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Abstract. We consider a principal repeatedly allocating a single resource in each period to
one of multiple agents, whose values are private, without relying on monetary payments
over an infinite horizon with discounting. We design a dynamic mechanism that induces
agents to report their values truthfully in each period via promises/threats of future
favorable/unfavorable allocations. We show that our mechanism asymptotically achieves
the first-best efficient allocation (the welfare-maximizing allocation as if values are public)
as agents becomemore patient and provide sharp characterizations of convergence rates to
first best as a function of the discount factor. In particular, in the case of two agents we
prove that the convergence rate of our mechanism is optimal—that is, no other mechanism
can converge faster to first best.

Supplemental Material: The online appendices are available at https://doi.org/10.1287/opre.2018.1820.
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1. Introduction
Mechanism design for resource allocation with asym-
metric information has been extensively studied in eco-
nomics and, more recently, in computer science (see,
for example, Nisan et al. 2007) and operations re-
search (see, for example, Vohra 2011; Li et al. 2012;
and Zhang 2012a, b). Most of these studies allow,
and often rely on, monetary transfers as part of the
mechanism. In certain problem settings, especially
with repeated interactions between agents, monetary
transfers may not be practical. For example, monetary
transfers may be inconvenient when allocating CPU
or memory resources in shared computing environ-
ments; using money to manage incentives may sound
awkward when an organization is deciding on the
allocation of an internal resource, such as scheduling
a conference room; in some medical resource alloca-
tion settings, monetary transfer may be a source of
controversy. In the examples above, resource allocation
occurs repeatedly, and agents’ values for the resource
might change over time.

In this paper, we study the problem of a sociallymax-
imizing planner repeatedly allocating a single resource
without relying on monetary transfers. Specifically, we
consider a discrete time infinite horizon setting where
agents’ private valuations for the resource are inde-
pendent. The planner is able to commit to a long-term
allocation mechanism but is not able to collect mone-
tary transfers from agents or transfer money between

agents. Both the planner and agents share the same
time discount factor. The objective of the planner is to
maximize allocation efficiency—that is, the expected
total discounted utilities from the resource in all periods.
If agents can pay for the resource with money, re-

peatedly implementing the standard Vickrey–Clarke–
Groves (VCG) mechanism achieves the “first-best”
allocation (also referred to as the “efficient allocation”).
That is, the resource is allocated to the agent with the
highest realized value in every period. Obviously, first
best can also be achieved in settings where valuations
are publicly observable. Without monetary payment,
however, agents have the natural tendency of claiming
that their values for the resource are the highest pos-
sible. In this case, if the resource is allocated only once,
the planner can do no better than allocating the re-
source to the agent with the highest expected value.
Repeated interactions, however, allow the planner to
leverage future allocations when eliciting current pe-
riod values, which may improve efficiency.
In this paper, we design mechanisms without mon-

etary transfers that induce agents to truthfully reveal
private information via promises/threats of future
favorable/unfavorable allocations. Moreover, we show
that our mechanism asymptotically achieves the first-
best allocation as agents become more patient. The fact
that the first-best allocation can be approximated may
not be surprising, given the Folk theorem established
in Fudenberg et al. (1994). In comparison, however, our
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paper takes an operational focus. In particular, while
Fudenberg et al. (1994) implies the existence of an
approximately efficient mechanism as the discount
factor is close enough to 1, we present a specific, easy to
implement, mechanism for given time discount factors.
Furthermore, our construction and analysis yields the
convergence rate for the approximation. The equilib-
rium strategy for each agent in the game under our
mechanism is also quite simple: each agent truthfully
reports the valuation in each period.

1.1. An Overview of Our Approach
Invoking the revelation principle, we focus on direct
dynamic mechanisms in which allocations in each
period depend on reported private values over time.
A direct dynamic mechanism induces a game between
agents. Our solution concept for this game is perfect
Bayesian equilibrium (PBE). Without loss of generality,
we restrict attention to so-called incentive compatible
mechanisms, under which all agents reporting truth-
fully regardless of past history is a PBE.

We consider the set of all achievable utilities—that
is, the set of vectors representing all agents’ total dis-
counted expected utilities that can be attained by in-
centive compatible dynamic mechanisms. Using the set
of achievable utilities, one could readily optimize any
objective involving the total expected utility of each
agent and, in particular, identify the most efficient
mechanism. Characterizing the set of achievable util-
ities by analyzing all dynamic mechanisms directly
appears impossible because the dimensionality of the
history grows exponentially with time.

Therefore, we provide an alternative characteriza-
tion of the mechanism and set of achievable utilities
using the so-called “promised utility” framework, which
allows us to represent long-term contracts recursively
(Spear and Srivastava 1987, Thomas andWorrall 1990).
In this framework, agents’ total discounted utilities, also
referred to as promised utilities, are state variables. In
each time period, the planner selects a “stage mech-
anism” consisting of an allocation function as well as a
future promise function, both depending on the cur-
rent promised utility state and reported values. These
functions map the current time period’s reports to an
allocation and promised utilities for the next time pe-
riod, respectively. A stage mechanism is incentive com-
patible if each agent’s total expected utility from the
current period’s allocation and the discounted future
promise is maximized by reporting truthfully. Further-
more, the stage mechanism needs to satisfy “promise
keeping” constraints, which impose that the total ex-
pected utility delivered by the mechanism is equal to
the current promised utility. Therefore, implementing
an incentive compatible stage mechanism recursively
delivers the promised utility for each agent.

Following Abreu et al. (1990), we provide a recursive
formulation in the spirit of dynamic programming to
characterize the set of achievable utilities. Specifically,
we define a Bellman-like operator that maps a target
set of future promised utilities to a set of current period
promised utilities. Themapping specifies that there exists
an incentive compatible stage mechanism that achieves
every current promised utilitywith future promises lying
in the target set. The set of achievable utilities is, therefore,
a fixed-point of this Bellman-like operator for sets.
Our main contribution is the construction of an in-

centive compatible mechanism that can attain, as the
discount factor approaches 1, the “perfect information”
(PI) achievable set—that is, the set of utilities attainable
when values are publicly observable. It is clear that the
vector of first-best utilities following efficient allocation
is in the PI achievable set. Our approach, therefore,
provides a constructive proof that first best is asymptot-
ically achievable in repeated settings without monetary
transfers. Although our mechanism is not necessarily
optimal for a fixed discount factor, it is relatively simple
to implement, in the sense that one does not need to
solve for a fixed point of the aforementioned Bellman-
like operator. Moreover, in the case of two agents, we
show that the average social welfare of our mechanism
converges to first best at rate 1 − β, where β ∈ (0, 1) is the
discount factor, approaching 1. Notably, using the linear
programming approach to approximate dynamic pro-
gramming, we also show that this rate is tight—that is,
no other mechanism can converge faster to first best.
More specifically, our mechanism allocates the re-

source to the agent with the largest weighted value,
where weights are dynamically adjusted based on
promised utilities. This allocation function is inspired by
the PI achievable set: because every point in the efficient
frontier of the PI achievable set can be attained by a
weighted allocation, our mechanism seeks to maximize
efficiency by setting theweights according to the “closest”
point in the efficient frontier of the PI achievable set.
The design of future promise functions resembles

the d’Aspremont–Gérard-Varet–Arrow mechanism
(Arrow 1979, d’Aspremont and Gérard-Varet 1979)
and the risk-free transfers of Esö and Futo (1999). Fixing
the allocation rule, the interim future promises are
uniquely determined from the incentive compatibility
constraints. To implement ex-post future promises,
we try to minimize the risk of the next time period’s
promised utilities lying outside the achievable set.
The proof that the proposed mechanism is incentive
compatible is geometric in nature and relies on ideas
from convex optimization, which is quite involved and
resembles the equilibrium construction for the Folk
theorem in Fudenberg et al. (1994). The essential in-
tuition of our mechanism, however, is clear. Reporting
a higher value increases an agent’s chance of receiving
the resource in the current period, while lowering the
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agent’s future promised utility. A lower promised utility,
in turn, leads to a lowerweight in the allocation rule and,
hence, a lower chance of allocating the resource to this
agent in the future.

1.2. Related Literature
There is an extensive literature on dynamic mechanism
design problems. Most of the literature focuses on set-
tings in which monetary transfers are allowed. Settings
under consideration include dynamically changing pop-
ulations with fixed information and fixed populations
with dynamically changing information. Under these
environments, the efficient outcome can be imple-
mented using natural generalizations of the static VCG
mechanism to dynamic setting (see, e.g., Parkes and
Singh 2004, Bergemann and Välimäki 2010, Gershkov
and Moldovanu 2010). These mechanisms maintain ef-
ficient allocation of resources while incentivizing truth-
ful reporting by choosing transfers that are equal to
the externality that an agent imposes on others. In our
setting, however, incentives cannot be readily aligned
with transfers, and the efficient outcome is not imple-
mentable in general.We refer the reader to the survey by
Bergemann and Said (2011) for a more in-depth dis-
cussion on dynamic mechanism design problems with
monetary transfers.

Jackson and Sonnenschein (2007) study a general
framework for resource allocation in a finite horizon
model without discounting in which agents learn all
private information at time 0. They consider a budget-
based mechanism in which each agent can report each
type a limited number of times and prove that, as the
number of time periods increases, the inefficiency due
to asymmetric information diminishes to 0. In this
paper, we extend their budget-basedmechanism to our
discounted infinite horizon setting in which agents
sequentially learn their values. We show that the best
possible rate of convergence of a budget-based mech-
anism to first best is at most (1 − β)1/2; lower than the
convergence rate of our mechanism. Even though ex-
plicitly characterizing the equilibria of a budget-based
mechanism is challenging, a remarkable feature of
budget-based mechanisms is that all equilibria are
asymptotically efficient. In comparison, under our in-
centive compatible mechanism, one simple equilibrium
that achieves efficiency asymptotically is reporting
truthfully (which does not necessarily constitute an
equilibrium under budget-based mechanisms).

There is a recent stream of studies considering dy-
namic mechanism design without money. Guo and
Hörner (2015) consider the problem of repeatedly al-
locating a costly resource to a single agent whose values
evolve according to a two-state Markov chain and
characterize the optimal allocation rule. In this paper
we study settings with multiple agents and continu-
ous values. In our setting where the marginal cost of

resource is 0, the problem becomes trivial with a single
agent. This is because it is optimal to always allocate the
resource to the agent in each period. Guo et al. (2009)
study the design of dynamicmechanismswithmultiple
agents and provide a mechanism that achieves at least
75% of the efficient allocation. While their mechanism
is guaranteed to attain a fixed proportion of the efficient
allocation for all discount factors larger than a thresh-
old, it does not necessarily achieve the first-best allo-
cation as the discount rate converges to 1. Johnson
(2014) studies a similar problem with multiple agents
and discrete private values, and provides some nu-
merical evidence that the optimal mechanism achieves
higher social welfare as the discount factor increases. In
our paper, we provide a relatively simple mechanism
in quasi-closed form and analytically prove that it
achieves first best asymptotically. In addition, agents’
values are continuous in our model, which requires
tackling some technical challenges in characterizing the
optimal mechanism, in exchange for simpler mecha-
nismswithout complicated tie-breaking randomization
for discrete value settings. Gorokh et al. (2016) also
study a similar setting with a finite number of periods
and discrete values. They provide a mechanism that
can be implemented via artificial currencies and show
that the performance of their mechanism approximately
achieves first best. Different from ours, the mechanism
in Gorokh et al. (2016) satisfies incentive compatibil-
ity constraints approximately. In particular, truthful
reporting does not constitute an equilibrium when
the horizon is finite. In comparison, our mechanism is
guaranteed to be incentive compatible.
Our model and analysis relies on the promised

utility framework (Spear and Srivastava 1987, Abreu
et al. 1990, Thomas and Worrall 1990). In settings with
monetary transfers, any nonnegative promised utility
can be achieved by having the planner transfer money
to the agents. Thus, constructing feasible incentive
compatible mechanism is relatively straightforward,
and the problem of the planner reduces to that of
optimizing certain objective. When monetary trans-
fers are not allowed, however, the planner can no
longer subsidize agents. Constructing a feasible in-
centive compatible mechanism is challenging in this
case because the planner needs to guarantee that future
promises can be delivered exclusively via allocations.
Abreu et al. (1990) introduce a recursive approach to
study pure strategy sequential equilibria of repeated
games with imperfect monitoring. In the paper, they
characterize a self-generating set of sequential equi-
libria payoffs. We extend their recursive approach
to characterize a self-generating set of utilities that
can be achieved by incentive compatible mecha-
nisms. Although our setting, which is focused on ad-
verse selection (private signal) issues in mechanism
design, is different from that of Abreu et al. (1990), we
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adopt some of their proof techniques related to self-
generating sets.

Fudenberg et al. (1994) build on the dynamic pro-
gramming framework of Abreu et al. (1990) to estab-
lish Folk theorems for finite repeated games under
imperfect information. In particular, theorem 8.1 of
Fudenberg et al. (1994) implies that in a setting similar
to ours (except that the valuation set is finite), agents’
payoff under efficient allocation can be approximated
as long as the time discount factor is close enough to 1.
Fudenberg et al. (1994), however, do not provide an
explicit description of such a direct mechanism. For
potentially indirect mechanisms (for example, “allo-
cating to the agent with the highest report”), describing
agents’ equilibrium reporting strategies to sustain the
Folk theorem approximation appears nontrivial. As
a matter of fact, computing equilibrium strategies in
repeated games is a challenging problem (see, e.g.,
Judd et al. 2003, Abreu et al. 2017, and Yeltekin et al.
2017). In comparison, our mechanism is well specified.
Another advantage of our mechanism is that the equi-
librium strategy for agents is straightforward: reporting
the true value in each period. Furthermore, our con-
struction and analysis explicitly characterize the rate
of convergence to first best of the mechanism’s social
welfare in terms of the time discount factor. It turns out
that some steps in our construction resemble the steps
used in Fudenberg et al. (1994) to prove existence of an
asymptotically efficient equilibrium, and we will point
them out in our paper.

Another stream of literature that is related to our
work is the study of “scrip systems,” which are non-
monetary trade economies for the exchange of re-
sources (Friedman et al. 2006; Kash et al. 2007, 2012,
2015; Johnson et al. 2014). In these systems, scrips are
used in place of government issued money, and the
resource is priced at a fixed amount of scrips whenever
trade occurs. The promised utilities in our model can
be perceived as scrips. According to our mechanism,
the agent who receives the resource in a period sees
his promised utility decrease while others’ increases.
The exchange of promised utilities according to our
mechanism, however, is not fixed. In fact, it depends on
the current promised utilities of all agents. From this
perspective, our mechanism is more general than the
ones considered in the existing studies of scrip systems.

The remaining of the paper is organized as the
following. We first introduce the model, its recur-
sive formulation, and various concepts related to self-
generating sets in Section 2. In Section 3, we present
the main phase of our mechanism. We then focus on
the two-agent case and complete the description of the
mechanism for the boundary region in Section 4. We
compare the performances of our mechanism and the
mechanism inspired by Jackson and Sonnenschein (2007)
in Section 5. In Section 6, we describe the intuition

behind the truthfulness and asymptotic efficiency of
our mechanism. The general case of more than two
agents is discussed in Section 7. Finally, Section 8
concludes the paper with comments on potential fu-
ture directions. Proofs for results are presented in the
online appendix.

2. Model and Problem Formulation
We consider a discrete time infinite horizon setting
where a social planner repeatedly allocates a single re-
source to one of multiple agents in each period without
relying on monetary transfers. We index agents by i ∈
{1, . . . ,n} and denote by vt � (vi,t)ni�1 the random vector
of agents’ (private) values for the resource in period
t ≥ 1. Agent i’s values in each period are independent
and identically distributed with cumulative distribu-
tion function Fi(·) and density function fi(·). Values are
supported in the bounded set [0, v̄] and densities are
bounded in their domain—that is, 0 < f ≤ fi(vi) ≤ f̄ <∞
for all vi ∈ [0, v̄]. Moreover, we denote the minimum
andmaximum of the first moment of agents’ values by
m � mini∈{1,...,n} E[vi] and m � maxi∈{1,...,n} E[vi]; and as-
sume that 0<m ≤ m<∞. The planner and agents share
the same discount factor β ∈ (0, 1).1 An agent’s overall
utility is given by the discounted sum of the valuations
generated by the allocations of the resource across the
horizon. The objective of the planner is to maximize the
expected discounted sum of total valuations in all periods.

Notation. For a sequence of vectors a � ((ai,t)ni�1)∞t�1 ∈
Rn×∞, we denote by ai,1:t � (ai,�)t��1 ∈ Rt the ith compo-
nents of the 1st to the tth vectors, and by a1:t �
((ai,�)ni�1)t��1 ∈ Rn×t the entire 1st to the tth vectors. For
a given vector x, we denote by x−i the vector obtained
by removing xi from x, and x� its transpose. For any
two vectors x and y in Rn, the inequality x ≤ (≥)y
represents that xi ≤ (≥)yi for each component i. For any
function g : Rn → R, we use ∇g to represent its gra-
dient. We use 1{·} to represent the indicator function.

2.1. Dynamic Mechanisms and Achievable Utilities
We assume the planner commits to a direct dynamic
mechanism. That is, in each period, the agents learn
their valuations of the resource, and each reports a
value to the planner. The planner, in turn, determines
the allocation of the resource for the period based on
the entire history of reports and allocations, and pub-
licly announces all agents’ reports and allocations in the
end of the period.

Nonanticipating Mechanisms and Strategies. Formally,
a dynamic mechanism π is a sequence of allocation
rules π � ((πi,t)ni�1)∞t�1, where πi,t is the probability that
the resource is allocated to agent i in period t. We de-
note by 3 ⊆ Rn the set of n-dimensional feasible

Balseiro, Gurkan, and Sun: Multiagent Mechanism Design Without Money
1420 Operations Research, 2019, vol. 67, no. 5, pp. 1417–1436, © 2019 INFORMS



allocations—that is,3≜ π∈ [0,1]n :π≥ 0,
∑n

i�1πi ≤ 1
{ }

—
and restrict that πt ∈3 for all t. Any mechanism π in-
duces a dynamic game among agents, in which each
agent i submits a report v̂i,t ∈ [0, v̄] in each period t and
receives an allocation πi,t. We define the history avail-
able at time t, ht � (hi,t)ni�1, as all reports and previous
allocations up to time t, where hi,t � (v̂i,1:t−1,πi,1:t−1).2
We define the set of all possible histories that can
be observed in periods t≥ 2 as *t �∏n

i�1*i,t where
*i,t � [0, v̄]t−1×[0,1]t−1, and *1 � {∅}. We assume that
the planner discloses the reports and the allocations af-
ter each round, so that the history is publicly observed.
A nonanticipating strategy profile σ � ((σi,t)∞t�1)ni�1 for
agents consists of reporting functions for each period,
σi,t : [0, v̄]×*t →[0, v̄], that depend only on the value vi,t
of agent i in period t, and the public history ht up to
that period—i.e., σi,t(vi,t, ht) � v̂i,t. We say a dynamic
mechanism π is nonanticipating if πi,t depends only
on the current period reports v̂t and the history ht—that
is, πt : [0, v̄]n×*t →3. Because agents’ values in each
period are independent, we restrict attention to non-
anticipating mechanisms and reporting strategies that
depend on past reports and allocations, but not on past
values. Because agents’ actions and planner’s allocations
are only conditioned on previous reports and alloca-
tions, and this information is publicly observed, agents
do not need to form beliefs about the past actions of
competitors.

Direct Mechanisms and Truthful Reporting. Following
the Revelation Principle, without loss of generality, we
can focus on direct mechanisms in which agents report
their values truthfully to the planner. In particular, for
the game induced by amechanism, we consider perfect
Bayesian equilibria (PBE) in truthful reporting strate-
gies, with beliefs that assign probability 1 to the event
that other agents report truthfully. Therefore, we en-
force interim incentive compatibility constraints, which
ensure that an agent is better off adopting the truthful
reporting strategy than any other reporting strategy
when other agents report their values truthfully under
mechanism π.

To elaborate, we introduce some notations. We use
the notation Vi,t to represent agent i’s utility-to-go in
period t when the planner implements mechanism π,
all agents employ strategy profile σ, agent i’s value for
the resource is vi,t, and the history is ht. That is,

Vi,t(π, σ|vi,t,ht)≜ (1 − β)Eπ,σ

vi,tπi,t(v̂t,ht) +
∑∞
��t+1

β�−tvi,�πi,�(v̂�, h̃�) | vi,t,ht

[ ]
,

where Eπ,σ[−|vi,t,ht] represents the expectation with
respect to histories (h̃�)�>t induced by the mechanism π
and the strategy profile σ, given that the value of agent
i at time t is vi,t and an initial history ht. For � ≥ t,

we denote by v̂i,� � σi,�(vi,�, h̃�) agent i’s reported value
in period �, in which history h̃� is recursively defined as
h̃� � (

h̃�−1, (v̂�−1,π�−1(v̂�−1, h̃�−1))) starting from h̃t � ht.
To facilitate comparisons across different discount fac-
tors, in the expression for Vi,t we multiply by 1 − β to
obtain an “average” discounted utility-to-go.
Using this notation, the interim incentive compati-

bility constraints on mechanism π are given as follows:

Vi,t

(
π, |vi,t,ht

)
≥ Vi,t

(
π, (σi, −i)|vi,t,ht

)
, ∀vi,t, σi,ht, i, t,

(1)

where i represents the truthful reporting strategy for
agent i—that is, i,t(vi,t,ht) � vi,t. Hereafter, we say a non-
anticipating mechanism π is perfect Bayesian incentive
compatible (PBIC) if π satisfies (1). These constraints
enforce that, at every point in time, each agent is better
off reporting truthfully when other agents report truth-
fully, regardless of past reports and allocations.
We next define the set of achievable utilities, 8β as

the following:

8β ≜ u ∈ Rn | ui � Vi(π, ), for a PBIC mechanism π{ } ,
(2)

where Vi(π,σ)≜Evi,1[Vi,1(π, σ|vi,1, ∅)] is the total ex-
pected utility of agent i when the planner implements
mechanism π, and agents employ strategy profile σ.
For any state u � (ui)ni�1 in 8β, there must exist a non-
anticipating direct (dynamic) PBIC mechanism π that
achieves utility ui for all agents i � 1, . . . , n. Specifically,
when the planner implements mechanism π, every
agent truthfully reporting each period’s value while
believing with probability 1 that others report truth-
fully is a PBE. Moreover, the corresponding expected
discounted sum of the valuations generated by π for
agent i is equal to ui.
Because social welfare is the expected discounted

sum of total valuations, the component sum of u cor-
responds to the social welfare obtained by π. Therefore,
given the set of achievable utilities 8β, the maximum
social welfare that can be obtained by a PBIC mech-
anism is readily given by J∗β � maxu∈8β

∑n
i�1 ui. We

use the vector u∗
β ∈ argmaxu∈8β

∑n
i�1 ui to represent the

utilities of the agents under an optimal mechanism.
(Although in this paper we only focus on the maxi-
mum achievable social welfare, other objectives in-
volving the total expected utility of each agent can be
easily accommodated accordingly from the feasible
set 8β.) Unfortunately, characterizing 8β directly by
analyzing all nonanticipating mechanisms is not
possible in general, because the dimensionality of the
history grows exponentially with time. Therefore, in
the following section, we provide an equivalent, re-
cursive definition of 8β using the promised utility
framework.
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2.2. Promised Utility Framework
Because the planner has commitment power and values
are independent, we can employ the promised utility
framework to recursively formulate the set of achiev-
able utilities, 8β. We first present the framework and
then show its equivalence with the definition (2) in the
end of this subsection.

Note that to determine if an allocation for the current
time period is incentive compatible, the planner needs
to understand the impact of today’s actions on the con-
tinuation game induced by the mechanism. The prom-
ised utility framework builds on the observation that,
because agents are expected value maximizers, the next
period’s continuation utilities constitute a sufficient sta-
tistic for the problem of determining if an allocation for
the current time period is incentive compatible. Loosely
speaking, we use ut � (ui,t)ni�1 to represent the vector of
expected discounted total future values starting from
period t. That is,

ui,t � (1 − β)E ∑∞
��t

β�−tvi,�πi,�

[ ]
.

In the beginning of period t, the planner needs to fulfill
the current state ut as a promise to agents through
future allocations. We enforce this recursively by having
the planner determine the current period’s allocation of
the resource, as well as next period’s promised utilities
ut+1. For each agent, the expected value of the current
period allocation plus the next period’s promised utility
has to equal the current period promised utility.

We refer to the mechanism associated with the al-
location of a single resource in a time period as a stage
mechanism. More formally, for any given state u ∈ Rn,
a stage mechanism is given by an allocation function
p(·|u) : [0, v̄]n → 3 and a future promise function
w(·|u) : [0, v̄]n → Rn, which map the vector of agents’
reports in the current period to an allocation vector p
and a next state w, respectively. We drop the depen-
dence on u when referring to a fixed state.

A stage mechanism (p,w) should satisfy the fol-
lowing constraints. First, the allocation function should
be feasible. That is,

∑n
i�1

pi(v) ≤ 1 and p(v) ≥ 0, ∀v . (FA)

Additionally, the mechanism should satisfy the fol-
lowing promise keeping constraint,

ui � E[(1 − β)vipi(v) + βwi(v)], ∀i , (PK(u))

which guarantees that the promised utility u is fulfilled
by the mechanism. Finally, an agent should not have
an incentive to misreport the true type. The following
interim incentive compatibility constraint imposes that,

for each agent, reporting the value truthfully yields an
expected utility at least as large as any other strategy,
when other agents report truthfully. Denote by Pi(v)≜
Ev−i[pi(v, v−i)] the interim allocation, and by Wi(v)≜
Ev−i[wi(v,v−i)] the interim future promise of agent i.
The incentive compatibility constraints are given by

(1 − β)vPi(v) + βWi(v) ≥(1 − β)vPi(v′) + βWi(v′), ∀i, v, v′.
(IC)

Using the constraints defined above, we next define the
set operator Bβ : 2R

n+ → 2R
n+ for a given set ! ⊂ Rn+ as

follows:

Bβ(!) � {u ∈ Rn
+ | ∃(p,w) satisfying

(IC), (FA), (PK(u)), and w(v) ∈ ! for all v} .
(3)

Essentially, set Bβ(!) contains all promised utilities u
that can be supported by future promise functions w
in set !, while satisfying feasibility and incentive
compatibility constraints. Although the operator Bβ is
analogous to operator B in Abreu et al. (1990, p. 1047),
the specific constraints used in our definition are dif-
ferent. Abreu et al. (1990) study sequential equilibria of
repeated games with imperfect monitoring, in which
each player has a finite action space. In our setting,
however, the stage game itself is induced by the stage
mechanism selected by the planner. In this game, each
agent has an uncountable action space because agents’
private values are continuous.
The operatorBβ provides a certificate to checkwhether

a given set is a subset of 8β, according to the following
result.

Proposition 2.1. If a set ! satisfies ! ⊆ Bβ(!), then we
have Bβ(!) ⊆ 8β.

Following Abreu et al. (1990), we refer to sets that
satisfy ! ⊆ Bβ(!) as self-generating. That is, all of the
promised utilities in such a set ! can be fulfilled with
future promises from within the same set. Proposition
2.1 implies that any state in a self-generating set can be
achieved by a PBIC mechanism, because this state is in
the set 8β. Furthermore, if there exists a specific mech-
anism (p,w) that satisfies (IC), (FA), (PK(u)) for all u ∈ !,
andw(v|u) ∈ ! for all v and u ∈ !, thenwe call the set!
to be self-generating with respect to mechanism (p,w).
Remark 2.1. It is worth noting that the “lower triangle”
set L≜

{
u ∈ Rn+

∣∣ ∑n
i�1 ui/E[vi] ≤ 1

}
is self-generating.

In fact, for any state u ∈ L, consider the random allo-
cation rule pLi (v|u)≜ ui/E[vi] regardless of the value v.
Such an allocation rule pL, together with the future
promise functionswL(v|u)≜u, achieves utilities u—i.e.,
satisfy (PK(u)). Therefore, the lower triangle set L is
self-generating with respect to mechanism (pL,wL) and,
therefore, is a subset of 8β for any discount factor β.
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Proposition 2.1 states that any self-generating set is
a subset of the set of achievable utilities, 8β. The fol-
lowing result further demonstrates that set 8β itself
is self-generating, and, therefore, a fixed point of the
operator Bβ. The result implies that the set of achievable
utilities, 8β, defined according to summations of al-
locations over an infinite horizon, can be equivalently
represented through stage mechanisms. In particular,
the stage mechanisms satisfy constraints (PK(u)) and
(IC) in a recursive manner, and with the future promise
functions w lying in the same set 8β.

Proposition 2.2. The set of achievable utilities,8β, satisfies
8β ⊆ Bβ(8β). Therefore, 8β � Bβ(8β).

In Online Appendix G, we provide a procedure to
numerically compute the set 8β using value iteration
in the space of support functions.

2.3. Perfect Information Achievable Set
We next propose a “perfect information achievable set”
that provides an upper bound on the set of achievable
utilities. Specifically, we define the perfect information
(PI) achievable set, 8, as the set of utilities attainable
when values are publicly observable by the planner.
This set is given by

8≜ {u ∈ Rn
+ | ui � E[vipi(v)] for all i,

for some p satisfying (FA)} . (4)

Clearly, for any β ∈ [0, 1) we have that 8β ⊆ 8.
Following Luenberger (1969, p. 44), any convex set

can be represented by its support functions. In particu-
lar, for any fixed α ∈ Rn such that ‖α‖1 � 1, the support
function of set 8 is given by

φ(α)≜ sup
u∈8

α�u � sup
p s.t. (FA)

∑n
i�1

Ev αivipi(v)[ ]
� Ev max

i�1,...,nαivi

[ ]
,

(5)

where the second equation follows from the definition
of the PI achievable set, and the third from optimizing
pointwise over values. The support function φ satisfies
the following properties.

Proposition 2.3. The support function φ(α) given in (5) is
convex, differentiable for α ∈ Rn+, and twice differentiable for
α ∈ Rn+ such that α> 0. Moreover, the partial derivatives for
all i are given by

∂φ

∂αi
(α) � Ev

[
vi1

{
αivi ≥ max

j��i
αjvj

}]
.

Differentiability of the support function follows be-
cause values are absolutely continuous. The gradient∇φ

of the support function for any α corresponds to a point
on the efficient frontier of the set8. Specifically, for any
convex set! ⊂ Rn, define%(!) to be its efficient frontier:

%(!)≜ {
u ∈ ! |∄u′ ∈ ! with u′ �� u and u′ ≥ u

}
.

Because the support function is differentiable and
the set 8 is convex and closed, for every state u on
the efficient frontier of 8 there exists some α such
that ∇φ(α) � u (see, e.g., Schneider 2013, corollary
1.7.3, p. 47).
Furthermore, Proposition 2.3 implies that all points

on the efficient frontier of the PI set are achievable
by allocations of the form pi(v) � 1

{
αivi ≥ maxj ��i αjvj

}
.

That is, the resource is allocated to the agent with the
highest α-weighted value. More generally, for any
point u ∈ 8, not necessarily on the efficient frontier, we
can define α*(u) with some abuse of notation as

α*(u) ∈ argmax
x:‖x‖1�1,x≥0

x�u − φ(x){ }
. (6)

That is, α*(u) is the normal vector of the point “closest”
to u on the efficient frontier. It is easy to verify that for
any u ∈ %(8), we have ∇φ(α*(u)) � u.
The first-best total utility, JFB, is achieved by allocating

the resource to the agent that values it most in each
period—that is, JFB � Ev [maxi�1,...,n vi]. Because the
first-best utility is attained by the allocation rule pi(v) �
1
{
vi ≥ maxj��i vj

}
,3 and 8β ⊆ 8, we must have

JFB � max
u∈8

∑n
i�1

ui ≥ max
u∈8β

∑n
i�1

ui � J∗β . (7)

We denote by u* the agents’ utilities under the efficient
allocation—that is, u∗i � Ev [vi1 {vi ≥ maxj��i vj}]. Now
we provide a high-level summary our approach.

2.4. An Overview of Our Approach
In general, it is not possible to fully characterize the
optimal mechanism in closed form. Thus, to imple-
ment the optimal mechanism, the designer would need
to numerically compute the set 8β, which might be
challenging in some settings. Instead, in this paper we
introduce an approximation mechanism that guaran-
tees incentive compatibility, is easy to implement, and
asymptotically achieves first best.
Our approach involves designing a factor, Fβ ∈ [0, 1]

and mechanism (p̂, ŵ), such that the scaled perfect in-
formation set Fβ8≜ {Fβu |u ∈ 8} is self-generating with
respect to the mechanism (p̂, ŵ). Consequently, every
state in Fβ8 is achievable following this incentive
compatible mechanism. Because the set Fβ8 is self-
generating, or Fβ8 ⊆ Bβ(Fβ8), Proposition 2.1 implies
that Fβ8 ⊆ 8β. Therefore, we obtain the following
“sandwich” condition for set 8β:

Fβ8 ⊆ 8β ⊆ 8 .
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In particular, the sequence of factors Fβ is designed to
converge to 1 as β converges to 1, which implies that the
mechanism (p̂, ŵ) achieves the efficient allocation as-
ymptotically as the discount factor approaches 1.

3. Central Region and Main
Phase Mechanism

Generally speaking, our mechanism specifies alloca-
tion and future promise functions that depend on
the current promised utilities and reported values. To
ensure that the future promises are within the self-
generating set, they need to be nonnegative and be-
neath the efficient frontier of the self-generating set.
This motivates different designs when the promised
utility is close to 0 and close to the efficient frontier.
Therefore, we partition the self-generating set under
study into a central region and a boundary region. In the
central region, we use themain phase of the mechanism,
which is designed to guarantee that promised utili-
ties lie beneath the efficient frontier. In the main
phase of the mechanism, the designer allocates the re-
source by weighing the reported valuations differently.
The weights are determined by projecting the current
promised utility state to the efficient frontier of the
(scaled) perfect information set, and taking the normal
vector of the projection as weights. Future promises
(the next period’s states) are chosen so that they lie

as far as possible from the efficient frontier. When
the promised utility eventually drifts out of the central
region into the boundary region, we use the simple
randomization mechanism described in Remark 2.1 to
deliver the promised utility. This guarantees that, when
the promised utility is close to 0, future promises do not
to jump too far from the current promised utility and
remain nonnegative. The crucial design issue, which is
the focus on this section, is the main phase mechanism
in the central region. (See Figure 1 for an illustration of
the two regions.)
Formally, the central region 8̂β is defined through

a pair of scalars uβ ∈ [0,m] and Fβ ∈ [0, 1]. The specific
values of those scalars depend on the number of agents
involved and the distribution of values, and are de-
ferred to the following sections. For this section, it is
sufficient to keep in mind that uβ approaches 0 and Fβ

approaches 1 as β approaches 1. Define the central re-
gion 8̂β as

8̂β � Fβ8 ∩ {u ∈ Rn | ui ≥ uβ, ∀i} , (8)

which is a subset of Fβ8 that includes states that
are component-wise higher than the threshold uβ.
Figure 1(a) illustrates such a central region, where we
implement the main phase mechanism, to be de-
scribed next.

Figure 1. The Central Region and Boundary Region in a Two-Agent Case

Notes. Values of v are uniformly distributed in [0, 1], and Fβ � 0.8 and uβ � 0.1. The solid curve is the efficient frontier of the perfect information
achievable set8. The dashed lines represent the threshold uβ, and the dotted-dashed curve represents the scaled set, Fβ8. In panel (a) the shaded
area represents the central region, 8̂β. In panel (b), the shaded area represents the boundary region within the lower triangle set L. In this case,
m � m � 0.5 and E[v] − E[v]uβ/m � 0.4.
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The main phase mechanism consists of allocation
functions p̂(·|u) : [0, v̄]n → 3 and future promise func-
tions ŵ(·|u) : [0, v̄]n → Fβ8 for all u ∈ 8̂β, which satisfy
(IC), (PK(u)), and ŵ(v|u) ∈ Fβ8 for allv. Nextwe explain
them separately for any state u in the central region.

3.1. Allocation p̂
Note that for any point u on the efficient frontier
%(Fβ8) of the set Fβ8, the state u/Fβ is on the efficient
frontier %(8). Recall from the discussion in the last sec-
tion, with perfect information, promised utilities u/Fβ

can be achieved with allocations that weigh values
according to α*(u/Fβ) defined in (6). Motivated from
this, for any state u in the central region 8̂β defined
in (8), we define the allocation function to be

p̂i(v|u) � 1
{
α∗
i (u/Fβ)vi ≥ max

j ��i
α∗
j (u/Fβ)vj

}
, (9)

that is, the allocation function p̂ corresponds to
allocating the resource to the agent with the largest
weighted value, where the weights are the normal
vector of the point closest to u in the efficient frontier of
the scaled perfect information achievable set. Follow-
ing Proposition 2.3, the expected utility of this alloca-
tion satisfies Ev [vip̂i(v|u)] � ∂φ

∂αi
(α*(u/Fβ))—that is, the

allocation delivers the utility of the point on the effi-
cient frontier of the set 8 with normal α*(u/Fβ).
Remark 3.1. It is worth illustrating geometrically how
the weights α*(u/Fβ) are determined. According to the
optimality conditions for (6), for any state u ∈ Fβ8, we
must have u/Fβ � ∇φ(α*(u/Fβ)) − μe for some non-
negative scalar μ, where e is the vector of 1s in Rn.
(Here, μ corresponds to the dual variable of the ‖x‖1 � 1
constraint.) Furthermore, as explained before, the
vector Fβ∇φ(α*(u/Fβ)) is on the efficient frontier of set
Fβ8. Therefore, as illustrated in Figure 2(a), the weights
α*(u/Fβ) are determined by first projecting the state u
along the “458 line” up to the point u + Fβμe on the
efficient frontier of Fβ8. Then, we scale this point by
1/Fβ to obtain a point u/Fβ + μe on the efficient frontier
of 8. Weights α*(u/Fβ) correspond to the normal vec-
tor of the hyperplane supporting the point u/Fβ + μe on
the efficient frontier of 8.

Note that the allocation (9) is not efficient, except
when the weights α∗

i (u/Fβ) are the same across agents
or, equivalently, if the current state lies on the 458 line
passing through the (scaled) welfare maximizing state
Fβu*. (As a reminder, u* is the vector of agents’ utilities
under the efficient allocation.) Even if the initial state is
set to Fβu*, over time, state trajectories tend to drift

Figure 2. Examples of Weights and Future Promises of the Two-Agent Case

Notes. Panel (a) illustrates the weight α*(u/Fβ) in a two-agent case with Fβ � 0.8, uβ � 0.1, and u � (0.125, 0.325). In this case,
α*(u/Fβ) � (0.3675, 0.6325), and μ � 0.03. Panel (b) illustrates the future promises ŵ(v|u) given in (11) for some choices of v in a two-agent
case (A, B, C, and D) with β � 0.9, Fβ � 0.8, uβ � 0.1, u � (0.125, 0.325). In particular, the coordinates of the points A, B, C, and D correspond to
ŵ(v|u) given in (11) for v taking values (1, 0), (0, 0), (1, 1), and (0, 1), respectively. (For the purpose of illustration, the value of Fβ here is not
calculated according to the formula presented in Section 4.)
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away from this 458 line, because of the stochastic nature
of private valuations. This introduces inefficiency,
which can be interpreted as the information rent the
designer has to pay to induce truthful revelation.
Following our design of the future promise functions,
as the time discount factor gets closer to 1, however,
promised utility trajectories tend to concentrate around
the 458 line for longer periods of time, resulting in more
efficient allocations.

3.2. Future Promise Functions ŵ
First, it is straightforward to determine the interim
future promise function Ŵi(vi|u)≜Ev−i ŵi(v|u)[ ] for each
agent i from the incentive compatibility constraints.
Following the standard argument of Myerson (1981),
the (IC) constraints uniquely determine an expression
for Ŵi(vi|u) in terms of the interim allocation P̂i(vi|u)≜
Ev−i [p̂i(v|u)] and the interim promise for the lowest
type Ŵi(0|u). Further removing Ŵi(0|u) using the (PK(u))
constraints yields the following interim future promise
function:

Ŵi(vi|u) � 1
β

(
ui + (1 − β)

( ∫ vi

0
P̂i(y|u)dy − P̂i(vi|u)vi

−
∫ v̄

0
F̄i(y)P̂i(y|u)dy

))
, ∀i. (10)

Because the interim allocation is increasing in an agent’s
report, Equation (10) is necessary and sufficient to guar-
antee incentive compatibility.

Although the interim future promise functions Ŵ in
(10) are uniquely determined by p̂, the ex-post future
promise functions ŵ may not be uniquely determined
given p̂. This is because multiple ex-post future prom-
ise functions may correspond to the same interim fu-
ture promise function. For example, we can set the
ex-post future promise function ŵi(vi, v−i|u) to the in-
terim future promise function Ŵi(vi|u) for all v−i. This
choice, however, does not guarantee that starting from
an initial state u ∈ Fβ8, the future promises remain in
Fβ8 for all possible reports. In fact, if the state u is
sufficiently close to the efficient frontier %(Fβ8), there
exist values of v such that the future promise Ŵ falls
outside the set Fβ8. If so, state u cannot be achieved
using such a mechanism.

The key consideration, therefore, is that for any
value v ∈ [0, v̄]n and state u ∈ Fβ8, we must ensure
that the future promise function ŵ is feasible—that is,
ŵ(v|u) ∈Fβ8, so as the set Fβ8 is self-generating with
respect to mechanism (p̂, ŵ). Specifically, the ex-post
future promises need to be (i) nonnegative and
(ii) within the efficient frontier of Fβ8. In this sec-
tion, we address the design issue (ii), and leave the
issue (i) to Sections 4 and 7. In fact, the threshold uβ
is designed to resolve issue (i).

To guarantee condition (ii), we implement interim
future promises so as tominimize the risk of the next time
period’s promise utilities lying outside the achievable
set Fβ8. The design of the future promise functions
resembles the d’Aspremont–Gérard-Varet–Arrow mech-
anism (Arrow 1979, d’Aspremont and Gérard-Varet
1979) and the risk-free transfers of Esö and Futo
(1999). Specifically, the ex-post future promise function
for any state u in the central region 8̂β and value v ∈
[0, 1]n is given by

ŵi(v|u) � Ŵi(vi|u) − 1
n − 1

∑
j ��i

α∗
j (u/Fβ)

α∗
i (u/Fβ)

· Ŵj(vj|u) − Eṽj[Ŵj(ṽj|u)]
[ ]

. (11)

It is clear from expression (11) that the summation term
has an expectation of 0, which is consistent with the
first term, Ŵi(vi|u), being the interim future promise.
The following two propositions in the remainder of this
section characterize important properties of the future
promise functions as defined in (11).
In the context of a risk-averse seller in a static setting,

Esö and Futo (1999) propose a similar transfer rule that
gives rise to a constant ex-post revenue. Analogously,
our choice of future promise functions guarantees that
the weighted sum of the ex-post future promises is
a constant. The following result shows that the future
promises lie in a plane with normal α*(u/Fβ).
Proposition 3.1. For any given state u ∈ 8̂β, the future
promise vector ŵ(v|u) lies within a plane in Rn for all v.
Specifically, the plane is described by the following equation,

α*(u/Fβ)�(u − ŵ(v|u)) � 1 − β

β
α*(u/Fβ)�

(∇φ(α*(u/Fβ)) − u) ≥ 0.

The fact that our future promises lie on a plane re-
sembles the concept of “enforceability with respect to
hyperplanes” inFudenbergetal. (1994).Furthermore,our
plane being parallel to a support function of the (PI) a-
chievable set echoes the construction of future promises
given in the proof of lemma6.1 in Fudenberg et al. (1994).
The properties stated in Proposition 3.1 are useful

toward establishing that future promises ŵ(v|u) fall in
the set Fβ8. Recall that α*(u/Fβ) gives the normal of
the supporting hyperplane of a point u on the effi-
cient frontier of Fβ8. Interpreting α*(u/Fβ)�(u − x) as
the “signed directional distance” of a point x ∈ Rn to
the hyperplane supporting u, we obtain that α*(u/Fβ)�
(u − ŵ(v|u)) measures how close the future promises
are to the hyperplane supporting u. Among all ex-post
future promise functions that satisfy the interim future
promise functions Ŵi(vi|u), the one according to ex-
pression (11) is “pushed” the farthest from the efficient
frontier %(Fβ8). This is formalized in the next result.
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Proposition 3.2. Fix a state u ∈ %(8̂β), and let Ŵi(vi|u) be
the interim future promise given in (10). Then, the ex-post
future promise ŵ(v|u) defined in (11) is an optimal solution
of the following optimization problem:

max
w̃(·)

min
v

α*(u/Fβ)�(u − w̃(v))
s.t. Ev−i[w̃i(vi,v−i)] � Ŵi(vi|u) ∀vi, i,

(12)

where α*(·) is defined in (6).

Intuitively, setting future promises away from the
efficient frontier is desirable because we need to ensure,
for every report v, that the ex-post future promise stays
beneath the efficient frontier. Therefore, this choice of
ex-post future promise allows us to satisfy the self-
generating constraint in constructing the set Fβ8.

Proposition 3.1 shows that the signed directional
distance between ŵ(v|u) and the hyperplane sup-
porting the projection of u onto %(Fβ8) is independent
of v and strictly positive. This provides some indication
that ŵ lies within the efficient frontier of Fβ8. As in
Fudenberg et al. (1994), we show that this is the case by
carefully balancing the “step size” ŵ(v|u) − u against
the curvature of the efficient frontier at the projection of
u onto %(Fβ8). We formally establish this for the two-
agent case in the next section.

Figure 2(b) demonstrates, in a two-agent case, the
future promised function ŵ(v|u) starting from a state
u ∈ 8̂β. Thefigure shows that the realized future promise
ŵ(v|u) ranges on a line when we vary values of v.
Moreover, we also observe that for some values of v, the
ex-post future promise ŵ(v|u) may fall out of the central
region 8̂β but remains in the set Fβ8.

4. Boundary Region and Mechanism for
the Two-Agent Case

In the previous section, we described the mechanism
(p̂, ŵ) for the central region. To complete the descrip-
tion of the mechanism, we need to specify the mech-
anism for the “boundary region,” or when any of the
initial state ui is below the threshold uβ. As it turns out,
the two-agent case is much simpler to describe com-
pared with the general n> 2 case. In this section, we
focus on the two-agent case. We generalize the analysis
to larger n in Section 7.

We start by specifying the scalars Fβ and uβ as follows:

Fβ � 1 − uβ
m

and uβ � ξ(1 − β), (13)

where ξ is a constant scalar independent of β and is
given in Equation (C.8) of the online appendix. In fact,
the threshold uβ is determined so that the efficient
frontier %(Fβ8) intersects with axis i at the point
FβE[vi] � E[vi] − E[vi]uβ/m. Therefore, for any u in the
boundary region of Fβ8 (that is, when either u1 or u2
is below the threshold uβ), the state u must be within

the lower triangle set L. See Figure 1(b) for an
illustration.
We have already described the mechanism (p̂, ŵ) for

the central region in the previous section. For a state u
in the boundary region, because it is also in the lower
triangle region, we define the mechanism to be, simply,
random allocation. That is,

p̂i(v|u) � pLi (v|u) � ui/E[vi], and

ŵ(v|u) � wL(v|u) � u, if ∃ui <uβ, i ∈ {1, 2}.
Following Remark 2.1, the mechanism (p̂, ŵ) satisfies
(IC), (FA), (PK(u)) for u in the boundary region.
Furthermore, it is obvious that future promises re-
main in the set Fβ8 in this region. Therefore, the
boundary region is self-generating with respect to
mechanism (p̂, ŵ).
Now we have completed the description of mecha-

nism (p̂, ŵ) for all initial state u ∈ Fβ8 and are ready to
proceedwith the claim that the setFβ8 is self-generating
with respect to the mechanism (p̂, ŵ). What remains to
be shown is that following the definitions of Fβ and uβ
in (13), the future promises indeed remain in set Fβ8
according to the main phase mechanism. This is for-
mally established in the following result.

Proposition 4.1. Let β ∈ (0, 1) be such that Fβ ≥ 0.5.
For any β ≥ β and initial state u ∈ Fβ8, the ex post future
promise function ŵ(v|u) ∈ Fβ8.

The above key result of our paper relies crucially on
the design of the constant ξ in (13), which determines
the scaling factor Fβ and the lower bound uβ. First of
all, the lower bound uβ has to be high enough so that
the future promises ŵ(v|u), defined in (11), remain
positive. To achieve this we first provide an upper
bound on ‖ŵ(v|u) − u‖2, which measures the distance
between current and future promised utilities, in terms
of β and other model parameters. Using this bound we
show that future promises remain positive for all u
with ui ≥ uβ, when ξ is suitably chosen.
Second, and perhaps more importantly, we need to

make sure that the boundary of the convex central
region Fβ8 (its efficient frontier) is “flat” enough so
that starting from a point u very close to the efficient
frontier, the next point ŵ(v|u) does not fall outside of it.
Bounding the curvature of the efficient frontier %(Fβ8)
is not easy. We instead work with the signed distance
function between a point u and the convex set8, which
is defined as

I8(u) � max
x:‖x‖1�1,x≥0

x�u − φ(x){ }
. (14)

The signed distance I8(u) measures the distance of a
point to the efficient frontier of the PI set8. It is positive
if the point lies outside the set, 0 if on the efficient frontier
of the set, and negative otherwise. Following (6), we
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obtain that I8(u) � α*(u)�u − φ(α*(u)) � α*(u)�(u−
∇φ(α*(u))), because φ(α) � ∇φ(α)�α. Recall that ∇φ(α)
corresponds to a point on the efficient frontier of the PI set
with normal α. Therefore, the signed distance function
measures the “directional distance” of a point u to the
“closest” point on the efficient frontier.

The signed distance between any point u and the
scaled set Fβ8 is given by IFβ8(u) � FβI8(u/Fβ). We
design the constant Fβ so that I8(ŵ(v|u)/Fβ) ≤ 0 (the
scalar Fβ can be dropped because it is positive), which
guarantees that future promises ŵ(v|u) lie in the scaled
set Fβ8. Here is some intuition using the shorthand
notation ŵ � ŵ(v|u). Consider the following quadratic
approximation of the signed distance function at the
current state u/Fβ,

I8
ŵ
Fβ

( )
≈ I8

u
Fβ

( )
+ ∇I8 u

Fβ

( )� ŵ − u
Fβ

( )
+ 1
2

ŵ − u
Fβ

( )�
Hess I8

u
Fβ

( )
ŵ − u
Fβ

( )
,

where Hess I8(u) ∈ Rn×n represents the Hessian of
function I8 evaluated at u. The 0th-order term is non-
positive because the current state u lies in Fβ8. The
envelope theorem implies that ∇I8(u) � α*(u). Thus,
the first-order term is negative and independent of ŵ,
according to Proposition 3.1. Because the signed dis-
tance function I8 is convex, the second-order term is
nonnegative. We control the contribution of the second-
order term by bounding themaximum eigenvalue of the
Hessian matrix in terms of model parameters and using
the aforementioned bound on ‖ŵ − u‖2. As it turns out,
our design of the constant ξ allows us to ensure that the
signed distance of ŵ is at most 0. Therefore, future
promises ŵ fall below the efficient frontier %(Fβ8)
starting from any point u ∈ Fβ8.

Proposition 4.1 implies that starting from any state
u ∈ Fβ8, we can construct a sequence of allocation and
future promises that delivers that initial state. That is,
every state in Fβ8 is achievable following this mech-
anism. In particular, consider the state that maximizes
u1 + u2 in Fβ8. The mechanism (p̂, ŵ) is able to achieve
the social welfare given by

Jβ ≜ max
u∈Fβ8

(u1 + u2) � Fβ max
u∈8

(u1 + u2) � FβJFB,

because u ∈ Fβ8 if and only if u/Fβ ∈ 8. Because the set
Fβ8 is self-generating, it is a subset of 8β, following
Proposition 2.1. Therefore, the total social welfare
satisfies Jβ ≤ J∗β � maxu∈8β(u1 + u2). Overall, we have
the following main theorem.4

Theorem 4.1. Let β ∈ (0, 1) be such that Fβ ≥ 0.5. For any
β ≥ β , we have

FβJFB � Jβ ≤ J∗β ≤ JFB.

Therefore, as β approaches 1, the relative gap in social welfare
between our mechanism and first best converges to 0 at
rate ( JFB − Jβ)/JFB � 1 − Fβ � O(1 − β) .
It is clear that Fβ as defined in (13) approaches 1 as β

approaches 1. Therefore, the achievable set Fβ8 ap-
proaches the perfect information set 8, and, corre-
spondingly, the optimally achievable social welfare J∗β
approaches the first-best social welfare JFB. In particu-
lar, the convergence rate of our mechanism (p̂, ŵ) to
efficiency can be measured by their relative difference
1 − Fβ � O(1 − β). Additionally, because Fβ8 converges
to the PI achievable set8 as β approaches 1, every point
in the PI achievable set is asymptotically achievable
according to our mechanism.
Our mechanism provides a lower bound on the op-

timally achievable social welfare J∗β, which, in theory,
could converge to JFB faster thanO(1 − β). The following
result indicates that the relative social welfare gap be-
tween any mechanism and first best cannot be smaller
than Ω(1 − β).
Theorem 4.2. Suppose agents’ values are i.i.d., then

(JFB − J∗β)/JFB ≥ Ω(1 − β).

A typical approach used to provide upper bounds in
dynamic mechanism design involves relaxing the IC
constraint of all time periods except the first. While this
approach works when values are discrete (see, e.g., Guo
and Hörner 2015), it does not lead to an optimal con-
vergence rate when values are continuous. Instead, we
prove this result by considering a relaxation where the
valuations of one agent are publicly observable for all
periods (thevaluationsof the other agent areprivate).We
formulate a dynamic programming problem to find the
optimal social welfare under this relaxation and upper
bound its objective value using the linear programming
approach to approximate dynamic programming (see
De Farias and Van Roy 2003). In particular, we impose
a quadratic parametric form for the value function and
optimize over one coefficient of the quadratic form.
Denote by V(β) the optimal objective value of the
resulting optimization problem for any given β. Using
the envelope theorem, we show that V(β) is left differ-
entiable around β � 1 and its left derivative V′(1−) is
strictly positive. Using that V(1) � JFB, we obtain that
V(β) � JFB − (1 − β)V′(1−) + o(1 − β), and the result fol-
lows becauseV(β) is an the upper bound for J∗β. We are
hopeful that this method can be appliedmore broadly
in the analysis of other dynamic mechanism design
problems.
Now we have completed the description of our

mechanism for the two-agent setting; in the next section,
we provide a comparison with a mechanism motivated
by the paper of Jackson and Sonnenschein (2007).
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5. A Comparison with Jackson and
Sonnenschein (2007)

Jackson and Sonnenschein (2007) (referred to as JS07
hereafter) propose a budget-based mechanism that
allocates the resource to the agent with the highest
report (ties are broken randomly) and, at the same time,
restricts the number of times each agent can report
a given type. JS07 is mainly focused on a finite-horizon
static setting in which values are discrete and all private
information is revealed to each agent at time 0. In
comparison, we consider an infinite-horizon dynamic
setting in which values are continuous and sequentially
revealed over time. Despite some fundamental differ-
ences between our setting and that of JS07, we formally
extend their simple design to our dynamic setting and
analytically compare the performance of the result-
ing mechanism to first best. In short, we establish that
while budget-based mechanisms are asymptotically
efficient, the best relative inefficiency achievable with
a budget-based mechanism is Ω((1 − β)1/2).

It is worth explaining the setting and mechanism of
JS07. The mechanism of JS07 critically depends on the
number of time periods, τβ, being finite and private
information taking a finite number of possible types. In
this setting, the JS07 mechanism sets a budget on the
total number of times an agent can report a certain type.
The budget of each type is set to be the probability of
this type times τβ, or the expected number of times that
this type is realized over τβ periods. Using this simple
mechanism, an agent following an “approximately
truthful strategy” (JS07, p. 252) receives an expected
utility that converges to the utility obtained from the
efficient allocation as τβ goes to infinity. A remarkable
feature of the mechanism from JS07 is that reporting
as truthful as possible secures this level of utility re-
gardless of the strategies followed by the other agents.
Although JS07 does not explicitly characterize the
equilibria of their mechanism, the latter security result
implies that all equilibria are asymptotically efficient.

To extend the JS07 mechanism to our dynamic set-
ting, we need to also assume a finite set of types for the
private valuation. To reconcile the finite horizon in the
budget-based mechanism with the infinite horizon
nature of our setting, we divide the infinite time ho-
rizon into an infinite number of τβ-period cycles, where
the cycle length τβ is a design parameter that depends
on the discount factor. The budget-based mechanism
is then used within each τβ period cycle. We say that
a mechanism π secures efficient utility levels if for each
agent i we have limβ↑1 supσi

infσ−i Vi(π, (σi,σ−i)) � u∗i .
This maximin property implies that every agent has
a sequence of strategies that guarantee convergence to
the efficient utility levels regardless of the competitors’
strategies. For the budget-based mechanism to secure
efficient utility levels in an infinite-horizon setting, we

need to carefully balance how the length of the cycle τβ
grows as β approaches 1.

Proposition 5.1. The budget-based mechanism with cycles
of length τβ secures efficient utility levels if and only if

lim
β↑1

τβ � ∞ and lim
β↑1

βτβ � 1. (15)

Proposition 5.1 implies that the number of time
periods in each cycle should be τβ � o(1/(1 − β)) for the
security result to hold.We prove the result in two steps.
For the “if” part, we consider an approximately truth-
ful reporting strategy under which an agent reports
truthfully while the budget of the current type is still
available, and randomly chooses another type to report
if the budget of the current type has been exhausted.
We show that any agent using these strategies can
secure utility levels that converge to first best regard-
less of the strategy of the competitors, if the cycle length
τβ satisfies condition (15). By design, the mechanism
guarantees that the empirical distribution of the com-
petitor’s reports over a cycle coincides with the dis-
tribution 1 would expect if the reports are truthful.
When βτβ is close to 1, the net present values of all
periods in a cycle are similar, and the order inwhich the
competitor’s reports appear is immaterial. Thus, by
reporting truthfully whenever possible, the agent can
achieve the efficient utility level in the limit. In this last
step, we need to control the number of lies an agent is
forced to make because budget constraints are hard
and values are random. For the “only if” part, we con-
sider a symmetric setting in which agents’ values can
be either high (� 1) or low (� 0) with equal probabilities.
If a competitor bids high in the first τβ/2 periods, and
low in the remaining periods, we show that no strategy
secures an efficient utility level unless condition (15)
holds. Intuitively, because of discounting, earlier pe-
riods have higher net present value and the agent is hurt
the most when the competitor’s report is high in the first
periods. In the proof, we show that if βτβ does not
converge to 1, the loss introduced in the first periods
does not vanish, and the security result does not hold.
Finally, we establish that when cycle length τβ sat-

isfies condition (15), the relative gap from the budget-
based mechanism’s expected social welfare to first best
is at least Ω((1 − β)1/2) for every strategy profile. For-
mally, let JJSβ,τβ(σ) be the expected social welfare of the
budget-based mechanism with cycle length τβ when
agents employ strategy profile σ.

Theorem 5.1. If the length of each cycle τβ satisfies condition
(15) and agents have two types, then

(
JFB − supσ J

JS
β,τβ

(σ))/
JFB ≥ Ω((1 − β)1/2).
Inefficiencies are introduced whenever agents do not

report their values. Agents are forced to lie whenever
some type runs out of budget, which occurs with
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positive probability, because budgets are hard and
values are random. Using concentration inequalities,
we can show that an agent needs to lie at least Ω(τ1/2β )
times in each cycle. Because of discounting, the best
possible strategy is to lie near the end of the cycle,
which introduces inefficiencies of order βτβτ1/2β per
cycle. Summing over all possible cycles, we obtain that
the total inefficiencies are at least Ω((1 − β)1/2) under
condition (15).

Proposition 5.1 and Theorem 5.1 together imply that
the best possible rate of convergence to first best of a
budget-based mechanism that secures efficient utility
levels is Ω((1 − β)1/2). This separates our mechanism
with the budget-based mechanism extended from JS07.
That is, in light of Theorem 4.1, our mechanism con-
verges to first best at a faster rate than the budget-based
mechanism as the discount factor β approaches 1 in the
two-agent setting. (It is possible to show that if agents
follow an approximately truthful reporting strategy,
then the convergence rate to first best of a budget-based
mechanism satisfying (15) is O((1 − β)1/2)).

We continue with economic insights that can be
derived from our mechanism in the next section, before
presenting the analysis of our mechanism for the case
of n> 2 in Section 7.

6. Economic Insights
In this section, we shed light on the economic insights
derived from our mechanism. In particular, we explain,
intuitively, why our main phase mechanism is dynam-
ically incentive compatible (inducing agents to report
truthfully) and approximately efficient (approaching
the first-best social welfare as the discount factor con-
verges to 1).

6.1. Incentive Compatibility
The main phase mechanism achieves incentive com-
patibility by introducing intertemporal substitution of
consumption. That is, according to our mechanism,
reporting a high value today reduces the chance of
receiving the resource in the future. Consequently, if
today’s value is not as high, agents may forego today’s
allocation in view of more valuable future opportuni-
ties. This effect stems from the following results.

Proposition 6.1. Agent i’s allocation p̂i(v|u) is non-
decreasing in the agent’s report vi (for fixed v−i and u), and
nondecreasing in the agent’s promised utility ui (for fixed v
and u−i).

According to (9), in each period the allocation is de-
termined by the comparison of weighted values among
agents. The weights are determined by the promised
utilities u. Following Remark 3.1, it is clear that for any
u in the central region, if agent i’s promised utility is
larger than agent j’s (i.e., ui >uj), then agent i collects
a higher utility via the allocation of the resource (i.e.,

E[vip̂i(v|u)]>E[vjp̂j(v|u)]). Furthermore, (IC) implies
that a higher valuation vi increases agent i’s chance of
receiving the resource. Proposition 6.1 formalizes these
intuitive features of our allocation rule.
Incentive compatibility implies that the interim fu-

ture promise function of each agent is nonincreasing in
his own report. That is, an agent’s future promised
utility tends to be lower if the current period report is
higher. The following result characterizes the ex-post
future promise function.

Proposition 6.2. The future promise function ŵi(v|u) is
nonincreasing in vi and nondecreasing in vj for j �� i (for
fixed u).

As a result, reporting a higher value entails a higher
chance of receiving the resource in the current period,
at the expense of a lower future promised utility. This,
in turn, translates to a lower chance of receiving the
resource in the future. This provides an intuitive ex-
planation on how the mechanism ensures that agents
do not report higher than their true values.
Furthermore, it is interesting to see how other agents’

reports affect a focal agent’s future promise. Figure 2(b)
illustrates such a point. Compare, for example, pointsA
and C, or B and D. As agent 2’s value increases from
0 to 1, agent 1’s future promised utility w1 increases.
Intuitively, if another agent other than i reports a higher
value, it decreases agent i’s chance of receiving the
resource in the current period. Agent i is then com-
pensated with a higher future utility, to be fulfilled by
future allocations.

6.2. Efficiency
We next discuss convergence to first best using an ex-
ample in which agents’ values are identically distrib-
uted. Recall that the main phase mechanism starts at
the state Fβu*, where u* is the vector of agents’ utilities
under the efficient allocation. Therefore, the mecha-
nism starts at the state with the largest component sum
in the scaled set Fβ8. At this state, the allocation is
efficient. In fact, if a state u has equal components (i.e.,
ui � uj for all i, j), then the allocation p̂(v|u) is always
efficient, because the weights α∗

i (u/Fβ) are the same for
all i.
In Figure 3, we plot sample trajectories of promised

utilities starting at state Fβu* following our mecha-
nism. As we can see, the sample trajectories concen-
trate around the 458 line. Correspondingly, the weights
α∗
i (u/Fβ) of all agents tend to be close to each other

along these trajectories. As a result, the resource is al-
located almost efficiently, until it reaches the boundary
region. In Figure 3(a), all trajectories reach the bound-
ary region within 450 time periods.
As agents become more patient and the discount

factor β increases, the step size between current prom-
ised utility u and future promises ŵ decreases (see
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Lemma C.2 of the online appendix). In Figure 3, (a) and
(b), the first 250 steps of each trajectory are marked
black, while later steps are colored grey. As we can see
from Figure 3(b), after 250 time periods, the promised
utilities are still concentrated around the initial state, and
it takes longer to reach the boundary region.

Figure 4 illustrates the expected social welfare per
round generated by our mechanism, which is given by
Eut,vt[∑n

i�1 vi,tp̂i(vt|ut)], as a function of time. During the
first time periods, the mechanism is in the main phase
and the expected social welfare per round is very close
to that of the efficient allocation. Over time, trajectories

Figure 3. Sample Trajectories of Promised Utilities

Note. Each panel demonstrates 100 sample trajectories.

Figure 4. Average Welfare of the Mechanism as a Function of Time

Notes. Main phase mechanism allocates efficiently until the state reaches the boundary region. In panel (a), the average time to reach the
boundary region is 409, and in panel (b) it is 1,396.
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drift to the boundary region where the expected social
welfare per round drops significantly because there
the allocation is highly inefficient. The boundary mech-
anism, albeit inefficient, is necessary to ensure that the
incentive compatibility and promise-keeping constraints
are sustained. Furthermore, as the discount factor in-
creases, the mechanism remains in the main phase for
more time periods. As we can see from Figure 4(a), it
takes between 400 and 500 periods for all trajectories to
reach the boundary region. In comparison, for a higher
discount factor, Figure 4(b) shows that it takes between
1,000 and 1,500 time periods to reach the boundary re-
gion. As the time discount factor approaches 1, the
boundary mechanism is pushed further into the future,
and the mechanism allocates approximately efficiently
for longer periods of time.

7. Generalization to n Agents
In this section, we generalize the analysis to settings
with n agents, where n> 2. In this case, we need to
carefully design the scaling factor and lower bound,
and the boundarymechanismdepending on the number
n of agents involved. We first describe the difficulties
that arise in the general case, and then provide our
mechanism and analysis. To simplify the exposition, we
assume that agents’ values are identically distributed.

Our results easily extend to the case of nonidentical
distributions. We denote the p.d.f., the c.d.f., and the
expected value of the agents’ value distribution by f (·),
F(·), and E[v], respectively.
First of all, the boundary mechanism for the two-

agent setting no longer works for the general setting.
When there are only two agents, in the boundary re-
gion we use the randomization mechanism (p̂L, ŵL). If
n> 2, however, the boundary region is not always
contained within the lower triangle set L anymore, as
long as the lower bound for the n agent case, u(n)β , ap-
proaches 0 with β approaching 1. As a result, the ran-
domized allocation is no longer feasible for the boundary
region.
Specifically, consider, for example, a three-agent

setting as illustrated in Figure 5. Here, we focus on a
situation where one agent’s promised utility is below
the threshold u(3)β . In Figure 5(a), we plot the efficient
frontier of the PI set %(8), its scaled version %(Fβ8), and
the plane corresponding to u1 � 0.01<u(3)β � 0.0167.
Figure 5(b) demonstrates the intersections between the
plane with efficient frontiers of sets 8, Fβ8, and L,
respectively. All points on the intersection of the plane
and Fβ8 lie in the boundary region. The state u rep-
resented by the circle, however, is outside the effi-
cient frontier of the lower triangle set. At this state,

Figure 5. The Efficient Frontier and the Level Set in the Three-Agent Case

Notes. In panel (a), the outer surface with a solid mesh is %(8); the inner surface with a dotted-dashed mesh is the scaled efficient frontier
%(Fβ8); and the horizontal plane represents the slice corresponding to u1 � 0.01, which is lower than the threshold u(3)β � 0.0167. Panel (b)
plots the intersection of the surfaces in panel (a) with level set u1 � 0.01 in the (u2, u3) space. In both panels, the value distributions are assumed to
be uniform [0, 1], Fβ � 0.8, and u(3)β � 0.0167.
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u1 + u2 + u3 >E[v], which implies that the randomized
allocation p̂L is no longer feasible.

While the two-agent mechanism allocates the re-
source randomly when some agent’s promise utility lies
in the boundary region, the three-agentmechanism shall
allocate randomly only to the agent with low promised
utility and implement the two-agent mechanism for
the other agents. Because the two-agent mechanism
has been shown to attain every point in the two-agent
PI achievable set as the discount factor increases, this
construction allows us to attain points otherwise not
achievable with random allocations.

More generally, suppose the main phase mechanism
defined in Section 3 carries the promised utilities into
a state in the boundary region, whichmeans that at least
some promised utility, say ui, is below the threshold u(n)β .
By allocating the resource from this period on to agent i
with probability ui/E[v], we can guarantee that agent i’s
future promise ŵi(u|v) remains at ui. As such, we con-
vert the problem into one at a lower dimensional space.
Therefore, when there are more than two agents, the
boundary region mechanism can be defined recursively,
depending on how many agents are still involved.

7.1. Mechanism
We refer to the agents with promise utilities above the
threshold u(n)β as the active agents, in which u(n)β is de-
fined as

u(n)β � ξ(n)(1 − β) 1
n+4 .

Here, ξ(n) is a constant scalar independent of β, pro-
vided in Definition F.2 of the online appendix.5

At any point in time, the allocation and future
promise for an inactive agent i are, simply, p̂i(v|u) �
ui/E[v] and ŵi(v|u) � ui, respectively. The mechanism
for the active agents resembles the main phase mech-
anism described in Section 3.

Consider a case with k active agents. That is, k out of
the n components in the state vector u ∈ Rn are above
the threshold u(n)β . Denote by u(k) ∈ Rk the subvector of
promised utilities for the active agents. Further define
the total probability that the resource is allocated to an
active agent to be

s(u) � 1 −∑n
i�1

ui1
{
ui <u(n)β

}
E[v] .

Consider the k dimensional PI set 8(k), the correspond-
ing support function φ(k), and weights α(k), as defined
in (4), (5), and (6), respectively. (In these definitions, the
state vector u corresponds to a k dimensional vector.)
Similar to Section 3, we scale the PI set8(k) with a factor
s(u)F(k,n)

β , in which F(k,n)
β is defined as the following:

F(k,n)
β ≜ 1 − n(k − 1)u(n)β

E[v] .

Note that the scaling of the PI set needs to involve the
factor s(u), because with probability 1 − s(u) the re-
source is allocated to the inactive agents.
For the n agent case, the constants uβ and Fβ in

Section 3 correspond to u(n)β and F(n,n)
β , respectively. In

the boundary region with k active agents, the allocation
of our mechanism for an active agent i is defined sim-
ilarly to the main phase mechanism (9) for the k agent
case. That is,

p(k)i (v|u) � s(u)1 α(k)
i

u(k)

s(u)F(k,n)
β

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ vi⎧⎪⎪⎨⎪⎪⎩

≥ max
j��i

α(k)
j

u(k)

s(u)F(k,n)
β

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ vj⎫⎪⎪⎬⎪⎪⎭ .

(16)

The corresponding future utility is defined similar
to (11), as

w(k)
i (v|u) � W(k)

i (vi|u) − 1
k − 1

∑
j ��i

α(k)
j

u(k)

s(u)F(k,n)
β

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

α(k)
i

u(k)

s(u)F(k,n)
β

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

· W(k)
j (vj|u) − Eṽj W(k)

j (ṽj|u)
[ ]{ }

.

(17)

Here, the interim future promise function W(k)
i is as

defined in (10) of Section 3, with the interim allocation
function defined accordingly.
To summarize, at the beginning of each time period,

the number of active agents k is updated to reflect the
remaining number of active agents. Then, our mech-
anism (p̂, ŵ) is defined as the following. The allocation
is given by

p̂i(v|u) �
p(k)i (v|u) , if ui ≥ u(n)β ,

ui/E[v] , otherwise.

{
(18)

and the future promise function is given by

ŵi(v|u) � w(k)
i (v|u) , if ui ≥ u(n)β ,

ui , otherwise.

{
(19)

7.2. Self-Generating Set
Note that when the number of agents n is larger than 2,
the set F(n,n)

β 8(n) is not self-generating with respect to
our mechanism. This is because as the number of active
agents decreases to k< n, the PI achievable set 8(k) is
not a scaled version of the intersection between the
n-dimensional PI set and a subspace Rk. In Figure 5(b),
for example, the solid curve marks the boundary of the
intersection between the three-dimensional PI achiev-
able set 8(3) and the subspace u1 � 0.01. However,
this set is different from the efficient frontier of the
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two-dimensional PI achievable set 8(2), even with scal-
ing. Consequently, when the number of active agents
drops to k<n, there is a priori no guarantee that the
promise utility lies in the set s(u)F(k,n)

β 8(k).
Therefore, we define the following set Ωβ, which we

show to be self-generating with respect to our mech-
anism (p̂, ŵ). Some additional notations are in order.
For a vector u ∈ Rn and set κ ⊂ {1, . . . ,N}, we denote by
u(κ) the subvector corresponding to components of u in
the index set κ. We denote the complement of κ by κ̄.
An inequality between a vector and a scalar means that
each component of the vector satisfies this inequality.
The set Ωβ is given by

Ωβ �
⋃

κ⊆{1,...,N}
u ∈ Rn |u(κ) ≥ u(n)β ,u(κ̄) < u(n)β , and
{
u(κ) ∈ s(u)F(k,n)

β 8(k)
}
.

That is, for any state u in Ωβ with k active agents, the
scaled PI achievable set s(u)F(k,n)

β 8(k) is contained in
theΩβ set. The following proposition confirms that our
construction of the lower bounds ensures that Ωβ is
indeed self-generating.

Proposition 7.1. The set Ωβ is self-generating with respect
to the mechanism (p̂, ŵ) defined in (18) and (19).

To show thatΩβ set is self-generating with respect to
our mechanism (p̂, ŵ), we need to argue that for all u
inΩβ, the mechanism given in (18) and (19) satisfies the
conditions given in (3). The (IC), (FA), and (PK(u))
constraints follow by construction. Themain step of the
proof involves showing that future promises satisfy
ŵ(v|u) ∈ Ωβ for every report v.

For any state u in Ωβ with k active agents, it is clear
that future promised utilities of inactive agents remain
inΩβ. In the proof of Proposition 7.1, we first show that
the subvector of future promises satisfies

w(k)(v|u) ∈ s(u)F(k,n)
β 8(k). (20)

This step extends the geometric approach of Proposi-
tion 4.1 to higher dimensions by using the fact that the
mechanism for active agents also satisfies the proper-
ties in Section 3. (In particular, in Online Appendix H,
we prove extensions of Propositions 3.1 and 3.2 that
account for the scaling factor.)

Condition (20) alone is not sufficient to establish our
result because ŵ(v|u) could involve fewer active agents
than u. That is, in the next step the number of active
agents may decrease to k′ < k. We need to show the
stronger result that the subvector w(k′)(v|u), consisting
of the components of ŵ(v|u) above the threshold u(n)β ,
lies in s(ŵ(v|u))F(k′,n)

β 8(k′). Therefore, we design the
constant ξ(n) accordingly such that the intersection
between s(u)F(k,n)

β 8(k) and the k′ dimensional space of
active agents is contained in s(ŵ(v|u))F(k′,n)

β 8(k′). With

this argument, (20) is sufficient to guarantee that all
future promises lie in Ωβ.
Nowwe are ready to state the next theorem, which is

the main result of this section.

Theorem 7.1. There exists β ∈ (0, 1) such that for any β ≥
β the mechanism (p̂, ŵ) for n agents satisfies

F(n,n)
β JFB ≤ Jβ ≤ J∗β ≤ JFB.

Because the scaling factor F(n,n)
β converges to 1 as β

approaches 1, Theorem 7.1 implies that the maximum
expected discounted social welfare achieved by the
mechanism (p̂, ŵ) approaches first best. In particular

the convergence rate is 1 − F(n,n)
β � O

(
(1 − β) 1

n+4
)
. Similar

to the two-agent case, because u(n)β converges to 0 as
β converges to 1, set Ωβ converges to the PI achievable
set 8 as β approaches 1. Thus, every point in the PI
achievable set is asymptotically achievable following
our mechanism.
Note that the convergence rate to first best given

in Theorem 7.1 for n � 2 is slower than the one in
Theorem 4.1. The proof for the two-agent case given in
Section 4 leverages some special structure of the prob-
lem, which is not present in the general case. One may
be able to provide better convergence rates by tight-
ening the analysis. We leave this to future research.
In fact, the budget-based mechanism of JS07 for

n � 2 cannot be directly generalized to n> 2 agents. The
budget-based mechanism in the case of n> 2 agents
needs to be modified, and the analysis of the impact of
this modification on the convergence rate appears to be
nontrivial. Specifically, the modification needs to en-
sure that the approximately truthful reporting strategy
secures efficient utility levels, to guarantee that the
empirical distribution of reports is close to the true
distribution for every set of n − 1 players. Without this
modification, approximately truthful reporting strate-
gies are not guaranteed to be an equilibrium, because
the security result does not hold. Therefore, we leave
the analysis of the budget-based mechanism for the
case of n> 2 agents as a future research direction.

8. Conclusion and Extensions
In this paper, we study resource allocation with asym-
metric information and no monetary transfer in a dy-
namic setting. The marginal cost for the resource is 0 in
each period. Therefore, the mechanism designer focuses
on allocation efficiency. We propose a mechanism that
achieves asymptotic efficiency as the timediscount factor
approaches 1. From an algorithmic perspective, our
mechanism is readily implementable. We provide the
explicit suboptimality of our mechanism—that is, the
rate of convergence to first best is O(1 − β) and O

(
(1 −

β) 1
n+4
)

for the two-agent case and the n-agent case,
respectively.
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Our analytical framework is focused on self-
generating sets of agents’ promised utilities. The es-
sence of our approach is to establish a self-generating
set with respect to our mechanism that expands as the
discount factor increases, and eventually approaches
the set of utilities achievable when values are publicly
observable.

For challenging dynamic mechanism design prob-
lems, there has been previous work on constructing
mechanisms that satisfy incentive compatibility con-
straints approximately. Our approach, on the other
hand, constructs approximately optimal mechanisms
that satisfy incentive compatibility constraints exactly,
working closely with self-generating sets of future
promises. We believe this approach can be applied in
other dynamic mechanism/contract design settings,
with or without monetary transfers.

There are a number of potential extensions to our
work. For example, in our current mechanism, future
promises are determined only through the interim (but
not the ex-post) allocation. If we perceive promised
utilities as money, our mechanism requires the planner
to introduce lotteries, which may not be appealing in
practice. It is, therefore, interesting to explore whether
it is possible to asymptotically achieve efficiency with
mechanisms in which future promises depend on the
ex-post allocations. Such a mechanism, if it exists, es-
tablishes an indirect implementation without lotteries.
That is, the agent who receives the resource in a period
pays with future promises, while other agents are
potentially compensated by higher future promises.

Along the line of thinking about ex-post versus in-
terim promised utilities, we can also consider varying
the incentive compatibility constraint. Currently, we
enforce incentive compatibility at the “interim” level.
That is, truthful reporting is each agent’s best strategy,
taking expectations with respect to other agents’ values
and assuming that competitors report truthfully. Al-
ternatively, one can enforce certain “ex-post” incentive
compatibility. That is, truthful reporting could beweakly
dominant for every agent in each period regardless of
other agents’ reports (and assuming all agents report
truthfully in the future). The optimal socialwelfare under
ex-post incentive compatibility is less than or equal to
that of our setting for any fixed discount factor, because
there are more constraints in the definition of the self-
generating set. It remains to be seen whether one can
still establish asymptotic efficiency in this case.

Another extension is to consider a positive marginal
production cost for the resource in each period. If the
cost is positive, the mechanism designer needs to trade-
off efficiency with production cost. In this case, the
planner may have to withhold the resource if agents’
valuations are low. In such a setting, merely studying
the achievable set of promised utilities is no longer
sufficient.
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Endnotes
1We do not allow each agent’s valuations to be correlated across
periods, because the corresponding model would involve not only
promised utility, but also threat utility, which may dramatically
increase the dimensionality of the model (Fernandes and Phelan
2000). We need the support of the probability distribution to be
bounded to ensure that the ex-post future promise function is inside
the self-generating set. We keep the same discount factor for different
agents for ease of exposition.
2Note that if some components of the allocation πt are strictly be-
tween 0 and 1, we assume here that πt, and not the actual resource
allocation in the end of the period, is publicly observable. More
generally, the planner can decide what information to reveal to the
agents in each period, and base the resource allocation rule on previous
realized allocations. Given the type of results that we provide in this
paper, it is clear that asymptotically the planner can do no better
through such manipulations.
3 In our setting, the probability of having a tie is 0.
4We say f (β) � O( g(β)) if and only if there exists C> 0 and β0 ∈ (0, 1)
such that | f (β)| ≤ C|g(β)| for all β0 ≤ β< 1.We say f (β) � Ω( g(β)) if and
only if there exists C> 0 and β0 ∈ (0, 1) such that | f (β)| ≥ C|g(β)| for all
β0 ≤ β< 1.
5Note that the values of the threshold uβ and the constant ξ for
the two-agent mechanism provided in Section 4 are different from
u(n)β and ξ(n)—that is, u(n)β �� uβ and ξ(n) �� ξ—because we can provide
stronger guarantees in the two-agent case.
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