[(µR � c)+ µ(� J(

¯
w�)� (�� %)

¯
w�)]

+ (1� µ�)� J(0)�
¯
v�  ā��,

in which

ā� ⇤ (µR � c)+ µ[�v̄� � (�� %)
¯
w�]+

(1� µ�)�� 1
1� � ¯

µR.

Note that
lim
�#0

ā� ⇤
r + µ

r
(�µR � c).

Therefore, the continuity of ā� in � implies that ā� is bounded
from above for � close enough to zero.

Due to the concavity of T� J� , the above result, which
also implies that lim�#0(T� J�)( ¯

w�) ⇤ ¯
v, further implies that

lim�#0 wa
� ⇤ 0.

Finally, we show that there exists â � 0 such that J�(wa
�) 

âwa
� for any � small enough. If wa

� ⇤ ¯
w� , then the right deriva-

tive

lim
�#0

J�(0)0 ⇤ lim
�#0

(T� J�)( ¯
w�)� ¯

v�

¯
w�

 lim
�#0

ā�
µ�� c

⇤
(r + µ)(�µR � c)

r(µ�� c) . (D.14)

Now, suppose wa
� > ¯

w� . We therefore have J�(0)0⇤ J�(wa
�)0⇤

(T� J�)(wa
�)0 as well as J�(wa

�) ⇤ (T� J�)(wa
�). Define a� ⇤ J�(0)0.

We have

¯
v� + a�wa

� ⇤ J�(wa)⇤ (T� J�)(wa
�)

 �(µR � c)+ �µ


�v̄� � (�� %)
wa
� � ¯

w� + �

%

�

+ (1� �µ)


�

✓

¯
v� + a�

wa
� � ¯

w�

%

◆

� (�� %)
wa
� � ¯

w�

%

�

,
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in which we use v̄� as an upper bound for J�(wA) and
apply (20) for the optimal wN and wA. This further implies
that
1
�

✓

wa
� � (1�µ�)�

wa
� � ¯

w�

%

◆

a�

 (µR� c)+�µv̄� �
1��(1�µ�)

1�� ¯
µR� �� %

�

wa
� � ¯

w� + �µ�

%
.

As � approaches zero, the inequality above implies that

lim
�#0

a� 
(r + µ)(�µR � c)

r(µ�� c) . (D.15)

Continuity of a� in � implies that it is upper bounded by
some â for all � small enough.

Note that (D.14) and (D.15) imply (D.12). Q.E.D.
Now, we are ready to show that the upper and lower

bounds J� and  � uniformly converges to be identical as �
approaches zero, which implies that the effect of concavifica-
tion diminishes as � approaches zero.

D.3. Proof of Proposition 5
Consider the following function,

J
�
(w)⇤

¯
v� +max{0, J�(w)� J�(wa

�)}.
Following Proposition 3, for any point w � wa

� , we have

(I⇤� , l⇤� ,wA
⇤
� ,wN

⇤
�)J� (w)⇤ (I⇤� , l⇤� ,wA

⇤
� ,wN

⇤
�)J

�
(w).

Further define function

��(w)⇤ (⌅���)(w)⇤ lim
k!1

(⌅k
� J
�
)(w),

for w � wa
� , while ��(w)⇤

¯
v� for w 2 [0,wa

�). Function �� is the
value function of repeatedly applying the policy specified in
Proposition 3 when w � wa

� , while function  � is the value
function of repeatedly using the same policy when w �

¯
w� .

Therefore, �� is a lower bound of  � .
Next, we show that J

�
is also a lower bound of  � . Recall

that (⌅� J�)(w)⇤ J�(w) for w � wa
� . Therefore,

(⌅� J
�
)(w)

⇤�c�+ µ�[R + � J
�
(wA

⇤
�)� (�� %)wA

⇤
�]

+ (1� µ�)[� J
�
(wN

⇤
�)� (�� %)wN

⇤
�]

⇤�c�+ µ�{R + �[J�(wA
⇤
�)� J�(wa

�)]� (�� %)wA
⇤
�}

+ (1� µ�){�[J�(wN
⇤
�)� J�(wa

�)]� (�� %)wN
⇤
�}+ � ¯

v�
⇤ (⌅� J�)(w)� �(J�(wa

�)� ¯
v�) > J�(w)� J�(wa

�)+ v� ⇤ J
�
(w).

Therefore, we have ⌅� J
�
� J

�
, which further implies that

 � � �� ⇤ lim
k!1

⌅k
� J
�
� J

�
.

Finally, optimality implies that V� �  � . Together with
J� � V� , we have

J� � V� �  � � �� � J
�
,

which implies that

k J� � �k0  k J� � J
�
k0.

Because J�(wa
�)  awa

� following Lemma 8 and wa
�

approaches zero following (D.11), which implies that
lim�!0 k J� � J

�
k0 ⇤ 0. Together with (D.6), we have the result.

Q.E.D.

Appendix E. Proof in Section 4.4
E.1. Proof of Proposition 6

Item 1. The proof of Proposition 6.1 is parallel to that of
Proposition 1, with F( · ) replaced with Fd(·), and most w̄
replaced with ŵ in all occasions except in (B.6), which, in this
proof, should be

dFd(wt)⇤ F0
d(wt)⇢(wt � w̄) dt

+ [Fd(wt +min{ŵ � wt , �})� Fd(wt) dNt .

The remainder of the proof logic is essentially identical to
that of Proposition 1 and is omitted here.

Item 2. We first note that the technical Lemma 6 is about
the agent’s utility and, therefore, only involves the agent’s
discount rate. Therefore, it still holds here, with ⇢ in place of
r in Equation (B.8).

The proof of Proposition 6, based on Lemma 6, is parallel
to the proof of Proposition 2. In fact, the proof logic is iden-
tical if we replace w̄, F(·), V̄ , and � with ŵ, Fd(·), V̄d , and
�d here, respectively. Therefore, again, we omit the detailed
replication here. Q.E.D.

Appendix F. Supplementary Materials for Section 5
F.1. Proof of Proposition 7 in Section 5.1
According to the technical lemma 6 in Appendix B.5, under
any incentive-compatible contract, the agent’s continuation
utility satisfies Equation (B.8) with Ht(�, ⌫̄) � �. Rearranging
Equation (B.8) and replacing ⌫ with ⌫̄, we obtain

dWt(�, ⌫)⇤ [rWt(�, ⌫)+ c � µHt(�, ⌫̄)]dt +Ht(�, ⌫̄) dNt � dLt

t 2 [0, ⌧).

For any contract starting with agent’s utility Wt  w̄, we have
rWt(�, ⌫) + c � µHt(�, ⌫̄)  0. This implies that without an
arrival, utility Wt keeps decreasing. Therefore, starting from
any continuation utility below w̄, there is a positive proba-
bility that the promised utility decreases to zero before an
arrival, which contradicts the requirement of ⌧ ⇤1.

Furthermore, Propositions 4 and 6 imply that Fd(w) is
decreasing for w > w̄ and is the optimal principal’s value
function starting from the agent’s initial utility w. Therefore,
the initial w for the required optimal contract should be w̄.
The corresponding optimal contract is �̄. Q.E.D.

F.2. Proofs and Supplementary Materials for Section 5.2
Proposition 9. Differential equation ���� with boundary condi-
tion V(0)⇤max{V(w⇤)� w⇤ � k ,

¯
v}, in which w⇤ is a maximizer

of V(w) � w, has a unique solution V(w) on [0, w̄], which is
increasing and strictly concave. Furthermore, we have

V(w)⇤ V̄ :⇤
µR � c

r
, 8w � w̄ , (F.1)

and w⇤ is increasing in k.

Proof. The proof of this lemma follows the proof of
Lemma 3. If the solution to (13) with boundary condition
V(0) ⇤

¯
v satisfies

¯
v � V(w⇤) � w⇤ � k, then the result has

been established. The rest of the proof focuses on the case

¯
v < V(w⇤) � w⇤ � k, in which the boundary condition is k ⇤

V(w⇤)� w⇤ �V(0)⇤ F(w⇤)� F(0), in which F(w)⇤ V(w)� w.
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Up to Step 4 of the proof of Lemma 3, we have established
that for b1 < b2 < 0, V0

b1
>V0

b2
for w 2 [0, w̄]. Then F0

b1
> F0

b2
for

w 2 [0, w̄]. Hence,

Fb2 (w⇤
b2
)� Fb2 (0)⇤

π w⇤
b2

0
F0

b2
(w) dw

<
π w⇤

b2

0
F0

b1
(w) dw ⇤ Fb1 (w⇤

b2
)� Fb1 (0),

where w⇤
b ⇤ argmaxw{Fb(w)}. Further, we have w⇤

b2
< w⇤

b1
and

F0
b1
(w) > 0 for w 2 [w⇤

b2
,w⇤

b1
]. Therefore, Fb1 (w⇤

b2
) � Fb1 (0) <

Fb1 (w⇤
b1
)� Fb1 (0). Hence, Fb(w⇤

b)� Fb(0) decreases in b.
Finally, if we let b diverge to �1, Fb(w⇤

b)� Fb(0) � Fb(w̄)�
Fb(0)!1; on the other hand, as b ! 0, Fb(w⇤) � Fb(0)! 0.
Therefore, there must be a unique value b(k) such that
Fb(k)(w⇤

b(k))� F(0)⇤ k.
Finally, the above argument also implies that if k1 > k2,

then b(k1)  b(k2) < 0, and w⇤
b(k1) � w⇤

b(k1). Q.E.D.
For the different discount factor case, we have the follow-

ing result.

Proposition 10. If r < ⇢, there exists a unique value ŵ 2 [0, w̄]
and a unique function Vd that satisfy the following differential
equation on [0, ŵ]�

0⇤ (r + µ)Vd(w)� µVd(min{w + �, ŵ})
+ ⇢(w̄ � w)V0

d(w)+ (c � µR)+ (⇢� r)w , (F.2)
with boundary conditions

Vd(0)⇤max{
¯
v ,Vd(w⇤

d)� w⇤
d � k},

and Vd(ŵ)⇤ V̄d :⇤ V̄ +
r � ⇢

r
ŵ.

(F.3)

Furthermore, the derivative V0
d(ŵ) ⇤ 0, and both ŵ and w⇤ are

increasing in k, in which w⇤ is the unique maximizer of Vd(w)�w.

Proof. The existence and uniqueness of the solution Vd is
established following similar lines of arguments as in the
proofs of Proposition 4 along with Proposition 9.

Further, following the proof of Proposition 4, we have if
w̃1 < w̃2, then Vw̃1 > Vw̃2 , V0

w̃1
< Vw̃2 , and F0

w̃1
< F0

w̃2
. And w⇤

2 ⇤

argmaxw{Fw̃2 (w)} > w⇤
1 ⇤ argmaxw{Fw̃1 (w)}.

Hence, we have Fw̃2 (w⇤
2) � Fw̃2 (0) > Fw̃2 (w⇤

1) � Fw̃2 (0) ⇤
Ø w⇤

1
0 Fw̃2 (w) dw >

Ø w⇤
1

0 Fw̃1 (w) dw ⇤ Fw̃1 (w⇤
1)� Fw̃1 (0).

Therefore, if k1 < k2, then ŵ1 < ŵ2 and w⇤
1 < w⇤

2. Q.E.D.

Appendix G. Computation
In this appendix, we document the procedures to compute
the optimal value functions from the HJB equation.

G.1. Equal Time Discount
Divide the interval [0, w̄] into N intervals, such that � ⇤ w̄/N
and w(i) ⇤ i�, for i ⇤ 0, . . . ,N . Further define M ⇤ d�/�e, and
Vi ⇤V(w(i)). Values w(i) with i ⇤ N �M, . . . ,N �1 correspond
to w 2 [w̄ � �, w̄] in the continuous time model. In this inter-
val, the delayed differential equation (13) is simplified to one
with a boundary condition V(w̄) and without delay. Conse-
quently, there exists a general solution,

V(w)⇤ V̄ + b(w̄ � w)(r+µ)/r , for w 2 [w̄ � �, w̄],

parameterized with a parameter b.

Taking advantage of this, we have the following system of
linear equations with N equations and variables (V1 , . . . ,VN�1
and b):

(µ+ r)Vi + r(N � i)(Vi+1 �Vi)� µVi+M ⇤ µR � c ,
i ⇤ 0, . . . ,N � M � 1,

Vi ⇤ V̄ + b(w̄ � w(i))(r+µ)/r , i ⇤ N � M, . . . ,N � 1
V0 ⇤ ¯

v , VN ⇤ V̄.

(G.1)

Following similar computational procedures, we can cal-
culate the probability as well as the expected time for the
promised utility to reach either the absorbing state w̄ or zero,
starting from an initial value w.

Denote ti to represent the time it takes for the performance
score to decrease from state w(i) to w(i�1), without an arrival in
between. The differential equation (DW) with dNt ⇤ 0 implies
that e�rti ⇤ (w̄ � w(i))/(w̄ � w(i�1)). Therefore, we have

⇡i :⇤ e�µti ⇤

✓

N � i
N � i + 1

◆µ/r

, and

ti ⇤ [ln(N � i + 1)� ln(N � i)]/r,
(G.2)

in which ⇡i is the probability that an arrival occurs after
time ti . Denote Pi to represent the probability of stopping
with contract termination, starting from an initial score w(i).
(Therefore, 1 � Pi is the probability of reaching w̄.) The
sequence of Pi is calculated from the following system of
linear equations.

P0 ⇤ 1, PN ⇤ 0,
Pi ⇤ (1� ⇡i)Pi+M + ⇡iPi�1 , i ⇤ 1, 2, . . . ,N � M � 1, (G.3)

Pi ⇤ ⇡iPi�1 , i ⇤ N � M, N � M + 1, . . . ,N � 1

We can also compute Ti , the expected time it takes for the
promised utility to reach either absorbing state, starting from
w(i), according to the following linear equation system:

T0 ⇤ 0, TN ⇤ 0,

Ti ⇤ (1� ⇡i)
✓

1
µ
+Ti+M

◆

+ ⇡iTi�1 ,

i ⇤ 1, 2, . . . ,N � M � 1,

Ti ⇤ (1� ⇡i)
1
µ
+ ⇡iTi�1 , i ⇤ N � M, . . . ,N � 1.

(G.4)

G.2. Di�erent Time Discount
In this case, because we do not know the exact value of ŵ, we
have to search for it iteratively. Each iterations involves solv-
ing a linear system of equation, similar to the one presented
in Section G.1. Specifically, the function Vd(w) on the inter-
val [ŵ � �, ŵ] bears the following solution given boundary
condition Vd(ŵ)⇤ V̄d :

Vd(w)⇤ V̄ +
⇢� r

r + µ� ⇢ (w̄ � w)+ r � ⇢
r + µ

✓

µ

r
ŵ + w̄

◆

+ b(ŵ)(w̄ � w)(r+µ)/⇢ ,

in which the coefficient b(ŵ) is uniquely specified for a given
ŵ as

b(ŵ)⇤ (r � ⇢)⇢
(r + µ� ⇢)(r + µ) (w̄ � ŵ)(⇢�r�µ)/⇢ .
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Define N , M, and w(i), i ⇤ 0, . . . ,N the same as in Sec-
tion G.1. For a given N̂ 2 {0, . . . ,N}, we solve the fol-
lowing system of linear equations with N̂ � M variables
(V0 , . . . ,VN̂�M�1) and constraints.

(µ+ r)Vi + ⇢(N � i)(Vi+1 �Vi)� µVi+M ⇤ (µR � c)� (⇢� r)w(i) ,

i ⇤ 0, . . . , N̂ � M � 1, (G.5)

where VN̂ ⇤ V̄ +
r � ⇢

r
w(N̂) , and

Vi ⇤ V̄ +
⇢� r

r + µ� ⇢ (w̄ � w(i))�
(⇢� r)µ
(r + µ)r w(N̂)

+ b(w(N̂))(w̄ � w(i))(r+µ)/r , i ⇤ N̂ � M, . . . , N̂ � 1.

Following Proposition 4, in an outer loop, we conduct a
binary search for N̂ such that V0 is as close to

¯
v as possible.

Similar to the equal time discount case, we can also com-
pute the expected time, Ti , to reach the only absorbing state,
w ⇤ 0, from state w(i). This involves computing the following
system of linear equations:

T0 ⇤ 0,
Ti ⇤ (1� ⇡i)(1/µ+Ti+M)+ ⇡iTi�1 ,

i ⇤ 1, 2, . . . , N̂ � M � 1,
Ti ⇤ (1� ⇡i)(1/µ+TN̂ )+ ⇡iTi�1 , i ⇤ N̂ � M, . . . , N̂.

(G.6)

Endnotes
1 Standard results, for example, Theorem 6.2.9 of Aplebaum (2009),
ensures that the stochastic differential equation (DW) has a unique
solution wt for any given starting point w0 2 [0, w̄]. Furthermore,
wt 2 [0, w̄] almost surely.
2 The stochastic differential equation (DWd) has a unique solution
wt for any given starting point w0 2 [0, ŵ], again, following Theo-
rem 6.2.9 of Aplebaum (2009), such that wt 2 [0, ŵ] almost surely.

References
Abreu D, Pearce D, Staccheti E (1990) Toward a theory of dis-

counted repeated games with imperfect monitoring. Economet-
rica 58(5):1041–1063.

Aplebaum D (2009) Lévy Processes and Stochastic Calculus, 2nd ed.
(Cambridge University Press, Cambridge, UK).

Bass R (2011) Stochastic Processes (Cambridge University Press, Cam-
bridge, UK).

Belloni A, Chen B, Sun P (2016) Computation of optimal dynamic
mechanism with participation requirements. Working paper,
Duke University, Durham, NC.

Biais B, Mariotti T, Plantin G, Rochet J-C (2007) Dynamic security
design: Convergence to continuous time and asset pricing impli-
cations. Rev. Econom. Stud. 74(2):345–390.

Biais B, Mariotti T, Rochet J-C, Villeneuve S (2010) Large risks, limited
liability, and dynamic moral hazard. Econometrica 78(1):73–118.

DeMarzo P, Sannikov Y (2006) Optimal security design and dynamic
capital structure in a continuous-time agency model. J. Finance
61(6):2681–2724.

Fernandes A, Phelan C (2000) A recursive formulation for repeated
agency with history dependence. J. Econom. Theory 91(2):
223–247.

Green B, Taylor C (2016) Breakthroughs, deadlines, and self-reported
progress: Contracting for multistage projects. Amer. Econom. Rev.
106(12):3660–3699.

Hidir S (2017) Contracting for experimentation and the value of bad
news. Working paper, University of Warwick, Coventry, UK.

Li H, Zhang H, Fine C (2012) Dynamic business share allocation in a
supply chain with competing suppliers. Oper. Res. 61(2):280–297.

Ljungqvist L, Sargent TJ (2004) Recursive Macroeconomic Theory (MIT
Press, Cambridge, MA).

Mason R, Välimäki J (2015) Getting it done: Dynamic incentives to
complete a project. J. Eur. Econom. Assoc. 13(1):62–97.

Myerson R (2015) Moral hazard in high office and the dynamics of
aristocracy. Econometrica 83(6):2083–2126.

Plambeck E, Zenios S (2003) Incentive efficient control of a make-to-
stock production system. Oper. Res. 51(3):371–386.

Sannikov Y (2008) A continuous-time version of the principal–agent
problem. Rev. Econom. Stud. 75(3):957–984.

Shan Y (2017) Optimal contracts for research agents. RAND J.
Econom. 48(1):94–124.

Shi M (2015) Dynamic capital budgeting, compensation, and security
design. Ph.D. thesis, Duke University, Durham, NC.

Spear S, Srivastava S (1987) On repeated moral hazard with discount-
ing. Rev. Econom. Stud. 54(4):599–617.

Thomas J, Worrall T (1990) Income fluctuation and asymmetric infor-
mation: An example of a repeated principal-agent problem.
J. Econom. Theory 51(2):367–390.

Varas F (2017) Managerial short-termism, turnover policy, and the
dynamics of incentives. Rev. Financial Stud., ePub ahead of print
August 2, https://doi.org/10.1093/rfs/hhx088.

Zhang H (2012a) Analysis of a dynamic adverse selection model with
asymptotic efficiency. Math. Oper. Res. 37(3):450–474.

Zhang H (2012b) Solving a dynamic adverse selection model through
finite policy graphs. Oper. Res. 60(4):850–864.

Zhu JY (2013) Optimal contracts with shirking. Rev. Econom. Stud.
80(2):812–839.

https://doi.org/10.1093/rfs/hhx088

	Introduction
	Model
	Agent Utility and Incentive-Compatible Contracts
	Principal Utility
	A Simple Incentive-Compatible Contract

	Equal Time Discount
	Optimal Contract *
	Principal's Value Function F(w)
	Optimality

	Different Time Discount
	Discrete Time Approximation
	Converging to Continuous Time: Optimal Value Function
	Continuous Time Limit: Promised Utility Process and Optimal Contract
	Optimality for the Continuous Time Model

	Generalizations and Extensions
	Alternative Interpretations of Contract Termination
	Replacing the Agent on Termination
	Agent More Patient Than Principal

	Concluding Remarks
	Summary of Notations
	Proofs in Section 3
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Proposition 1
	Proof of Proposition 2

	Proofs and Supplementary Materials for Section 4.1
	Proof of Proposition 3
	Proof of Lemma 4
	A Lemma on the Convergence of Operator 
	More on Concavification

	Proof and Supplementary Materials in Section 4.2
	Proof of Proposition 4
	Additional Results Before Showing Proposition 5
	Proof of Proposition 5

	Proof in Section 4.4
	Proof of Proposition 6

	Supplementary Materials for Section 5
	Proof of Proposition 7 in Section 5.1
	Proofs and Supplementary Materials for Section 5.2

	Computation
	Equal Time Discount
	Different Time Discount


