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We study dynamic contracts that incentivize an agent to exert effort to increase the arrival rate of a Poisson

process, where both the effort cost and the effort level at any time are the agent’s private information.

The principal needs to offer a menu of contracts, such that each type of agent (with a different effort cost)

chooses the corresponding item on the menu. When there are two agent types, the essential idea of our

design is to offer the good/low-cost agent a probation contract under which the bad/high-cost agent does

not work. Therefore the first arrival during the probation period becomes a screening device. Our dynamic

setting requires the contracts to also include a potential sign-on bonus and delayed payments. This idea

allows us to design both an upper bound of the principal’s utility and a lower bound from an incentive

compatible menu of contracts. When the model parameters satisfy certain conditions, the two bounds meet,

which implies that our approach yields an optimal menu of dynamic contracts. When these conditions for

optimal solution do not hold, numerical studies show that our design outperforms a näıve menu constructed

from optimal dynamic contracts based on known-costs. Comparison between the upper and lower bounds

further demonstrates that our contract design often yields an optimal solution, and performs very well in

general even when not optimal. We further provide a generalization of our design for the case with multiple

agent types.
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1. Introduction

Business operations often need long term contracts to manage incentives over time. For example,

Plambeck and Zenios (2000) and Tian et al. (2021) study optimal maintenance contracts that

motivate an agent to work on reducing the proportion of time a machine breaks down. Sun and

Tian (2018) considers a company motivating its sales team or R&D branch to increase the arrival

rate of customers or breakthroughs. All the aforementioned studies focus on dynamic moral hazard

issues in agency problems. These models assume that the agent’s capability is common knowledge

among the principal and the agent, while the only asymmetric information is the hidden action
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that the agent takes over time. In practice, however, the principal often does not know the agent’s

capability. For example, an employer (principal) may not know whether it is easy or hard for a sale

representative (agent) to increase the arrival rate of customers. Similarly, an investor (principal)

may not know the cost structure of an entrepreneur (agent). In academia, funding agencies often

do not know exactly how much it takes a research project to bear fruit. In all these settings, the

principal needs to motivate effort from the agent while not knowing the exact cost of effort. In this

paper, we study such a problem that involves both dynamic moral hazard and adverse selection.

In particular, we consider a setting in which a risk-neutral principal hires a risk-neutral agent

in order to increase the arrival rate of a Poisson process, similar to Sun and Tian (2018). It may

be instructive to think of the principal as a company, and the agent as a sales representative,

who can increase the Poisson arrival rate of customers. Each arrival brings a positive revenue to

the principal. The instantaneous arrival rate is a constant when the agent exerts full effort and

bears its cost. Below full effort, the arrival rate is proportional to the agent’s effort cost. Therefore,

the principal and the agent’s incentives are misaligned without a contract. A distinct feature of

our model, compared with the previous literature, is that the agent’s effort cost rate is private

information, which represents heterogeneity in a potential agent’s capability.

Following standard results in mechanism design (Laffont and Martimort 2009), the principal

should provide a menu of contracts, such that an agent with a specific cost chooses a particular

contract from this menu. Following the revelation principle (Myerson 1981), it is without loss

of generality for us to consider direct mechanisms. In traditional adverse selection models, such

mechanisms only involve allocation and payment decisions that depend on the agent’s type. In our

setting with dynamic moral hazard, however, payments and allocation (contract termination) need

to be not only type-dependent, but also history-dependent. When designing the menu of dynamic

contracts, the principal needs to consider effort responses and utilities of both agent types to ensure

each type chooses the corresponding item in the menu. Consequently, the optimal design problem

can no longer be formulated as a classic dynamic program/optimal control problem. The main idea

of this paper is to use the first arrival as a screening device.

In particular, consider a setting in which the agent’s cost can be either high or low. The low-cost

agent is offered a probation contract, such that the agent is terminated if no arrival occurs during

the probation period. Our design guarantees that the high-cost agent has no incentive to exert

any effort facing this contract. Consequently, the first arrival during the probation period reveals

that the agent must be of low-cost, and hence is a screening device. During the probation period,

if an arrival does occur, how to set the agent’s promised utility (Spear and Srivastava 1987) over

time is determined by a convex optimization formulation based on a deterministic optimal control

model. Delaying payments in the contract further reduces the high-cost agent’s incentive to work
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if mimicking the low-cost type. The high-cost agent’s contract, on the other hand, offers a sign-

on-bonus up front. Under certain conditions, this approach yields the optimal menu of contracts.

When the conditions do not hold, on the other hand, our (potentially sub-optimal) design based

on using the first arrival as a screening device performs very well. It is worth noting that neither

sign-on-bonus nor delayed payments are used in the optimal dynamic contract without adverse

selection.

We generalize this approach to model multiple agent types. According to our contract design, the

best type is offered a probation contract with delayed payments. The inefficient types are offered

a sign-on-bonus up front and asked to leave immediately. Contracts for the middle types involve

randomization among three forms.

Readers familiar with dynamic contracting may think of directly utilizing the optimal contracts

with known costs to construct a menu that addresses the adverse selection issue. We present the

corresponding näıve design, and show numerically that it performs much worse than our proposed

menu of contracts.

An important step in our analysis is to establish an upper bound optimization. We use the upper

bound to formally show optimality when certain conditions hold, and to demonstrate that our

design performs very well even when not optimal.

The rest of the paper is organized as follows. After discussing the literature in Section 2, we

introduce the model in Section 3. Section 4 presents the result when the agent’s type is known by

the principal, which serves as building blocks and benchmarks for our proposed design. We then

present an upper bound optimization formulation in Section 5. The upper bound optimization

yields a menu of contracts that relies on using the first arrival as a screening device. This design

is indeed feasible (incentive compatible) and hence optimal when the model parameters satisfy

certain conditions. When these conditions do not hold, we propose a feasible (incentive compatible)

menu of contracts in Section 6. Numerical studies in Section 7 reveal that our design often achieves

the upper bound and performs well overall even if not optimal. Finally, in Section 8 we generalize

the model to include multiple types. For the reader’s reference, we provide a table in Appendix A

to summarize all notations introduced in the paper.

2. Literature Review

There have been previous attempts on the problem with both adverse selection and dynamic moral

hazard. Ma (1991) focuses on renegotiation and actions with long term effects, whereas we give

the principal full commitment power on contracting and hence the issue of renegotiation does not

exist. Gershkov and Perry (2012) studies moral hazard with both persistent and repeated adverse

selection in a discrete and finite horizon. In every period, the agent receives a task and different
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types of agent differ in the probability of success, while in our model types differ in the cost of

exerting effort. They only consider two agent types while our design could be generalized to multiple

types of agents. Furthermore, our payment contract has an arguably cleaner and simpler structure

thanks to the continuous-time infinite horizon setting.

Our adverse selection and moral hazard setting is related to the one studied in Cvitanić and

Zhang (2007). Their underlying stochastic process is Brownian motion over a finite time horizon.

In comparison, our infinite horizon setting does not allow payment to be calculated as a lump-sum

in the end of a finite time horizon, as in their paper. Furthermore, they suggest a relaxation-

based procedure to obtain contracts that “are not necessarily optimal.” In comparison, our Poisson

uncertainty allows us to use the first arrival as a screening device to obtain contracts that are

optimal under certain parameter settings. Cvitanić et al. (2013) considers a similar two-agent-type

setting with Brownian motion uncertainties over an infinite horizon, which is the closest paper

to ours. They propose an approach to characterize the set of promised utility pairs in order to

numerically obtain certain types of contracts. For the two-type problem, the pairs of promised

utilities can be described on a two-dimensional plane. In comparison, our approach, based on using

the first arrival as a screening device in a Poisson setting, not only provides easily implementable

contracts, but can also be scaled to more than two types, as we show in Section 8.

Another related strand of literature combines dynamic moral hazard with learning, such as

Bhaskar (2012) and Kwon (2011). Unlike our private information setting, the agent also does

not know the uncertainty, and hence the contract has to update and adjust the belief over time

accordingly.

The dynamic moral hazard dimension of our model is based on Sun and Tian (2018), in which

all model parameters (including the operating cost) are known. Similar dynamic moral hazard

models based on Poisson arrivals include Chen et al. (2020), Tian et al. (2021), Cao et al. (2022,

2023). The key difference between our paper and these papers is the addition of the adverse

selection component into the dynamic moral hazard model. The adverse-selection extension brings

this line of work much closer to reality, because the agent’s capability is often not transparent

in real-world settings. The analysis and results are also strikingly different. First, due to adverse

selection, our design involves a menu of contracts rather than a single contract as in each of the

other papers. Second, the individual contract received by each type of agent needs to possess

much richer structures, including a sign-on bonus or delayed payment, which do not appear in the

aforementioned papers.

The promised utility formulation of continuous time moral hazard problem originates from San-

nikov (2008), which provides a martingale representation of incentive compatibility constraint with

an underlying Brownian motion uncertainty. This framework has been further applied to Poisson
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settings by Biais et al. (2010), in which the agent is hired to decrease the arrival rate of “bad

news.” Increasing the arrival rate of “good news,” as in our model, has been studied in a stream

of recent papers, (see, for example, Green and Taylor 2016, Shan 2017, Sun and Tian 2018, etc.),

although without an adverse selection component.

3. Model

A principal contracts an agent to increase the arrival rate of a Poisson process over an infinite

time horizon. At any point of time t, the agent can privately choose an effort level νt ∈ [0, µ], which

incurs a flow cost, and generates Poisson arrivals with an instantaneous rate νt. Each arrival yields

a revenue R to the principal, and is observable to both the principal and the agent. Further denote

a right-continuous counting process N = {Nt}t≥0 to represent the total number of arrivals up to

time t, which generates a filtration FN = {FNt }t≥0. Therefore, the instantaneous arrival rate of the

counting process at time t is νt, and the left-continuous effort process ν = {νt}t≥0 is FN -predictable.

The agent’s capability, reflected in the operating cost, is linear in the effort level. We denote c to

represent the operating cost when the agent chooses the highest possible effort level µ. Therefore,

the per arrival rate per unit time unit operating cost is

βc := c/µ.

Hence, if the agent chooses νt ≤ µ, then the flow operating cost is βc · νt. That is, a more capable

agent can generate arrivals with a lower operating cost. In this paper, we use “capability” and

“cost” interchangeably. The operating cost is the agent’s private information, and stays the same

throughout the time horizon. The common prior distribution of the operating cost has a support

C. In this paper we mainly consider a binary set C = {g, b} with g < b, and extend the set to contain

multiple values in Section 8. The operating cost c is also referred to as the agent’s type.

We assume that the principal needs to reimburse the flow operating cost in real time, because

the agent has limited liability and is cash constrained, a standard assumption in the dynamic

contracting literature. In particular, at any point in time, the agent’s effort choice is constrained by

the flow reimbursement provided by the principal. Denote the flow reimbursement as `t, then for

a type c agent who exerts effort at level νt, we require νt ·βc ≤ `t. (This situation is fairly common

in contexts such as R&D and lobbying, where the principal has to provide a continuous flow of

payments for the agent to operate. It may take the form of retainers in the case of lobbyists or

repetitive payments in the case of R&D contracts.)1

Therefore, if the agent’s type is b but pretends to be of a better (lower-cost) type g, and the

principal only pays operating cost `t = g, then this agent’s effort choice can be no higher than µg/b.

Generally speaking, if the agent chooses an effort level strictly less than µ`t/b, and therefore does
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not use up the operating payment, the part not being used can be diverted as a shirking benefit

to the agent.2

Because the agent knows the operating cost at the beginning, following the Revelation Principle,

it is without loss of generality to consider direct mechanisms (see, for example, Myerson 1986,

Pavan et al. 2014). In our context, the principal designs a menu of contracts ΓC = {γc}c∈C, such that

type c agent chooses contract γc. Any contract γc = (Lc, ηc) includes an F-predictable payment

process Lc, and a F-random time ηc representing contract termination. When it is not necessary in

the context to stress the operating cost c, we also use the notation γ = (L,η) without superscripts

to represent a generic contract. As for the contract termination time η, if η =∞, the contract

continues throughout the infinite time horizon.

Specifically, for a payment process L = {Lt}t≥0, at each time epoch t ≥ 0, Lt represents the

cumulative payment from the principal to the agent up to time t. For simplicity of expressions, in

the rest of the paper we consider dLt = `tdt+ It, in which `t represents the flow reimbursement

mentioned before, and It the instantaneous payment at time t. The agent’s limited liability and

being cash constrained imply that payment is from the principal to the agent but not the other way

around. Furthermore, the flow payment needs to cover the effort cost, which can be summarized

in the following limited liability (LL) constraint for all contract γc = (Lc, ηc)∈ ΓC,

Ict ≥ 0, `ct ≥ νt ·βc, ∀t∈ [0, η] and c∈ C. (LL)

Both the principal and the agent discount future costs and payments with a discount rate r.

Without loss of generality, and for simplicity of expressions, we normalize time unit such that

µ+ r= 1. (1)

In order to formally define direct mechanisms, we start with expressing the agent’s utility.

Agent utility Given a dynamic contract γ = (L,η) and an effort process ν, the expected

discounted utility of the agent with an operating cost c is

u(γ, ν; c) =Eν
[∫ η

0

e−rt(dLt− νt ·βcdt)
]
, (2)

in which the expectation Eν is taken with respect to probabilities generated from the effort process

ν.

For a type c agent facing a contract γ, denote N (γ, c) to be the set of all FN -predictable effort

processes ν that satisfy condition νt ·βc ≤ `t,∀t following (LL). Further denote N(γ, c)⊆N (γ, c) to

represent the set of best-response effort processes, that is,

u
(
γ, ν; c

)
≥ u(γ, ν ′; c), ∀ν ∈N(γ, c) and ν ′ ∈N . (3)
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We denote FNt -predictable effort process ν̄ = {ν̄t}t≥0 to be the full-effort process such that ν̄t = µ

almost surely for all t before contract termination. In this paper, we focus on the contract space

where the agent of any type c∈ C is willing to exert full effort under contract γc, which is commonly

assumed in the dynamic contracting literature (see, for example, Biais et al. 2010) . That is, we

assume the following Full-Effort (FE) constraint for the contracts,

ν̄ ∈N(γc, c). (FE)

In the next section, we will explain in detail why we focus on this contract space.

A simple contract that induces the agent to always exert full effort is to pay the agent a constant

βc for each arrival besides reimbursing the operating cost rate c, such that the agent always exerts

effort and receives a total discounted utility w̄c, where

w̄c =
µβc
r

=
c

r
. (4)

Although this simple contract is not optimal, the quantity w̄c is useful in describing the optimal

contracts.

Furthermore, the revelation principle implies that we can focus on direct mechanisms. Therefore,

we need the following Truth-Telling (TT) constraint on the menu ΓC, which ensures that an agent

with operating cost c indeed chooses contract γc from the menu, that is,

u(γc, ν̄; c)≥ u
(
γc
′
, ν; c

)
, ∀c, c′ ∈ C, ν ∈N (γc

′
, c). (TT)

It is standard by now to consider the agent’s continuation utility (also called the promised utility,

see, for example, Biais et al. 2010) at time t, defined as,3

Wt(γ, ν; c) =Eν
[∫ η

t+

e−r(s−t)(dLs− νs ·βcds)
∣∣∣∣FNt ]1t<η. (5)

Following standard assumptions in the dynamic contracting literature, the principal has the

commitment power to issue a long term contract, while the agent does not need to commit to

staying in the contract. That is, we need the following Individual Rationality (IR) constraint to

guarantee participation before contract termination,

Wt(γ, ν; c)≥ 0, ∀t∈ [0, η], c∈ C. (IR)

The following result, which is parallel to Lemma 6 in Sun and Tian (2018), depicts the dynamic

of the process Wt, and provides an equivalent condition to a best-response effort process.
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Lemma 1. For any contract γ, effort process ν, and operating cost c, there exists an FN -adaptive

process Ht such that

dWt(γ, ν; c) = {[rWt−(γ, ν; c)− νtHt + νtβc]dt+HtdNt−dLt}10≤t<η. (PK)

Furthermore, the following defined effort process is a best response to contract γ, or, {νt}t∈[0,η] ∈
N(γ, c), in which

νt =

{
min{µ, `t ·µ/c}, if Ht ≥ βc,
0, o.w.

(IC)

It is worth explaining the condition (PK) for this paper to be self-contained. Overall, the promised

utility is essentially total future payments, which explains that any payment at time t reduces

the promised utility, and hence the −dLt term in (PK). The first term rWt−(γ, ν; c)dt represents

the interest accumulated over time. The term HtdNt in (PK) is an upward jump in the promised

utility whenever there is an arrival (dNt = 1). Because this upward jump occurs at rate νt, the

term −νtHtdt reflects a gradual decrease in the promised utility over time to balance the upward

jump upon an arrival. The term νtβcdt reflects the effort cost to be reimbursed. Because the

payment dLt contains the reimbursement of effort cost according to (LL), the term νtβcdt cancels

the corresponding term in dLt in the promised utility.

Note that the quantity Ht can be perceived as a “reward” to the agent for each arrival, which

is to be paid off later. Condition (IC) in Lemma 1 implies that the principal can motivate a type

c agent to exert effort if and only if each arrival yields a reward (upward jump Ht in the agent’s

promised utility) of at least βc. Later in the paper we show that in the optimal contract, the

Incentive Compatibility (IC) constraint may not always be binding. That is, for certain operating

cost c and time t, we need Ht >βc, more than necessary to induce full effort.

Principal utility. Denote U(γ, ν) to represent the principal’s total expected discounted utility

from a contract γ while the agent’s type is c and uses an effort process ν ∈N (γ, c). That is,

U(γ, ν) :=Eν
[∫ η

0

e−rt (RdNt−dLt)

]
. (6)

Now we define U(ΓC) :=E [U(γc, ν̄)] to represent the principal’s total expected discounted utility

from the menu of contracts ΓC. The principal’s contract design problem is

Z(C) := sup
ΓC

U(ΓC) (7)

s.t. (LL), (PK), (IC), (IR), (FE), and (TT).

Note that the expectation in the objective function is taken with respect to the operating cost c,

while constraints (LL), (PK), (IC), (IR) and (FE) are for each c ∈ C. In contrast, the constraint

(TT) is for both pairs of operating costs (c, c′) = (b, g) and (c, c′) = (g, b). This implies that the

maximization problem (7) cannot be decoupled in c. Finally, the objective function value Z(C) is

the principal’s optimal expected utility.
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4. First Exploration of the Contract Design Problem

In a static setting, designing the optimal menu of contracts for a two-type case is fairly easy. One

just needs to work out the information rent to prevent each type from mimicking the other type.

In our dynamic setting, however, the optimal design is much more challenging. In particular, we

cannot directly collect the optimal dynamic contracts with known operating costs to form the menu

of contracts. This is because even for a given dynamic contract, each type of agent’s best-response

effort process may be non-trivial to compute. This further complicates the computation of the

information rent for the truth-telling constraints. Cvitanić et al. (2013) faces similar challenges for

their two type case, and is focused on characterizing the set of promised-utility pairs.

In order to circumvent this challenging issue, we limit the space of contracts to be ones that

induce full effort for the corresponding agent type. We argue that this restriction makes the optimal

contract design much more practical, because one may argue that it is unrealistic to assume that the

agent has such a level of sophistication to compute general dynamic best-response effort processes.

Solving the optimization under this restriction is still non-trivial, as we explain in this and the

next section.

In this section, we first summarize essentially existing results on optimal dynamic contracts with

known operating cost in Section 4.1, which will be some of the building blocks for our later contract

design. Section 4.2 further provides a näıve approach to design a menu of contracts, which serves

as a benchmark.

4.1. Known Operating Cost

In this subsection, we consider the operation cost c to be fixed and known to both the principal

and agent. That is, the set C of operating costs is reduced to a singleton {c}. The corresponding

contract design problem (7) becomes

U c := max
γc

U(γc, ν̄) (8)

s.t. (LL), (PK), (IC), and (IR).

It is clear that constraint (TT) is no longer relevant here. So is constraints (TT), because when

the principal and agent share the same discount rate, the optimal contract should induce full effort

from the agent (Cao et al. 2023, Appendix A3).

This benchmark setting is similar to, although slightly more general than, the model in Sun and

Tian (2018).4 We first summarize the results following analysis in Sun and Tian (2018), and then

comment on two key distinctions towards the end of this subsection. Since most technical results

in this subsection can be adapted from Sun and Tian (2018), we try to be terse. Besides helping
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our paper to be self-contained, the content here, especially its connection and comparison with the

general adverse selection problem, reveals important insights.

First, we formulate the optimal design problem (8) as an optimal control model, in which

the promised utility is the state variable. The corresponding societal value function (total utility

between the principal and the agent), Vc(w), as a function of the promised utility w, satisfies the

following delay differential equation (DDE).

r(w− w̄c)V ′c (w) = (c−µR) +Vc(w)−µVc (w+βc) , ∀w ∈ [0, w̄c], (9)

with boundary conditions Vc(0) = 0 and Vc(w) =
µR− c
r

for w≥ w̄c. (10)

Lemma 2. If R>βc, the DDE (9)-(10) has a unique solution, Vc(w), which is strictly concave and

increasing on [0, w̄c], and satisfies V ′c (w̄c) = 0.

Next, we define the following class of contracts, and establish that the optimal contract for the

known operating cost case belongs to this class.

Definition 1. For any w ∈ [0, w̄c], define an IC-binding contract γ̂c(w) = (Lc, η̂c), which gener-

ates a promised utility process {W c
t } following W c

0 = w, as well as a payment process {Lct} and

termination time η̂c, such that

dW c
t =

[
r(W c

t−− w̄c)dt+ min
{
w̄c−W c

t−, βc
}

dNt

]
1W c

t−≥0, (11)

dLct =
[
cdt+ (W c

t−+βc− w̄c)+dNt

]
1W c

t−≥0, and (12)

η̂c = min{t :W c
t− = 0}. (13)

�

According to contract γ̂c(w), the promised utility W c
t starts from W c

0− = w, and the dynamics

(11) is consistent with (PK) with Ht = βc. That is, the promised utility takes an upward jump of βc

upon each arrival, and gradually decreases at rate r(w̄c−W c
t−) as long as W c

t− < w̄c. The contract

terminates when W c
t decreases to 0. The first instantaneous payment occurs when the promised

utility W c
t jumps above w̄c. After that, the promised utility stays at w̄c. The principal delivers this

promised utility by paying the agent βc for each future arrival, in addition to the flow payment cdt

to reimburse the operating cost. In this case the termination time ηc is infinity. Therefore, contract

γ̂c(w) motivates the agent to always exert effort before contract termination (ν̄ ∈N(γ̂c(w), c)) by

setting Hc
t = βc at all times, which satisfies the (IC) constraint.

The following proposition summarizes the results in Sun and Tian (2018). To this end, for any

operating cost c and w≥ 0 we define∆c(w) to be the set of contracts γc = (Lc, ηc) that satisfies (LL),

(PK) and (IR) with a process {W c
t }t≥0 starting from W c

0− =w. That is, any contract γc ∈∆c(w)

delivers a utility w to the agent.
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Proposition 1. Let Vc(w) be the unique solution to (9)-(10) if R > βc, and define Vc(w) := 0 if

R≤ βc. Further define the principal’s value function

Fc(w) := Vc(w)−w. (14)

For any w ∈ [0, w̄c], we have

Fc(w)≥U
(
γc, νc

)
, ∀γc ∈∆c(w), νc ∈N(γc, c). (15)

Furthermore, if R>βc, we have

u(γ̂c(w), ν̄; c) =w, (16)

Fc(w) =U(γ̂c(w), ν̄). (17)

Therefore, contract γ̂c(wc∗) is an optimal solution to (8), in which wc∗ is the unique maximizer of

the strictly concave function Fc(w) on [0, w̄c]. If R≤ βc, it is optimal for the principal not to hire

this agent from the beginning.

In Proposition 1, condition (16) states that the contract γ̂c(w) delivers the agent a utility w; (17)

implies that function Fc is indeed the principal’s value function for contract γ̂c(w); and, finally,

(15) claims that Fc(w) is also an upper bound of the principal’s utility under any contract and

the corresponding best response effort process that delivers the agent a utility w. These conditions

imply that an IC-binding contract is indeed optimal for this benchmark case.

It is worth noting that in the proof of Proposition 1, we formally establish the optimal contract

for both R>βc and R≤ βc cases. In particular, when R≤ βc, it is optimal for the principal to not

hire the agent at all, or, equivalently, to set η̂c = 0. Note that in the general adverse selection case,

which is the focus of this paper, we consider R>βg but βb may be higher or lower than R. In later

sections we demonstrate how the principal efficiently screens the high-cost agent, especially if the

high type is also efficient (R≥ βb).

For this purpose, we define a delay-payment contract that will be useful in later sections. Accord-

ing to Definition 1, the agent is paid w̄c−W c
t− at the time the promised utility reaches w̄c, and βc

for every future arrival. The delay-payment contract, on the other hand, delays the first number of

payments to a later time while paying the corresponding interest. Intuitively, the good agent does

not mind such a delay, because the interest is paid eventually. The delay, however, prevents the

bad agent from trying to mimic the good one while not working. — As we will see in the probation

contract later, with no effort and therefore no arrival, the bad agent would be terminated before

the time to deliver the delayed payment.
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Define the s-th arrival time after a time epoch t0 as

τ st0 := min{t|Nt−Nt0 = s}. (18)

Definition 2. For any w ≥ w̄g, S ∈N, and t0 ≥ 0, define a delay-payment contract γgD (w,S, t0) =

(Lg, ηgD), which generates a promised utility process according to

dWt =
[
(rWt−/µ)dNt1t≤τSt0

+ (w̄g −Wt−)dNt1t=τS+1
t0

]
1Wt−≥0, (19)

for t≥ t0 following Wt0 =w. Furthermore, the payment process Lgt follows

dLgt = (Wt−/µ− w̄g)1t=τS+1
t0

+βgdNt1t>τS+1
t0

, (20)

and the termination time ηgD =∞. �

Because the principal holds off the payment to the agent until the S-th arrival, Eq. (20) charac-

terizes the corresponding payment process. It is worth connecting (19) with (PK). In particular, we

set Ht = rWt−/µ (which is higher than βg for Wt− ≥ w̄g), so that Wt remains a constant between

arrivals before τS+1
t0

. The payment at time τS+1
t0

, W
τS+1
t0
−/µ− w̄g =W

τS+1
t0
−+H

τS+1
t0

− w̄g, includes

all the interest that should be paid to the agent by then. Later in the paper we show how to utilize

delay payment contracts with the appropriately chosen S and t0 to construct incentive compatible

contracts.

4.2. Unknown Operating cost with Two Types

Given the result for the known effort-cost case, it is tempting to think that one can use a pair of

IC-binding contracts to solve the original contract design problem. For this purpose, we introduce

a sign-on-bonus contract which slightly generalizes the IC-binding contract. As we will explain

later in this section, the principal can use a sign-on-bonus up front to screen the bad type. We

fully characterize the best sign-on-bonus contracts in this section. However, later in the paper we

demonstrate that the best sign-on-bonus contracts are, in fact, not optimal for the original problem.

In fact, the optimal contracts are not necessarily IC-binding, which highlights the difficulty of this

contract design problem.

Definition 3. For an initial promised utility w≥ 0 and a sign-on-bonus B ≥ 0, define a sign-on-

bonus contract γcB(w,B), which pays the agent I0 =B+max{w− w̄c,0} at time 0, and then follows

the dynamics of an IC-binding contract γ̂c(min{w, w̄c}) as defined in Definition 1. �
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The principal can offer a sign-on-bonus contract γgB (wg, Ig) to the good agent and another sign-on-

bonus contract γbB(w
b, Ib) to the bad agent, where wc represents the start of type-c agent’s promised

utility and Ic the sign-on bonus. As shown in the following lemma, if the good agent mimics the

bad agent, then the good agent will always exert full effort; on the other hand, if the bad agent

mimics the good agent, then the bad agent never works.

Lemma 3. We have ν0 ∈ N(γgB (wg, Ig), b) for any wg, Ig ≥ 0, and ν̄ ∈ N(γbB(w
b, Ib), g) for any

wb, Ib ≥ 0, in which ν0 represents a never working effort process, that is, ν0
t = 0 for all t≥ 0.

In order to prevent the bad agent from mimicking the good agent and not working while collecting

the flow payment, the principal can use a sign-on bonus to induce the bad agent to reveal its type.

For this purpose, the next lemma shows both types’ utilities when mimicking the other type under

sign-on-bonus contracts. The result helps identify each type’s rent.

Lemma 4. We have

u
(
γbB(w

b, Ib), ν̄;g
)

=wb + Ib + (b− g)
Vb(w

b)

µR− b
, ∀wb, Ib ≥ 0 and

u
(
γgB (wg, Ig), ν0; b

)
= u(γgB (wg, Ig), ν̄;g) =wg + Ig, ∀wg, Ig ≥ 0.

Following Lemma 4, when mimicking the bad type, the good agent “steals” the flow payment,

whose present value is (b− g)
Vb(w

b)

µR− b
. The bad agent’s mimicking utility turns out to be equal to

the good agent’s under the same contract.

If we restrict the class of contracts under consideration in the original contract design problem

(7) to be sign-on-bonus contracts, then the optimization becomes

YB := max
wg ,wb,Ig ,Ib

pFg(w
g) + (1− p)Fb(wb)− pIg − (1− p)Ib (21)

s.t. wg + Ig ≥ u(γbB(w
b, Ib), ν̄;g) =wb + Ib + (b− g)

Vb(w
b)

µR− b
,

wb + Ib ≥ u(γgB (wg, Ig), ν0; b) =wg + Ig.

The following result characterizes its optimal solution.

Lemma 5. The optimal solution (wg∗,w
b
∗, I

g
∗ , I

b
∗) to (21) satisfies wg∗ = Ib∗ = B̂, wb∗ = 0, and Ig∗ = 0,

in which

B̂ :=

{
min{w|V ′g (w) = 1/p}, V ′g (0)> 1/p
0, V ′g (0)≤ 1/p

. (22)

Overall, the following proposition summarizes the optimal sign-on-bonus contracts, which follows

immediately from the lemmas in this section.

Proposition 2. The optimal menu of sign-on-bonus contracts is to issue an IC-binding contract

γ̂g(B̂) to the good agent, while paying the bad agent a bonus B̂ for the agent to leave. The corre-

sponding principal’s utility is YB = pFg(B̂)− (1− p)B̂.
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Note that the pair of contracts described in Proposition 2 is equivalent to the case when we give

both types of agents the good agent’s IC-binding contract. While Sun and Tian (2018) showed

that IC-binding contracts are optimal when the agent’s type is public information, such a result

does not extend to our model because of adverse selection issues. In Appendix E.6, Proposition 14

shows that this simple heuristic is always dominated by other easy-to-implement contracts, which

may not be IC-binding, and can perform very poorly.

In the next section, we provide an upper bound to the optimal contract design problem. Under

certain conditions, the upper bound optimization motivates a feasible menu of contracts that

achieves the upper bound and hence is optimal. When the upper bound is not achievable, it helps

us evaluate additional menus of dynamic contracts that we will propose later in this paper.

5. Upper bound optimization and corresponding contracts

In this section we present an optimization problem, which provides an upper bound to the original

contract design problem (7). The intuition is the following. The upper bound optimization simply

assumes, while ignoring necessary constraints to guarantee, that the bad agent does not work facing

the good agent’s contract. As a result, under the good agent’s contract, only the good agent would

be able to generate arrivals. Consequently, we can use the first arrival as a screening device. –

If an arrival occurs, the principal knows that the agent must be good, and hence follow up with

a dynamic contract γ̂g. If an arrival does not occur during a probation period of time, on the

other hand, the principal has to treat the agent as bad and terminate the contract. Although a

good agent may also fail to generate an arrival during the probation period, the principal with

commitment power has to forfeit some efficiency due to information asymmetry.

We first present the upper bound optimization problem in Section 5.1. Then in Section 5.2 we

present a menu of contracts, and conditions under which it is feasible and achieves the upper

bound.

5.1. Upper bound optimization

In the following result, we use functions Fg and Fb as defined in (14) for c∈ {g, b}.

Proposition 3. The following optimization problem yields an upper bound to the optimal value

of the contract design problem (7). That is, Y ≥Z({g, b}), where

Y := max
wg ,wb,τ,ξ

p ·G(wg, τ) + (1− p)ξ, (23)

s.t. wg ≥wb ≥ g(1− e−rτ )/r, (24)

τ ≥ 0, (25)

ξ ≤ Fb(wb), (26)
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ξ ≤ wg −wb
b− g

(µR− b)+−wb, (27)

in which we define the operator (x)+ := max{x,0}, and the function G(w,τ) through the following

optimal control problem. If τ <∞,

G(w,τ) := max
Wt,Ht

∫ τ

0

µe−t[R+Fg(Wt +Ht)]dt− g(1− e−τ ), (28)

s.t.
dWt

dt
= rWt−−µHt, for t∈ [0, τ ]; W0 =w, Wτ = 0,

Ht ≥ βg, ∀t∈ [0, τ ];

if τ =∞, with a slight abuse of notation, we define

G(w,∞) := max
Wt,Ht

∫ ∞
0

µe−t[R+Fg(Wt +Ht)]dt− g, (29)

s.t.
dWt

dt
= rWt−−µHt, for t≥ 0; W0 =w,

Wt ≥ 0,Ht ≥ βg, ∀t≥ 0.

It is instructive to explain the terms in the optimization problem (23)-(27). First, the decision

variables wg and wb represent the utilities of type g and b agent under their respective contracts.

The decision variable ξ and the term G(w,τ) represent the principal’s expected utilities facing a

type b and g agent, respectively, in which the decision variable τ is the duration of a “probation

period” for the type g agent.

The constraint (24) states that the good agent’s utility, wg, needs to be as good as or better

than the bad agent’s wb. Furthermore, the last inequality in (24) states that wb needs to be no less

than the total discounted expected operating cost that the agent would receive by pretending to

be a good agent while exerting no effort. This is because receiving the operating cost g without

working yields a utility

∫ τ

0

ge−rtdt= g(1− e−rτ )/r.

Constraint (24) reveals why the optimal value Y is only an upper bound. This is because the

constraint itself (or any other constraint in this optimization) does not provide sufficient incentive

for the bad agent not to work facing the good agent’s contract. Restricting the bad agent’s response

(to zero effort) allows the principal to obtain a higher utility than reality, in which the agent may

be able to obtain a utility higher than the right-hand-side of (24) with some effort.

Next, we articulate the meaning of G(wg, τ) in the following remark.

Remark 1. First, G(wg, τ) calculates the principal’s expected utility where the good agent always

exerts full effort. According to the optimal control problems (28) and (29), the principal designs a

contract with an initial promised utility w and a (probation) time period τ . The control includes

the promised utility process Wt, and the upward jump Ht associated with a potential arrival if
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t≤ τ . During this probation period, if an arrival does occur, then the principal receives a revenue

R, and the promised utility jumps to Wt−+Ht, at which point the principal follows the IC-binding

contract, γ̂gB (Wt−+Ht,0), and earns a future utility Fg(Wt−+Ht), following Proposition 1. Recall

µ+r= 1, which explains the term e−t = e−(µ+r)t. The constraints in (28) and (29) capture the (PK),

(IC) and (IR) constraints. Finally, the second term of the objective function in (28), g(1− e−τ ), is

the total discounted operating cost that the principal needs to pay before the first arrival or at the

end of the probation period, whichever comes first. Here, again, we use µ+ r = 1 as the effective

discount rate. �

Finally, we focus on constraints (26) and (27). First, constraint (26) states that the principal’s

utility ξ is upper bounded by Fb(wb) when offering the type b agent a promised utility wb, consistent

with Proposition 2. Finally, constraint (27) ensures a type g agent does not pretend to be of type

b, which is elaborated in the following remark.

Remark 2. Should the type g agent receive the type b contract, the agent is able to exert effort,

and receive the same trajectory of payments as a type b agent. In addition to receiving the wb

reward, the type g agent also collects the extra operating cost b−g for the duration of the contract.

This (discounted) duration can be calculated as the (discounted) societal utility, ξ +wb, divided

by the societal utility rate, µR− b, if µR> b. This implies the following inequality,

wg ≥wb + (b− g)
ξ+wb
µR− b

, or, equivalently, ξ+wb ≤
wg −wb
b− g

(µR− b). (30)

If µR ≤ b, on the other hand, the societal value of hiring the agent is negative, and, therefore,

ξ+wb ≤ 0. Constraint (27) captures both cases of µR> b and µR≤ b. �

So far we have provided intuitive interpretations of various components of the optimization

problem (23)-(27). This optimization plays a central role in our contract design problem. In the

next subsection we will convert the non-convex optimization problem (23)-(27) into an equivalent

convex optimization problem, and obtain a menu of contracts based on its optimal solution. We

further show that if the derived menu of contracts satisfies the truth-telling constraints (under a

certain condition), then the performance of such a menu of contracts indeed achieves the upper

bound Y of Z({g, b}).

In order to solve the optimization (23)-(27), we first provide a closed form solution to the

deterministic optimal control problem (28). The solution approach is based on the Pontryagin

minimum principle, as illustrated in the proofs of the following Lemmas, presented in the Appendix.

Lemma 6. For any τ ∈ [0,∞), define thresholds

ω̌(τ) :=
1− e−rτ

r
g, and ω̂(τ) :=

1− e−τ

r+µe−τ
g. (31)
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(i) If w ∈ [ω̌(τ), ω̂(τ)), then there exists a unique value z∈ [0, ω̂(τ)) such that5

w= w̄g − (w̄g − z)er(τz−τ), (32)

where w̄g defined in (4), and

τz := ln
µ(z +βg)

r(w̄g − z)
. (33)

Furthermore, the following Wt and Ht solves the optimization G(w,τ) in (28),

Wt =

{
w̄g − (w̄g − z)er(t+τz−τ), for t∈ [0, τ − τz],
µ(z +βg)(1− et−τ ), for t∈ [τ − τz, τ ],

(34)

and

Ht =

{
βg, for t∈ [0, τ − τz],
z +βg −Wt, for t∈ [τ − τz, τ ].

(35)

(ii) If w≥ ω̂(τ), then define

z :=
w

µ(1− e−τ )
−βg. (36)

For any t∈ [0, τ ], the following Ht and Wt solves the optimization G(w,τ) in (28),

Wt = µ(z +βg)(1− et−τ ), and Ht = z +βg −Wt. (37)

(iii) If w< ω̌(τ), the optimization problem (28) is infeasible, or, by convention, G(w,τ) =−∞.

Remark 3. We use a figure to better illustrate the dynamics of Wt defined in Lemma 6. Figure 1

gives an illustrative example of the dynamics of Wt for the case that τ > τz. The agent’s promised

utility trajectory W g
t starts from W g

0 . Over time, if no arrival has occurred, the agent’s promised

utility drifts down, following the solid curve. If the first arrival occurs before τ , the promised

utility jumps up to the dotted curve max{W g
t + βg, z + βg}. Conceptually, the difference Hg

t =

max{βg, z + βg −W g
t } represents the scale of upward jump in the agent’s promised utility upon

the first arrival. It is fixed and equal to βg before time τ − τz. After τ − τz, however, the jump

Hg
t = z +βg−W g

t >βg, and the (IC) constraint is not binding. After this first arrival, Hg
t is set to

βg. Finally, the dashed curve, which overlaps with the solid curve when t < τ −τz, characterizes the

movement of the promised utility following the dynamic (11) of the regular contract when Hg
t is

kept at βg. The figure implies that allowing the upward jump Hg
t to be higher than βg effectively

shortens the probation period. �

Similarly, we solve optimization problem (29) in the following Lemma.
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Figure 1 Good agent’s promised utility dynamic before the first arrival for the case µ = 0.5, g = 1, τ = 1 and

W0 = 0.85. In this case z = 0.63, and τ − τz = 0.34.

Lemma 7. If τ =∞, then define

z :=
w

µ
−βg, (38)

(i) If w≥ g

r
, then the following Wt and Ht solves the optimization (29),

Wt =w, and Ht =
w

µ
−w. (39)

(ii) If w<
g

r
, the optimization problem (29) is infeasible, or, by convention, G(w,τ) =−∞.

We define the discounted length of the probation period to be

τ̄ :=
1− e−rτ

r
. (40)

Further define function

J(w, τ̄) :=G

(
w,− log(1− rτ̄)

r

)
, for τ̄ ∈

[
0,

1

r

]
, w≥ gτ̄ . (41)

Based on Lemma 6, we have the following result.

Proposition 4. Function J(w, τ̄) is jointly concave in w and τ̄ , and increasing in τ̄ . Furthermore,

we have

Y = max
wg ,wb,τ̄

p ·J(wg, τ̄) + (1− p)min

{
Fb(wb),

wg −wb
b− g

(µR− b)+−wb
}

(42)

s.t. wg ≥wb ≥ g · τ̄ (43)

0≤ τ̄ ≤ 1

r
. (44)
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Because the minimum of two concave functions is concave, the objective function in (42) is concave.

Therefore, Proposition 4 implies that we can convert the non-convex optimization problem (23)-

(27) into a convex optimization problem with linear constraints, which can be solved efficiently.

5.2. Constructing contracts from the upper bound optimization problem

Now we define a menu of contracts based on this optimization problem. Denote (w∗g ,w
∗
b , τ̄
∗) to

represent an optimal solution of the convex optimization (42)-(44). Further define

τ ∗ :=−1

r
log(1− rτ̄ ∗), and z∗ := z(w∗g , τ

∗), (45)

in which the function z(w,τ) is defined as z according to Lemmas 6 and 7. First, we construct the

contract for the bad agent by using the sign-on-bonus contract of Definition 3. For this purpose,

we need the following technical lemma.

Lemma 8. We have w∗b ≤ w̄b. Furthermore, if µR> b, there exists a quantity w ∈ [0,w∗b ] such that

Fb (w)≤
(
w∗g −w∗b

)
(µR− b)

b− g
−w. (46)

Lemma 8 implies that the following threshold is well-defined, given (w∗g ,w
∗
b ),

wB(w∗g ,w
∗
b ) :=

max

{
w ∈ [0,w∗b ]

∣∣∣ Fb (w)≤ (w∗g−w∗b)(µR−b)
b−g −w

}
, if µR> b,

0, if µR≤ b.
(47)

We claim, and will later show, that the principal should give the bad agent a sign-on-bonus contract

γbB
(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)

of Definition 3.

Next, we construct a so-called probation contract for the good agent, whose structure is more

intricate. Therefore it helps to understand why this structure makes intuitive sense. First, recall

that it is necessary for the principal to pay a flow rate of at least c in order to induce full effort from

a type c agent. In particular, the contract intended for the good agent offers a flow reimbursement

g. The right-hand side of constraint (24) corresponds to the bad agent’s utility of always shirking

while collecting this flow reimbursement g. If the bad agent has no incentive to work, an arrival

during this period would reveal that the agent’s true type is indeed g. Hence, the principal can

set a finite probation period, and terminate the agent at the end of probation if there is no arrival

during this period. In this case, the adverse selection issue is resolved, and the principal can follow

the contract structure γ̂g(w) of Definition 1 after the first arrival. In order to ensure effort during

probation for the good agent, the promised utility needs to take an upward jump of at least βg,

and possibly higher, at the first arrival. Later, we show that if this jump is not too high, then the

bad agent indeed does not have any incentive to work.
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The probation contract relies on the time of the first arrival, formally defined as

τN1 := min{t | dNt = 1}, (48)

and the promised utility dynamics following Remark 3.

Definition 4. For any probation time period τ ≥ 0 and threshold w≥ w̌(τ), we define a probation

contract γgP (w,τ) = (Lg, ηg), which pays dLgt = gdt and generates a promised utility process W g
t

that evolves according to the following rules for t∈ [0, τ), and ηg = τ if τN1 > τ .

• If w ∈ [w̌(τ), ŵ(τ)), then W g
t follows (34),

• If w≥ ŵ(τ), then W g
t follows (37),

in which w̌(τ) and ŵ(τ) are defined in (31).

If τN1 ≤ τ , then the aforementioned dynamics lasts until τN1 , and define z(w, τ) according to

Lemmas 6 and 7. After the first arrival, there are two possibilities.

(1) If max
{
W g

τN1
, z(w,τ)

}
+ βg ≤ w̄g, the contract continues with γ̂g

(
max

{
W g

τN1
, z(w,τ)

}
+βg

)
by resetting time τN1 to 0.

(2) If max
{
W g

τN1
, z(w,τ)

}
+βg > w̄g, it continues with γgD

(
max

{
W g

τN1
, z(w,τ)

}
+βg, S(w,τ), τN1

)
,

in which

S(w,τ) :=

⌈
ln(r(max{w, z(w,τ)}+βg)/g)

ln((br+µg)/g)

⌉
. (49)

�

Remark 4. It is worth mentioning that the probation contract is built upon the delay-payment

contract of Definition 2. Now we are ready to explain why delaying the first payment is helpful. If

the good agent’s promised utility after the first arrival exceeds w̄g, and if the principal immediately

pays the agent while bringing the promised utility back to w̄g as in the original IC-binding contract,

then the benefit of the first arrival may be so high such that it induces the bad agent to mimic

the good type while exerting partial effort (at level g/b). This would nullify the first arrival as a

screening device and complicates contract design. In order to resolve this issue, the principal can

delay the first payment to a later arrival, while paying the corresponding interest. This makes no

difference to the good agent, who continues to work. The bad agent who mimics the good type,

however, would have no incentive to exert even partial effort if the delay is sufficiently long, as

guaranteed by the expression (49). �

We define the following menu of contracts and establish that it is optimal if z∗, as defined in

(45), is not too large.

Definition 5. Given the optimal solution (w∗g ,w
∗
b , τ̄
∗) to the convex optimization (42)-(44), define

a menu of contracts Γ∗{g,b} :=
{
γgP (w∗g , τ

∗), γbB
(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)}

, in which τ ∗ is defined

in (45), and wB in (47). �
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When the context is clear, we omit wB’s dependence on (w∗g ,w
∗
b ) in the expressions for the

simplicity of exposition. The following lemma shows that it is still possible that we have wB = 0

even if b < µR.

Lemma 9. There exists b̄∈ [g,µR], such that wB = 0 for b≥ b̄ and wB > 0 for b < b̄.

In summary, the good agent is always given a probation contract. The bad agent’s contract

depends on how high his operating cost b is. If b ≥ b̄, then the operating cost of the bad agent

is too high to be worth hiring, or, wB = 0. And the bad agent is paid an amount w∗b up front

to leave, which corresponds to a pay-to-leave contract γbB(0,w
∗
b ). If b < b̄, on the other hand, it is

socially efficient to let the bad agent exert full effort. The corresponding sign-on-bonus contract

γbB(wB,w
∗
b −wB) allows the bad agent to work from an initial promised utility wB.

We are now ready to present the main result of this section.

Theorem 1. If

min{z∗+βg, w̄g}<βb, (50)

in which z∗ is defined in (45), then the menu of contracts Γ∗{g,b} satisfies (LL), (PK), (IC), (IR),

(FE) and (TT) with C = {g, b}. Furthermore, we have U(Γ∗{g,b}) =Y, in which Y is defined in (23)-

(27). Therefore, we have U(Γ∗{g,b}) = Z({g, b}), or, the menu of contract Γ∗{g,b} solves the optimal

contract design problem (7) with two types.

Although the condition (50) is not based on primitive model parameters, whether it holds can be

easily verified after solving the convex optimization (42)-(44). Following Remark 3 and Figure 1,

the highest upward jump in the promised utility occurs at the end of the probation period, with a

magnitude that is captured by the left-hand-side of (50). Condition (50) states that such an upward

jump is lower than βb, and hence the bad agent does not have any incentive to exert any effort

throughout the probation period ((IC) in Lemma 1). Consequently, the upper bound optimization

problem is tight, and the menu of contracts derived from the upper bound optimization problem

is optimal.

Condition (50) immediately implies the following result.

Corollary 1. The menu of contract Γ∗{g,b} solves the two-type optimal contract design problem

when g/r < b/µ, which is satisifed in particular when µ< r.

We present in Table 1 a summary of the menu of optimal contracts in the two-type case. Although

the good agent’s contract is always a probation contract regardless of b, the values w∗g and τ ∗ are

still functions of b.
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b≥ b̄ b < b̄
Good agent Probation contract γgP (w∗g , τ

∗) Probation contract γgP (w∗g , τ
∗)

Bad agent Pay-to-leave contract γbB(0,w
∗
b ) Sign-on-bonus contract γbB(wB,w

∗
b −wB)

Table 1 Optimal menu of contracts under condition (50)

It is worth explaining incentives around the optimal menu of contracts Γ∗{g,b}. In the case of

b≥ b̄, the initial bonus w∗b to the bad agent equals the discounted total operating cost g that the

agent can collect by mimicking the good type while shirking throughout the probation period. This

initial bonus mitigates the bad agent’s incentive to lie about the high cost. It is also worth noting

that the (TT) constraint for the good agent is not binding. That is, the good agent’s promised

utility w∗g under the probation contract is strictly higher than the bonus w∗b .

If b < b̄, however, the principal may allow the bad agent to work following contract γbB(wB,w
∗
b −

wB), and provides sufficient information rent, w∗b , for the bad agent to tell the truth. In order

to discourage the good agent from mimicking the bad type and exerting effort while collecting a

higher operating cost reimbursement, b, the principal needs to lower the bad agent’s contract’s

initial promised utility wB. If this initial promised utility wB is lower than the information rent

w∗b , however, the principal needs to pay the difference as an initial sign-on-bonus to the bad agent.

Before closing this section, we highlight the following properties of the optimal menu of contracts

Γ∗{g,b}.

Property 1:

`gt = g, and `bt = b.

The optimal contracts never over compensates the operating costs. That is, before contract ter-

mination, the good agent receives a flow payment g, and the bad agent receives a flow payment

b.

Property 2:

ν̄ ∈N
(
γbB
(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)
, g
)
, and ν0 ∈N

(
γgP (w∗g , τ

∗), b
)
.

The first part of the property states that a good agent who mimics the bad type would exert full

effort. This result follows from Lemma 3. The second part of the property states that this contract

induces the bad agent not to work. This is because: (1) according to Property 1, the good agent’s

contract only compensates the operating cost at rate g, and therefore the bad agent could only

exert at most partial effort; (2) following condition (50), the first jump in the probation contract is

small enough; and (3) the first payment is delayed to far enough into the future. As a result, under

the probation contract γgP (w∗g , τ
∗), the good agent validates his type at the first arrival, resolving

the adverse selection issue. This property plays an important role in showing that Γ∗{g,b} satisfies

the (TT) constraint.
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Property 3:

Hg
t = βg, ∀t > τN1 , and Hb

t = βb, ∀t≥ 0.

This property indicates that under the menu Γ∗{g,b}, the (IC) constraint is binding in the good

agent’s contract after the first arrival, and in the bad agent’s contract the entire time. As mentioned

earlier, the first arrival under the good agent’s contract resolves adverse selection. Therefore the

principal follows the most efficient contract, by setting the (IC) constraint binding. The bad agent’s

contract cannot screen agent’s types using the first arrival, because as long as the contract allows

the bad agent to work, the good agent is able to mimic the bad type and still generate arrivals.

Therefore, the principal always offers a dynamically efficient contract (with binding (IC)) to the

bad agent and adjusts other parameters in the menu to achieve optimality.

In the next section, we propose a feasible menu of contracts if condition (50) does not hold.

6. Lower Bound

In the upper-bound optimization, the bad agent is not allowed to work. If condition (50) does

not hold, then the pair of sign-on bonus and probation contracts constructed in Section 5.2 do

not satisfy the truth-telling constraints, and the upper bound cannot be achieved. In order to

construct a menu of contracts that do satisfy truth-telling (although they may be suboptimal), we

may restrict the contract space to induce the bad agent to always shirk facing the good agent’s

contract.

The reasons why we focus on such a class of lower bounds are twofold. First, by implementing

the IC-binding contract for the good agent after the first arrival, we guarantee efficiency in the

good agent’s contract in the long run. This helps our lower bound to be near-optimal. Second, this

class of contracts allows us to still use the first arrival to screen the two types, which helps us track

the two types’ promised utilities, and hence compute the corresponding information rent.

Proposition 5. We have Y̌, defined below, is lower than or equal to Y.

Y̌ := max{Y̌1, Y̌2} (51)

in which

Y̌1 := max
wg ,wb

p ·G(wg,∞) + (1− p)min

{
Fb(wb),

wg −wb
b− g

(µR− b)+−wb
}

(52)

s.t. wg ≥wb ≥ g/r,

where the function G(w,∞) is defined in (29), and

Y̌2 := max
wg ,τ̄

p · Ǧ
(
wg,−

1

r
ln(1− rτ̄)

)
+ (1− p)min

{
Fb (τ̄ g) ,

wg − τ̄ g
b− g

(µR− b)+− τ̄ g
}

(53)
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s.t. wg ≥ τ̄ g and τ̄ ∈ [0, 1/r],

where we define

Ǧ(w,τ) := max
Wt,Ht

∫ τ

0

µe−t[R+Fg(Wt +Ht)]dt− g(1− e−τ ), (54)

s.t.
dWt

dt
= rWt−−µHt, for t∈ [0, τ ]; W0 =w, Wτ = 0,

Ht ≥ βg, ∀t∈ [0, τ ],

Bt =
g

r

(
1− er(t−τ)

)
, ∀t∈ [0, τ ], (55)

min{Wt +Ht, w̄g}−Bt ≤ βb ∀t∈ [0, τ ]. (56)

In Proposition 5, we first separate the two cases between the infinite probation (52) and a finite

probation (53). For the finite probation case, we further set the bad agent’s utility wb to be the

total discounted value of mimicking the good agent while shirking through the probation period.

Function Ǧ in (53) replaces G(w,τ) in the upper bound optimization (23)-(29). The new process Bt

represents the bad agent’s total future utility while mimicking the good agent and shirking, which

follows the expression (55). Constraint (56), which states that the upward jump in the promised

utility upon an arrival is low enough, guarantees that the bad agent does not work facing the good

agent’s contract. Lemma 15 in the Appendix shows that this constraint, together with a delayed-

payment, mitigates any incentive for the bad agent to work. Therefore, the good agent’s contract

indeed screens the types using the first arrival.

Next, we provide a process to solve the optimal control problem (54), in order to obtain the

Ǧ(w,τ) function value for any given w and τ .

6.1. Solving Ǧ

First, it is worth noting that if w̄g ≤ βb, then constraint (56) is automatically satisfied. In this case,

the calculation of lower bound Y̌ coincides with the upper bound Y, and Theorem 1 gives the

corresponding optimal menu of contracts. Therefore, we focus on w̄g >βb.

Before presenting the mathematical expressions and complete results, we first provide some

insights on the optimal solution, before presenting the details in Proposition 6 later. Figure 2

demonstrates that the (w,τ) space is divided into five regions by thresholds ω̌(τ), ω̄(τ), ω̃(τ), and

lnρ, to be defined later. In regions (1) and (5), there does not exist an admissible policy to solve

(54), and hence Ǧ(w,τ) = −∞. In region (2), the optimal (Wt,Ht) that solves (54) follows the

dynamic described in Lemma 6, which is further explained in Remark 3. In region (3), the optimal

solution changes, as described in the following remark.
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Figure 2 Different regions of (w,τ) for Ǧ(w,τ). In this case, µ= 0.7, g= 1, b= 1.5.

Figure 3 Good gent’s promised utility dynamic before the first arrival for the case µ= 0.7, g = 1, b= 1.5, τ = 1,

and w= 1.04. In this case y(τ, t1) = 2.33, t2 = 0.18 and t1 = 0.8.

Remark 5. In this case, the probation period is divided into three phases by two thresholds, t2

and t1, as shown in Figure 3. In the first phase from 0 to t2, the (IC) constraint is binding for the

good agent. That is, an arrival during this period triggers the promised utility to take an upward

jump of βg, to the dotted curve. If the first arrival occurs during the second phase, between t2 and

t1, the good agent’s promised utility would jump to a fixed level (y(τ, t1), to be defined later). If

the first arrival time t occurs after t1 and before the end of probation period τ , the promised utility

would jump to y(τ, t), which is a decreasing function of t to be defined later. In the third phase,

the upward jump is no higher than βb, which dissuades the bad agent from working. �

Moving to region (4), Figure 3 changes to Figure 4 as a representation of the optimal solution.
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Figure 4 Good gent’s promised utility dynamic before the first arrival for the case µ= 0.7, g = 1, b= 1.1, τ = 4

and w= 2.43. In this case z = 2.17, t̃2 = 0.85 and ť1(τ) = 1.49.

Remark 6. Once again, there are three phases, marked by thresholds t̃2 and ť1(τ), to be defined

later. The promised utility takes an upward jump of βg if an arrival occurs in the first phase, before

t̃2. At time t̃2, the promised utility reaches a level z. From that time to ť1(τ), the first arrival

triggers the promised utility to jump to a constant level, z + βg. In the third phase after time

ť1(τ), the promised utility follows the same trajectory as the third phase described in Remark 6.

Although the promised utility changes continuously, the level that it jumps to upon an arrival may

involve discontinuity between phases 2 and 3 at time ť1(τ), as illustrated in Figure 4. �

The aforementioned dynamic involves many quantities to be defined next. We present these

technical definitions in the remainder of this section in order to provide the complete result.

First define the following quantities,

ρ := (w̄g/βb)
1/r

> 1, (57)

ť1(τ) := τ − lnρ, for τ ≥ lnρ, and (58)

ť2(τ) := ť1(τ) + ln
rg

rb+µ(b− g)/ρ
∈ [0, ť1(τ)), (59)

and functions,

W(τ, t) := µ (w̄g +βb) (1− et−τ ) + w̄g
(
et−τ − er(t−τ)

)
, and (60)

y(τ, t) := w̄g
(
1− er(t−τ)

)
+βb. (61)

In particular, the value W(τ, ť1(τ)) no longer depends on τ . Define it as

W̌ := W(τ, ť1(τ)) = µ (w̄g +βb) (1− ρ−1) + w̄g
(
ρ−1− ρ−r

)
. (62)
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We further define

W(τ) := µw̄g

(
1− e−ť1(τ)

)
+ W̌e−ť1(τ), for τ ≥ lnρ, (63)

ω̄(τ) :=

 b(1− e−τ ), if τ <− ln
(
g−rb
µb

)
,

w̄g + (βb−βg − w̄g)e−r(τ+ln( g−rbµb )), if τ ≥− ln
(
g−rb
µb

)
,

and (64)

ω̃(τ) :=

W(τ,0), if τ < lnρ,
W(τ), if τ ≥ lnρ and W(τ)< w̄g −βg,
w̄g(1− e−rť2(τ)) + erť2(τ)(w̄g −βg), if τ ≥ lnρ and W(τ)≥ w̄g −βg,

(65)

These notations are useful in the following result, corresponding to the five regions of Figure 2.

Proposition 6. Suppose w̄g >βb. We have ω̌(τ)≤ ω̄(τ)≤ ω̃(τ) for any τ ≥ 0, where ω̌ is defined in

(31). Furthermore, for any pair (w,τ), the optimization problem Ǧ(w,τ) of (54) has the following

five possibilities.

(1) If w< ω̌(τ), then (54) is infeasible, and hence, by convention, Ǧ(w,τ) =−∞.

(2) If w ∈ [ω̌(τ), ω̄(τ)), then (Wt,Ht) defined in Lemma 6 is the optimal solution.

(3) If w ∈ [ω̄(τ), ω̃(τ)] there exists a unique pair of time epochs t1 and t2 with 0≤ t2 ≤ t1 < τ , such

that the following defined (Wt,Ht) is optimal,

Wt :=

 w̄g
(
1− er(t−t2)

)
+ er(t−t2) [y(τ, t1)µ (1− et−t1) + et−t1W(τ, t1)] , t∈ [0, t2),

y(τ, t1)µ (1− et−t1) + et−t1W(τ, t1), t∈ [t2, t1),
W(τ, t), t∈ [t1, τ ],

(66)

and

Ht =

βg, t∈ [0, t2),
y(τ, t1)−Wt, t∈ [t2, t1),
y(τ, t)−Wt, t∈ [t1, τ ].

(67)

(4) If w > ω̃(τ) and τ ≥ lnρ, there exists a unique time epoch t̃2 ∈ [0, ť1(τ)] and value z such that

the following defined (Wt,Ht) is optimal,

Wt =

 w̄g
(
1− er(t−t̃2)

)
+ er(t−t̃2)

[
µ(z +βg)

(
1− et̃2−ť1(τ)

)
+ et̃2−ť1(τ)W̌

]
, t∈ [0, t̃2),

µ(z +βg)
(
1− et−ť1(τ)

)
+ et−ť1(τ)W̌, t∈ [t̃2, ť1(τ)),

W(τ, t), t∈ [ť1(τ), τ ],
(68)

and

Ht =

βg, t∈ [0, t̃2),
z +βg −Wt, t∈ [t̃2, ť1(τ)),
y(τ, t)−Wt, t∈ [ť1(τ), τ ].

(69)

(5) If w> ω̃(τ) and τ < lnρ, then (54) is infeasible, and hence Ǧ(w,τ) =−∞.

Next, we present how to obtain quantities t1, t2, t̃2 and z in Proposition 6 to complete the

description of the optimal solution of (54).
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6.1.1. Finding t1 and t2 Figure 3 illustrates (Wt,Ht) following (66) and (67). Given any

t1 ∈ [0, τ ], we define t2(t1)≤ t1 to be the solution t that solves the equation

y(τ, t1)µ
(
1− et−t1

)
+ et−t1W(τ, t1) = y(τ, t1)−βg. (70)

If no such t∈ [0, t1] solves this equation (that is, y(τ, t1)µ (1− et1) + et1W(τ, t1)< y(τ, t1)−βg), on

the other hand, define t2(t1) = 0 and the first phase does not exist. Equipped with t2(t1), we further

search t1 such that W0 =w where Wt follows (66).

6.1.2. Finding t̃2 and z Figure 4 illustrates (Wt,Ht) following (68) and (69), in which t̃2 and

z are defined as follows, depending on w and τ ,

If w≥
g
(
1− e−ť1(τ)

)
+ W̌e−ť1(τ)

r+µe−ť1(τ)
, then t̃2 = 0 and z =

w− W̌e−ť1(τ)

µ(1− e−ť1(τ))
−βg; (71)

If w<
g
(
1− e−ť1(τ)

)
+ W̌e−ť1(τ)

r+µe−ť1(τ)
, then t̃2 = ť1(τ)− τz and z is the unique solution of

w̄g − (w̄g − z) · er(τz−ť1(τ)) =w, (72)

where

τz := ln

(
µ(z +βg)− W̌

r(w̄g − z)

)
. (73)

As a sanity check, when w=
g
(
1− e−ť1(τ)

)
+ W̌e−ť1(τ)

r+µe−ť1(τ)
, we have z =w.

6.2. Contract Implementation

We are now ready to define a menu of contracts that achieves the lower bound Y̌.

First, define the following probation contracts.6

Definition 6. For any probation period τ ≥ 0, and intial promised utility w such that w ∈
[ω̌(τ), ω̃(τ)], or w> ω̃(τ) and τ ≥ lnρ, define a probation contract γg

P′ (w,τ, b) = (Lg, ηg), which pays

dLgt = gdt and generates a promised utility process Wt as follows.

1. If w ∈ [ω̌(τ), ω̄(τ)), γg
P′(w,τ) = γgP (w,τ) as in Definition 4.

2. If w ∈ [ω̄(τ), ω̃(τ)], Wt follows (66) for t ∈ [0, τ), and ηg = τ if τN1 > τ , in which t1 and t2

are obtained according to Section 6.1.1. If τN1 ≤ τ , on the other hand, the aforementioned

dynamics lasts until τN1 , after which there are two possibilities:

(1) if WτN1
+HτN1

≤ w̄g, the contract continues with γ̂g
(
WτN1

+HτN1

)
of Definition 1 by reset-

ting time τN1 to 0, where HτN1
follows (69);

(2) if WτN1
+ HτN1

> w̄g, it continues with γgD

(
WτN1

+HτN1
, S′(w,τ), τN1

)
of Definition 2, in

which

S′(w,τ) =

⌈
ln(g/r(max{w+βg,y(τ, t1), w̄g +βb}))

ln(g/(br+µg))

⌉
.
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where HτN1
follows (67).

3. If w > ω̃(τ) and τ ≥ lnρ, Wt follows (68) for t ∈ [0, τ), and ηg = τ if τN1 > τ , in which t̃2 and

z are obtained according to Section 6.1.2. If τN1 ≤ τ , on the other hand, the aforementioned

dynamics lasts until τN1 , after which there are two possibilies:

(1) if WτN1
+HτN1

≤ w̄g, the contract continues with γ̂g
(
WτN1

+HτN1

)
by resetting time τN1 to

0;

(2) if WτN1
+HτN1

> w̄g, it continues with γgD

(
WτN1

+HτN1
, S′(w,τ), τN1

)
, in which

S′(w,τ) =

⌈
ln(g/r(max{w+βg, z +βg, w̄g +βb}))

ln(g/(br+µg))

⌉
.

�

The following result demonstrates how to achieve the lower bound Y̌ defined in Proposition 5.

Denote (w̌1
g, w̌

1
b) to represent an optimal solution to (52), and (w̌2

g, τ̄2) an optimal solution to (53).

Define

w̌g :=

{
w̌1
g, if Y̌1 ≥ Y̌2,

w̌2
g, if Y̌1 < Y̌2,

w̌b :=

{
w̌1
b , if Y̌1 ≥ Y̌2,

gτ̄2, if Y̌1 < Y̌2,
and

τ̌ :=

{
∞, if Y̌1 ≥ Y̌2,
− 1
r

ln (1− rτ̄2) , if Y̌1 < Y̌2.

Proposition 7. With (w̌g, w̌b, τ̌), we define a menu of contracts

Γ̌{g,b} :=
{
γg
P′ (w̌g, τ̌ , b) , γ

b
B (wB(w̌g, w̌b), w̌b−wB(w̌g, w̌b))

}
,

in which function wB is defined in (47), contract γbB in Definition 3, and contract γg
P′ in Definition

6. We have Y̌ = U
(
Γ̌{g,b}

)
.

7. Numerical experiments

In this section we numerically test the performance of the menu of IC-binding contracts of Section

4 and the lower bound contracts of Section 6.

Following Corollary 1, we only consider model parameters such that µ> r. We normalize g= 1,

and take the following combinations of model parameters:

r ∈ {0.1,0.2,0.3,0.4},

p∈ {0.1,0.5,0.9},

b∈ {1.1g,1.5g,2g,5g},

R ∈ {0.9βg + 0.1βb,0.5(βg +βb),0.1βg + 0.9βb,1.1βb,1.2βb,1.3βb,2βb,5βb}.
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Overall there are a total of 4× 3× 4× 8 = 384 cases. Among all the cases, 144 of them yield a

zero upper bound. That is, the principal should not hire the agent in these cases. For each of the

remaining 240 “non-trivial” cases, we compute the ratio between the performances of the best IC-

binding contracts YB (Proposition 2) and the upper bound Ŷ. We also compute the ratio between

our lower bound Y̌ (Proposition 5) and the upper bound Ŷ.
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Figure 5 Comparing

In Figure 5, we arrange the cases in descending order of YB/Ŷ and plot them in crosses (×). We

also plot the corresponding Y̌/Ŷ as a solid line. It is clear that our lower bound Y̌ always strictly

outperforms the best IC-binding contracts, as long as Y̌ > 0. In each of the 8 cases such that our

lower bound Y̌ = 0, the IC-binding contracts also yield YB = 0. Among the 232 cases such that

Y̌ > 0, the average of the ratio YB/Y̌, between the IC-binding and our lower bounds, is only 40.5%.

Therefore, our constructed lower bound menu of contracts is much better than náıvely relying on

the known-cost optimal contracts.

Another observation from Figure 5 is that our lower bound Y̌ often achieves the upper bound

Ŷ. In fact, among the 240 non-trivial cases, 76 of them satisfy the condition g/r < b/µ. Following

Corollary 1, it is not surprising that the lower bound meets the upper bound for these cases. What

is more interesting is that 81 additional cases demonstrate Y̌ = Ŷ even though g/r > b/µ. What

about the remaining 240− 76− 81 = 83 cases?

For these cases, one can also construct yet another “almost trivial” lower bound, by pooling

both types together and offering both types the bad agent’s optimal contract γ̂b(wb∗). Both types
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of agent will respond the same way facing this contract. The corresponding principal’s utility is

Y̌ ′ := Fb(w
b
∗), following Proposition 1. Among the 83 cases such that Y̌ < Ŷ, the pooling contract

outperforms the lower bound menu of contracts in 28 of them. A closer look at the 28 cases show

that when b is close to g and r is relatively small, the pooling contract tends to perform better

than the menu of lower bound contracts.

We then compute the relative performance of the better between these two lower bounds,

max
(
Y̌, Y̌ ′

)
/Ŷ. Overall, the average relative performance among all 240 cases is 95.5%. This aver-

age relative performance becomes 86.9% among the 83 cases such that Y̌ < Ŷ. Figure 6 depicts this

relative performance for the 83 cases in a descending order. Overall, it appears that our contract

design performs very well in most cases.
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Figure 6 Relative performance max
(
Y̌, Y̌ ′

)
/Ŷ of the 83 cases in which Y̌ < Ŷ.

There are a total of only 20 cases such that the relative performance, max
(
Y̌, Y̌ ′

)
/Ŷ, is less

than 90%. Table 2 lists all of them. These cases demonstrate the following characteristics: (1) the

players are rather patient (r small), and (2) the agent is more likely to be bad (p no more than

0.5). Recall that our lower bound Y̌ is based on restricting the contract space such that the bad

agent has no incentive to exert effort. Alternatively, a patient principal could potentially design

contracts that allow the bad agent to work for a while and screen the agent types through multiple

arrivals. Such a construction is likely very complex and we leave it to future research.

8. Multiple Types

In this section we generalize the two-type case to a situation where the agents’ operating cost may

take its value from a set C := {c1, c2, . . . cN}, such that the common prior probability of ci is Pi,

and c1 ≤ . . .≤ cM <µR≤ cM+1 ≤ . . .≤ cN for some positive integer M ≤N . The condition c1 <µR

guarantees that the agent is efficient with a positive probability, which excludes the trivial case
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Table 2 Parameters of the Cases with Highest Relative Losses

r b R p Ŷ max
(
Y̌, Y̌ ′

)
max

(
Y̌, Y̌ ′

)
/Ŷ

0.1 1.5 1.2βb = 2 0.5 1.371 1.227 89.49%
0.1 1.1 1.3βb = 1.59 0.1 0.512 0.453 88.41%
0.1 1.5 2βb = 3.33 0.5 10.514 9.169 87.21%
0.3 2 1.3βb = 3.71 0.1 0.031 0.027 85.53%
0.1 1.5 1.3βb = 2.17 0.5 2.917 1.859 84.63%
0.1 5 1.2βb = 6.67 0.1 3.519 2.975 84.54%
0.1 2 2βb = 4.44 0.5 14.799 12.328 83.3%
0.2 1.1 1.3βb = 1.79 0.1 0.03 0.021 67.39%
0.1 1.5 1.3βb = 2.17 0.1 0.926 0.618 66.72%
0.1 1.1 1.3βb = 1.59 0.5 0.75 0.453 60.39%
0.1 2 1.3βb = 2.89 0.1 1.476 0.824 55.78%
0.1 1.1 1.2βb = 1.47 0.1 0.041 0.019 46.51%
0.2 2 1.3βb = 3.25 0.1 0.281 0.102 36.65%
0.2 1.1 1.3βb = 1.79 0.5 0.079 0.021 26.1%
0.2 1.5 1.3βb = 2.44 0.1 0.114 0.028 24.49%
0.1 2 1.2βb = 2.67 0.1 0.59 0.089 15.06%
0.1 1.1 1.2βb = 1.47 0.5 0.165 0.019 11.61%
0.1 1.5 1.2βb = 2 0.1 0.243 0.026 10.73%
0.1 2 1.1βb = 2.44 0.1 0.086 0.003 3.42%
0.2 2 1.2βb = 3 0.1 0.027 0 0 %

where the agent is always inefficient and therefore should not be hired at all. Note that we make no

assumption on the worst cost cN . If cN >µR, an agent with a cost higher than µR is not efficient,

or, not worth hiring.

We still try to solve the contract design problem (7) with this newly defined set C. In the contract

design problem (7), the objective function becomes

U(ΓC) =
N∑
i=1

Pi ·U(γci , ν̄) (74)

in which the menu ΓC offered by the principal contains a menu of contracts for each γci for i ∈

{1,2, ...,N}. Similar to the two-type case, it is hard to characterize the optimal solution. Therefore,

in this section, we focus on good approximations.

In Section 8.1, we first construct an optimization formulation similar to Section 5. Unfortunately,

this upper bound is hard to compute. Therefore, in Section 8.1.1, we provide a further relaxation

that is easy to compute, using a dynamic programming approach. This upper bound calculation

also motivates the design of a menu of contracts. Therefore, in Section 8.2, we specify this menu

of contracts, and compare its performance (a lower bound) with the upper bound. Our numerical

study shows that the lower bound is fairly close to the upper bound, which implies that our design

of contracts performs very well.
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8.1. Upper Bound

Similar to Section 5, we present a new optimization problem, which provides an upper bound to

the contract design problem (7). First, we expand the definition of the function J in (41) to include

the cost variable as the following

J (w, τ̄ , c) := G
(
w,−1

r
log(1− rτ̄), c

)
, for τ̄ ∈

[
0,

1

r

]
, c∈ {c1, . . . , cM}, and w≥ cτ̄ , (75)

in which the function G is defined as

G(w,τ, c) := max
Wt,Ht

∫ τ

0

µe−t[R+Fc(Wt +Ht)]dt− c(1− e−τ ), (76)

s.t.
dWt

dt
= rWt−−µHt, for t∈ [0, τ ]; W0 =w, Wτ = 0,

Ht ≥ βc, ∀t∈ [0, τ ],

similar to the function G in Proposition 3. Therefore, the function J (w, τ̄ , c) represents the prin-

cipal’s optimal utility when offering a type c agent a probation period with a discounted length τ̄ ,

and an initial promised utility level w. The relationship between the discounted length τ̄ and the

real length τ of the probation period is defined in (40). Note that the function J is well-defined

only for τ̄ ∈ [0,1/r], c < µR, and w ≥ cτ̄ , when the corresponding optimal control problem (76) is

admissible.

Based on the definition of the value function J we are ready to present the following upper

bound optimization problem,

Theorem 2. We have YN ≥Z(C), where Z(C) is defined according to (7) and (74), and

YN := max
{wi,ξi}i=1,...,M ,wM+1

M∑
i=1

ξiPi−wM+1

N∑
i=M+1

Pi (77)

s.t. wi ≥wi+1 ≥ 0, ∀i∈ {1, ...,M}, (78)

ξ1 =J
(
w1, min

{
wM+1

c1

,
1

r

}
, c1

)
, (79)

ξi ≤J
(
wi, min

{
wM+1

ci
,

1

r

}
, ci

)
, ∀i∈ {2, ...,M}, (80)

ξi ≤min
j<i

(
wj −wi
ci− cj

)
· (µR− ci)−wi, ∀i∈ {2, ...,M}. (81)

The optimization problem (77)-(81) is a generalization of the one defined in Proposition 3 for the

two type case. First, the decision variable wi represents the initial promised utility assigned to the

type ci agent. If the agent is efficient (ci ≤ µR), the decision variable ξi represents the principal’s

utility facing a type cj agent, similar to the variable ξ in Proposition 3. If the agent is inefficient

(ci > µR), on the other hand, the objective function (77) implies that the principal’s utility is

−wM+1, that is, the agent should be paid off and terminated immediately.
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The constraint (78) states that the principal needs to offer a higher promised utility to the agent

with a better type (lower cost) than to one with a worse type (higher cost). This monotonicity

constraint partly mitigates the agent’s incentive to mimic a worse type. Constraint (80) indicates

that the principal’s utility from type ci agent is upper bounded by the function J , which calculates

the principal’s maximum expected utility when the type ci agent always exerts effort under a

probation contract. (Functions J and G in this section correspond to functions J and G in Section

5, respectively. See Remark 1 for a detailed explanation of G.) Constraint (81) ensures that the

type ci agent does not benefit from mimicking a worse type cj. (This is similar to the constraint

(26), as discussed in Remark 2.)

To understand how to mitigate the agent’s incentive to mimic a better type, we need to look at

the term J inside (80). If an agent with a higher cost ck mimics the lower cost ci and shirks through

the probation period, the total discounted utility would be ciτ̄ , in which τ̄ represents the discounted

probation period offered to type ci. A constraint ciτ̄ ≤ wk, or, equivalently, τ̄ ≤ wk/ci, mitigates

such an incentive. Monotonicity following (78) implies that we only need to require τ̄ ≤ wN/ci.
Since function J (w, τ̄ , c) is increasing in τ̄ , it helps to set τ̄ to the upper bound wN/ci in order

to maximize J . However, by definition, the discounted probation period τ̄ cannot be longer than

1/r. This explains the second argument in function J .

Finally, given constraint (78), if µR≤ cN , it is clear that the optimal wi value for any ci ≥ µR
should be a constant, wN .

8.1.1. Computing the upper bound In general, the optimization problem (77)-(78) is hard

to solve. Therefore, we provide an efficient algorithm to compute an upper bound of YN .

Proposition 8. Define

ŶN := max
wi

M∑
i=1

Pi · ξi−wM+1

N∑
i=M+1

Pi (82)

s.t. wi ≥wi+1, ∀i∈ {1, . . . ,M},

ξ1 =J
(
wi,min

{
wM+1

ci
,
1

r

}
, ci

)
,

ξi = min

{
J
(
wi,min

{
wM+1

ci
,
1

r

}
, ci

)
,
wi−1−wi
ci− ci−1

(µR− ci)−wi
}
, ∀i∈ {2, . . . ,M}.

We have

YN ≤ ŶN . (83)

It is worth noting the key difference between the upper bound optimization (82) and the original

(77)-(81). For a type ci and the corresponding wi, the term min
j<i

[
wj −wi
ci− cj

]
in the original formula-

tion is replaced with a higher value
wi−1−wi
ci− ci−1

, which yields a looser upper bound. The benefit of
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this change is computational efficiency. In fact, the optimization problem (82) can be solved using

a dynamic programming approach together with a single-dimensional line search.

Given a value wM+1 ≥ 0, define the following boundary value function,

J1(w|wM+1) := P1 · J
(
w,min

{
wM+1

c1

,
1

r

}
, c1

)
, ∀w≥wM+1. (84)

For any i∈ {1, . . . ,M}, define a deterministic dynamic programming recursion,

Ji(w|wM+1) := max
w′∈[w,∞)

Pi ·min

{
w′−w
ci− ci−1

(µR− ci)−w, J
(
w,min

{
wM+1

ci
,
1

r

}
, ci

)}
+ Ji−1(w′|wM+1), ∀w≥wM+1, (85)

It is clear that

ŶN = max
w,wM+1:0≤wM+1≤w

JM(w|wM+1)−wM+1

N∑
i=M+1

Pi, (86)

which implies that we can obtain the upper bound approximation ŶN by solving a sequence of

the dynamic programming formulation (85) together with a one-dimensional search for the wM+1

value.

Proposition 15 of Appendix E.10 provides a closed-form solution to the maximization problem

in (85). Furthermore, Proposition 16 of Appendix E.10 provides an upper bound w̄ for the optimal

wM+1. Therefore, we can focus on the search for the optimal wM+1 in the interval [0, w̄]. It is worth

noting here that if cN <µR, we have ŶN = maxwM∈[0,w) JM(wM |wM).

8.2. Lower bound and Contract design

Motivated by the upper bound optimization problem (82), we provide a lower bound optimization

here, the solution of which yields a menu of implementable contracts to the original contract

design problem. Similar to the definition of functions J and G in (75)-(76), we define the following

functions,

Ǧ(w,τ, c, c′) := max
Wt,Ht

∫ τ

0

µe−t[R+Fc(Wt +Ht)]dt− c(1− e−τ ), (87)

s.t.
dWt

dt
= rWt−−µHt, for t∈ [0, τ ]; W0 =w, Wτ = 0,

Ht ≥ βc, ∀t∈ [0, τ ].

Bt =
c

r

(
1− er(t−τ)

)
,∀t∈ [0, τ ].

min{Wt +Ht, w̄g}−Bt ≤ c′/µ,∀t∈ [0, τ ],

and

J̌ (w, τ̄ , c, c′) := Ǧ
(
w,−1

r
log(1− rτ̄), c, c′

)
, for τ̄ ∈

[
0,

1

r

]
, c∈ {c1, . . . , cM}, c′ > c, and w≥ cτ̄ .

(88)



36 Author:

Therefore, function J̌ (w, τ̄ , c, c′) represents the principal’s optimal utility when offering a type c

agent a probation period with discounted length τ̄ and an initial promised utility level w, which

further guarantees that a “worse type c′” is not working while taking this contract. – For any

efficient type c= ci, we take c′ = ci+1. Since min{Wt +Ht, w̄g} −Bt ≤ ci+1/µ≤ ck/µ for all k > i,

we know that any type ck agent with k > i does not have the incentive to work while taking type

ci’s contract.

Next, we present a dynamic programming approach which yields a menu of contracts imple-

mentable for the multiple-type problem. At the end of this section, a numerical study shows that

the performance of the dynamic programming formulation is fairly good.

Given a value wM+1 ≥ 0, define the following deterministic dynamic programming recursion,

starting from the boundary condition,

J̌1(w|wM+1) =Pi · J̌
(
w,min

{
wM+1

c1

,
1

r

}
, c1, c2

)
, ∀w≥wM+1, (89)

and

u1(w) =∞, ∀w≥wM+1. (90)

For any i∈ {1, . . . ,M}, define

J̌i(w|wM+1) = max
u∈[0,ui−1(w+u(ci−ci−1))]

Qi(w,u|wM+1), in which (91)

Qi(w,u|wM+1) =Pi ·min

{
u(µR− ci)−w, J̌

(
w,min

{
wM+1

ci
,
1

r

}
, ci, ci+1

)}
+ J̌i−1

(
w+u · (ci− ci−1)|wM+1

)
, ∀w≥wM+1. (92)

Further define the optimal decision ui(w) such that

J̌i(w|wM+1) =Qi(w,ui(w)|wM+1). (93)

Finally, we define

Y̌N := max
(w,wM+1)≥0: 0≤w−wM+1≤uM (w)(cM+1−cM )

J̌M(w|wM+1)−wM+1

N∑
i=M+1

Pi. (94)

Denote an optimal solution of (94) as (w∗M ,w
∗
M+1). For i= 2, . . . ,M define

w∗i−1 :=w∗i +ui(w
∗
i )(ci− ci−1). (95)

Following the constraint for u in (91), we know that 0 ≤ ui(w
∗
i ) ≤ ui−1(w∗i−1). Therefore, the

sequence of w∗i satisfies

w∗i−1−w∗i
ci− ci−1

≥
w∗i −w∗i+1

ci+1− ci
and w∗i ≥w∗i+1, ∀i∈ {2, . . . ,M}, (96)
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which is a key feature to construct an incentive compatible menu of contracts.

We are now ready to describe a menu of contracts based on the sequence {w∗i }i=1,...,N . In partic-

ular, for inefficient types c ∈ {cM+1, ..., cN}, the agent is paid w∗M+1 and terminated immediately,

which corresponds to the sign-on-bonus contract γcB(0,w
∗
M+1) of Definition 3. If c= c1, the agent is

given a probation contract γcp′(w
∗
1, τ1), where the probation period is

τ1 :=−1

r
log (1− rτ̄1) , in which τ̄1 := min

{
w∗M+1

c1

,
1

r

}
. (97)

Next, we define two values that will be useful in designing contracts for type c∈ {c2, ..., cM},

V∗i :=
w∗i−1−w∗i
ci− ci−1

(µR− ci), and V̌i := J̌
(
w∗i ,min

{
w∗M+1

ci
,
1

r

}
, ci, ci+1

)
+w∗i . (98)

The first V∗i is the maximum societal value such that the better agent does not mimic; the

second V̌i is the maximum societal value that is achievable using our baseline probation contract.

Notice that our multi-type contracts will later hinge on these values because we are looking for

an implementable contract that makes both the better type and worse type agents unwilling to

mimic. If c ∈ {c2, ..., cM}, the agent is given a probation contract with potential randomization at

time 0, defined as the following.

Definition 7. For any probation period τ ≥ 0, initial promised utility w, and two probabilities

p0 and pŵ, define a probation contract with randomization γcr(w,τ, p0, pŵ, c
′) for a type c∈ C agent

against another type c′ ∈ C. At time 0,

(1) with probability p0, the contract is terminated;

(2) with probability pŵ, the contract continues with γcD(ŵ,S
′(ŵ),0) of Definition 2, in which

ŵ :=
p0 + pŵ
pŵ

w, and S′(ŵ) =

⌈
ln(c/r · ŵ/µ)

ln(c/(c′r+µc))

⌉
. (99)

(3) With probability 1− p0− pŵ, the contract continues with γcp′(w,τ, c
′) following definition 6.

The contract defined above involves randomization among the following three special forms of

contracts: (1) immediate termination at time 0; (2) zero probation with delayed payments; (3) a

probation contract. The following remark examines the purpose of each contract.

Remark 7. All three cases of contracts guarantee that an agent with a worse type does not want

to work when mimicking the focal type. In comparison, a better-type agent has the incentive to

work in cases (2) and (3), and the corresponding mimicking utilities are easy to calculate following

our previous analysis. For case (1), because the agent is immediately terminated, the corresponding

utility is zero anyway. The right mixing probability guarantees that the expected utility obtained

from mimicking is no higher than telling the truth. We need all three cases in order to have sufficient

degrees of freedom to satisfy all truth-telling constraints.
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In our construction, the principal offers a type ci agent the contract γcir (w∗i , τi, p
i
0, p

i
ŵ, ci+1), in

which the parameters are defined in the following. For any i ∈ {2, . . . ,M}, the actual probation

period length is

τi :=−1

r
ln (1− rτ̄i) . in which τ̄i := min

{
w∗M+1

ci
,
1

r

}
. (100)

The probabilities pi0 and pi
Ŵ

are defined as

pi0 :=

{
0, if V∗i ≥ V̌i,
piqi, if V∗i < V̌i,

and (101)

piŵ :=

{
0, if V∗i ≥ V̌i,
(1− pi)qi, if V∗i < V̌i,

(102)

where

pi := max

{
1− rV∗i

2(µR− ci)
,1− rτ̄i,1−

w∗i
max(w∗i , ci/r)

}
, qi :=

V̌i−V∗i
V̌i− (1− pi)(µR− ci)/r

,

with V∗i and V̌i defined in (98).

Lemma 10. Define a menu of contracts Γ̂C := {γc}c∈C, in which

γc :=

{
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1) of Definition 7, if i∈ {2, ....,M},

γciB (0,w∗M+1) of Definition 3, if i∈ {M + 1, ...,N},

and

γc1 := γc1
p′ (w∗1, τ1, c2) of Definition 6, in which τ1 is defined in (97).

The menu of contracts Γ̂C satisfies (LL), (PK), (IC), (IR), (FE) and (TT).

Finally, we verify in the following proposition that the performance of the menu of contracts

Γ̂C is indeed Y̌N as defined in (94), which can be computed through the aforementioned dynamic

program together with a line search.

Proposition 9. We have

Y̌N = U
(

Γ̂C

)
. (103)

We numerically study the performance of Γ̂C, taking µ ∈ {0.1,0.2, ...,0.9}, R ∈ {3,4, ...,20}, and

r = 1 − µ. We consider a case with three types, c ∈ {1,3,5}, and another case with five types,

c∈ {1,3,5,7,9}, and compute the performance loss as the relative sub-optimality 1−Y̌N/ŶN . For

the three-type case, out of all the 9×18 = 162 instances, 112 are such that the upper bound ŶN > 0.

The average performance loss of the 112 cases is only 1.46%. For the five-type case, among all the

162 instances, 94 are such that ŶN > 0. The average performance loss of the 94 cases is 3.40%.

Therefore, the menu of contracts Γ̂C appears to be a good solution to the multiple types contract

design problem.
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9. Conclusion

We study an optimal incentive design problem in continuous time over an infinite horizon with

both moral hazard and adverse selection. Specifically, the principal hires an agent to exert effort

to increase the arrival rate of a Poisson process where the agent’s efforts are unobservable by

the principal and the agent’s capabilities, measured by the operating cost, are unknown to the

principal. This problem is generally very hard to solve. We rely on using the first arrival as a

screening device to distinguish between different agent types to obtain incentive compatible menu

of contracts and performance upper bounds. The comparison between the upper and lower bounds

demonstrates that our design, which involves using a probation period before the first arrival and

potential sign-on bonuses, yields solutions that are very close to optimal.

Endnotes

1. The charging of retainers by lobbyists is common, see for exam-

ple, https://lobbyit.com/pricing/, https://arnoldpublicaffairs.com/faq/ and

https://lobbying101.wordpress.com/about-lobbyists/how-much-do-they-charge/. Furthermore, it

is common that R&D projects are funded for long durations of time and may not bring any results

in the end.

2. Shirking and misuse of research funds are surprisingly common in R&D settings, see, for

example, https://www.chron.com/news/houston-texas/article/Prof-accused-of-spending-NASA-

grants-on-cars-1722521.php, https://www.nbcnews.com/news/us-news/philadelphia-professor-

accused-spending-185-000-grant-funds-strip-clubs-n1118571, https://www.newsweek.com/fund-

meant-vaccine-research-misused-least-145m-unrelated-expenses-almost-decade-1564954, and

https://www.theguardian.com/higher-education-network/2015/mar/27/research-grant-money-

spent.

3. It is worth noting that the integral is from t+. Therefore, any instantaneous payment at time

t (for example, potential sign-on bonus at time 0) is not included in the promised utility. We use

notation Wt− := lims↑tWt, which includes the potential upwdard jump at time t.

4. First, in Sun and Tian (2018) the principal does not have to reimburse the operating cost rate

c in real time. That is, the constraint (LL) reduces to Lct monotonically non-decreasing in time t.

Second, in our paper, the agent can choose any effort level in [0, µ], while in Sun and Tian (2018),

the agent can only choose between µ or µ.

5. We also express z as z(w, τ) if its dependence on (w,τ) is important to highlight.

6. We include the cost parameter b in the definition of γg
P′ (w,τ, b) for ease of exposition when

introducing Definition 7 later in the paper.
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Cvitanić, J., Wan, X., and Yang, H. (2013). Dynamics of contract design with screening. Management

Science, 59(5):1229–1244.
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Appendix

A. Summary of Notations

Model parameters
R: revenue to the principal for each arrival.

µ: the highest possible effort.

C: support of the distribution of the operating cost. C = {g, b} from Section 4-7 and C = {c1, c2, . . . cN} in
Section 8.

c: generic operating cost.

ν, ν0 and ν̄: generic, always zero effort and always highest effort process, respectively.

r: principal and agent’s discount rates.

Contracts and utilities
I and `: instantaneous and flow payments, respectively.

L: payment process dLt = It + `tdt.

η: stopping time.

γ: generic contract, γ = (L,η).

ΓC: generic menu of contracts.

Γ∗{g,b}: optimal menu of contracts in two-type case under condition (50) (Section 5).

Γ̌{g,b}: a menu of contracts defined in Proposition 7 (Section 6.2).

Γ̂C: a menu of contracts defined in Lemma 10.

γ̂c(w): IC-binding contract in Definition 1.

γgD (w,S, t0): delay-payment contract in Definition 2.

γcB (w,B): sign-on-bonus contract in Definition 3.

γcp (w,τ): probation contract in Definition 4.

γcp′(w,τ, b): probation contract in Definition 6.

γcr (w,τ, p0, pŵ, c
′): probation contract with randomization in Definition 7.

u and U : agent’s and principal’s utilities, respectively.

Wt: agent’s continuation utility.

U and Z: principal’s total expected discounted utility and principal’s optimal expected utility, respectively.
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Derived quantities
βc: per arrival rate per unit time unit operating cost.

w̄c: defined in (4).

ω̌(τ) and ω̂(τ): defined in (31).

τz: defined in (33).

z(w,τ): a unique value solves (32) if w ∈ [ω̌(τ), ω̂(τ)); defined in (36) if w≥ ω̂(τ).

τ̄ : defined in (40).

(w∗g ,w
∗
b , τ̄
∗): an optimal solution of the optimization (42)-(44).

wB(w∗g ,w
∗
b ): defined in (47).

b̄: defined in Lemma 9.

(w̌g, w̌b, τ̌): parameters used in define Γ̌{g,b}.

τ̄i, p
i
0, and piŵ: defined in (100) - (102).

{w∗i }i=1,...,M+1: defined in (94) and (95).

Value functions and optimization problems
Vc: unique solution to differential equation (9) with boundary condition (10).

G: a function defined in (28) and (29).

Ǧ: a function defined in (54).

J : a function defined in (41).

J and G: functions defined in (75) and (76), respectively.

J̌ and Ǧ : functions defined in (88) and (87), respectively.

Y: the optimal value of the upper bound optimization problem (23)-(27).

YN : the optimal value of the upper bound optimization problem (77)-(81).

ŶN : the optimal value of the optimization problem (82).

Y̌N : the optimal value of the optimization problem (94).

B. Proof in Section 3

B.1. Proof of Lemma 1
To characterize how the agent’s continuation utility evolves over time, it is useful to consider her lifetime
expected utility, evaluated conditionally upon the information available at time t

ut(γ, ν; c) = Eν
[∫ η

0

e−rs (dLs−βc · νsds)
∣∣∣∣FNt ]

=

∫ t∧η−

0

e−rs(dLs−βc · νsds) + e−rtWt(γ, ν; c) (104)

Since ut(γ, ν; c) is the expectation of a given random variable conditional on FNt , the process u(γ, ν; c) =
{ut(γ, ν; c)}t≥0 is an martingale under the probability measure Pν . Relying on this martingale property, we
now offer an alternative representation of u(γ, ν; c). Consider the process Mν = {Mν

t }t=≥0 defined by

Mν
t =Nt−

∫ t

0

νsds (105)

for all t≥ 0. The martingale representation theorem for point processes implies that the martingale u(γ, ν; c)
satisfies

ut(γ, ν; c) = u0(γ, ν; c) +

∫ t∧η

0

e−rsHs(γ, ν; c)dMν
s (106)
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for all t≥ 0, Pν-almost surely, for some FN -predictable process H(γ, ν; c) = {Ht(γ, ν; c)}t≥0. Then, (104) and
(106) imply (PK). Next, we show that {νt}t∈[0,η] defined in (IC) is a best response to contract γ.

Let u′t denote the agent’s lifetime expected payoff, given the information available at date t, when he acts
according to ν′ = {ν′t}t≥0 until date t and then reverts to ν = {νt}t≥0:

u′t =

∫ t∧η−

0

e−rs (dLs− ν′s ·βcds) + e−rtWt(γ, ν; c) (107)

Following Sannikov (2008) (Proposition 2), the proof now proceeds as follows. First, we show that if
u′ = {u′t}t≥0 is an FN -submartingale under Pν that is not a martingale, then ν is suboptimal for the agent.
Indeed, in that case, there exists some t > 0 such that

u0−(γ, ν; c) = u′0− <Eν′ [u′t] (108)

where u0−(γ, ν; c) and u′0− correspond to unconditional expected payoffs at date 0. By (107), the agent is
then strictly better off acting according to ν′ until date t and then reverting to ν. The claim follows. Next,
we show that if u′ is a FN -supermartingale under Pν′ , then ν is at least as good as ν′ for the agent. From
(104) and (107),

u′t = ut(γ, ν; c) +

∫ t∧η

0

e−rs(νs− ν′s) ·βcds (109)

for all t≥ 0. Hence, since ut(γ, ν; c) is right-continuous with left-hand limit, so is u′. Moreover, since u′ is
non-negative, it has a last element. Hence, by the optional sampling theorem (Dellacherie and Meyer (2011),
Chapter VI, Theorem 10)),

u′0 ≥Eν′ [u′η] = u0(γ, ν′; c) (110)

where again u0−(γ, ν′) is an unconditional expected payoff at date 0. Since u′0 = u0(γ, ν) by (107), the claim
follows. Now, for each t≥ 0,

u′t = ut(γ, ν; c) +

∫ t∧η

0

e−rs(νs− ν′s)βcds

= u0(γ, ν; c) +

∫ t∧η

0

e−rsHs(γ, ν; c)dMν′

s +

∫ t∧η

0

e−rsHs(γ, ν; c)(ν′s− νs)ds+

∫ t∧η

0

e−rs(νs− ν′s)βcds

= u0(γ, ν; c) +

∫ t∧η

0

e−rsHs(γ, ν; c)dMν′

s +

∫ t∧η

0

e−rs(νs− ν′s) [βc−Hs(γ, ν; c)] ds (111)

Since H(γ, ν; c) is FN -predictable and Mν′ is an FN -martingale under P ν′ , the drift of u′ has the same
sign as

(νs− ν′s) [βc−Hs(γ, ν; c)]

for all t∈ [0, η). If (IC) holds, then this drift remains non-positive for all t∈ [0, η) and all choices of ν′. This
implies that for any effort process ν′, u′ is an FN -supermartingale under P ν′ and, thus, that ν is at least
as good as ν′ for the agent. If (IC) does not hold for the effort process ν, then choose ν′ such that for each
t∈ [0, η), ν′t = µ if Ht ≥ βc and ν′t = 0 if Ht <βc. The drift of u′ is then everywhere non-negative and strictly
positive over a set of P ν′ -strictly positive measure. As a result of this, u′ is an FN -submartingale under P ν′

that is not a martingale and, thus, ν is suboptimal for the agent. This concludes the proof.

C. Proofs in Section 4

C.1. Proof of Lemma 2
Case 1. w̄c ≤ βc. Rearrange equation (9) as

Vc(w)− rV ′c (w)(w− w̄c) + c−µR= µVc(w̄c) . (112)

Consider the above equation in [0, w̄c), it is a linear ordinary differential equation with boundary condition.
The solution is

Vc(w) = Vc(w̄c) + c1(w̄c−w)
1
r for w ∈ [0, w̄c] .
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with c1 =−(µR− c)/rw̄−
1
r

c < 0. (Our initial assumption of R>β is equivalent to 0<µR− c.)
Then with V ′c (w) = −c1(w̄c − w)

µ
r /r > 0, V ′′c (w) = c1µ(w̄c − w)

µ−r
r /r2 < 0 for w ∈ [0, w̄c]. Hence Vc is

increasing and strictly concave on [0, w̄c]. Furthermore, it can be verified that V (w̄c) = (µR−c)/r, V ′c (w̄c) = 0,
and Vc(w) = (µR− c)/r for w ∈ [w̄c,∞) solves (9).

Case 2. w̄c >βc. Rearrange equation (9) as

Vc(w)− rV ′c (w)(w− w̄c) + c−µR= µVc(w̄c) for w ∈ [w̄c−βc,∞) , (113)

Vc(w)− rV ′c (w)(w− w̄c) + c−µR= µVc(w+βc) for w ∈ (0, w̄c−βc) . (114)

We then show the result according to the following steps.
1. Demonstrate the solution of (113) as a parametric function Vb, with parameter b.

2. Show that the solution of (114) is unique and twice continuously differentiable for any b, also called Vb.

3. Show that the Vb is convex and decreasing for b > 0 and concave and increasing for b < 0.

4. Show that Vb(0) is increasing in b for b < 0, which implies that the boundary condition Vb(0) = 0
uniquely determines b, and therefore the solution of the original differential equation.

Step 1. The solution to the linear ordinary differential equation (113) on [w̄c − βc, w̄c) must have the
following form, for any scalar b.

Vb(w) = (µR− c)/r+ b(w̄c−w)
1
r for w ∈ [w̄c−βc, w̄c) . (115)

Also define Vb(w) = (µR− c)/r for w ∈ [w̄c,∞), which satisfies (113), so that Vb is continuously differentiable
on [w̄c−βc,∞).

Step 2. Using (115) as the boundary condition, we show that differential equation (114) has a unique
solution (also called Vb(w), on (0, w̄c−βc)), which is continuously differentiable. In fact, differential equation
(114) is equivalent to a sequence of initial value problems over the intervals [w̄c − (k+ 1)βc, w̄c − kβc), k =
1,2, .... This sequence of initial value problems satisfies the Cauchy-Lipschitz Theorem and, therefore, bears
unique solutions. Also, computing V ′b (w̄c − βc) from (115), and comparing it with (114), we see that Vb is
continuously differentiable at w̄c−βc, and therefore on [0,∞).

Further, deriving the expressions for V ′′b (w) following (114) and (115), respectively, confirms that Vb is
twice continuously differentiable on ([0,∞)). In particular, (114) implies that

V ′′b (w) =
µ[V ′b (w+βc)−V ′b (w)]

r(w̄c−w)
. (116)

Step 3. Next, we argue that in order to satisfy the boundary condition Vb(0) = 0, we must have b < 0.
Equivalently, we show that if b > 0, Vb must be convex and decreasing, which violates Vb(0) = 0< (µR−c)/r=
Vb(w̄c). In fact, if b > 0, (115) implies that Vb is decreasing and convex on [w̄c−βc, w̄c), and therefore V ′′b (w)>
0 on this interval. Assume there exists w̌ ∈ [0, w̄c − βc), such that V ′′b (w̌) ≤ 0, then Vb twice continuously
differentiable implies that there must w̃= max{w ∈ [0, w̄−β)|V ′′b (w) = 0}, and V ′′b (w)> 0,∀w> w̃. Equation
(116) implies that V ′b (w̃+βc) = V ′b (w̃). However, it contradicts with

V ′b (w̃+βc) = V ′b (w) +

∫ βc

0

V ′′b (w̃+x)dx> V ′b (w̃) .

Therefore, we must have V ′′b (w)> 0 and Vb is decreasing on [0, w̄c) if b > 0. In case b= 0, Vb(w) is a constant
following (114) and (115), which also contradicts the boundary condition. Therefore we must have b < 0.

The same logic implies that for b < 0, Vb must best be increasing and strictly concave on [0, w̄c).
Step 4. Finally, we show that Vb(0) is strictly increasing in b for b < 0, which allows us to uniquely

determine b that satisfies Vb(0) = 0. For any b1 < b2 < 0, it can be verified that Vb1(w)< Vb2(w), V ′b1(w)>
V ′b2(w), for w ∈ [w̄c− βc, w̄c) from (115). We claim that V ′b1 > V ′b2 ∀w ∈ [0, w̄c]. Otherwise, because Vb1 − Vb2
is continuously differentiable, there must exists w′ = max

{
w|V ′b1(w) = V ′b2(w),w ∈ [0, w̄−β)

}
and V ′b1(w)>

V ′b2(w)∀w>w′. Equation (114) implies that µ(Vb1(w′+βc)−Vb2(w′+βc)) = (Vb1(w′)−Vb2(w′)). However, it
contradicts with

0>Vb1(w′+β)−Vb2(w′+β) = Vb1(w′)−Vb2(w′) +

∫ β

0

V ′b1(w′+x)−V ′b2(w′+x)dx .

Therefore, we must have V ′b1(w)− V ′b2(w) > 0, ∀w ∈ [0, w̄c) and it implies that Vb1(w)− Vb2(w) < 0, ∀w ∈
[0, w̄c). This implies that Vb(0) is strictly increasing in b for b < 0. Because V0(0) = (µR − c)/r and
limb→−∞ Vb(0)<Vb(w̄c−βc) =−∞, there must exists a unique b∗ < 0 such that Vb∗(0) = 0. And Vb∗ is strictly
concave and increasing in [0, w̄c]. Finally, we denote Vb∗(w) as Vc(w). Q.E.D.
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C.2. An optimality condition to prove Proposition 1

In this section, we present an optimality condition, which will help us prove the optimality of contracts in
the later sections.

Lemma 11. Suppose F (w) is a differentiable, concave and upper-bounded function, with F (0) = 0 and
F ′(w)≥−1. Consider any γc ∈∆c(w) with νc ∈N(γc, c), followed by the promised utility process {Wt}t≥0

according to (PK). Define a stochastic process {Ψt}t≥0, where

Ψt : = F ′(Wt−)rWt−− rF (Wt−) + νct [R−F ′(Wt−)Ht +F (Wt−+Ht)−F (Wt−)]− νctβc. (117)

If the process {Ψt}t≥0 is non-positive almost surely, then we have F (w)≥U(γc, νc).

Proof. Following Ito’s Formula for jump processes (see, for example, Theorem 17.5 of Bass (2011)), and
considering (PK), we have

e−r(T∧η)F (WT∧η) = F (W0−) +

∫ T∧η

0

[e−rtdF (Wt−)− re−rtF (Wt−)dt]

= F (W0−) +

∫ T∧η

0

e−rt(−RdNt + dLt) +

∫ T∧η

0

e−rtAt (118)

where

At :=dF (Wt−)− rF (Wt−)dt+RdNt− dLt
=F ′(Wt−) [rWt−− νctHt + νctβc− `t]dt+F (Wt−+HtdNt− It)−F (Wt−)− rF (Wt−)dt+RdNt− dLt.

Further, define

Bt := [F (Wt−+Ht)−F (Wt−)](dNt− νct dt) +R(dNt− νct dt).

Because function F (w) is concave, F ′(w)≥−1 and νct follows (IC), we have

At ≤F ′(Wt−) (rWt−− νctHt)dt+F (Wt−+HtdNt)−F ′(Wt−)(`t− νctβc)dt
−F ′(Wt−+HtdNt)It−F (Wt−)− rF (Wt−)dt+RdNt− dLt
≤F ′(Wt−) (rWt−− νctHt)dt− rF (Wt−)dt− νctβcdt+RdNt +F (Wt−+HtdNt)−F (Wt−)

=F ′(Wt−) (rWt−− νctHt)dt− rF (Wt−)dt− νctβcdt+ [F (Wt−+Ht)−F (Wt−)]dNt + νctRdt+Bt
=Bt + Ψtdt. (119)

Taking the expectation on both sides of (118) and letting T →∞, we have

F (W0−)≥E
[
e−rηF (Wη) +

∫ η

0

e−rt(RdNt− dLt)−
∫ η

0

e−rtBt−
∫ η

0

e−rtΨtdt

]
≥E

[
e−rηF (Wη) +

∫ η

0

e−rt(RdNt− dLt)
]

=U(γc, νc), (120)

where the first inequality follows from (119), the second inequality follows from Ψt ≤ 0 and E
[∫ η

0
e−rtBt

]
= 0,

and the last equality follows from F (Wη) = F (0) = 0. Q.E.D.
A Simplification of Ψt. Following (117), if we define V (w) := F (w) +w, then

Ψt = V ′(Wt−)rWt−− rWt−− rV (Wt−) + rWt−+ νct [R−V ′(Wt−)Ht +V (Wt−+Ht)−V (Wt−)]− νctβc
≤ V ′(Wt−)rWt−− rV (Wt−) + νct [R−V ′(Wt−)βc +V (Wt−+βc)−V (Wt−)]− νctβc, (121)

where the inequality follows from βc = arg maxHt≥βc{−V
′(Wt−)Ht +V (Wt−+Ht)} and νct follows (IC).
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C.3. Proof of Proposition 1
First, we show (14). If R> βc, based on Lemma 11, to prove Fc(w)≥ U(γc, νc), we only need to show that
{Ψt}t≥0 is non-positive almost surely when we let F (w) = Fc(w). Following (121), we have

Ψt ≤ V ′c (Wt−)rWt−− rVc(Wt−) + νct [R−V ′c (Wt−)βc +Vc(Wt−+βc)−Vc(Wt−)]− νctβc
= V ′c (Wt−)rWt−− rVc(Wt−) + νct [R−βc +V ′c (Wt−)βc +Vc(Wt−+βc)−Vc(Wt−)] := f(νct ). (122)

First,

f(0) = V ′c (Wt−)rWt−− rVc(Wt−) = rWt−

[
V ′c (Wt−)− Vc(Wt−)−Vc(0)

Wt−

]
≤ 0

where the inequality follows from the concavity of Vc. Second, following (9), we have f(µ) = 0. Further since
f(νct ) is linear in νct , f(νct )≤ 0 for any νct ∈ [0, µ]. Therefore, {Ψt}t≥0 is non-positive almost surely.

If R≤ βc, based on Lemma 11, to prove −w≥U(γc, νc), we only need to show that {Ψt}t≥0 is non-positive
almost surely when we let F (w) =−w. Following (121), we have

Ψt ≤ V ′c (Wt−)rWt−− rVc(Wt−) + νct [R−V ′c (Wt−)βc +Vc(Wt−+βc)−Vc(Wt−)]− νctβc = νct [R−βc]≤ 0.

Second, we show (16) and (17) if R>βc. In the following, we show that

Wt(γ̂
c, ν̄; c) =W c

t , for t∈ [0, η̂c], (123)

where the left-hand side is defined in (5) and the right-hand side follows (11). For any t∈ [0, η̂c] we have

e−rtW c
t =W c

0e
r0 +

∫ t

0+

d(e−rsW c
s )

=W c
0 +

∫ t

0

W c
s de

−rs +

∫ t

0+

e−rsdW c
s

=W c
0 +

∫ t

0

W c
s (−r)e−rsds+

∫ t

0+

e−rs [r(W c
s − w̄c)ds+ min{w̄c−W c

s , βc}dNs]

=W c
0 +

∫ t

0+

e−rs [cds+βc(dNs−µds)− dLcs] ,

in which the third equality follows from (PK), and the fourth equality from the definition of Lc.
Because W c

t is bounded in [0, w̄c], and W c
η̂c = 0 if η̂c <∞, we have e−rη̂

c
W c
η̂c = 0, and

e−rη̂
c

W c
η̂c =W c

0 +

∫ η̂c

0+

e−rs [cds+βc(dNs−µds)− dLcs] .

Therefore

e−rtW c
t =

∫ η̂c

t+

e−rs [dLcs + cds−βc(dNs−µds)] .

Taking conditional expectation on both side, and noting that Wt is FNt -adapted, we obtain

e−rtW c
t =E

[∫ η̂c

t

e−rs [dLcs− cds−βc(dNs−µds)]
∣∣∣∣FNt ]

=E
[∫ η̂c

t

e−rs [dLcs−µβcds)]
∣∣∣∣FNt ]= e−rtWt(γ̂

c, ν̄; c) ,

in which the second equality follows from the (potentially non-homogeneous) Poisson process, which implies
that

E[Nη̂c −Nt|FNt ] = E
[∫ η̂c

t

µds

∣∣∣∣FNt ] .
Therefore, (123) implies (16) if we let t= 0.

Finally, we verify (17). Consider the process W c
t according to (11). Following Itô’s Formula for jump

processes (see, for example, Bass 2011, Theorem 17.5),

dF (W c
t ) = F ′(W c

t )r(W c
t − w̄c)dt+ [F (W c

t + min{w̄c−W c
t , βc})−F (W c

t )]dNt , (124)
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Therefore, for any T ≤ η̂c, we have

e−rTFc(W
c
T ) = e0rFc(W

c
0 ) +

∫ T

0

Fc(W
c
t )de−rt +

∫ T

0

e−rtdFc(W
c
t )

= Fc(W
c
0 ) +

∫ T

0

e−rt{[rW c
t −µβc]F ′c(W c

t )− rF (W c
t )}dt

+

∫ T

0

e−rt
(
Fc(W

c
t + min{w̄c−W c

t , βc})−Fc(W c
t )
)
dNt

Applying Equation (9) to replace F ′c(W
c
t ), we have

e−rTFc(W
c
T ) = F (W c

0 ) +

∫ T

0

e−rt[Fc(min{W c
t +βc, w̄c})−Fc(W c

t )](dNt−µdt)

+

∫ T

0

e−rt[(W c
t +βc− w̄c)+−R]µdt

= Fc(W
c
0 ) +

∫ T

0

e−rt[Fc(min{W c
t +βc, w̄c})−Fc(W c

t ) +R− (W c
t +βc− w̄c)+](dNt−µdt)

−
∫ T

0

e−rt(RdNt− dLct).

Taking expectation on both sides, and noting that Fc(Wη̂c) = Fc(0) = 0, we have

U(γ̂c(w), ν̄) = Fc(W
c
0 ) +E

[∫ T

0

e−rt[Fc(min{W c
t +βc, w̄c})−Fc(W c

t ) +R− (W c
t +βc− w̄c)+](dNt−µdt)

]
.

(125)
Because ∣∣Fc(min{W c

t +βc, w̄c})−Fc(W c
t ) +R− (W c

t +βc− w̄c)+
∣∣<∞,

the process {Ms}s≥0, defined as

Ms :=

∫ s

0

e−rt[Fc(min{W c
t +βc, w̄c})−Fc(W c

t ) +R− (W c
t +βc− w̄c)+](dNt−µdt),

is a martingale, which implies that the expectation term in (125) is 0 following the Optional Stopping
Theorem, and hence the result. Q.E.D.

C.4. Proof of Lemma 3
First, we show that ν̄ ∈ N(γbB(wb, Ib), g) for any wb, Ib ≥ 0. By the definition of IC-binding contracts and
sign-on-bonus contracts, we have ν̄ ∈N(γbB(wb, Ib), b). Define bad agent’s (type b) lifetime expected utility,
evaluated conditionally upon the information available at time t under contract γbB(wb, Ib) and effort process
ν̄ as ubt , then

ubt =Eν̄
[∫ η̂b

0

e−rs(dLbs− bds)

∣∣∣∣∣FNt
]

= ub0 +

∫ t

0

βbdM
ν̄
s

where M ν̄
t =Nt−µt. Define good agent’s (type g) lifetime expected utility, evaluated conditionally upon the

information available at time t under contract γbB(wb, Ib) and effort process ν̄ as ugt , then

ugt =Eν̄
[∫ η̂b

0

e−rs(dLbs + (b− g)ds)

∣∣∣∣∣FNt
]

= ubt +Eν̄
[∫ η̂b

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

= ub0 +

∫ t

0

βbdM
ν̄
s +Eν̄

[∫ η̂b

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]
.

Next, we denote ug
′

t as the good agent’s lifetime expected payoff, given the information available at time t,
when he acts according to ν′ = {ν′t}t≥0 until time t and then reverts to ν̄, then

ug
′

t = ugt +

∫ t∧η̂b−

0

e−rs(g− ν′sβg)ds
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= ub0 +

∫ t∧η̂b−

0

βbdM
ν̄
s +Eν̄

[∫ η̂b

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

+

∫ t∧η̂b−

0

e−rs(g− ν′sβg)ds

= ub0 +

∫ t∧η̂b−

0

βbdM
ν′

s +Eν̄
[∫ η̂b

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

+

∫ t∧η̂b−

0

e−rs(µ− ν′s)(βg −βb)ds

Then, for any t′ > t,

Eν′ [ug
′

t′ |FNt ] = Eν′
[
ub0 +

∫ t′∧η̂b−

0

Hb
sdM

ν′

s +Eν̄
[∫ η̂b

0

e−rs(b− g)ds

∣∣∣∣∣FNt′
]

+

∫ t′∧η̂b−

0

e−rs(µ− ν′s)(βg −βb)ds

∣∣∣∣∣FNt
]

= ub0 +

∫ t∧η̂b−

0

Hb
sdM

ν′

s +Eν̄
[∫ η̂b

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

+Eν′
[∫ t′∧η̂b−

0

e−rs(µ− ν′s)(βg −βb)ds

∣∣∣∣∣FNt
]

≤ ub0 +

∫ t∧η̂b−

0

Hb
sdM

ν′

s +Eν̄
[∫ η̂b

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

+

∫ t∧η̂b−

0

e−rs(µ− ν′s)(βg −βb)ds= ug
′

t ,

where the second equality follows from the law of iterated expectation and the first inequality follows from
that (µ − ν′s)(βg − βb) ≤ 0,∀t. Hence, ug

′

t is FN -supermartingale under P ν′ . Therefore, by the optional
sampling theorem (Dellacherie and Meyer (2011), Chapter VI, Theorem 10),

u(γbB(wb, Ib), ν̄;g) = ug
′

0 ≥Eν′ [ug′η ] = u(γbB(wb, Ib), ν′;g).

which implies that ν̄ is at least as good as ν′ for the good agent. Similarly, we are able to show that for the
bad agent, ν0 is at least as good as ν′, where ν′ deviates from ν0 before time t. Hence, ν0 ∈N(γgB (wg, Ig), b).

C.5. Useful Definitions
Shirking Duration:

τ̄(γ) := inf{t :Wt = 0,Ns = 0∀s≤ t}, (126)

which represents the time an agent stays in contract γ given no arrival.
Effective Cumulated Effort:

T̄ (γ, ν) := Eν
[∫ η

0

e−rtνtdt

]
, (127)

which measures the agent’s expected effective cumulated effort under contract γ when the agent chooses the
effort process ν.

Societal Value:

S(γ, ν; c) = Eν
[∫ η

0

e−rt(RdNt− νt ·βcdt)
]
, (128)

which measures the expected total value net of cost produced with effort ν when the agent’s cost is c.

Lemma 12. The societal value produced is proportional to the working duration, i.e., S(γ, ν; c) = (R −
βc)T̄ (γ, ν).

Proof:

S(γ, ν; c) = Eν
[∫ η

0

e−rt(RdNt− νt ·βcdt)
]

=Eν
[∫ η

0

e−rt(R · νtdt− νtβcdt)
]

= (R−βc)T̄ (γ, ν). (129)

Hence, for each moment the agent exerts effort νt, he produces an expected revenue of (R−βc)νt.
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C.6. Proof of Lemma 4
First, we verify that u

(
γgB (wg, Ig), ν0; b

)
= wg + Ig. Since ν0 ∈ N(γgB (wg, Ig), b) (followed from Lemma 3),

following the definition of IC-binding contracts, we have

τ̂ g =−1

r
log

(
1− rmin{wg, w̄g}

g

)
and

u
(
γgB (wg, Ig), ν0; b

)
=Eν0

[∫ τ̂g

0−
e−rs(dLs−βg · 0ds)

∣∣∣∣FNt ]= Ig + max{wg − w̄g,0}+

∫ τ̂g

0+

e−rsgds

= Ig + max{wg − w̄g,0}+
g

r
(1− e−rτ̂g ) = Ig + max{wg − w̄g,0}+ min{wg, w̄g}= Ig +wg.

(130)

Second, we verify that u
(
γbB(wb, Ib), ν̄;g

)
=wb + Ib + (b− g)

Vb(w
b)

µR− b
. Since ν̄ ∈N(γbB(wb, Ib), g), we have

u
(
γbB(wb, Ib), ν̄;g

)
=Eν̄

[∫ τ̂b

0−
e−rs(dLbs− gds)

∣∣∣∣∣FNt
]

= Ib + max{wb− w̄b,0}+Eν̄
[∫ τ̂b

0−
e−rs(dLbs− b+ (b− g)ds)

∣∣∣∣∣FNt
]

= Ib + max{wb− w̄b,0}+ min{wb, w̄b}+Eν̄
[∫ τ̂b

0−
e−rs(b− g)ds

∣∣∣∣∣FNt
]

= Ib +wb + (b− g)/µ · T̄ (γbB(wb, Ib), ν̄) = Ib +wb + (b− g)
Vb(wb)

µR− b
. (131)

where the fourth equality follows from (127), and the fifth equality follows from Lemma 12 and Proposition
1.

C.7. Proof of Lemma 5
The second constraint of the optimization problem (21) further implies that

wb + Ib ≥wg + Ig ≥wb + Ib + (b− g)
Vb(w

b)

µR− b
.

Since Vb(w
b)≥ 0 for any wb, we should have Vb(w

b) = 0. Hence, wb + Ib =wg + Ig. Therefore, the objective
becomes

max
wg,wb,Ig,Ib

pFg(w
g) + (1− p)Fb(wb)− pIg − (1− p)Ib

= max
wg,wb,Ig,Ib

pFg(w
g) + (1− p)−wb− pIg − (1− p)Ib

= max
wg≥0,Ig≥0

pFg(w
g)− (1− p)wg − Ig, (132)

without any further constraints. Since the objective is decreasing in Ig, the optimization further becomes

max
wg

pFg(w
g)− (1− p)wg = pVg(w

g)−wg.

Since Vg is strictly concave on wg in [0, w̄g], we have wg∗ = min{w|V ′g (w) = 1/p} if V ′g (0) > 1/p and wg∗ if
V ′g (0)≤ 1/p. Furthermore, Ig∗ = 0, wb∗ = 0 and Ib∗ =wg∗.

D. Proof in Section 5

D.1. Proof of Proposition 3
For any contract pair of contracts (γg, γb) that satisfy (LL), (PK), (IC), (IR), (FE), and (TT), we create
a vector (wg,wb, τ, ξ) such that, they satisfy the constraints (24) - (27), and p · G(wg, τ) + (1 − p)ξ ≥ p ·
U(γg, ν̄) + (1− p)U(γb, ν̄). Then, we have Y ≥Z({g, b}).

We let wg := u(γg, νg;g), wb := u(γb, νb; b), τ := τ̄(γg) where τ̄(.) is defined in (126) and ξ :=

min

{
Fb(wb),

wg −wb
b− g

(µR− b)+−wb
}

.
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Step 1: We check the constraints (24)-(27). First, (TT) implies that

wg ≥max
ν
u(γb, ν;g)≥ u(γb, νb;g) =wb + (b− g)T̄ (γb, νb)≥wb, (133)

where νb ∈N(γb, b) and T̄ is defined in (127). Second,

wb ≥max
ν
u(γg, ν; b)≥ u(γg, ν0; b) = g

∫ τ

0

e−rtdt= g/r · (1− e−rτ ). (134)

Finally, by the definition of τ and ξ, (25)-(27) are automatically satisfied. Hence, constraints (24)-(27) are
satisfied.

Step 2: We prove that p ·G(wg, τ) + (1− p)ξ ≥ p ·U(γg, ν̄) + (1− p)U(γb, ν̄).
Step 2.1: If R>βb, then following (133), we have

wg ≥wb + (b− g)T̄ (γb, ν̄) =wb +
(b− g)S(γb, ν̄; b)

µR− b
=wb +

(b− g)(U(γb, ν̄) +wb)

µR− b
(135)

where the first equality follows from Lemma 12 and the last equality follows from S(γb, νb; b) = U(γb, ν̄) +
u(γb, ν̄; b). Rearrange (135), we have

U(γb, ν̄)≤ (wg −wb)(µR− b)
b− g

−wb, if R>βb. (136)

Further, following Proposition 1, we have

U(γb, ν̄)≤ Fb(wb). (137)

On the other hand, if R≤ βb, then

U(γb, ν̄)≤ Fb(wb) =−wb, if R≤ βb (138)

Hence, following (136) - (138), we have

U(γb, ν̄)≤min

{
(wg −wb)
b− g

max{µR− b,0}−wb, Fb(wb)
}

= ξ. (139)

Step 2.2: Denote Ŵt as the agent’s continuation utility under contract γg and τ g1 as the time of the first
arrival. Then, following Lemma 1, we have

dŴt = [rŴt−µĤt + g]dt− dL̂t, Ĥt ≥ βg, for t <min{τ g1 , τ}. (140)

Furthermore, denote Îτg1 as the payment upon the first arrival. Thus,

U(γg, ν̄) = Eν̄
[∫ η

0

e−rt(RdNt− dL̂t)
]

≤

{
Eτg1

[
e−rτ

g
1

(
R− Iτg1 +Uτg1 (γ̂g, ν̄)

)
1τg1<τ

−
∫ min{τg1 ,τ}

0

e−rtgdt

]}

=

{∫ τ

0

[
e−rτ

g
1

(
R− Iτg1 +Uτg1 (γ̂g, ν̄)

)
−
∫ τ

g
1

0

e−rtgdt

]
µe−µτ

g
1 dτ g1 −

∫ ∞
τ

∫ τ

0

e−rtgdt ·µe−µτ
g
1 dτ g1

}

=

[∫ τ

0

µe−t(R− It +Ut(γ̂
g, ν̄))dt−

∫ τ

0

ge−tdt

]
(141)

where the first inequality follows from that dL̂t ≥ 0 and ˆ̀
t ≥ g for t < τ and the inequality is binding if

and only if dL̂t = gdt. Finally, following Proposition 1 (since Wt is the state variable of the optimal control
problem, we can easily generalize (15) to it at time t), we have

−It +Ut(γ̂
g, ν̄)≤−It +Fg(Ŵt−+ Ĥt− It)≤ Fg(Ŵt−+ Ĥt), (142)

where the first inequality follows from that the agent’s continuation utility Ŵt = Ŵt− + Ht − It and the
second inequality follows from F ′g ≥−1. Therefore, (140) - (142) imply that

U(γg, ν̄)≤G(wg, τ).

Therefore, inequality (139) and (142) together imply that p ·G(wg, τ)+(1−p)ξ ≥ p ·U(γg, ν̄)+(1−p)U(γb, ν̄).



Author: 51

D.2. Proof of Lemma 6
First, we verify (iii). If Ht = βg, ∀t∈ [0, τ ], then W0 = w̌(τ). Further since Ht ≥ βg, ∀t∈ [0, τ ], we have W0 ≥
w̌(τ). Hence, if w< w̌(τ), then the optimization problem (28) is infeasible, or, by convention, G(w,τ) =−∞.

Next, we verify (i) and (ii) by solving the optimization problem (28). Since g(1− e−τ ) is given when τ is
given, we only need to maximize the integral

∫ τ
0
µe−t[R+Fg(Wt+Ht)]dt. To solve the optimization problem,

we can write down the Hamiltonian:

H= e−t{µ[R+Fg(Wt +Ht)]}+λ(t)(rWt−µHt) + η(t)(Ht−βg) (143)

The optimality conditions are

∂H
∂H

= µe−tF ′g(Wt +Ht)−λ(t)µ+ η(t) = 0 (144)

η(t)(Ht−βg) = 0; η(t)≥ 0 (145)

∂H
∂W

= µe−tF ′g(Wt +Ht) +λ(t)r=−λ′(t) (146)

Since the objective of the optimal control problem is jointly concave in (Wt,Ht), it is sufficient to verify
the above optimality conditions.

Next, we verify (ii). If W0 = w ≥ ŵ(τ), then Wt +Ht = z+ βg,∀t ∈ [0, τ ], where z+ βg = w/(µ(1− e−τ )).
We can easily verify the optimality conditions (144) - (146) by letting

λ(t) = F ′(z+βg)e
−t and η(t) = 0.

Furthermore, we can verify that

Wt = µ(z+βg)−µ(z+βg)e
t−τ ,

Ht = z+βg −Wt ≥ z+βg −W0 ≥w
(

1

µ(1− e−τ )
− 1

)
≥ βg.

where the last inequality follows from w=W0 ≥ ŵ(τ).
Finally, we verify (i). If w=W0 ∈ [w̌(τ), ŵ(τ)), we firstly prove the following technical lemma.

Lemma 13. If w=W0 ∈ [w̌(τ), ŵ(τ)), there exists a unique z ∈ [0, g(1− e−τ )/(r+µe−τ )) such that

w̄g − (w̄g − z)er(τz−τ) =w.

Proof. Define

h(z1) := w̄g − (w̄g − z)er(τz−τ),

then we can easily obtain that

h(0) = w̄g − w̄g · e−rτ = g/r · (1− e−rτ )

where the first equality follows from τ0 = 0 and

lim
z1→g(1−e−τ )/(r+µe−τ )

h(z1) = w̄g − (w̄g − z) = g(1− e−τ )/(r+µe−τ )

where the first equality follows from that limz→g(1−e−τ )/(r+µe−τ ) τz = τ . Furthermore, we have

h′(z1) = e−rτerτz
(

1 + (z− w̄g)r ·
∂τz
∂z1

)
= er(τz−τ)

(
1 + (z− w̄g)

r(w̄g +βg)

(z1 +βg)(w̄g − z1)

)
= er(τz−τ)

(
1− r(w̄g +βg)

z+βg

)
= er(τz−τ) z

z+βg
> 0

Since w ∈ [h(0), limz→g(1−e−τ )/(r+µe−τ ))h(z)) and h is continuous, we have there exists a unique z ∈ [0, g(1−
e−τ )/(r+µe−τ )) such that w= h(z). Q.E.D.

It is easy to verify that τz < τ since z < g(1− e−τ )/(r+ µe−τ ). Hence, if we let Ht follows (35), then Wt

follows (34).
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We can easily verify the optimality conditions (144) - (146) by letting

λ(t) =

{ [∫ τ−τz
t

µe−µξF ′g(Wξ +β)dξ+F ′g(z+βg)e
−µ(τ−τz)

]
e−rt, t∈ [0, τ − τz],

F ′g(z+βg)e
−t, t∈ [τ − τz1 , τ ],

(147)

and

η(t) =

{
µe−rtγ(t), t∈ [0, τ − τz],

0, t∈ [τ − τz1 , τ ],
(148)

where

γ(t) :=

[∫ τ−τz1

t

µe−µξF ′g(Wξ +βg)dξ+F ′g(z1 +βg)e
−µs− e−µtF ′(Wt +βg)

]
≥ 0

and γ(t) follows from that γ(t) is decreasing in t and γ(τ − τz) = 0. Furthermore, we have

Ht = β, t∈ [0, τ − τz],
Ht = z+βg −Wt ≥ z+βg −Wτ−τz = β, t∈ [τ − τz, τ ],

For w ∈ [0, t1], Ht = βg. For w ∈ [t1, t2], Wt +Ht = y∗1 and for w ∈ [t2, τ ], Wt +Ht−Bt = βb.

H= e−t{µ[R+Fg(Wt +Ht)]}+λ(t)(rWt−µHt) + η(t)(Ht−βg) +φ(t)(Bt +βb−Wt−Ht) (149)

The optimality conditions are

∂H
∂H

= µe−tF ′g(Wt +Ht)−λ(t)µ+ η(t)−φ(t) = 0 (150)

η(t)(Ht−βg) = 0; η(t)≥ 0 (151)

∂H
∂W

= µe−tF ′g(Wt +Ht) +λ(t)r−φ(t) =−λ′(t) (152)

φ(t)(Bt +βb−Wt−Ht) = 0;φ(t)≥ 0 (153)

For w ∈ [t1, t2], we have η(t) = φ(t) = 0 and λ(t) = F ′g(y
∗
1)e−t. For w ∈ [t2, τ ], η(t) = 0, λ(t) = F ′g(y

∗
1)e−t and

φ(t) = µe−t[F ′g(Bt +βb)−F ′g(y∗1)]≥ 0.

D.3. Proof of Lemma 7
For the optimization problem (29), it is sufficient to verify the optimality conditions (144) - (146). We can
simply let

λ(t) = F ′
(
w

µ

)
e−t, η(t) = 0

and

Wt =w> 0,Ht =
w

µ
−w≥ r

µ
· g
r

= βg.

D.4. Proof of Proposition 4
First, we look at the function if w≥ ŵ(τ). According to the optimal solution in (37), we have

G(w,τ) =

∫ τ

0

µe−tFg(y
∗)dt+

∫ τ

0

(µR− c)e−tdt (154)

where y∗ = z+βg =
w

µ(1− e−τ )
. Hence,

∂G(w,τ)

∂τ
= µe−τFg(y

∗) +

∫ T

0

µe−tF ′(y∗)
∂y∗

∂τ
dt+ (µR− g)e−τ

= µe−τF (y∗) + (µR− g)e−τ +F ′(y∗)
−we−τ

µ(1− e−τ )2

∫ T

0

µe−tdt

= µe−τ (F (y∗)− y∗F ′(y∗)) + (µR− c)e−τ
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= µe−τy∗
(
F (y∗)−F (0)

y∗
−F ′(y∗)

)
+ (µR− c)e−τ > 0 (155)

where the inequality follows from the concavity of F . As a result, we have

∂J(w, τ̄)

∂τ̄
=
∂τ

∂τ̄

∂G(w,τ)

∂τ
> 0, (156)

where the inequality follows from (155) and ∂τ
∂τ̄
> 0, and

∂J(w, τ̄)

∂w
= F ′g(y

∗). (157)

Hence, J is increasing in τ̄ when w ≥ ŵ(τ). Next, we verify the concavity of J . Following (156) and (157),
we have that the Hessian matrix of J is [

∂2J(w,τ̄)

∂2w

∂2J(w,τ̄)

∂w∂τ̄
∂2J(w,T̄ )

∂w∂T̄

∂2J(w,T̄ )

∂2T̄

]
(158)

where

∂2J(w, τ̄)

∂2w
=

F ′′(y∗)

µ(1− e−τ )
< 0, (159)

where the inequality follows from the concavity of F ,

∂2J(w, τ̄)

∂w∂τ̄
=
∂y∗

∂τ̄
F ′′(y∗) =

∂y∗

∂τ

∂τ

∂τ̄
F ′′(y∗)> 0, (160)

where the inequality follows from ∂y∗

∂τ
< 0, ∂τ

∂τ̄
> 0, and the concavity of F , and

∂2J(w, τ̄)

∂2τ̄
=−µ(1− rτ̄)

µ
r · y∗ ·F ′′(y∗) · ∂y

∗

∂τ̄
−µ2(1− rτ̄)

µ−r
r [F (y∗)− y∗F ′(y∗)]− (µR− g)µ(1− rτ̄)

µ−r
r < 0.

(161)

where the inequality follows from ∂y∗

∂τ̄
< 0 and F (y∗)−y∗F ′(y∗) = y∗[(F (y∗)−F (0))/y∗−F ′(y∗)]≥ 0 (implied

by the concavity of F ).
Further, with (159) - (161), we can show that the Hessian matrix of J is negative definite which implies

that J is jointly concave when w≥ ŵ(τ).
Second, we look at the function if w ∈ [w̌(τ), ŵ(τ)). According to (34) and (35), we have

Wτ1 = z = µ(z+βg)(1− eτ1−τ ) = w̄g + (w− w̄g)erτ1

by denoting τ1(w,τ) := τ − τz and simplifying τ1(w,τ) with τ1. Further, we denote y∗1 = z+βg. Hence,

y∗1 =
g

µ(r+µeτ1−τ )
,

and τ1(w,τ) is the solution of

g

r+µeτ1−τ
(1− eτ1−τ ) = w̄g + (w− w̄g)erτ1 , (162)

where we again simplify τ1(w,τ) with τ1. Therefore,

G(w,τ) =

∫ τ1(w,τ)

0

µe−tFg (w̄g + (w− w̄g)ert +βg) dt+

∫ τ

τ1(w,τ)

µe−tFg(y
∗
1)dt+

∫ τ

0

(µR− g)e−tdt. (163)

Then,

∂G(w,τ)

∂τ
= [µe−τ1Fg (w̄g + (w− w̄g)erτ1 +βg)−µe−τ1F (y∗1)]

∂τ1(w,τ)

∂τ
+

∫ τ

τ1(w,τ)

µe−tF ′(y∗1)
∂y∗1
∂τ

dt+µe−τF (y∗1)

=

∫ τ

τ1(w,τ)

µe−tdt ·F ′(y∗1)
−gµeτ1(w,τ)−τ · ( ∂τ1(w,τ)

∂τ
− 1)

µ(r+µeτ1(w,τ)−τ )2
+µe−τF (y∗1) + (µR− g)e−τ (164)
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Since (162) implies that

∂τ1(w,τ)

∂τ
− 1 =

r+µeτ1−τ

µ(1− eτ1−τ )
, (165)

we have

∂G(w,τ)

∂τ
= µe−τ (F (y∗1)− y∗1F ′(y∗1)) + (µR− g)e−τ > 0, (166)

where the inequality follows from F (y∗1)− y∗1F ′(y∗1) = y∗1[(F (y∗1)− F (0))/y∗1 − F ′(y∗1)] ≥ 0. As a result, we
have

∂J(w, τ̄)

∂τ̄
=
∂τ

∂τ̄

∂G(w,τ)

∂τ
> 0, (167)

where the inequality follows from (166) and ∂τ
∂τ̄
> 0, and

∂J(w, τ̄)

∂w
= µ

∫ τ1

0

e−µtF ′(w̄g + (w− w̄g)ert +βg)dt+F ′(y∗1) · e−µτ1 . (168)

Hence, J is increasing in τ̄ when w ∈ [w̌(τ), ŵ(τ)). Next, we verify the concavity of J . Following (167) and
(168), we have that the Hessian matrix of J is[

∂2J(w,T̄ )

∂2w

∂2J(w,T̄ )

∂w∂T̄
∂2J(w,T̄ )

∂w∂T̄

∂2J(w,T̄ )

∂2T̄

]
(169)

where

∂2J(w, τ̄)

∂2w
= µ

∫ τ1

0

e−µtF ′′(w̄g + (w− w̄g)ert +βg)e
rtdt+F ′′(y∗1) · e−µτ1 · ∂y

∗
1

∂w
, (170)

and

∂2J(w, τ̄)

∂2τ̄
=−µ(1− rτ̄)

µ
r · y∗1 ·F ′′(y∗1) · ∂y

∗
1

∂τ̄
−µ2(1− rτ̄)

µ−r
r · [F (y∗1)− y∗1F ′(y∗1)]− (µR− g) ·µ · (1− rτ̄)

µ−r
r < 0,

(171)

where the inequality follows from ∂y∗

∂τ̄
< 0 and F (y∗)−y∗F ′(y∗) = y∗[(F (y∗)−F (0))/y∗−F ′(y∗)]≥ 0 (implied

by the concavity of F ), and

∂2J(w, τ̄)

∂w∂τ̄
=−µ · ∂τ

∂τ̄
· e−τ · y∗1 ·F ′′(y∗1) · ∂y

∗
1

∂w
. (172)

Further, the concavity of F and

∂y∗1
∂w

=
∂y∗1
∂τ1
· ∂τ1
∂w

=−erτ1 (r+µe−(τ−τ1))2

ge−(τ−τ1)µ(1− e−(τ−τ1))
· ∂y

∗
1

∂τ1
> 0.

implies that

∂2J(w, τ̄)

∂2w
< 0,

∂2J(w, τ̄)

∂w∂τ̄
> 0. (173)

Furthermore, following (170)-(172) we can show that the Hessian matrix of J is negative definite which
implies that J is jointly concave when w ∈ [w̌(τ), ŵ(τ)). Finally, following (154) and (163), we can show that
G(w,τ) is continuously differentiable when w= ŵ(τ). This concludes the proof.

D.5. Proof of Lemma 8
First, it is clear that at optimality, either (26) or (27) holds as equality. Otherwise, we can increase ξ∗ to
improve the objective value without violating any constraint, which contradicts optimality.

If (26) is binding at optimality, (46) holds with w=w∗b , following (27). If (27) is binding, on the other hand,
(26) implies Fb (w∗b ) +w∗b ≥ ξ∗ ≥ 0. Furthermore, (10) implies Fb(0) + 0 = 0. Finally, Fb(w) +w is increasing
following Lemma 2. Therefore, there exists a w ∈ [0,w∗b ] such that (46) holds as an equality. Q.E.D.
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D.6. Proof of Lemma 9
First, we present a technical lemma.

Lemma 14. For any k≥ 0, we have

Vb1(k · b1)

µR− b1
=
Vb2(k · b2)

µR− b2
,∀b1, b2 <µR, (174)

where Vb is defined in (9) and (10) in Section 4.1.

Proof. Following Proposition 2, we have

Vb(w) = Fb(w) +w=U(γbB(w,0), ν̄) +w

= S(γbB(w,0), ν̄; b) = (µR− b)T̄ (γbB(w,0), ν̄)

= (µR− b)E

[∫ η̂b

0

e−rtdt

]
, (175)

where the fourth equality follows from Lemma 9, and the fifth equality follows from (127). Following (11)
and (13), we have for any b,

dW b
t = [r(W b

t−− b) + min{b/r−W b
t−, b/µ}dNt]1W b

t−≥0, η̂
b = min{t :W b

t− = 0}.

Define process wt :=W b
t /b, then we have

dwt = [r(wt− 1) + min{1/r−wt−,1/µ}dNt]1wt−≥0, η̂
b = min{t :wt− = 0},

Hence, for any b1, b2, η̂b1 and η̂b2 follows the same distribution if W b1
0 /b1 =W b2

0 /b2. Therefore,

Vb1(k · b1)

µR− b1
=E

[∫ η̂b1

0

e−rtdt

]
=E

[∫ η̂b2

0

e−rtdt

]
=
Vb2(k · b2)

µR− b2
,

which verifies (174). Q.E.D.
Lemma 14 implies that for any w> 0 and b1 < b2, we have

Vb1(w) = Vb2

(
w
b2
b1

)
µR− b1
µR− b2

>Vb2 (w)
µR− b1
µR− b2

>Vb2(w) (176)

Next, we prove the desired results. For any given b, we denote the solution of optimization problem (42)-
(44) as (w∗g(b),w

∗
b (b), τ̄

∗(b)) and wB defined in (47) as wB(b). If there exists b̌∈ [b,µR] such that wB(b̌) = 0,

then we prove by contradiction that for any b̂ > b̌, we have wB(b̂) = 0. It implies that there exists b̄∈ [g,µR]
such that wB = 0 if and only if wB > 0.

If wB(b̂) > 0, following (47), we have µR > b and w∗g(b̂) > w∗b (b̂). Following (43) and (44),

(w∗g(b̂),w
∗
b (b̂), τ̄

∗(b̂)) and (w∗g(b̌),w
∗
b (b̌), τ̄

∗(b̌)) are feasible for both b= b̂ and b= b̌. Therefore,

p · J(w∗g(b̂), τ̄
∗(b̂)) + (1− p) min

{
Fb̂(w

∗
b (b̂)),

w∗g(b̂)−w∗b (b̂)
b̂− g

−w∗b (b̂)

}
> p · J(w∗g(b̌), τ̄

∗(b̌)) + (1− p)w∗b (b̌)

≥p · J(w∗g(b̂), τ̄
∗(b̂)) + (1− p) min

{
Fb̌(w

∗
b (b̂)),

w∗g(b̂)−w∗b (b̂)
b̌− g

−w∗b (b̂)

}
which implies that

min

{
Fb̂(w

∗
b (b̂)),

w∗g(b̂)−w∗b (b̂)
b̂− g

−w∗b (b̂)

}
>min

{
Fb̌(w

∗
b (b̂)),

w∗g(b̂)−w∗b (b̂)
b̌− g

−w∗b (b̂)

}
which is equivalent to

min

{
Vb̂(w

∗
b (b̂)),

w∗g(b̂)−w∗b (b̂)
b̂− g

}
≥min

{
Vb̌(w

∗
b (b̂)),

w∗g(b̂)−w∗b (b̂)
b̌− g

}
which contradicts with

Vb̂(w
∗
b (b̂))<Vb̌(w

∗
b (b̂)),and,

w∗g(b̂)−w∗b (b̂)
b̂− g

<
w∗g(b̂)−w∗b (b̂)

b̌− g
.

where the first inequality follows from (176).
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D.7. Preparation to prove Theorem 1
Lemma 15. Following a delay-payment contract γgD (w,S, t0) = (Lg, ηgD), which generates a promised utility
process according to (19) for t ≥ t0 following Wt0 = w. Furthermore, the payment process Lgt follows (20).
Then, a bad agent with cost b > g will never work after t0 if

w

(
g

br+µg

)S+1

≤ g

r
. (177)

Lemma 16. For any wg, τ such that min{z(wg, τ) +βg, w̄g} ≤ βb, we have ν0 ∈N(γgP (wg, τ, b).

Proposition 10. (i) For any w≥ 0 and B ≥ 0, we have ν̄ ∈N(γcB (w,B), c), and

u
(
γcB (w,B), ν̄; c

)
=w+B.

(ii) For any τ ≥ 0 and w≥ c/r(1− e−rτ ), we have ν̄ ∈N(γcP (w,τ), c), and

u
(
γcP (w,τ), ν̄; c

)
=w.

Proposition 11. For any g < µR, we have

U(γgP (w,τ), ν̄) =G(w,τ) (178)

D.7.1. Proof of Lemma 15 After the i-th (i ∈ {0,1, ..., S,S + 1}) arrival after t0, the good agent’s

continuation value is
w

µi
. First, since after the S+ 1-th arrival, the contract γgD (w,S, t0) will reward βg < βb

for every arrival, the bad agent does not work after the S+ 1-th arrival. Assuming the bad agent works until

the S + 1−th arrival, his continuation value right after the S + 1-th arrival will be BS+1
t =

w

µS+1
(achieved

by mimicking the good agent). After the S-th arrival, the bad agent’s value follows

BS
t = max

νt∈[0,g/b]
gδ− bνtδ+µνtB

S+1
t + (1−µνtδ)e−rδBS

t+δ

= gδ+ e−rδBS
t+δ + δ max

νt∈[0,g/b]
νt
[
−b+µBS+1

t −µBS
t+δ

]
(179)

Since the objective is linear in νt, the bad agent chooses either νt = g/b or νt = 0. Hence, the bad agent works
between S-th arrival and S+ 1-th arrival if and only if

BS+1
t −BS

t+δ ≥ βb (180)

If the agent works, we have BS
t =

µg

br+µg
BS+1
t and BS

t = g/r if the agent does not work (if the agent does

not work, he never gets the S + 1-arrival and he stays in the contract to steal the flow payment g). Hence,
the agent works if and only if

BS+1
t >

g

r
+βb⇐⇒w>µS+1

(g
r

+βb

)
(181)

Similarly, assuming the agent works after the S-th arrival, the bad agent works between the S− 1-th arrival
and S-th arrival if and only if

BS
t >

g

r
+βb⇐⇒w>µS+1

(g
r

+βb

) br+µg

µg
(182)

If the agent works, then BS−1
t =

(
µg

br+µg

)2

BS+1
t . Therefore, assuming the agent works after the i-th arrival,

the agent also works between the i− 1-th arrival and i-th arrival if and only if

Bi
t >

g

r
+βb⇐⇒w>µS+1

(g
r

+βb

)(br+µg

µg

)S+1−i

(183)

Finally, if i= 1, then (183) is equivalent to

w>µS+1
(g
r

+βb

)(br+µg

µg

)S
=
g

r

(
br+µg

g

)S+1

(184)

If condition (177) holds (equivalently, (184) does not hold), then before the first arrival, the agent will not
work even if assuming he works after the first arrival. Therefore, by induction, the bad agent never works if
(177) holds.
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D.7.2. Proof of Lemma 16 Following definition 4, it is straightforward to verify that S(wg, τ)

satisfies (177) if we let S = S(wg, τ) and w = wg. Hence, if max
{
W g

τN1
, z(wg, τ)

}
+ βg > w̄g, the contract

after the first arrival would be γgD

(
max

{
W g

τN1
, z(wg, τ)

}
+βg, S(wg, τ), τN1

)
. Then, following Lemma 15, since

max
{
W g

τN1
, z(wg, τ)

}
+ βg ≤ max{wg, z(wg, τ)}+ βg, after the first arrival, the bad agent with cost b will

never work. As a result, the bad agent’s continuation utility after the first arrival (if he tried to mimic the

good agent) is w̄g if max
{
W g

τN1
, z(wg, τ)

}
+ βg > w̄g. On the other hand, if max

{
W g

τN1
, z(wg, τ)

}
+ βg ≤ w̄g,

the contract after the first arrival would be an IC-Binding contract γ̂g. Then, following Lemma 4, the bad
agent will never work after the first arrival. As a result, the bad agent’s continuation utility after the first

arrival (if he tried to mimic the good agent) is max
{
W g

τN1
, z(wg, τ)

}
+βg if max

{
W g

τN1
, z(wg, τ)

}
+βg ≤ w̄g.

To summarize, agent’s continuation utility after the first arrival (if he tried to mimic the good agent) is

min
{

max
{
W g

τN1
, z(wg, τ)

}
+βg, w̄g

}
.

If the bad agent never works in the good agent’s contract, then for t ≤ τ , we have the bad agent’s
continuation utility as Bt = g/r · (1− er(t−τ)). In the following, we use a one-shot deviation argument to
show that if min{z(wg, τ) +βg, w̄g} ≤ βb, then the bad agent will always prefer no effort in the good agent’s
contract. For any t∈ [0, τ ], if the bad agent deviates from no effort to νt in the next δ time interval, then the
bad agent’s utility becomes

gδ− bνtδ+µνt +µνtmin{max{W g
t , z(wg, τ)}+βg, w̄g}+ (1−µνtδ)e−rδBt+δ

=gδ+ e−rδBt+δ + δνt [−b+µmin{max{W g
t , z(w,τ)}+βg, w̄g}−µBt+δ]

where W g
t follows (34). Hence, as long as min{max{W g

t , z(wg, τ)}+βg, w̄g} − Bt ≤ βb, there is no ben-
efit for the bad agent to deviate from no effort. Following Lemma 6, we can show that for any t ∈
[0, τ ],max{W g

t , z(wg, τ)}+ βg −Bt ≤W g
τ +Hg

τ −Bτ = z(wg, τ) + βg. Therefore, min{z(wg, τ) + βg, w̄g} ≤ βb
implies that the bad agent will not work in the good agent’s contract, i.e., ν0 ∈N(γgP (wg, τ), b). Q.E.D.

D.7.3. Proof of Proposition 10
(i) Following contract γcB (w,B,0), since the promised utility process W c

t follows (11) and the payment
process follows (12), then Hc

t = βc. Hence, ν̄ ∈N(γcB (w,B,0), c). Meanwhile,

u
(
γcB (w,B,0), ν̄; c

)
=Eν̄

[∫ η

0−
e−rs(dLs−βcµds)

∣∣∣∣FNt ]
=B+Eν̄

[∫ η

0+

e−rs(dLs−βcµds)

∣∣∣∣FNt ]=B+w (185)

where the third equality follows from the definition of γcB (w,B,0).

(ii) If max
{
W c
τN1
, z(wc, τ)

}
+ βc > w̄c, the contract after the first arrival would be

γcD

(
max

{
W c
τN1
, z(wc, τ)

}
+βc, S(wc, τ), τN1

)
. By definition 4, we have that the promised utility of

γcP (w,τ) follows (PK), where Hc
t = max{βc, z(wc, τ) + βc − W c

t−}1t≤τN1 + (rW c
t−/µ)1t∈(τN1 ,τS+1

t0
] +

βc1t>τS+1
t0

, dLct = cdt+(W c
t−+Hc

t − w̄c)+
1t≥τS+1

t0

dNt. On the other hand, if max
{
W c
τN1
, z(wc, τ)

}
+βc ≤

w̄c, since the contract after the first arrival would be an IC-Binding contract γ̂c. Similarly, by definition
4, we have that the promised utility of γcP (w,τ) follows (PK), where Hc

t = max{βc, z(wc, τ) + βc −
W c
t−}1t≤τN1 + βc1t>τN1 , dLct = cdt+ (W c

t−+Hc
t − w̄c)+dNt. Furthermore, τ c = min{t :W c

t− = 0}. Hence,
following (IC), we have ν̄ ∈N(γcP (w,τ), c). Further, by definition 4, we have

u
(
γcP (w,τ), ν̄; c

)
=W c

0 =w.

Q.E.D.

D.7.4. Proof of Proposition 11 Following definition 4, we have

U(γgP (w,τ), ν̄) = Eν̄
[∫ ηg

0

e−rt(RdNt− dLgt )
]

=EτN1

[
e−rτ

N
1

(
R+UτN1 (γ̂g, ν̄)1

max

{
W
g

τN1

,z(w,τ)

}
+βg≤w̄g
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+UτN1 (γgD , ν̄)1
max

{
W
g

τN1

,z(w,τ)

}
+βg>w̄g

)
1τN1 <τ∗ −

∫ min{τN1 ,τ}

0

e−rtgdt

]

=

∫ τ∗

0

[
e−rτ

N
1

(
R+UτN1 (γ̂g, ν̄)1

max

{
W
g

τN1

,z(w,τ)

}
+βg≤w̄g

+UτN1 (γgD , ν̄)1
max

{
W
g

τN1

,z(w,τ)

}
+βg>w̄g

)
−
∫ τN1

0

e−rtgdt

]
µe−µτ

N
1 dτN1

−
∫ ∞
τ∗

∫ τ∗

0

e−rtgdt ·µe−µτN1 dτN1

=

∫ τ∗

0

µe−t(R+Ut(γ̂
g, ν̄)1max{Wg

t ,z(w,τ)}+βg≤w̄g +Ut(γ
g
D , ν̄)1max{Wg

t ,z(w,τ)}+βg>w̄g )dt

−
∫ τ∗

0

ge−tdt (186)

where W g
t follows (34) if w ∈ [ω̌(τ), ω̂(τ)], (37) if w > ω̂(τ), (39) if τ =∞. Finally, following Proposition 1

(since Wt is the state variable of the optimal control problem, we can easily generalize (15) to it at time t),
we have

Ut(γ̂
g (max{W g

t , z(w,τ)}+βg) , ν̄) = Fg

(
max

{
W g

τN1
, z(w,τ)

}
+βg

)
, (187)

if max
{
W g

τN1
, z(w,τ)

}
+βg ≤ w̄g. Furthermore, following definition 4, the contract is never terminated after

τN1 if max
{
W g

τN1
, z(w,τ)

}
+ βg > w̄g. Hence, the principal’s future utility right after time t is (µR− c)/r

minus the agent’s continuation utility,

Ut(γ
g
D

(
max{W g

t , z(wg, τ)}+βg, S(w,τ), τN1
)
, ν̄) = V̄ −

(
max

{
W g

τN1
, z(w,τ)

}
+βg

)
= Fg

(
max

{
W g

τN1
, z(w,τ)

}
+βg

)
,

(188)

if max
{
W g

τN1
, z(w,τ)

}
+ βg > w̄g. Therefore, (186) - (188), definition of G(w,τ) in Proposition 3, and the

solution in Lemma 6 and 7 together imply (178). Q.E.D.

D.8. Proof of Theorem 1
Following proposition 10, (γgP (w∗g , τ

∗), γbB
(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)
) satisfy constraints (LL), (PK), (IC),

(IR), and (FE). In the following, we verify (TT).

u(γbB
(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)
, ν̄; b) =w∗b ≥ g/r · (1− e−rτ

∗
) = u(γgP (w∗g , τ

∗), ν0; b)

= max
ν
u(γgP (w∗g , τ

∗), ν; b),

where the first equality follows from Proposition 10, the first inequality follows from constraint (43), and the
last equality follows from ν0 ∈N(γgP (w∗g , τ

∗), b) (Lemma 16). If µR≤ b, following Lemma 9, we have w∗B = 0,
and

u(γgP (w∗g , τ
∗), ν̄;g) =w∗g ≥w∗b = max

ν
u(γbB(0,w∗b ), ν;g)

where the first equality follows from proposition 10 and the first inequality follows from constraint (43). On

the other hand, if µR> b and Fb(w
∗
b )≤

w∗g −w∗b
b− g

(µR− b)−w∗b , following (47), we have wB(w∗g ,w
∗
b ) =w∗b , and

u(γgP (w∗g , τ
∗), ν̄;g) =w∗g ≥w∗b + (b− g)

Vb(wB(w∗g ,w
∗
b ))

(µR− b)
=w∗b + (b− g)T̄ (γbB(wB,w

∗
b −wB), ν̄)

= u(γbB(wB,w
∗
b −wB), ν̄;g) = max

ν
u(γbB(wB,w

∗
b −wB), ν;g)

where the first equality follows from proposition 10, the first inequality follows from constraint (27), the last
equality follows from lemma 3.
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If µR> b and Fb(w
∗
b )≥

w∗g −w∗b
b− g

(µR− b)−w∗b , following (47), we have wB(w∗g ,w
∗
b ) satisfies

Fb(wB(w∗g ,w
∗
b )) =

w∗g −w∗b
b− g

(µR− b)−wB(w∗g ,w
∗
b )

Hence,

u(γgP (w∗g , τ
∗), ν̄;g) =w∗g =w∗b + (b− g)

Vb(wB(w∗g ,w
∗
b ))

(µR− b)
=w∗b + (b− g)T̄ (γbB(wB,w

∗
b −wB), ν̄)

= u(γbB(wB,w
∗
b −wB), ν̄;g) = max

ν
u(γbB(wB,w

∗
b −wB), ν;g)

where the first equality follows from proposition 10, the first inequality follows from constraint (27), the last
equality follows from lemma 3.

Next, we verify that U(Γ∗{g,b}) =Y. First, we verify that

U(γbB
(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)
, ν̄) = min

{
Fb(w

∗
b ),

w∗g −w∗b
b− g

(µR− b)+−w∗b
}

(189)

If R≤ βb, then wB(w∗g ,w
∗
b ) = 0, hence,

U(γbB
(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)
, ν̄) =−w∗b = Fb(w

∗
b ) = min

{
Fb(w

∗
b ),

w∗g −w∗b
b− g

(µR− b)+−w∗b
}
, (190)

where the second equality follows from the definition of Fb, and the last equality follows from w∗g ≥ w∗b . If

R>βb and Fb(w
∗
b )≤

w∗g −w∗b
b− g

(µR− b)−w∗b , following (47), we have wB(w∗g ,w
∗
b ) =w∗b , and

U(γbB
(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)
, ν̄) =U(γbB (w∗b ,0) , ν̄) = Fb(w

∗
b ) = min

{
Fb(w

∗
b ),

w∗g −w∗b
b− g

(µR− b)+−w∗b
}

where the second equality follows from Proposition 1. If R>βb and Fb(w
∗
b )≥

w∗g −w∗b
b− g

(µR−b)−w∗b , following

(47), we have wB(w∗g ,w
∗
b ) satisfies

Fb(wB(w∗g ,w
∗
b )) =

w∗g −w∗b
b− g

(µR− b)−wB(w∗g ,w
∗
b ),

we have

U(γbB
(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)
, ν̄) = Fb(wB(w∗g ,w

∗
b ))− (w∗b −wB(w∗g ,w

∗
b )) =

w∗g −w∗b
b− g

(µR− b)−wB(w∗g ,w
∗
b )

= min

{
Fb(w

∗
b ),

w∗g −w∗b
b− g

(µR− b)+−w∗b
}

Following Proposition 11, we have

U(γgP (w∗g , τ
∗), ν̄) = J(w∗g , τ̄

∗) (191)

Finally, (189) and (191) imply

U(Γ∗{g,b}) = p ·U(γgP (w∗g , τ
∗), ν̄) + (1− p)U(γbB

(
wB(w∗g ,w

∗
b ),w

∗
b −wB(w∗g ,w

∗
b )
)
, ν̄)

= p · J(w∗g , τ̄
∗) + (1− p) min

{
Fb(w

∗
b ),

w∗g −w∗b
b− g

(µR− b)+−w∗b
}

E. Proofs in Section 6

E.1. Proof of Proposition 5
For any (wg,wb) that satisfy the constraints of the optimization problem (52), if we let τ =−1/r ln(1−rwb/g)
and ξ = min{Fb(wb), (wg −wb)/(b− g)(µR− b)+ −wb}, then (wg,wb, τ, ξ) also satify the constraints of the
optimization problem (23). Furthermore, G(wg, τ) ≤ Ǧ(wg, τ) since Ǧ has one more constraint (i.e., (55))
than G. Therefore, Y̌1 ≤Y.

Similarly, for any (wg, τ̄) that satisfy the constraints of the optimization problem (53), if we let τ =
−1/r ln(1− rτ̄), wb = gτ̄ and ξ = min{Fb(wb), (wg−wb)/(b− g)(µR− b)+−wb} then (wg,wb, τ, ξ) also satify
the constraints of the optimization problem (23). Furthermore, G(wg, τ) ≤ Ǧ(wg, τ) since Ǧ has one more
constraint (i.e., (55)) than G. Therefore, Y̌2 ≤Y.

Therefore, max{Y̌1, Y̌2} ≤Y.



60 Author:

E.2. Preparations to the proof of Proposition 6
Lemma 17. If w̄g >βb and w≥ ω̌(τ), then z(w,τ) in Lemma 6 is well-defined. We have z(w,τ) +βg ≤ βb if
and only if w ∈ [ω̌(τ), ω̄(τ)].

Lemma 18. If w̄g >βb and w ∈ [ω̄(τ), ω̃(τ)], then there exists unique pair of time epochs t1, t2 with 0≤ t2 ≤
t1 < τ , such that (Wt,Ht) defined in (66) and (67) satisfy

W0 =w, (192)

and

y(τ, t1)−βg ≥W0 if t2 = 0, (193)

and the constraints in the optimization problem (54).

Lemma 19. If w > ω̃(τ) and τ ≥ lnρ, there exists a unique time epoch t̃2 ∈ [0, ť1(τ)] and value z such that
(Wt,Ht) defined in (68) and (69)satisfy the constraints in the optimization problem (54).

E.2.1. Proof of Lemma 17 First, we show that
∂z

∂w
> 0. For w ∈ [w̌(τ), ω̂(τ)], z solves equation (36).

We have

∂z

∂w
= er(τz−τ)

(
−1 +

r(w̄g +βg)

z +βg

)
< 0.

For w≥ ω̂(τ), then z(w,τ) =w/(µ(1− e−τ ))−βg. Clearly,
∂z

∂w
> 0. If τ <− ln

(
g−rb
µb

)
, then ω̄(τ)> ω̂(τ), and

z(ω̄(τ), τ) +βg = βb. Similarly, if τ ≥− ln
(
g−rb
µb

)
, then ω̄(τ)≤ ŵ(τ), and

z(ω̄(τ), τ) +βg = βb. (194)

Hence, we have z(w,τ) +βg ≤ βb if and only if w ∈ [ω̌(τ), ω̄(τ)]. Q.E.D.

E.2.2. Proof of Lemma 18 Given t1 ∈ [0, τ ], y(τ, t1) = w̄g
(
1− er(t1−τ)

)
+βb and Wt1 = µ(w̄g+βb)(1−

et1−τ ) + w̄g · et1−τ − w̄g · er(t1−τ) are well-defined. Define f(t2; t1) := µy(τ, t1)(1− et2−t1) +Wt1e
t2−t1 + βg −

y(τ, t1). It is straightforward to verify that f(t1; t1) < 0 for t1 ∈ [0, τ ] and f ′(t2; t1) < 0 for t2 ∈ [0, t1] and
t1 ∈ [0, τ ]. Hence, if f(0; t1)> 0, then there exists unique t2 ∈ [0, t1] such that f(t2; t1) = 0. Define t2(t1) solves
f(t2(t1); t1) = 0 if f(0; t1) > 0 and t2(t1) = 0 if f(0; t1) ≤ 0. By the definition of f(t2; t1), we have t2(t1) is
continuous in t1.

Given t2(t1), we denote

W0(t1) = w̄g(1− e−rt2(t1)) + e−rt2(t1) (y(τ, t1)µ(1− et2−t1) + et2−t1W(τ, t1))

By definition of t2(t1), we can verify that W0(t1) strictly decreases in t1 on [0, τ ]. Furthermore, W0(0) = ω̃(τ).
If we let t1→ τ , then limt1→τ y(τ, t1) = βb. Hence, following (194), we have limt1→τW0(t1) = ω̄(τ). Therefore,
for any w ∈ [ω̄(τ), ω̃(τ)], there exists unique t1 such that W0(t1) =w. It is worth noting here that,

y(τ, t1) = w̄g ifw= w̃(τ). (195)

Finally, we verify that Wt and Ht defined in (66) and (67), with t1 and t2 defined above satisfy the
constraints in the optimization problem (54). It is straightforward to show that Wt and Ht defined in (66)
and (67) satisfy dWt/dt= rWt− µHt. Then, Ht ≥ βg for t ∈ [0, τ ] can be verified by: first, Ht is continuous
in t on [0, τ ]. Second, Ht = βg for t ∈ [0, t2], Ht = y(τ, t1)−Wt increases in t for t ∈ [t1, t2], and Ht increases
in t for t ∈ [t2, τ ] ( ∂Ht

∂t
= (b− g)et−τ > 0 for t ∈ [t2, τ ]). Next, min{Wt +Ht, w̄g}−Bt ≤ βb can be verified by:

first, Wt +Ht is continuous in t, and Wt +Ht −Bt = βb for t ∈ [t1, τ ], Second, Wt +Ht −Bt = y(τ, t1)−Bt
increases in t for t ∈ [t2, t1], and Wt +Ht −Bt = Wt + βg −Bt = er(t−t2)(Wt2 −Bt2) + βg increases in t for
t∈ [0, t2]. Q.E.D.
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E.2.3. Proof of Lemma 19 If τ ≥ lnρ, we have ť1(τ) ∈ [0, τ ] is well-defined and following (68) and
(69), we have

Wť1(τ) +Hť1(τ) = w̄g. (196)

Case 1: w ≥
g
(
1− e−ť1(τ)

)
+Wť1(τ)e

−ť1(τ)

r+µe−ť1(τ)
. Let z :=

w−Wt̃1e
−t̃1

µ(1−e−t̃1 )
− βg and t̃2 = 0. Clearly, W0 = w. Further,

Wt and Ht satisfy dWt/dt = rWt − µHt. Then, we verify that Ht ≥ βg for t ∈ [0, τ ]. First, Ht = g(t, τ) :=
w̄g+βb−µ(w̄g+βb)(1−et−τ )−w̄get−τ for t∈ [ť1(τ), τ ]. ∂g(t, τ)/∂t= (b−g)et−τ > 0. Hence, g(t, τ)≥ g(0, τ) =
w̄g + βb − µ(w̄g + βb)(1− e−τ )− w̄ge−τ . ∂g(0, τ)/∂τ = [w̄g − µ(w̄g + βb)]e

−τ = (g − b)e−τ < 0, which implies
that g(0, τ)> g(0,∞) = r(w̄g +βb)> r(w̄g +βg) = βg. Therefore, Ht ≥ βg for t∈ [ť1(τ), τ ].

Second, Ht = z+βg−Wt increases in t on [0, ť1(τ)). Hence, w≥
g
(
1− e−ť1(τ)

)
+Wť1(τ)e

−ť1(τ)

r+µe−ť1(τ)
implies that

Ht ≥H0 = z +βg−w≥ βg. Finally, for t∈ [ť1(τ), τ ], we have Wt +Ht−Bt = βb and following (196), we have
Wť1(τ) +Hť1(τ)−Bť1(τ) = w̄g −Bť1(τ) = βb. Hence, for t∈ [0, ť1(τ)], w̄g −Bt increases in t, and w̄g −Bt ≤ βb.
Therefore, min{Wt +Ht, w̄g}−Bt ≤ βb for t∈ [0, τ ].

Case 2: w <
g(1−e−ť1(τ))+Wť1(τ)e

−ť1(τ)

r+µe−ť1(τ) . Following the same logic of the proof of Lemma 13, we can show

that for any w > ω̃(τ) and w <
g(1−e−t̃1)+Wt̃1

e−t̃1

r+µe−t̃1
, there exists a unique z ∈

[
Wt̃1 ,

g(1−e−t̃1)+Wt̃1
e−t̃1

r+µe−t̃1

]
, which

satisfy equations

w̄g − (w̄g − z) · er(τz−ť1(τ)) =w, (197)

where

τz = ln

(
µ(z +βg)−Wť1(τ)

r(w̄g − z)

)
. (198)

Further, we let t̃2 = ť1(τ)− τz. It is straightforward to verify that Wt and Ht satisfy dWt/dt= rWt − µHt.
Then, Ht = βg for t ∈ [0, t̃2], and Ht = z + βg −Wt ≥ z + βg −Wt̃2 = βg. Furthermore, similar to Case 1, we
can show that min{Wt +Ht, w̄g}−Bt ≤ βb for t∈ [0, τ ].

Finally, we present a property that will be useful in the optimality proof. If w > w̃(τ) and τ ≥ lnρ, (195)
implies that

z +βg > w̄g. (199)

Q.E.D.

E.3. Proof of Proposition 6
Scenario 1: We verify that if w < w̌(τ), then the optimization problem is infeasible. If Ht = βg for t ∈ [0, τ ],
then W0 = w̌(τ). Since the constraint of the optimization problem requires that Ht ≥ βg for t∈ [0, τ ], we have
W0 ≥ w̌(τ).

Scenario 2: If w̄g > βb, following Lemma 17, we have if w ∈ [ω̌(τ), ω̄(τ)], then z(w,τ) in Lemma 6 is
well-defined and z(w,τ) + βg ≤ βb. Furthermore, take Wt and Ht defined in Lemma 6, we have Wt +Ht ≤
z(w,τ) +βg ≤ βb. Hence, Wt and Ht defined in Lemma 6 are optimal for the optimization Ǧ(w,τ) in (54).

Scenario 3: Since g(1− e−τ ) is fixed when τ is given, we only need to maximize the integral
∫ τ

0
µe−t[R+

Fg(Wt +Ht)]dt. To solve the optimization problem, we can write down the Hamiltonian:

H= e−t{µ[R+Fg(Wt +Ht)]}+λ(t)(rWt−µHt) + η(t)(Ht−βg) +φ(t)[Bt−min(Wt +Ht, w̄g) +βb]. (200)

The optimality conditions are

∂H
∂H

= µe−tF ′g(Wt +Ht)−λ(t)µ+ η(t)−φ(t)1Wt+Ht≤w̄g = 0, (201)

η(t)(Ht−βg) = 0, (202)

η(t)≥ 0, (203)

φ(t)[Bt−min(Wt +Ht, w̄g) +βb] = 0, (204)

φ(t)≥ 0, (205)
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∂H
∂W

= µe−tF ′g(Wt +Ht) +λ(t)r−φ(t)1Wt+Ht≤w̄g =−λ′(t). (206)

Since the objective of the optimal control problem is jointly concave in (Wt,Ht), to verify that Wt and
Ht defined in (66) and (67) are optimal, it is sufficient to verify the above optimality conditions and the
corresponding constraints. Following Lemma 18, Wt and Ht defined in (66) and (67) satisfy the constraints
of the optimization problem. Next, we verify that they also satisfy the optimality conditions.

Since y(τ, t1)≤ w̄g, then Wt +Ht ≤ w̄g for t≥ t2 and we can verify the optimality conditions (201), (202),
(204), and (206) by letting

φ(t) =
[
µe−tF ′g (g/r(1− et−τ ) +βb)−µe−tF ′g (y∗1)

]
1t≥t1 ≥ 0

η(t) = µe−rtγ(t)1t≤t2

λ(t) =

{ [∫ t2
t
µe−µξF ′g(Wξ +β)dξ+F ′g(y

∗
1)e−µt2

]
e−rt, t∈ [0, t2],

F ′g(y
∗
1)e−t, t∈ [t2, τ ],

where

γ(t) :=

[∫ t2

t

µe−µξF ′g(Wξ +βg)dξ+F ′g(y
∗
1)e−µt− e−µtF ′g(Wt +βg)

]
≥ 0,

for t ∈ [0, t2] and the first inequality follows from that Fg is concave and the second inequality follows from
that γ(t) is decreasing in t and γ(t2) = 0. The inequalities further imply (203) and (205) and complete the
proof.

Scenario 4: Following Lemma 19, Wt and Ht defined in (68) and (69) satisfy the constraints of the
optimization problem. Next, similar to scenario (3), we verify that they also satisfy the optimality conditions
(201) - (206). We can verify the optimality conditions

φ(t) =
[
µe−tF ′g (g/r(1− et−τ ) +βb)−µe−tF ′g (z1 +βg)

]
1t≥ť1(τ) ≥ 0

η(t) = µe−rtγ(t)1t≤t̃2

λ(t) =

{ [∫ t̃2
t
µe−µξF ′g(Wξ +β)dξ+F ′g(z1 +βg)e

−µt̃2
]
e−rt, t∈ [0, t̃2],

F ′g(z1 +βg)e
−t, t∈ [t̃2, τ ],

where

γ(t) :=

∫ t̃2

t

µe−µξF ′g(Wξ +βg)dξ+F ′g(z1 +βg)e
−µt− e−µtF ′g(Wt +βg)≥ 0,

for t∈ [0, t̃2] and the first inequality follows from that Fg is concave and g/r(1−et−τ )+βb ≤ g/r(1−eť1(τ)−τ )+
βb = w̄g < z + βg, followed by (199). The second inequality follows from that γ(t) is decreasing in t and
γ(t̃2) = 0. The inequalities further imply (203) and (205) and complete the proof.

Scenario 5: We verify that if w> w̃(τ) and τ < lnρ, then the optimization problem is infeasible. Constraint
(56) requires that

min{Wt +Ht, w̄g} ≤Bt +βb = w̄g(1− er(t−τ)) +βb < w̄g,

for t ∈ [0, τ), where the second inequality follows from that τ < lnρ. Hence, Wt +Ht < w̄g and Wt +Ht ≤
Bt +βb. Hence, we have

dWt

dt
= rWt−µHt

dWt

dt
−Wt =−µ(Wt +Ht)

(e−tWt)
′ =−µe−t(Wt +Ht)

W0 =

∫ τ

0

e−tµ(Wt +Ht)dt≤
∫ τ

0

e−tµ(Bt +βb)dt= w̃(τ).

Therefore, if w> w̃(τ), W0 <w and the optimization problem is infeasible. Q.E.D.
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E.4. Preparations to prove Proposition 7
Lemma 20. For any w,τ such that Ǧ(w,τ)>−∞, we have ν0 ∈N(γgP′ (w,τ, b) , b).

Lemma 21. If τ =∞, we have γgP′ (w,τ, b) = γgP (w,τ) and ν0 ∈N(γgP′ (w,τ, b) , b).

Proposition 12. For any τ ≥ 0, w ∈ [ω̌(τ), ω̃(τ)], or w > ω̃(τ) and τ ≥ lnρ, we have ν̄ ∈N(γgP′ (w,τ, b) , g),
and

u
(
γgP′ (w,τ, b) , ν̄;g

)
=w.

The proof of Proposition 12 can be adapted from the proof of Proposition 10 and is omitted here.

Proposition 13. For any c < µR, we have

U(γcP′(w,τ), ν̄) = Ǧ(w,τ) (207)

The proof of Proposition 13 can be adapted from the proof of Proposition 11 and is omitted here.

E.4.1. Proof of Lemmas 20 and 21 For Lemma 20, we only need to consider the following cases
of (wg, τ) since otherwise, by definition of Ǧ, Ǧ(wg, τ) =−∞.

1. w ∈ [ω̌(τ), ω̄(τ)): γgP′(w,τ, b) = γgP (w,τ). Furthermore, Lemma 17 implies that z(w,τ) + βg ≤ βb. Then,
Lemma 16 implies that ν0 ∈N(γgP (w,τ), b).

2. w ∈ [ω̄(τ), ω̃(τ)]: Following definition 6, it is straightforward to verify that S′(wg, τ) satisfies (177) if
we let S = S′(wg, τ) and w =wg. Hence, if WτN1

+HτN1
> w̄g, the contract after the first arrival would

be γgD

(
WτN1

+HτN1
, τN1 , S

′(w,τ)
)

. Then, following Lemma 15, after the first arrival, the bad agent with

cost b will never work. As a result, the bad agent’s continuation utility after the first arrival (if he tried
to mimic the good agent) is w̄g if WτN1

+HτN1
> w̄g. On the other hand, if w̄g if WτN1

+HτN1
≤ w̄g,

the contract after the first arrival would be an IC-Binding contract γ̂g. Then, following Lemma 4,
the bad agent will never work after the first arrival. As a result, the bad agent’s continuation utility
after the first arrival (if he tried to mimic the good agent) is WτN1

+ HτN1
if WτN1

+ HτN1
≤ w̄g. To

summarize, the agent’s continuation utility after the first arrival (if he tried to mimic the good agent)

is min
{
WτN1

+HτN1
, w̄g

}
.

If the bad agent never works in the good agent’s contract, then for t ≤ τ , we have the bad agent’s
continuation utility as Bt = g/r · (1− er(t−τ)). In the following, we use a one-shot deviation argument
to show that the bad agent will always prefer no effort in the good agent’s contract. For any t∈ [0, τ ],
if the bad agent deviates from no effort to νt in the next δ time interval, then the bad agent’s utility
becomes

gδ− bνtδ+µνt +µνtmin{Wt +Ht, w̄g}+ (1−µνtδ)e−rδBt+δ
=gδ+ e−rδBt+δ + δνt [−b+µmin{Wt +Ht, w̄g}−µBt+δ]

where Wt follows (66) and Ht follows (67). Hence, as long as min{Wt +Ht, w̄g} − Bt ≤ βb, there is
no benefit for the bad agent to deviate from no effort. Following the optimization problem (54), if
Ǧ(w,τ)>−∞, we have (56) is satisfied, i.e., min{Wt +Ht, w̄g}−Bt ≤ βb for any t ∈ [0, τ ]. Therefore,
the bad agent will not work in the good agent’s contract, i.e., ν0 ∈N(γgP′ (w,τ, b) , b).

3. w> ω̃(τ) and τ ≥ lnρ: The proof of this case is similar to that in Case 2 and is omitted here.
For Lemma 21, if τ =∞, then w ≥ g/r. Following Proposition 6, we have Wt = w and Ht = w/µ− w.

Hence, following definition 4, we have γgP′ (w,τ, b) = γgP (w,τ). Since WτN1
+ HτN1

> w̄g, the contract after

the first arrival would be γgD

(
WτN1

+HτN1
, τN1 , S

′(w,τ)
)

. Then, following Lemma 15, after the first arrival,

the bad agent with cost b will never work. As a result, the bad agent’s continuation utility after the first
arrival (if he tried to mimic the good agent) is w̄g. Since τ =∞, the bad agent’s continuation utility stays
at w̄g even if he does not exert effort to create the arrival. Hence, the bad agent will never exert effort, i.e.,
ν0 ∈N(γgP′ (w,τ, b) , b). Q.E.D.
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E.5. Proof of Proposition 7
Following Propositions 10 and 12, {γgP′ (w̌g, τ̌ , b) , γbB (wB(w̌g, w̌b), w̌b−wB(w̌g, w̌b))} satisfy constraints (LL),
(PK), (IC), (IR), and (FE). In the following, we verify (TT).

u(γbB (wB(w̌g, w̌b), w̌b−wB(w̌g, w̌b)) , ν̄; b) = w̌b ≥ g/r · (1− e−rτ̌ ) = u(γgP′ (w̌g, τ̌ , b) , ν
0; b)

= max
ν
u(γgP′ (w̌g, τ̌ , b) , ν; b),

where the first equality follows from Proposition 10, the first inequality follows from the constraints of (52),
i.e., w̌b ≥ g/r if Y̌ = Y̌1 and constraints of (53), i.e., w̌b = g/r(1−e−rτ̌ ) if Y̌ = Y̌2, and the last equality follows
from ν0 ∈N(γgP′ (w̌g, τ̌ , b) , b) (Lemmas 20 and 21). If µR≤ b, following Lemma 9, we have wB = 0, and

u(γgP′ (w̌g, τ̌ , b) , ν̄;g) = w̌g ≥ w̌b = max
ν
u(γbB(0, w̌b), ν;g)

where the first equality follows from proposition 12 and the first inequality follows from constraints of (52) if

Y̌ = Y̌1 and constraints of (53) if Y̌ = Y̌2. On the other hand, if µR> b and Fb(w̌b)≤
w̌g − w̌b
b− g

(µR− b)− w̌b,
following (47), we have wB(w̌g, w̌b) = w̌b, and

u(γgP′ (w̌g, τ̌ , b) , ν̄;g) = w̌g ≥ w̌b + (b− g)
Vb(wB(w̌g, w̌b))

(µR− b)
= w̌b + (b− g)T̄ (γbB(wB, w̌b−wB), ν̄)

= u(γbB(wB, w̌b−wB), ν̄;g) = max
ν
u(γbB(wB, w̌b−wB), ν;g)

where the first equality follows from Proposition 12, the first inequality follows from the constraints of (52)
if Y̌ = Y̌1 and constraints of (53) if Y̌ = Y̌2, the last equality follows from lemma 3.

If µR> b and Fb(w̌b)≥
w̌g − w̌b
b− g

(µR− b)− w̌b, following (47), we have wB(w̌g, w̌b) satisfies

Fb(wB) =
w̌g − w̌b
b− g

(µR− b)−wB

Hence,

u(γgP′ (w̌g, τ̌ , b) , ν̄;g) = w̌g = w̌b + (b− g)
Vb(wB)

(µR− b)
= w̌b + (b− g)T̄ (γbB(wB, w̌b−wB), ν̄)

= u(γbB(wB, w̌b−wB), ν̄;g) = max
ν
u(γbB(wB, w̌b−wB), ν;g)

where the first equality follows from proposition 10, the first inequality follows from the constraints of (52)
if Y̌ = Y̌1 and constraints of (53) if Y̌ = Y̌2, the last equality follows from lemma 3.

Similar to (189), we can verify that

U(γbB (wB(w̌g, w̌b), w̌b−wB(w̌g, w̌b)) , ν̄) = min

{
Fb(w̌b),

w̌g − w̌b
b− g

(µR− b)+− w̌b
}
.

Finally, following Proposition 13, we have

U(Γ̌{g,b}) = p ·U(γgP′ (w̌g, τ̌ , b) , ν̄) + (1− p)U(γbB (wB(w̌g, w̌b), w̌b−wB(w̌g, w̌b)) , ν̄)

= p · Ǧ(w̌g, τ̌) + (1− p) min

{
Fb(w̌b),

w̌g − w̌b
b− g

(µR− b)+− w̌b
}

i.e., Y̌ = U
(
Γ̌{g,b}

)
.

E.6. Comparison between two lower bounds
The following proposition verifies that the lower bound proposed in Proposition 5 is always greater than the
lower bound in Proposition 2. Together with Proposition 7, we can show that the simple heuristic is always
dominated by the easy-to-implement contracts Γ̌{g,b}.

Proposition 14.

Y̌ ≥ YB (208)

where Y̌ is defined in Proposition 5 and YB is defined in Proposition 2.
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Given B̂ that is defined in (22), we have B̂ < w̄g. Hence, B̂/g < 1/r. We let wg = B̂, τ =− log(1− rB̂/g),
and ξ =−B̂. It is straightforward to verify that (wg, τ̄) satisfies the constraints of optimization problem (53).
Next, in the definition of Ǧ ((54)), Ht = βg and Wt =Bt for t ∈ [0, τ ] satisfy the constraints. Further, if we
let Ht = βg, the value of

∫ τ
0
µe−t[R+Fg(Wt +Ht)]dt− g(1− e−τ ) is exactly principal’s value U(γ̂g, ν̄), which

is also Fg(B̂). Hence, by definition of Ǧ, we have Ǧ(wg, τ)≥ Fg(B̂). Finally, we have

pǦ(wg, τ) + (1− p)ξ ≥ Fg(B̂)− (1− p)B̂,

which completes the proof. Q.E.D.

E.7. Property of function J
Lemma 22. For τ̄ ∈

[
0,

1

r

]
, c ∈ [c,min{c̄, µR}], and w ≥ cτ̄ , we have the following properties for function

J (w, τ̄ , c),
(i) J (w, τ̄ , c) is jointly concave in w and τ̄ ;

(ii) J (w, τ̄ , c) is increasing in τ̄ and J (w,0, c) =−w;

(iii) J (w, τ̄ , c) +w is non-decreasing in w;

(iv) 0≤J (w, τ̄ , c) +w≤ µR− c
r

.

Proof.
(i) Following Proposition 4, J (w, τ̄ , c) is jointly concave in (w, τ̄).
(ii) Following Proposition 4, J (w, τ̄ , c) is is increasing in τ̄ . If τ̄ = 0, then τ =− log(1− rτ̄)/r= 0. Hence,

ŵ(0) = 0. Hence, for any w≥ 0, following (154), we have

J (w,0, c) = lim
τ→0

∫ τ

0

µe−tFg

(
w

µ(1− e−τ )

)
dt= lim

τ→0

∫ τ

0

µe−t
[
µR− c
r
− w

µ(1− e−τ )

]
dt

= lim
τ→0
−µ(1− e−τ ) w

µ(1− e−τ )
=−w

(iii) It is equivalent to show that J ′1(w, τ̄ , c) = J ′1(w, τ̄) ≥ −1. First, J is concave in w. Hence, we only

need to show J ′1(w, τ̄)≥−1 when w is large enough. Denote τ :=
log(1− rτ̄)

r
. Following (157), we have, for

w≥ ŵ (τ), J ′1(w, τ̄) = F ′c

(
w

µ(1− e−τ )

)
≥−1.

(iv) Following (ii) and (iii), we have

J (w, τ̄ , c) +w≥J (w,0, c) +w= 0

Again, following (ii) and definition of J , we have

J (w, τ̄ , c) +w≤J
(
w,
w

c
, c
)

+w=U(γcP (τ,0), ν̄) =U(γ̂c, ν̄) +w= Fc(w) +w= Vc(w)≤ µR− c
r

,

where τ :=
log(1− rτ̄)

r
and τ̄ =

w

c
, the last inequality follows from 2. Q.E.D.

E.8. Proof of Theorem 2
For any contract menu ΓC,C = {c1, ..., cN} that satisfy (LL), (PK), (IC), (IR), (FE), and (TT), we create a
vector {wi, ξi}i=1,...,M ,wM+1 such that, they satisfy the constraints (78), and

U(ΓC)≤
M∑
i=1

ξiPi−wM+1

N∑
i=M+1

Pi.

First, we let ξ1 follows (79), and for i ∈ {2, ...,M}, ξi is defined as the minimum of the right-hand side of
(80) and (81). Then, we have Y ≥Z(C). Define w̌i := u(γci , ν̄; ci) for i= 1, ...,N . We further let wi = w̌i for
i∈ {1, ...,M} and wM+1 = w̌N .

Step 1: We check constraint (78). For any i∈ {1, ...,N − 1}, we have

w̌i = u(γci , ν̄; ci)≥max
ν
u(γci+1 , ν; ci)≥ u(γci+1 , ν̄; ci) = w̌i+1 + (ci− ci+1)T̄ (γci+1 , ν̄)≥ w̌i+1, (209)
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Clearly, (209) implies constraint (78)
Step 2: If R>βci , then for any cj < ci, (TT) implies that

wj = u(γcj , ν̄; cj)≥max
ν
u(γci , ν; cj)≥ u(γci , ν̄; cj)≥wi + (ci− cj)T̄ (γci , ν̄) =wi +

(ci− cj)S(γci , ν̄; ci)

µR− ci

=wi +
(ci− cj)(U(γci , ν̄) +wi)

µR− ci
(210)

where the first equality follows from Lemma 12 and the last equality follows from S(γc, ν̄; c) = U(γc, ν̄) +
u(γc, ν̄; c). Rearrange (214), we have, for any cj < ci,

U(γci , ν̄)≤ (wj −wi)(µR− ci)
ci− cj

−wi, if R>βc. (211)

Hence, for any ci <µR, we have

U(γci , ν̄)≤min
j<i

[
wj −wi
ci− cj

]
(µR− ci)−wi. (212)

where the first inequality follows from Proposition 1, and the second inequality follows from (209). On the
other hand, if R≤ βci (ci ≥ µR), then

U(γci , ν̄)≤−w̌i ≤−w̌N =−wM+1, if R≤ βci . (213)

Furthermore, for any ci < cN , we have

wM+1 = w̌N ≥max
ν
u(γci , ν; cN)≥ u(γci , ν0; cN) = ci

∫ τ0(γci )

0

e−rtdt= ci/r · (1− e−rτ
0(γci )). (214)

which implies that

1/r · (1− e−rτ0(γci ))≤ w̌N/ci (215)

Finally, following Step 2.2 of the proof of Proposition 3 and definition of J , we have for any ci <µR,

U(γci , ν̄)≤J (wi,1/r · (1− e−rτ
0(γci )), c)≤J

(
wi,min

{
wN
c
,
1

r

}
, c

)
(216)

where the second inequality follows from that the function J (w, τ̄ , c) is increasing in τ̄ (Lemma 22(ii)) and
(215). Therefore, (212) and (216) imply that for any c < µR,

U(γci , ν̄)≤ ξi. (217)

With (213), we established that

U(ΓC) =

N∑
i=1

U(γci , ν̄) ·Pi ≤
M∑
i=1

ξiPi−wM+1

N∑
i=M+1

Pi (218)

E.9. Proof of Proposition 8
For any {wi, ξi}i=1,...,M ,wM+1 that satisfy (78). Clearly, {w1, ...,wM+1} satisfy the constraints of optimization
problem (82). Furthermore, the objective of (77) is smaller than the objective of (82). Therefore, YN ≤ ŶN .

E.10. Calculation of Ji
Proposition 15. For any given i = 1, . . . ,M and wM+1 ≥ 0, function Ji(w|wM+1) is concave in w. Use
J′i−1(w|wM+1) to represent the its left-derivative at w. Further fix a value wi ≥wM+1, and define

w̌ := sup
{
w
∣∣ w≥wi and J′i−1(w|wM+1)≥ 0

}
,

ŵ := inf
{
w
∣∣ w≥wi and J′i−1(w|wM+1)≤−(µR− ci)Pi

}
, and

ū :=


J (wi,min{wM+1/ci,1/r} , ci) +wi

µR− ci
, if µR− ci > 0

0, if µR− ci = 0.

We have w̌≤ ŵ, and the following defined w∗i−1 solves the right-hand-side optimization problem in (85),

w∗i−1 :=


w̌, if wi ≤ w̌− ūδ,
wi + ūδ, if wi ∈ (w̌− ūδ, ŵ− ūδ],
ŵ, if wi ∈ (ŵ− ūδ, ŵ],
wi, if wi > ŵ.



Author: 67

Concavity of Ji(w|wM+1) follows from an induction proof showing that the objective of the maximization
in (85) is jointly concave in wi and wi−1. This concavity property is crucial for us to obtain the closed-form
optimal solution w∗.

Proof. First, we show that Ji(w|wM+1) is concave in w by induction. J1(w|wM+1) = 0 is clearly concave
in w (follows from the concavity of J ) . Next, if Ji−1(w|wN) is concave in w, we verify that Ji(w|wM+1) is
also concave in w.

Denote

f(wi−1,wi) := Pimin

{
wi−1−wi
ci− ci−1

(µR− ci)−wi, J
(
wi,min

{
wM+1

ci
,
1

r

}
, ci

)}
+ Ji−1(wi−1|wM+1).

Since
wi−1−wi
ci− ci−1

(µR−ci)−wi is linear in (wi−1,wi) and J
(
wi,min

{
wM+1

ci
,
1

r

}
, ci

)
is concave in wi (follows

Lemma 22), then f(wi−1,wi) is jointly concave in (wi−1,wi). Hence, Ji(wi|wN) is concave in wi.
Since Ji−1(wi−1|wN) is concave in wi−1, w̌ and ŵ are well-defined and w̌≤ ŵ. Next, we verify the optimal

solution in the following 3 cases. Further, following Lemma 22 (iii) and ci <µR, we have
Case 1. If wi ≤ w̌− ūδ, then we verify that w∗i−1 = w̌. If wi−1 ≥ w̌, then wi−1 ≥ w̌≥wi + ūδ. Hence

f(wi−1,wi) = PiJ
(
wi,min

{
wM+1

ci
,
1

r

}
, ci

)
+ Ji−1(wi−1|wM+1)

and

f ′1(wi−1,wi) = J′i−1(wi−1|wM+1)≤ 0

for wi−1 ≥ w̌, where the last inequality follows from the definition of w̌. If wi−1 < w̌, then

f ′1(wi−1,wi) =

{
Pi(µR− ci) + J′i−1(wi−1|wM+1)> 0, if wi−1 ≤wi + ūδ,
J′i−1(wi−1|wM+1)≥ 0, if wi ∈ (wi + ūδ, w̌].

where the second inequality follows from the definition of w̌. Hence, f(wi−1,wi) is increasing in wi−1 if
wi−1 < w̌ and decreasing in wi−1 if wi−1 ≥ w̌which imply that w∗i−1 = w̌.

Case 2. If wi ∈ (w̌− ūδ, ŵ− ūδ], then we verify that w∗i−1 =wi + ūδ. For wi−1 <wi + ūδ,

f ′1(wi−1,wi) = Pi(µR− ci) + J′i−1(wi−1|wM+1)≥ 0,

where the inequality follows from wi−1 <wi + ūδ≤ ŵ. Further, for wi−1 > w̌+ ūδ,

f ′1(wi−1,wi) = J′i−1(wi−1|wM+1)< 0,

where the inequality follows from wi−1 >wi + ūδ > w̌.
Case 3. If wi ∈ (ŵ− ūδ, ŵ], then we verify that w∗i−1 = ŵ. For wi−1 < ŵ <wi + ūδ, we have

f ′1(wi−1,wi) = Pi(µR− ci) + J′i−1(wi−1|wN)≥ 0,

where the inequality follows from wi−1 < ŵ. And for wi−1 > ŵ, then

f ′1(wi−1,wi) =

{
Pi(µR− ci) + J′i−1(wi−1|wN)≤ 0, if wi−1 ∈ (ŵ,wi + ūδ],
J′i−1(wi−1|wN)≤ 0, if wi−1 >wi + ūδ.

(219)

where the first inequality follows from wi−1 > ŵ. Hence, f(wi−1,wi) is increasing in wi−1 if wi−1 < ŵ and
decreasing in wi−1 if wi−1 ≥ ŵ which imply that w∗i−1 = ŵ.

Case 4. If wi > ŵ, we verify that w∗i−1 =wi. Following (219), we have f(wi−1,wi) is decreasing in wi−1

for wi−1 ≥wi. Hence, w∗i−1 =wi. Q.E.D.
Finally, we have the following result, which provides an upper bound for the optimal wN .

Proposition 16. Define w̄ := min{µR − c1, cN}/r. For any wM+1 ≥ w̄,wM ≥ wM+1, we have
JM(wM |wM+1)≤maxwM≥wM+1,wM+1≤w̄ JM(wM |wM+1).
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Proposition 16 implies that we can focus the search for the optimal wM+1 that solves (86) in the interval
[0, w̄].

Proof. First, if wM+1 ≥
µR− c1

r
, then

JN(wN |wN) =

N∑
i=1

Pimin

{
wi−1−wi
ci− ci−1

(µR− ci)−wi, J
(
wi,min

{
wM+1

ci
,
1

r

}
, ci

)}

≤
N∑
i=1

PiJ
(
wi,min

{
wM+1

ci
,
1

r

}
, ci

)

≤
N∑
i=1

Pi

[
µR− ci

r
−wi

]
≤ 0≤JN(0|0)

where the last inequality follows from wi ≥wM+1 ≥
µR− c1

r
.

On the other hand, for any wM+1 > cN/r, then denote the corresponding optimal solution
as {w∗i }i=1,...,M+1. Since wM+1 > cN/r, we have w∗i > cN/r ≥ ci/r for i = 1, ...,M + 1. Hence,
min{wM+1/ci,1/r}= 1/r for i= 1, ...,N . Following (157), we have

∂J (w,1/r, c)

∂w
=−1, (220)

if w≥ ŵ(∞) = c/r and w≥ µc/r. Hence,

J (w,1/r, ci)≤J (c̄/r,1/r, c) (221)

for any i∈ {1, ...,M + 1} and w> c̄/r. Define {w̃i}i=1,...,M+1 as

w̃i =w∗i − (w∗M+1− c̄/r).

Hence, if wN ≥ c̄/r,

JM(wM |wM+1) =

N∑
i=1

Pimin

{
w∗i−1−w∗i
ci− ci−1

(µR− ci)−w∗i , J
(
w∗i ,min

{
w∗M+1

ci
,
1

r

}
, ci

)}

≤
N∑
i=1

[P (ci)−P (ci−1)] min

{
w̃i−1− w̃i

δ
(µR− ci)− w̃i, J

(
w̃i,min

{
w̃M+1

ci
,
1

r

}
, ci

)}
≤JM(w̃M |w̃M+1) =JM(w̃M |cN/r)

where the first inequality follows from (221). Therefore, we have

JM(wM |wM+1)≤ max
wM≥wM+1,wM+1≤w̄

JM(wM |wM+1).

if wM+1 ≥ w̄,wM ≥wM+1. Q.E.D.

E.11. Preparations to prove Lemma 10
Proposition 17. For i∈ {2....,M}, we have ν̄ ∈N(γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ci), where τi, p

i
0, piW are defined

in (100) - (102), and

u
(
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ν̄; c

)
=w∗i ,

U
(
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ν̄

)
+w∗i = min{V∗i , V̌i},

and pi0, p
i
ŵ ∈ [0,1], and ŵ in (99) is well-defined.

Since cj ≥ cj+1 and βcj ≥ βcj+1
, we have the following results.

Lemma 23. Given {w∗i }i=1,...,M+1 defined in (95), we have for any i < j, j ∈ {2, ...,N}, ν0 ∈N(γci , cj) and
ν0 ∈N(γc1 , cj), where γcis are defined in Lemma 10. Furthermore, for i < j and i∈ {1, ...,M}, we have

u(γci , ν0; cj)≤ ciτ̄i (222)

Lemma 24. For any b > g, and γb such that ν̄ ∈N(γb, b), we have ν̄ ∈N(γb, g).
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E.11.1. Proof of Proposition 17 First, we verify ν̄ ∈N(γcir (w∗i , τi, p
i
0, p

i
ŵ, ci+1), ci). With probability

pi0, the contract is directly terminated. With probability piŵ, the contract continues with a delay payment
contract γciD . Then, following the proof of Proposition 17 (ii), we can show that type ci will always exert
effort. With probability 1− pi0− piŵ, the contract continues with γcp′(w

∗
i , τi, c

′). Following Proposition 12, we
have type ci that will always exert effort.

Second, we verify u
(
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ν̄; c

)
= w∗i . Following Proposition 12, we have

u
(
γgP′ (w

∗
i , τi, ci+1) , ν̄; ci

)
= w∗i . Hence, if V∗i ≥ V̌i, then u

(
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ν̄; c

)
=

u
(
γgP′ (w

∗
i , τi, ci+1) , ν̄; ci

)
=w∗i . On the other hand, if V∗i < V̌i, then

u
(
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ν̄; c

)
= pi0 · 0 + piŵ · ŵ+ (1− pi0− piŴ)u

(
γgP′ (w

∗
i , τi, ci+1) , ν̄; ci

)
= (1− pi)qi · ŵ+ (1− pi0− piŵ)w∗i = (1− pi)qi · qiw∗i

(1− pi)qi
+ (1− qi)w∗i =w∗i

where the second equality follows from (101) and (102), the third equality follows from (99).

Third, we verify U
(
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ν̄

)
+w∗i = min{V∗i , V̌i}. Following Proposition 13, definition of

J̌ in (88), and (98), we have U(γciP′ (w
∗
i , τi, ci+1), ν̄) = V̌i − w∗i . Furthermore, since pi ≥ 1− w∗i

max(w∗i , ci/r)
,

then ŵ= (pi0 +piŵ)w∗i /p
i
ŵ ≥ ci/r. Hence, following Definition 2, the agent is never terminated under contract

γciD (Ŵi, S
′(Ŵi),0). Therefore, U(γciD (ŵ,S′(ŵ),0), ν̄) = (µR− ci)/r− ŵ. Hence, if V̌i ≤ V∗i , then pi0 = piŵ = 0,

and
U
(
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ν̄

)
+w∗i =U(γciP′ (w

∗
i , τi, ci+1), ν̄) +w∗i = V̌i.

On the other hand, if V̌i > V∗i , then

U
(
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ν̄

)
+w∗i = pi0 · 0 + piŵ · (µR− ci)/r+ (1− pi0− piŵ)

(
U
(
γgP′ (w

∗
i , τi, ci+1) , ν̄

)
+w∗i

)
=(1− pi)qi · (µR− ci)/r+ (1− qi)V̌i

=(1− pi) V̌i−V∗i
V̌i− (1− pi)(µR− ci)/r

· (µR− ci)/r+

(
1− V̌i−V∗i
V̌i− (1− pi)(µR− ci)/r

)
V̌i = V̌i− (V̌i−V∗i ) = V∗i .

Fourth, we verify that pi0 ∈ [0,1], piŵ ∈ [0,1], and ŵ is well-defined. If V̌i ≤ V∗i , then pi0 = piŵ = 0.
On the other hand, if V̌i > V∗i , clearly, the statements are followed from pi ∈ (0,1] and qi ∈ [0,1]. Since
U(γciP′ (w

∗
i , τi, ci+1), ν̄) +w∗i = V̌i, we have V∗i < V̌i ≤ (µR− ci)/r. Hence,

1− rV∗i
2(µR− ci)

≥ 1− 1/2> 0

Furthermore, since w∗i−1 ≥w∗i , we have 1− rV∗i
2(µR−ci)

≤ 1. By definition of τ̄i in (100), we have 1− rτ̄i ∈ [0,1].

Further, 1− w∗i
max(w∗i , ci/r)

∈ [0,1]. Hence, pi ∈ (0,1]. Since pi ≥ 1− rV∗i
2(µR−ci)

, we have (1− pi)(µR− ci)/r ≤
V∗i /2 and

qi =
V̌i−V∗i

V̌i− (1− pi)(µR− ci)/r
∈ [0,1].

E.11.2. Proof of Lemma 23 First, following Lemma 20, we have ν0 ∈N(γc1 , c2). Further, since βcj ≥
βc2(j ≥ 2), following the same logic of the proof of Lemma 20, we can show that ν0 ∈N(γc1 , cj). Following
definition 6, for j > 1, we have

u(γc1 , ν0; cj) = u(γc1p′ (w∗1, τ1, c2) , ν0; cj) = ciτ̄1

where τ̄1 is defined in (97).
Second, given i < j and i ∈ {1, ...,M}, we have ν0 ∈ N(γgP′ (w

∗
i , τi, ci+1) , cj). Next, following Lemma 15,

since S′(ŵ) satisfies inequality (177) with g = ci, b = cj , we have ν0 ∈ N(γciD (ŵ,S′(ŵ),0), cj). Therefore,
ν0 ∈N(γci , cj). Following definition 6, for j > i, we have u(γcip′ (w∗i , τi, ci+1) , ν0; cj) = ciτ̄1. Following Definition
2, the agent is never terminated under contract γciD (ŵ,S′(ŵ),0). Therefore, u(γciD (ŵ,S′(ŵ),0), ν0; cj) = ci/r.
Hence, if V̌i ≤V∗i , then pi0 = piŵ = 0, and

u(γci , ν0; cj) = u(γcip′ (w∗i , τi, ci+1) , ν0; cj) = ciτ̄i
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On the other hand, if V̌i > V∗i , then

u
(
γcir (w∗i , τi, p

i
0, p

i
ŵ, ci+1), ν0; cj

)
= pi0 · 0 + piŵ · ci/r+ (1− pi0− piŵ)u

(
γgP′ (w

∗
i , τi, ci+1) , ν̄; ci

)
=(1− pi)qi · ci/r+ (1− qi)ciτ̄i ≤ ciτ̄i,

where the last inequality follows from pi ≥ 1− rτ̄i.
Third, given i < j and i ∈ {M + 1, ...,N − 1}, since γci = γciB (0,w∗M+1), i.e., the contract is immediately

terminated, we have ν0 ∈N(γci , cj). Q.E.D.

E.11.3. Proof of Lemma 24 Define the bad agent’s lifetime expected utility, evaluated conditionally
upon the information available at time t under contract γb = (Lb, ηb) and effort process ν̄ as ubt , then

ubt =Eν̄
[∫ ηb

0

e−rs(dLbs− bds)

∣∣∣∣∣FNt
]

= ub0 +

∫ t

0

Hb
sdM

ν̄
s

where M ν̄
t =Nt − µt and Hb

s ≥ βb for any s. Define good agent’s lifetime expected utility, evaluated condi-
tionally upon the information available at time t under contract γb and effort process ν̄ as ugt , then

ugt =Eν̄
[∫ ηb

0

e−rs(dLbs + (b− g)ds)

∣∣∣∣∣FNt
]

= ubt +Eν̄
[∫ ηb

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

= ub0 +

∫ t

0

Hb
sdM

ν̄
s +Eν̄

[∫ ηb

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]
.

Next, we denote ug
′

t as the good agent’s lifetime expected payoff, given the information available at time t,
when he acts according to ν′ = {ν′t}t≥0 until time t and then reverts to ν̄, then

ug
′

t = ugt +

∫ t∧η−

0

e−rs(1−1ν′s=µ)gds

= ub0 +

∫ t∧η−

0

Hb
sdM

ν̄
s +Eν̄

[∫ ηb

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

+

∫ t∧η−

0

e−rs(g− ν′sβg)ds

= ub0 +

∫ t∧ηb−

0

Hb
sdM

ν′

s +Eν̄
[∫ ηb

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

+

∫ t∧ηb−

0

e−rs(µ− ν′s)(βg −Hb
s)ds

Then, for any t′ > t,

Eν′ [ug
′

t′ |FNt ] = Eν′
[
ub0 +

∫ t′∧ηb−

0

Hb
sdM

ν′

s +Eν̄
[∫ ηb

0

e−rs(b− g)ds

∣∣∣∣∣FNt′
]

+

∫ t′∧ηb−

0

e−rs(µ− ν′s)(βg −Hb
s)ds

∣∣∣∣∣FNt
]

= ub0 +

∫ t∧ηb−

0

Hb
sdM

ν′

s +Eν̄
[∫ ηb

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

+Eν′
[∫ t′∧ηb−

0

e−rs(µ− ν′s)(βg −Hb
s)ds

∣∣∣∣∣FNt
]

≤ ub0 +

∫ t∧ηb−

0

Hb
sdM

ν′

s +Eν̄
[∫ ηb

0

e−rs(b− g)ds

∣∣∣∣∣FNt
]

+

∫ t∧ηb−

0

e−rs(µ− ν′s)(βg −Hb
s)ds= ug

′

t

where the second equality follows from the law of iterated expectation and the first inequality follows from
that (µ − ν′s)(βg − Hb

s) ≤ 0,∀t. Hence, ug
′

t is FN -supermartingale under P ν′ . Therefore, by the optional
sampling theorem (Dellacherie and Meyer (2011), Chapter VI, Theorem 10),

u(γb, ν̄;g) = ug
′

0 ≥Eν′ [ug′η ] = u(γb, ν′;g).

which implies that ν̄ is at least as good as ν′ for the agent.
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E.12. Proof of Lemma 10
First, following Proposition 12, we have ν̄ ∈N(γc1 , c1) and

u
(
γc1 , ν̄; c1

)
=w∗1.

Second, following Proposition 17, we have ν̄ ∈N(γci , ci) and

u
(
γci , ν̄; ci

)
=w∗i .

for i∈ {2, ...,M}. Next, following definition 3, for type ci agent where i∈ {M+1, ...N}, the agent is terminated
at time 0. Hence, The menu of contracts Γ̂C satisfies (LL), (PK), (IC), (IR), and (FE). In the following, we
verify (TT). Conditions (96) implies that for any j < i, i∈ {2, ...,M},

w∗j −w∗i
ci− cj

(µR− ci)−wi ≥
w∗i−1−w∗i
ci− ci−1

(µR− ci)−w∗i ≥ ξ̌i. (223)

where ξ̌i is defined as

ξ̌i := min

{
w∗i−1−w∗i
ci− ci−1

(µR− ci)−w∗i , J̌
(
w∗i ,min

{
w∗M+1

ci
,
1

r

}
, ci, ci+1

)}
. (224)

Following Proposition 17, we have that the societal value

S(γci , ν̄; ci) = ξ̌i +w∗i . (225)

We first prove that type c1 will not mimic any other types. For type c1, and any type ci, i∈ {2, ...,M},

u(γc1 , ν̄; c1) =w∗1 ≥wi + (ci− c1)
ξ̌i +w∗i
µR− ci

=w∗i + (ci− c1)T̄ (γci , ν̄)

= u(γci , ν̄; c1) = max
ν
u(γci , ν; c1)

where the first inequality follows from (223) by letting j = 1, the third equality follows from (225) and the
last equality follows from Lemma 24. For type c1, and any type ci, i∈ {M + 1, ...,N},

u(γc1 , ν̄; c1) =w∗1 ≥w∗M+1 = γciB (0,w∗M+1), ν̄; c1) = max
ν
u(γciB (0,w∗M+1), ν; c1)

where the inequality follows from (96). Second, we prove that type ci, i∈ {1, ...,M} will not mimic any other
types. For type ci, and any type cj , j ∈ {i+ 1, ...,M}

u(γci , ν̄; ci) =wi ≥w∗j + (cj − ci)
ξ̌j +w∗j
µR− cj

=w∗j + (cj − ci)T̄ (γcj , cj+1), ν̄)

= u(γcj , ν̄; ci) = max
ν
u(γcj , ν; ci)

where the first inequality follows from (223) by letting j = i, i= j, the third equality follows from (225) and
the last equality follows from Lemma 24. For type ci, and any type cj , j ∈ {1, ..., i− 1},

u(γci , ν̄; ci) =w∗i ≥w∗M+1 ≥ cj min

{
w∗M+1

cj
,
1

r

}
≥ cj τ̄j

≥ u(γcj , ν0; ci) = max
ν
u(γcj , ν; ci)

where the first inequality follows from (96), the fourth inequality and the last equality follow from Lemma
23. For type ci, and any type cj , j ∈ {M + 1, ...,N}, we have

u(γci , ν̄; co) =w∗i ≥w∗M+1 = γciB (0,w∗M+1), ν̄; ci) = max
ν
u(γciB (0,w∗M+1), ν; ci)

where the inequality follows from (96). Finally, we prove that type ci, i∈ {M + 1, ...,N} will not mimic any
other types. For type ci, and any type cj , j ∈ {1, ...,M}

u(γciB (0,w∗M+1), ν̄; ci) =w∗M+1 ≥ cj min

{
w∗M+1

ci
,
1

r

}
≥ cj τ̄j ≥ u(γcj , ν0; ci)

= max
ν
u(γcj , ν; ci)

where the first inequality follows from (96), the fourth inequality and the last equality follow from Lemma
23. For type ci and any other type cj , j ∈ {M + 1, ...,N}, we have

u(γciB (0,w∗M+1), ν̄; ci) =w∗M+1 = u(γ
cj
B (0,w∗M+1), ν̄; ci).

Therefore, we have verified (TT) and completed the proof. Q.E.D.
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E.13. Proof of Proposition 9
First, following the dynamic programming formulation in (89) - (94) and optimal solutions (w∗1, ...,w

∗
M+1)

defined in (95), we have

Y̌N = P1 · J̌
(
w∗1,min

{
w∗M+1

c1
,
1

r

}
, c1, c2

)
+

M∑
i=1

Pi · ξ̌i−w∗M+1

N∑
i=M+1

Pi,

where ξ̌i is defined in (224). Second, following Lemma 10, we have the menu of contracts Γ̂C satisfies (LL),
(PK), (IC), (IR), (FE) and (TT). First, it is straightforward to see that for type ci, i ∈ {M + 1, ...,N}, the
contracts are directly terminated, hence,

U(γci , ν̄) =−w∗M+1. (226)

Second, for type c1, following Proposition 13, we have

U(γc1 , ν̄) = J̌
(
w∗1,min

{
w∗M+1

c1
,
1

r

}
, c1, c2

)
. (227)

Third, for type ci, i∈ {2, ...,M}, following Proposition 17, we have

U(γci , ν̄) = min

{
w∗i−1−w∗i
ci− ci−1

(µR− ci)−w∗i , J̌
(
w∗i ,min

{
w∗M+1

ci
,
1

r

}
, ci, ci+1

)}
= ξ̌i (228)

where ξ̌i is defined in (224). Therefore, following (226)-(228), we have

U(Γ̂C) =

N∑
i=1

Pi ·U(γci , ν̄) = P1 · J̌
(
w∗1,min

{
w∗M+1

c1
,
1

r

}
, c1, c2

)
+

M∑
i=1

Pi · ξ̌i−w∗M+1

N∑
i=M+1

Pi,

i.e., Y̌N = U
(

Γ̂C

)
, which completes the proof. Q.E.D.
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