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We study dynamic contracts that incentivize an agent to exert effort to increase the arrival rate of a Poisson

arrival (breakthrough), where both the effort cost and the effort level at any time are the agent’s private

information. The principal needs to offer a menu of contracts such that each type of agent (with a different

effort cost) chooses the corresponding item on the menu. Each item specifies a deadline for the contract and

the payment process over time. We focus on two types of agents and fully characterize the optimal menu

of contracts. Specifically, the principal will not provide any contracts when the revenue of the breakthrough

is low enough. When the revenue is at the medium level, only the good agent is worth hiring. Hence, the

principal provides a pay-to-leave contract to the bad agent, which pays a lump-sum payment to the agent

without asking the agent to work. At the same time, the good agent is provided a so-called IC-binding

contract that provides exactly enough incentives for him to work. When the revenue is high enough, the

bad agent obtains an IC-binding contract, while the good agent gets a so-called screening contract such that

he is not willing to mimic the bad agent. Overall, we are able to obtain the closed-form expression of the

optimal menu, and the optimal contracts are easy to describe, compute, and implement.
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1. Introduction

Research breakthrough projects refer to initiatives or endeavors that aim to achieve significant

advancements or discoveries in a particular field of study. These projects typically involve pushing

the boundaries of existing knowledge, technologies, or understanding to attain novel and trans-

formative outcomes. Breakthroughs in research projects often lead to groundbreaking innovations,

solutions to long-standing problems, or the development of new theories and methodologies.

To achieve environmental sustainability, projects on climate change mitigation technologies are

developed across the globe. A total of 243 projects (USD 13.5 billion, 51.9 billion including co-

financing) are funded by the Green Climate Fund (GCF) to deliver transformative climate actions.

In pharmaceutical development, any medical breakthrough that is an advancement to cure a cur-

rently incurable disease, such as cancer or Alzheimer’s, can be enormously lucrative. Leading
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pharmaceutical companies have their R&D spending, which can be as high as 30% of their yearly

revenue. Research breakthrough projects are common in technology companies. The R&D spending

in Amazon was as high as $ 26.6 Billion, accounting for 13% of its total revenue. Yet the return once

a research project succeeds is also enormous: Open AI brings Microsoft a revenue of $1.3 Billion

in the year 2023. It is vital that the fundings are used properly and effectively. However, there is

news showing improper usage of funding by researchers. A professor is accused of cheating NASA

out of millions of Space research institutes at the University of Florida. The NASA grant, which is

supposed to be spent on high-tech engineering research, was privately spent on cars and condos.1.

United States Office of Special Counsel has overseen another investigation, which revealed that

hundreds of millions of dollars were not used for their intended purpose. Funds for the Biomedical

Advanced Research and Development Authority (BARDA) were intended for the development of

drugs, therapies, and vaccines. However, a large fraction of the funds have been used for unrelated

purposes, such as salaries and the removal of office furniture.2.

There are some common features among those motivating examples. First, these projects are

usually structured within an agency relationship due to the need for both high technical expertise

and significant capital inputs (funding). The skilled individuals execute the project under some level

of separation from the entity supplying financial support. Additionally, the preferences of the agent

(entrepreneur, contractor, or researcher) in terms of investment timing, intensity, and direction are

not likely to perfectly align with the preferences of the principal (financier, end user, or institution).

Second, moral hazard issues exist because of the misalignment of incentives. The agent may have

the incentive to misuse funding. They may divert the funding for their private benefits rather than

to the proper uses to develop the breakthroughs. Therefore, the principal has to provide sufficient

incentive for the agent to be willing to exert effort. Third, the funding levels that are required may

vary across different types of agents. Scientific teams who work on such projects are heterogeneous:

they vary in their approaches/methods to tackle problems. Moreover, due to professional barriers,

how much funding a project requires remains private information to the agent. The project may

be terminated if no success has been observed after a certain period. Despite its high potential

and enormous returns, project cancellation and terminations are sometimes necessary. An example

of project cancellation is the V.C. Summer project, which was intended to build nuclear plant in

South Carolina. The project was cancelled in 2017, after more than $9 billion was invested.3

These common ingredients give rise to this paper’s research question: when sponsoring research-

breakthrough projects, the principal faces two dimensions of disadvantages in information. First,

she does not know what levels of funding are sufficient; second, the principal cannot observe whether

the agent is misusing the funding. To overcome such informational disadvantages, how should she

design optimal contracts? Notice that the agent has a great amount of latitude for misconduct: he
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may ask for funding that is more than necessary; he may also divert the funding for his private

benefits, and he may even do both. The principal, thus, has to be meticulous in designing contracts

that prevent such misbehaviors.

We model the problem to be the optimal design of the principal’s contract (when there exists

both adverse selection and dynamic moral hazard). The principal delegates the development of a

research project to an agent. With the agent’s continued effort, the success of the project may arrive

randomly. Once it succeeds, a fixed amount of revenue goes to the principal. The misalignment

of interest between the principal and the agent lies in the fact that the revenue is enjoyed by

the principal while the effort cost is paid by the agent. Therefore, incentives must be created to

induce the agent’s effort. Being the residual claimer of the project, the principal also needs to

provide the funding to reimburse for the agent’s cost. However, the agent’s cost, which is his private

information, is uncertain.

Following standard results in mechanism design in Laffont and Martimort (2009), the principal

should provide a menu of contracts, such that an agent with a specific cost chooses a particular

contract from this menu. The application of menu of contracts in real life is common. When applying

for research funding, a principal investigator (PI) drafts proposals with clear budget and intentions

on spending the budget, which is a way to self-select a contract with a funding provider such as NSF.

Following the revelation principle (Myerson 1981), it is without loss of generality for us to consider

direct mechanisms. In our setting, however, after the agent reports the operating cost, the two

players still face a dynamic moral hazard game. That is, the agent can choose his effort at any point

in time, which depends on the payment process designed by the principal. Therefore, the principal

needs to optimize over the menus of dynamic incentive-compatible contracts. Furthermore, one type

of agent should not have an incentive to choose a dynamic contract for another type. Consequently,

the optimal design problem can no longer be formulated as a classic dynamic program.

The major contributions of this paper are threefold. First, to solve the optimal contract design

problem, we develop a solution approach based on deterministic continuous-time optimal control.

Specifically, we construct an easy-to-solve upper-bound optimization problem for the original con-

tract design problem. Fortunately, the optimal solution to the optimization problem provides a

menu of contracts where the performance achieves the upper bound. Second, we fully characterize

the optimal menu of contracts that can be expressed in closed form, and the optimal contracts are

easy to describe, compute, and implement. Third, we summarize the structures of the optimal con-

tracts in the space of key parameters, which provide managerial implications on how the principal

should address the problem of dynamic moral hazard and adverse selection at the same time.
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1.1. Summary of main results

Our paper focuses on a two-type case, where the effort cost of the agent can either be high or low.

For simplicity, the low-cost agent is called a good agent, and the high-cost agent is called a bad

agent. Therefore, the principal offers the agent a menu of two contracts, with each item in the

menu designed specifically for the good agent and the bad agent, respectively. In each contract,

the principal specifies the deadline of the project and the payments to the agent upon success. The

contract is terminated if the agent is not able to bring the arrival before the deadline. We show that

to implement the optimal menu of contracts; we only need to consider three types of contracts:

Pay-to-leave contract, IC-binding contract, and Screening contract. Specifically, the pay-to-leave

contract pays a lump-sum payment to the agent without asking the agent to work. The IC-binding

contract keeps the agent’s incentive constraints always binding and is proved to be optimal in the

benchmark case when the agent’s cost is known by the principal. In the screening contract, the

incentive constraint is not always binding. In the screening contract, the good agent exerts full

effort, while the bad agent does not have the incentive to work. Therefore, anyone who manages

to deliver an arrival in the screening contract has to be the good agent.

Our analysis reveals that the optimal menu of contracts demonstrates three possibilities depend-

ing on model parameters, as illustrated in the three regions of Figure 2 later in the paper. First,

when the revenue R is low enough, no contract will be provided. That is, it is not worth hiring any

agent at all. When the revenue R is medium, only the good agent is worth hiring. Hence, the prin-

cipal offers the bad agent a pay-to-leave contract and offers the good agent an IC-binding contract.

The pay-to-leave contract is for the bad agent to truthfully report his type because otherwise, he

could have pretended to be the good agent and collected the funding in the good agent’s contract.

This medium case only occurs when the good agent takes up a sufficiently high fraction of the

population and the revenue from the success is medium.

Finally, when the revenue R is high, the principal allows both types of agents to work. As a

result, the bad agent will be offered an IC-binding contract, while the good agent will be offered

a screening contract. The screening contract creates a discrepancy in the expected payoff between

the good and the bad agent. Notice that whenever the principal wants to induce the bad agent

to work, the good agent could always pretend to be the bad agent and become better off than

the bad agent. Therefore, a utility gap naturally exists between the good and bad agents. The

screening contract manifests an interesting synergy between adverse selection and moral hazard:

the existence of multiple types of agents makes the principal shift the optimal contract from the

IC-binding contract in our benchmark to a novel screening contract.

Note to Feifan himself, will provide further explanations of these results later.
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Finally, we discuss the welfare implications of unknown costs by comparing the optimal contracts

in the unknown cost scenario to that in the scenario when the principal knows the agent’s cost.

We find that the unknown cost situation hurts the good agent and benefits the bad agent if and

only if the revenue R is low enough.

2. Literature Review

There have been previous attempts on the problem with both adverse selection and dynamic moral

hazard. Ma (1991) focuses on renegotiation and actions with long term effects, whereas we give

the principal full commitment power on contracting and hence the issue of renegotiation does not

exist. Gershkov and Perry (2012) studies moral hazard with both persistent and repeated adverse

selection in a discrete and finite horizon. In every period, the agent receives a task and different

types of agent differ in the probability of success, while in our model types differ in the cost of

exerting effort. Furthermore, our payment contract has an arguably cleaner and simpler structure

thanks to the continuous-time setting. Mayer (2020) and Rong et al. (2021) both consider dynamic

moral hazard problems with adverse selection where an agent is hired to exert effort to reach a

single breakthrough, which is similar to ours. However, the adverse selection in their model comes

from the information about the arrival (timing of the arrival or the status of the arrival) but

not a characteristic of the agent (capability of the agent in our model). Similarly, Chen et al.

(2018) considers an infinite horizon Poisson model where the adverse selection also comes from the

feature of the arrivals. Foarta and Sugaya (2021) studies the optimal contract design under both

moral hazard and unknown agent’s effort cost. The optimal contract asks the agent to truthfully

report their types, and will assign him to the corresponding position. However, their contract is

a static contract, as opposed to our dynamic moral hazard contract setting. Second, they made

simplification assumptions on the implementable contracts by giving the low type agent a contract

under perfect monitoring. Our paper considers a much more sophisticated setting where both types

of the agent receives a dynamic contracts with imperfect monitoring through breakthrough arrivals.

Our adverse selection and moral hazard setting is also related to the one studied in Cvitanić and

Zhang (2007). Their underlying stochastic process is Brownian motion over a finite time horizon.

They suggest a relaxation-based procedure to obtain contracts that “are not necessarily optimal.”

In comparison, we are able to derive closed form optimal contracts thanks to our Poisson setting.

Cvitanić et al. (2013) and Santibáñez et al. (2020) study continuous-time moral hazard problems

in infinite horizon with adverse selection under Brownian and Poisson stochasticity, respectively.

To solve the adverse selection problem, they adopt the methodology of a credible set regarding

the agents’ continuation and temptation values. Rather than resorting to their method, which
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involves stochastic differential equations with variational inequalities, we formulate our optimiza-

tion problem with a deterministic optimal control approach. Our formulation enables us to provide

closed-form solutions of optimal menu of contracts with intuitive implementations, such as screen-

ing contract and pay-to-leave contract.

Our paper implements optimal contracts that screens out different types of agent, which relates

to the literature with screening. Curello and Sinander (2020) relates to our work by analyzing

screening contracts in research breakthroughs. In their paper, the agent privately observes the

arrival of a breakthrough of technology and decides when to disclose it to the principal. There is

conflict of interest between the principal and the agent because once the breakthrough is revealed,

the principal prefers to lower the agent’s utility under the new technology. Though similar in

considering truthful reporting and breakthroughs, our paper differ in the following two dimensions.

First, their breakthrough is an intermediate process, which is the origin of the agent’s heterogeneity,

while our agent’s type is given in the beginning of the game and our breakthrough marks the end

of the game. Second, we offer a menu of contracts to solve the adverse selection issue, while they

use a single contract to induce truthful reports of arrivals.

The dynamic moral hazard dimension of our model is based on Green and Taylor (2016), in

which all model parameters (including the operating cost) are known. In Green and Taylor (2016),

the agent’s effort level is binary while we allow for a continuum of effort. Similar dynamic moral

hazard models based on Poisson arrivals include Sun and Tian (2018), Chen et al. (2020a), Tian

et al. (2021), Cao et al. (2022, 2023). The key difference between our paper and these papers is the

addition of the adverse selection component into the dynamic moral hazard model. The adverse-

selection extension brings this line of work much closer to reality, because the agent’s capability

is often not transparent in real-world settings. The analysis and results are also strikingly differ-

ent. First, due to adverse selection, our design involves a menu of contracts rather than a single

contract as in each of the other papers. Second, the individual contract received by each type of

agent may have different structures including pay- to-leave contract and screening contract, which

do not appear in the aforementioned papers. The promised utility formulation of continuous time

moral hazard problem originates from Sannikov (2008), which provides a martingale representa-

tion of incentive compatibility constraint with an underlying Brownian motion uncertainty. This

framework has been further applied to Poisson settings by Biais et al. (2010), in which the agent

is hired to decrease the arrival rate of “bad news.” Increasing the arrival rate of “good news,” as

in our model, has been studied in a stream of recent papers, (see, for example, Green and Taylor

2016, Shan 2017, Sun and Tian 2018, etc.), although without an adverse selection component.

Note: Need to search for project management + innovation + adverse selection literature.
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Dynamic contracting problems have been the subject of recent Operations Research studies

(see, for example, Zhang 2012a,b, Li et al. 2013). A particularly relevant stream of papers applies

dynamic incentive design to project management settings (Kwon et al. 2010, Chen et al. 2015,

Dawande et al. 2019). In these papers, a project manager designs short-term contracts for multiple

independent agents (contractors). In comparison, we focus on designing contracts for a single agent.

Further, including both moral hazard and adverse selection on the agent’s effort cost distinguishes

our paper from the aforementioned literature. It is worth mentioning two recent papers, which also

consider both moral hazard and adverse selection issues. Chen et al. (2020b) studies a principal

who periodically offers agents “limited-term” non-monetary rewards in order to induce agents’

effort over the long-run. The reward’s value to each agent is the agent’s private information. The

paper is focused on designing near-optimal “limited-term” stationary policies. Zorc et al. (2019)

considers a delegated search model where the agent’s search effort and the findings from the search

process are private information. They adopt the framework of Plambeck and Zenios (2000), which

considers a risk averse agent who can borrow money. In comparison, we study a risk-neutral agent

who can exert partial effort when cash-constrained.

Another related strand of literature combines dynamic moral hazard with learning. Unlike our

private information setting where the principal can elicit truthful information, under their setting

with learning, the true state is unobservable to either party, and hence the contract has to update

both parties’ belief (see, for example, Bhaskar 2012, Kwon 2011). Halac et al. (2016) further con-

siders long-term contracting problems that involve adverse selection, moral hazard, and learning.

In another paper, Bimpikis et al. (2019) studies when and what information a contest designer

should disclose in a contest design setting, which affects how much participants learn about the

feasibility of the innovation over time.

The remainder of the paper is organized as follows. We introduce the model in Section 3. In

Section 4, we present three contracts that are candidates for optimal contracts when the agent type

is unknown by the principal. In Section 5, we summarize the mian results of the paper. Section 6

contains detailed steps to derive the optimal menu of contracts, how to show their optimality. To

deliver further managerial implications, we summarize the main properties of the optimal menu of

contracts in Subsection 7.1, and in Subsection 7.2, we discuss the welfare implications of unknown

cost by comparing the optimal menu of contracts between the unknown cost and the known cost

scenarios. Finally, Section 8 concludes the paper with future directions.

3. Model

A principal contracts an agent to increase the instantaneous arrival rate of a Poisson process

over a potentially infinite time horizon. At any point of time t, the agent can privately choose an
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effort level νt ∈ [0, µ], which incurs a flow cost, and generates an arrival (breakthrough) with an

instantaneous rate νt. The arrival yields a revenue R to the principal, and is observable to both

the principal and the agent. We denote the arrival time as τ .

The agent’s capability, reflected in the operating cost, is linear in the effort level. We denote c to

represent the operating cost when the agent chooses the highest possible effort level µ. Therefore,

the per arrival rate per unit time unit flow operating cost is

βc := c/µ.

Hence, if the agent chooses effort level νt ∈ [0, µ], the corresponding flow operating cost is βc · νt.

That is, a more capable agent can generate the arrival with a lower operating cost. In this paper, we

use “capability” and “cost” interchangeably. The operating cost is the agent’s private information,

and stays the same throughout the time horizon. The common prior distribution of the operating

cost has a support C. In this paper we consider a binary set C = {g, b} with g < b. The operating

cost c is also referred to as the agent’s type. The prior probabilities of types g and b are p and 1−p,

respectively. We refer to the type g agent, who has a lower cost g, as the good agent and b as the

bad agent. In this paper, we require the following assumption.

Assumption 1.

βg ≤R, or, equivalently, µR≥ g.

This assumption guarantees that the good agent is efficient, which means that this agent gen-

erates a positive societal value whenever exerting effort. With this assumption, we exclude the

trivial case where both agents are inefficient because it is obviously dominant for the principal to

offer a null contract with no payment and immediate termination in that trivial case. Note that

we have not made any assumption on the bad agent’s cost b yet. Indeed, the bad agent can either

be efficient (βb ≤ R) or inefficient (βb > R), which leads to somewhat different optimal contract

structures, as will be discussed later in Section 6.

We assume that the principal needs to reimburse the flow operating cost in real time, because

the agent has limited liability and is cash constrained, a standard assumption in the dynamic

contracting literature. In particular, at any point in time, the agent’s effort choice is constrained by

the flow reimbursement provided by the principal. Because the agent knows the operating cost in

the beginning, following the Revelation Principle, it is without loss of generality to consider direct

mechanisms (see, for example, Myerson 1986, Pavan et al. 2014). In our context, the principal

designs a menu of contracts ΓC = {γc}c∈C, such that type c agent chooses contract γc. It is natural

to assume that contract γc provides the type c agent a flow reimbursement c before the termination

of the contract.(This situation is fairly common in contexts such as R&D and lobbying, where the
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principal has to provide a continuous flow of payments for the agent to operate. It may take the

form of retainers in the case of lobbyists or repetitive payments in the case of R&D contracts.)4

Generally speaking, if the agent chooses an effort level strictly less than µ, and therefore does not

use up the operating payment, the part not being used can be diverted as a shirking benefit to the

agent.5

Any contract γc = (Ic, T c) includes a payment process Ic, and a time duration T c (deadline).

When it is not necessary in the context to stress the operating cost c, we also use the notation

γ = (I,T ) without superscripts to represent a generic contract. Specifically, for a payment process

I = {It}t≥0, at each time epoch t≥ 0, It represents the instantaneous payment for success at time t,

and T is the time at which the contract is terminated absent an arrival. Therefore, the contract ends

at time T ∧ τ . The agent’s limited liability (LL) and being cash constrained imply that payment is

from the principal to the agent but not the other way around. That is,

Ict ≥ 0, ∀t≥ 0, c∈ C. (LL)

Agent utility Given a dynamic contract γc = (Ic, T c) and an effort process ν, the expected

utility of the agent with an operating cost c′ is

u(γc, ν; c′) :=Eν
[
Icτ ·1τ<T c +

∫ T c∧τ

0

(c− νt ·βc′)dt

]
, (1)

in which the expectation Eν is taken with respect to arrival rates

probabilities generated from the effort process ν.6

Denote N to be the set of all effort processes ν that satisfy the condition νt ∈ [0, µ]. Further

denote N(γc, c)⊆N to represent the set of best-response (BR) effort processes, when the type c

agent truthfully reports and chooses contract γc. That is,

u
(
γc, ν; c

)
≥ u(γc, ν ′; c), ∀ν ∈N(γc, c) and ν ′ ∈N . (BR)

Next, it is worth discussing the scenario when a type c agent pretends to be of type c′ in the

following remark.

Remark 1. When the type g agent pretends to be of type b, he can choose any effort process in N ,

because the flow payment b is able to fully cover his effort cost g. On the other hand, if the type b

agent pretends to be type g, then this agent is only reimbursed with an effort cost g. Consequently,

the agent’s effort level can not be higher than µg/b. We denote the set of effort processes that can

be chosen by the bad type when mimicking the good one as

N ′ := {ν | νt ≤ µg/b, ∀t}.

If the agent chooses an effort level strictly less than µg/b, he diverts the rest flow reimbursement

as a shirking benefit. Q.E.D.
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The revelation principle implies that we can focus on direct mechanisms. Therefore, we need the

following Incentive-Compatibility (IC) constraints on the menu ΓC, which ensures that an agent

with operating cost c indeed chooses contract γc from the menu, that is,

u(γg, νg;g)≥ u
(
γb, ν;g

)
, ∀νg ∈N(γg, g), ν ∈N , (ICg)

u(γb, νb; b)≥ u (γg, ν; b) , ∀νb ∈N(γb, b), ν ∈N ′. (ICb)

It is standard to consider the agent’s continuation utility (also called the promised utility, see, for

example, Biais et al. 2010) at time t, defined as,7

Wt(γ
c, ν; c) =Eν

[
Icτ ·1τ<T c +

∫ T c∧τ

t+

(c− νs ·βc)ds

]
1t<T c∧τ , (2)

for the type c agent who exerts an effort process ν under contract γc. Following standard assump-

tions in the dynamic contracting literature, the principal has the commitment power to issue a

long term contract, while the agent can choose to walk away from the contract at any time with a

zero utility. That is, we need the following Individual Rationality (IR) constraint to guarantee the

agent’s participation before contract termination,

Wt(γ
c, ν; c)≥ 0, ∀t∈ [0, T c ∧ τ ], c∈ C. (IR)

Principal utility. Denote U(γc, νc) to represent the principal’s total expected utility from a

contract γc for a type c agent who exerts effort according to a process νc ∈N(γc, c). That is,

U(γc, νc) :=Eν
c

[(R− Icτ )1τ<T c ] . (3)

Now we define U(ΓC) := E [U(γc, νc)] to represent the principal’s total expected utility from the

menu of contracts ΓC. The principal’s contract design problem is

Z(C) := sup
ΓC

U(ΓC) = p ·U(γg, νg) + (1− p) ·U(γb, νb) (4)

s.t. (LL), (BR), (IR), (ICg) and (ICb).

The objective function value Z(C) is the principal’s optimal expected utility. Note that the con-

straints (LL), (BR), and (IR) are for each c ∈ C. The constraints (ICg) and (ICb) imply that the

maximization problem (4) cannot be decoupled in c.

4. Implementable Contracts

In this section, we present all possible contract forms that will appear in an optimal menu of

contracts before rigorously deriving them in the next section. Note that the space of the dynamic

contracts could be enormous. Here, we greatly narrow down the possibilities to three structures:

pay-to-leave contract, IC-binding contract, and screening contract, all of which are easy to compute

and implement. In later sections, we will formally show how to derive the optimal contracts and

verify that these three contract structures suffice.
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4.1. Pay-to-leave contract

First, we introduce the so-called pay-to-leave contract. In particular, we allow the principal to pay

a lump-sum payment without asking the agent to work.

Definition 1. For a lump-sum payment B ≥ 0, define a pay-to-leave contract γ̌(B), which pays

the agent I0 =B at time 0, and then set the time duration as T = 0.

One can imagine that when the bad type is inefficient (µR≤ b), hiring the agent hurts the principal.

To resolve the adverse selection issue, the principal can provide the bad type a pay-to-leave contract

that asks the bad type to leave without working. Later in Section 5, we show that a pay-to-leave

contract may also appear when the bad type is efficient (µR > b) but the revenue R is not large

enough.

4.2. IC-binding contract

Second, we introduce the so-called IC-binding contract.

Definition 2. For any deadline T ≥ 0, define an IC-binding contract γ̂c(T ) = (Ic, T c), which gen-

erates a promised utility process {W c
t } following W c

0 = c ·T , as well as a payment process {Ict } and

time duration T c = T , such that

W c
t = c(T c− t), and (5)

Ict =W c
t +βc. (6)

Note that (5) and (6) implies that time duration T fully specifies Ict . That is why γ̂c(T c) only has

one parameter T . Consider a small time interval [t, t+ δ], the agent’s expected gain is νt · (It−Wt),

and expected cost is νt · βc. Hence, he chooses his effort νt to maximize νt · (It−Wt−βc). Hence,

the agent’s optimal effort choice is νt = µ if It −Wt ≥ βc, and νt = 0 if It −Wt < βc. Hence, the

IC-binding contract keeps the incentive constraint always binding. Therefore, the agent is always

indifferent between exerting full effort and exerting zero effort. That is why the agent’s continuation

utility at time t is c(T − t), which equals the operating cost from time t to the end of duration

T . Not surprisingly, γ̂c(T ) is the optimal contract when the principal knows the agent’s type. We

formally show this result in Section 4.4. In the contract design problem with adverse selection,

we show that the bad type is provided either a pay-to-leave contract or an IC-binding contract.

However, in the optimal menu of contracts, the good type may obtain a contract in which the

incentive constraint is not always binding. That is, providing more incentives to the good type may

help with screening out good from bad.
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4.3. Screening contract

As mentioned above, a contract where the incentive constraint is not always binding is helpful in

our context. We introduce this so-called Screening contract for type g.

Definition 3. For any deadline T ≥ 0, and a transition time t1 ∈ [0, T ], define a screening contract

γ̄(t1, T ) = (I,T ), which generates a promised utility process {Wt} according to

Wt =

{
g(T − t) + (βb−βg)

(
1− e−µ(T−t)) , for t∈ [t1, T ],

g(t1− t) +Wt1 , for t∈ [0, t1),
(7)

as well as a payment process {It} and time duration T ,

It =

{
g(T − t) +βb, for t∈ [t1, T ],
Wt +βg, for t∈ [0, t1).

(8)

In particular, the good type agent’s incentive constraint is not always binding in contract γ̄. Specif-

ically, there exists t1 such that before t1, the good type agent’s incentive constraint is set to be

binding, and after t1, the bad type agent’s incentive constraint is binding. To see this, (7) and

(8) imply that It −Wt = βg for t ∈ [0, t1) and It − g(T − t) = βb for t ∈ [t1, T ]. Here, g(T − t) can

be interpreted as the bad agent’s continuation utility by mimicking the good agent since the bad

agent weakly prefers not working, and his continuation utility at time t equals the rest of the

reimbursement cost he can collect from time t. As a result, it delivers the good agent a utility

that is higher than the utility obtained from an IC-binding contract with the same deadline, i.e.,

u(γ̄(t1, T ), ν̄;g)≥ g ·T = u(γ̂g(T ), ν̄;g), where ν̄ := {ν̄t}t≥0 represents the always exerting effort pro-

cess such that ν̄t = µ for all t before contract termination. In Section 4.4, we formally show that

always exerting effort is the good type’s best response to the contract γ̄. It is worth noting that γ̄

becomes the IC-binding contract when t1 = T .

This contract provides incentives high enough for the good agent to work while not so high as

to make the bad agent exert any effort (even partial effort). An immediate result of implementing

such a contract is that only the good agent is willing to work, which may eventually result in a

breakthrough. Hence, it screens out the good agent from the bad, making it a Screening contract.

Because the bad agent does not work in the contract, it also reduces the bad agent’s information

rent by mimicking the good agent. However, the good agent can still enjoy a higher promised utility

from the extra incentives higher than that in the IC-binding case. Finally, we plot It and Wt of

γ̄ in Figure 1. It is worth noting that Wt is continuous in t on interval [0, T ] and It may not be

continuous at t= t1. This is because It−Wt = βg for t∈ [0, t1) and It−Wt >βg for t1 ∈ [t1, T ].

Note to Feifan: There needs to be a discussion explain why the jump at t1 helps, intuitively.
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Figure 1 Sample trajectories of the screening contract γ̄(t1, T ).

Note. In this figure, Wt and It follow definition 3. g= 1, b= 2, µ= 1, and t1 = 4, T = 5.

4.4. Principal and agent utilities

To conclude this section, we present results on agent and principal utilities under the aforemen-

tioned contract structures. First, we formally establish the agent’s utility under the three contract

structures.

Proposition 1. (i) For any T ≥ 0, we have ν̄ ∈N(γ̂c(T ), c), and

u
(
γ̂c(T ), ν̄; c

)
= c ·T.

(ii) For any T ≥ 0 and g < b, we have ν0 ∈N(γ̂g(T ), b), ν̄ ∈N(γ̂b(T ), g)

u
(
γ̂g(T ), ν0; b

)
= g ·T,u

(
γ̂b(T ), ν̄;g

)
= b ·T + (βb−βg)

(
1− e−µT

)
,

where ν0 := {ν0
t }t≥0 represents the always shirking process such that ν0

t = 0 for all t before

contract termination.

(iii) For any 0≤ t1 ≤ T , we have ν̄ ∈N(γ̄(t1, T ), g), ν0 ∈N(γ̄(t1, T ), b), and

u
(
γ̄(t1, T ), ν̄;g

)
= g ·T + (βb−βg)

(
1− e−µ(T−t1)

)
, u
(
γ̄(t1, T ), ν0; b

)
= g ·T. (9)

First, part (i) of Proposition 1 shows that an IC-binding contract with duration T just provides

the minimum incentive for the agent to always exert full effort, and the agent’s utility is exactly
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c · T . Second, part (ii) of Proposition 1 shows that the bad type is not willing to work in a good

type’s IC binding contract and will get g ·T , which is equal to the operating cost collected from the

entire duration. On the other hand, not surprisingly, the good type is willing to exert full effort in

a bad type’s IC-binding contract, and his utility equals the bad type’s utility under the IC-binding

contract (b · T ) plus the expected operation cost difference between b and g. Third, part (iii) of

Proposition 1 shows that the good type is willing to exert full effort in the screening contract,

which confirms that the screening contract can screen the good type from the bad.

In the following, we derive the principal utilities under the above contract forms. First, we

consider the IC-binding contract γ̂c(T ). Define a societal value function, Sc(w), as a function of

the promised utility w,

Sc(w) =


(
R− c

µ

)(
1− e−µw/c

)
, if µR− c > 0,

0, if µR− c≤ 0,
(10)

and the principal’s value function is Fc(w) = Sc(w) − w. The next proposition shows that the

function Fc(w) is indeed the principal’s value under an IC-binding contract with duration T =w/c.

Proposition 2. If R≥ βc, Fc(w) =U(γ̂c(w/c), ν̄). Furthermore, Z({c}) = maxw≥0Fc(w).

Therefore, contract γ̂c(w∗c ) is an optimal solution to (4) when the set C of operating costs is reduced

to a singleton {c}, in which w∗c is the unique maximizer of the strictly concave function Fc(w). If

R≤ βc, it is optimal for the principal not to hire the agent from the beginning. One can think of

the scenario when C is a singleton as a benchmark setting of our contract design problem. This

benchmark setting is similar to, although slightly more general than, the model in Green and

Taylor (2016).8

Proposition 3. (i) For any w≥ 0 and ν ∈N , we have U(γ̌(w), ν) =−w.

(ii) For any 0≤ t1 ≤ T and g < µR, we have

U(γ̄(t1, T ), ν̄) = Sg(g ·T )−u(γ̄(t1, T ), ν̄).

Hence, part (i) of Proposition 3 shows that, under a pay-to-leave contract which pays the agent

w, the principal obtains −w. Part (ii) of Proposition 3 shows that under the screening contract,

the principal’s utility can be calculated by the societal value function Sg. Both parts are somewhat

straightforward since the principal’s utility is just the societal value minus the agent’s utility.

5. Summary of main results

In this section, we present our main result in the next theorem, and leave its justification to the

next section of the paper.
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Theorem 1. Given model parameters µ and b > g, the optimal menu of contracts demonstrate the

following three possible pairs.

(i) If the revenue R≤R(p), in which

R(p) =


(2 + p)b− pg
bp+ (1− p)g

βg, p≤
g

b
,

1 + p

p
βg, p >

g

b
,

(11)

the optimal menu of contracts is Γ{g,b} := {γ̌ (0) , γ̌ (0)}. That is, it is optimal not to hire the

agent at all.

(ii) If the revenue R(p)<R≤ R̄(p), in which

R̄(p) =


(2 + p)b− pg
bp+ (1− p)g

βg, p≤
g

b
,

b− pg
(1− p)µ

, p >
g

b
,

(12)

the optimal menu of contracts is Γ∗{g,b} :=
{
γ̂g
(
T ∗g
)
, γ̌
(
g ·T ∗g

)}
with

T ∗g =
1

µ
log

(
(µR− g) · p

g

)
(13)

(iii) If the revenue R> R̄(p), the optimal menu of contract is Γ∗∗{g,b} :=
{
γ̄
(
t∗1, T

1
g

)
, γ̂b

(
g ·T 1

g /b
)}

where T 1
g solves

p(µR− g)e−µT
1
g + g/b · [(1− p)(µR− b)− p(b− g)]e−µ·g/b·T

1
g = g, (14)

and t∗1 =
(

1− g
b

)
T 1
g .

Figure 2 demonstrates the optimal menu of contracts. First, if the revenue R is low, it is not worth

hiring the agent (Area I). Second, if the revenue R is above the threshold R(p) but below the

thresold R̄(p) (Area II), only the good type agent is worth hiring. Hence, the good type is provided

an IC-binding contract, while the bad type is provided a pay-to-leave contract. When R is above

the threshold R̄(p) (Area III), both types are worth hiring, which leads to the result where the

good type is provided a screening contract and the bad type is provided an IC-binding contract.

6. Analysis of Theorem 1

In this section, we present the main steps to prove Theorem 1. First, we construct an optimization

problem, which provides an upper bound for the original contract design problem (4), in subsection

6.1. Then, in Subsection 6.2-6.4, we construct a menu of contracts based on the optimal solution

to the upper bound optimization problem and show that this menu of contracts achieves the upper

bound, and therefore is indeed the optimal menu.
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Figure 2 Partition of the (p,R) Plane Based on Optimal Contract Menus

Note. In this figure, g= 1, b= 1.5, µ= 1.

6.1. Upper Bound Optimization

In this subsection, we present a new optimization problem, which provides an upper bound to the

original contract design problem (4). In the following result, we use functions Sg and Sb as defined

in (10) for c∈ {g, b}.

Proposition 4. The following optimization problem yields the upper bound of the optimal value

of the contract design problem (4). That is, Y ≥Z({g, b}), where

max
wg ,wb,Tg

p [Sg (g ·Tg)−wg] + (1− p)min

{
Fb(wb),

wg −wb
b− g

(µR− b)+−wb
}
, (15)

s.t.wg ≥wb ≥ g ·Tg, (16)

Tg ≥ 0. (17)

It is instructive to explain the terms in the optimization problem (15)-(17). First, the decision

variables wg and wb represent the utilities of type g and b agent under their respective contracts. The

decision variable Tg is the time duration for the type g agent. The value Sg (g ·Tg)−wg represents

the principal’s expected utility facing a type g agent. The value right after 1− p represents the

principal’s expected utility facing a type b agent.

The constraint (16) states that the good agent’s utility, wg, needs to be as good as or better

than the bad agent’s wb. Furthermore, the last inequality in (16) states that wb needs to be no less

than the total discounted expected operating cost that the agent would receive by pretending to

be a good agent. This is because receiving the operating cost g without working yields a utility

g ·Tg.
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Constraint (16) reveals why the optimal value Y is only an upper bound. This is because the

constraint itself (or any other constraint in this optimization) does not provide sufficient incentive

for the bad agent not to work facing the good agent’s contract. Restricting the bad agent’s response

(to zero effort) allows the principal to obtain a higher utility than reality, in which the agent may

be able to obtain a utility higher than the right-hand-side of (16) with some effort.

Clearly, Sg (g ·Tg)− wg is the upper bound of the principal’s expected utility facing a type g

agent when the good agent’s utility is wg. Next, we focus on the value right after 1− p. First, the

first part of the value states that the principal’s utility facing a type b agent is upper bounded by

Fb(wb) when offering the type b agent a promised utility wb, consistent with Proposition 2. Finally,

the second part of the value ensures a type g agent does not pretend to be of type b, which is

elaborated in the following remark.

Remark 2. Should the type g agent receive the type b contract, the agent is able to exert effort

and receive the same trajectory of payments as a type b agent. In addition to receiving the wb

reward, the type g agent also collects the extra operating cost b−g for the duration of the contract.

This duration can be calculated as the societal utility, U(γb, νb)+wb, divided by the societal utility

rate, µR− b, if µR> b. This implies the following inequality,

wg ≥wb + (b− g)
U(γb, νb) +wb

µR− b
, or, equivalently, U(γb, νb) +wb ≤

wg −wb
b− g

(µR− b). (18)

If µR ≤ b, on the other hand, the societal value of hiring the agent is negative, and, therefore,

U(γb, νb) +wb ≤ 0. The value right after 1− p captures both cases of µR> b and µR≤ b. �

So far, we have provided intuitive interpretations of various components of the optimization problem

(15)-(17). This optimization plays a central role in our contract design problem since solving it

obtains a menu of contracts based on its optimal solution. We further show that the performance

of such a menu of contracts indeed achieves the upper bound Y of Z({g, b}). Therefore, this menu

of contracts is optimal. In our construction, each contract in the menu has a simple form.

6.1.1. Optimal Solution to the Upper Bound Optimization First, if the bad type is

inefficient, i.e., b≥ µR. Then, upper bound optimization problem (4) becomes

max
wg ,wb,Tg

p{Sg (g ·Tg)−wg}− (1− p)wb, (19)

s.t.wg ≥wb ≥ g ·Tg, (20)

Tg ≥ 0. (21)

Clearly, the objective (19) is decreasing in both wg and wb. Hence, the optimal choice of wg and

wb are wg = wb = g · Tg. After plugging in wg,wb, the objective function is concave in Tg; it is

straightforward to use the first-order condition to find the optimal Tg. We summarize the optimal

solution in the following proposition.
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Proposition 5. If βb ≥R, the optimal solution to the optimization problem (15)-(17) is

Tg =


0, if R≤ (1 + p)

p
βg,

T ∗g , if R>
(1 + p)

p
βg,

(22)

where T ∗g is defined in (13) and wg =wb = g ·Tg.

Next, we focus on the case when the bad type is also efficient, i.e., b < µR. We present the optimal

solution to the optimization problem (15).

Proposition 6. (i) If b < µR and p · b ≥ g, the optimal solution to the optimization problem

(15)-(17) is

Tg =


0, R≤ 1 + p

p
βg,

T ∗g , R ∈
(

1 + p

p
βg,

b− pg
(1− p)µ

]
,

T 1
g , R >

b− pg
(1− p)µ

.

(23)

where T ∗g is defined in (13) and T 1
g is defined in (iii) of Theorem 1.

wg =


0, R≤ 1 + p

p
βg,

g ·T ∗g , R ∈
(

1 + p

p
βg,

b− pg
(1− p)µ

]
,

g ·T 1
g + (βb−βg)

(
1− e−µ·g/b·T

1
g

)
, R >

b− pg
(1− p)µ

.

(24)

and wb = g ·Tg.
(ii) If b < µR and p · b < g, the optimal solution to the optimization problem (15)-(17) is

Tg =


0, R≤ (2 + p)b− pg

bp+ (1− p)g
βg,

T 1
g , R >

(2 + p)b− pg
bp+ (1− p)g

βg.
(25)

and

wg =


0, R≤ (2 + p)b− pg

bp+ (1− p)g
βg,

g ·T 1
g + (βb−βg)

(
1− e−µ·g/b·T

1
g

)
, R >

(2 + p)b− pg
bp+ (1− p)g

βg.
(26)

and wb = g ·Tg.

Finally, we combine the optimal solutions in Propositions 5 and 6.

Corollary 1. (i) If R≤R(p), then the optimal solution to the optimization problem (15)-(17)

is

wg =wb = Tg = 0 (27)
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(ii) If R(p)<R≤R(p), then the optimal solution to the optimization problem (15)-(17) is

wg =wb = g ·T ∗g , Tg = T ∗g , (28)

where T ∗g follows (13).

(iii) If R> R̄(p), then the optimal solution to the optimization problem (15)-(17) is

wg = g ·T 1
g + (βb−βg)

(
1− e−µ·g/b·T

1
g

)
,wb = g ·T 1

g , Tg = T 1
g , (29)

where T 1
g is defined in (iii) of Theorem 1.

6.2. Low Revenue R (Area I of Figure 2)

Following point (i) of Corollary 1, we have

0 =Y ≥Z({g, b}).

Clearly, not hiring the agent at all achieves the upper bound. Hence, if revenue R is low enough,

i.e., R <R(p), the principal cannot do better than just firing the agent. We formally summarize

the results in the following.

Proposition 7. If R≤R(p), then the menu of contracts Γ{g,b} defined in (i) of Theorem 1 satisfies

(LL), (BR), (IR), (ICg), and (ICb). Furthermore, we have U(Γ{g,b}) =Y = 0, in which Y is defined

in (15)-(17). Therefore, we have U(Γ{g,b}) = Z({g, b}), or, the menu of contract Γ{g,b} solves the

optimal contract design problem (4) if R≤R(p).

6.3. Medium Revenue R (Area II of Figure 2)

Following point (ii) of Corollary 1, in the optimal solution wg =wb, which implies that the principal

obtains −wb from the bad type. Furthermore, wg = g ·Tg implies that the incentive constraints in

the good agent’s contract should always be binding. Hence, the bad type is always given a pay-to-

leave contract defined in Definition 1, where the lump-sum payment g ·T ∗g is as high as the benefit

from mimicking the good type. The good type is always given an IC-binding contract defined in

Definition 2, with the contract duration T ∗g , which increases in revenue R, probability of the good

type p, and decreases in good type’s cost g. In the following, we formally prove that this menu of

contract satisfies all the constraints for the contract design problem (4) and it delivers the principal

a value that achieves the optimal value of the upper bound optimization (15)-(17).

Proposition 8. If R(p)<R≤ R̄(p), then the menu of contracts Γ∗{g,b} defined in (ii) of Theorem

1 satisfies (LL), (BR), (IR), (ICg), and (ICb). Furthermore, we have U(Γ∗{g,b}) = Y, in which Y
is defined in (15)-(17). Therefore, we have U(Γ∗{g,b}) = Z({g, b}), or, the menu of contract Γ∗{g,b}

solves the optimal contract design problem (4) if R(p)<R≤ R̄(p).
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It is worth reflecting incentives around the optimal menu of contracts Γ∗{g,b}. In the case when

revenue R is in the medium level, the initial lump-sum payment w∗b to the bad agent equals the total

operating cost g that the agent can collect by pretending to be the good agent while shirking until

the end of the contract duration. This initial lump-sum payment mitigates the bad agent’s incentive

to lie about the high cost. It is also worth noting that the (ICg) (truth-telling constraint for the

good agent) is also binding. That is, the good agent’s promised utility w∗g under the IC-binding

contract is the same as the lump-sum payment to the bad agent w∗b .

6.4. High Revenue R (Area III of Figure 2)

The optimal solution presented in (iii) of Corollary 1 shows that wg > wb = g · Tg, which implies

that the good type’s utility is higher than the bad type’s utility and the utility of the good type

that can receive from an IC-binding contract with the same deadline Tg. Hence, the good type is

provided a screening contract γ̄(t1, Tg), where t1 is chosen such that

u(γ̄(t1, Tg), ν̄;g) = gT 1
g + (βb−βg)

(
1− e−µ(T1

g−t1)
)

=wg = g ·T 1
g + (βb−βg)

(
1− e−µ·g/b·T

1
g

)
,

where the first equality follows from (9), and the last equality follows from (29). Furthermore, (29)

implies that

wg −wb
b− g

(µR− b)−wb =
(βb−βg)

(
1− e−µ·g/b·T1

g

)
b− g

(µR− b)− g ·Tg

= (R−βb)
(

1− e−µ·g/b·T
1
g

)
− g ·Tg = Sb(g ·Tg)− g ·Tg = Fb(g ·Tg),

where the third equality follows from (10). That is, under the optimal solution, the two terms in

the minimum of objective (15) are exactly equal. Hence, the principal’s value obtained from the

bad agent can be achieved by an IC-binding contract to type b with deadline g ·Tg/b. We are now

ready to present the main result of this section.

Proposition 9. If R > R̄(p), then the menu of contracts Γ∗∗{g,b} defined in (iii) of Theorem 1

satisfies (LL), (BR), (IR), (ICg), and (ICb). Furthermore, we have U(Γ∗∗{g,b}) = Y, in which Y

is defined in (15)-(17). Therefore, we have U(Γ∗∗{g,b}) = Z({g, b}), or, the menu of contract Γ∗∗{g,b}

solves the optimal contract design problem (4) if R> R̄(p).

When revenue R is high enough, both types are worth hiring. To screen out the good type from

the bad, the good type is provided a screening contract, which delivers the good agent a higher

continuation utility than an IC-binding contract. It is worth noting that the truth-telling constraint

for the bad agent, (ICb), is always binding and that for the good agent, (ICg), is not binding. Izak
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7. Managerial Implications

In Subsection 7.1, we further summarize the main properties of the optimal menu of contracts.

Finally, in Subsection 7.2, we discuss the welfare implications of unknown cost by comparing the

optimal menu of contracts between the unknown cost and the known cost scenarios.

7.1. Main properties of the optimal contracts

In this subsection, we highlight the following properties of the optimal menu of contracts.

Property 1:

ν̄ ∈N
(
γg, g

)
, and ν̄ ∈N

(
γb, b

)
The optimal menu of contracts induces both types of agents to exert full effort in their own contract.

Property 2:

ν0 ∈N
(
γg, b

)
The property states that a bad agent who pretends to be good prefers shirking until the end.

Property 3:

Ibt −W b
t = βb,∀t > 0.

This property indicates that under the optimal menu, the incentive constraint is binding in the

bad agent’s contract the entire time. For the bad agent, arrivals do not resolve adverse selection

because the good agent is able to mimic bad agents and generate arrivals. Therefore, the principal

always offers a dynamically efficient contract, i.e., the IC binding contract to the bad agent, and

adjusts other parameters in the menu to achieve optimality. By contrast, the incentive constraint

may not always be binding in the good agent’s contract.

7.2. Welfare implications of unknown cost

In this section, we present how unknown cost affects the welfare of the principal and the agent,

compared to the situations with known cost. We show that unknown cost always hurts the principal,

but may hurt or benefit the agent, depending on whether or not the bad agent is efficient.

Denote Ȳ to represent the principal’s expected payoff when cost is observable, and either takes

value g with probability p, or b with probability 1− p. That is,

Ȳ := pZ({g}) + (1− p)Z({b}), (30)

in which Z({g}) and Z({b}) are the principal’s optimal utility earned from the good agent and

the bad agent, respectively, following (4). Proposition 2 has shown that the IC-binding contract
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is optimal for the case the agent’s cost is known by the principal. It is clear that the principal is

always better off knowing the cost of the agent before issuing the contract, or, Y ≤ Ȳ. Intuitively,

this conclusion follows from the basic idea of value of information. In particular, with known cost,

the principal does not need to pay the information rent associated with unknown cost.

Now, we consider the agent’s utility in the following two different cases. Define wg∗ and wb∗ to

be the maximizers of functions Fg(w) and Fb(w), respectively. Following Proposition 2, we know

that they are the good and bad agents’ utilities when the cost is observable under the respective

optimal contracts. First, consider the situation that the bad agent is not efficient, or βb ≥ R. In

this case, the good agent is worse off, and the bad agent is better off in the unknown cost situation,

compared with the known cost one, as stated in the following result.

Proposition 10. If βb ≥R, we have

w∗g ≤wg∗, and w∗b ≥wb∗ = 0, (31)

where w∗g and w∗b are from the optimal solution of (19).

Apparently, the bad agent can earn some information rent if the cost is unknown. Such informa-

tion rent does not exist if the cost is known. Therefore, the bad agent is better off with unknown

costs. The good agent is worse off because, with unknown costs, the bad agent could mimic the

good agent, triggering the principal to curtail the good agent’s payoff to prevent paying the bad

agent too much information rent.

If the bad agent is efficient, or βb <R, then either agent can be better or worse off with unknown

cost. The following proposition shows that whether the agent is better or worse off is monotone in

revenue R.

Proposition 11. Fix p∈ (0,1) and b > g, there exists two thresholds R1,R2 >βb such that w∗g ≥wg∗
if and only if R≥R1 and w∗b ≤wb∗ if and only if R≥R2.

Proposition 11 shows that when revenue R is large enough, the bad agent is worse off, and the

good agent is better off with unknown cost. The agent’s information rent arises from his ability to

mimic the other type. Notice that once such information rent exists, the principal would tweak the

contract of whomever is mimicked to reduce the information rent. As a result, the imitator becomes

better off, and the imitatee becomes worse off. Since both types of agent may have the incentive to

mimic the other type, whether the agent becomes better off or worse off depends on which effect

dominates. Firstly, when R is small, only the bad agent wants to mimic the good agent, and thus

the good agent becomes worse off and the good agent is better off; however, as R increases, the

good agent can earn information rent by mimicking the bad agent, and thus he becomes better off

and the bad agent, as the imitatee, becomes worse off. Finally, Figure 3 shows how good and bad

agent’s utilities change as revenue R changes under known cost and unknown cost scenarios.
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Figure 3 Agent’s utilities under optimal contracts as R varies

(a) Good agent’s utility under known cost, and unknown

cost scenarios

(b) Bad agent’s utility under known cost, and unknown

cost scenarios

Notes. In this figure, µ= 1, g= 1, b= 2, p= 0.3,R ∈ [0,16.5].

8. Conclusion

Note to Feng himself:

1. Strengthen our contribution on providing a way to solve the dynamic moral hazard with

adverse selection problem (Upper bound optimization). Luckily, it leads to the optimal solution. In

a more complex setting, the upper bound optimization may not lead to an implementable optimal

results. However, the solution provides good idea of creating implementable contracts.

2. Mention future extension to infinite arrivals

Endnotes

1. https://www.chron.com/news/houston-texas/article/Prof-accused-of-spending-NASA-grants-

on-cars-1722521.php

2. https://www.newsweek.com/fund-meant-vaccine-research-misused-least-145m-unrelated-

expenses-almost-decade-1564954

3. See https://www.chooseenergy.com/news/article/failed-v-c-summer-nuclear-project-timeline/.

4. The charging of retainers by lobbyists is common, see for exam-

ple, https://lobbyit.com/pricing/, https://arnoldpublicaffairs.com/faq/ and

https://lobbying101.wordpress.com/about-lobbyists/how-much-do-they-charge/. Furthermore, it

is common that R&D projects are funded for long durations of time and may not bring any results
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in the end.

5. Shirking and misuse of research funds are surprisingly common in R&D settings, see, for

example, https://www.chron.com/news/houston-texas/article/Prof-accused-of-spending-NASA-

grants-on-cars-1722521.php, https://www.nbcnews.com/news/us-news/philadelphia-professor-

accused-spending-185-000-grant-funds-strip-clubs-n1118571, https://www.newsweek.com/fund-

meant-vaccine-research-misused-least-145m-unrelated-expenses-almost-decade-1564954, and

https://www.theguardian.com/higher-education-network/2015/mar/27/research-grant-money-

spent.

6. In equation (1), if c′ = c, then the agent truthfully reports his type. If c′ 6= c, then the agent

misreports his type and mimic the other type.

7. It is worth noting that the integral is from t+. Therefore, any instantaneous payment at time

t (for example, potential lump-sum payment at time 0) is not included in the promised utility. We

use notation Wt− := lims↑tWt, which includes the potential upwdard jump at time t.

8. In our paper, the agent can choose any effort level in [0, µ], while in Green and Taylor (2016),

the agent can only choose between µ or 0.
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Appendix

A. Summary of Notations

B. Proof in Section 4

B.1. Formal incentive compatibility constraints
The following result, which can be adapted from Proposition 1 in Biais et al. (2010), depicts the dynamic of
the process Wt, and provides an equivalent condition to a best-response effort process.

Lemma 1. For any contract γc, effort process ν, and operating cost c, we have

dWt(γ
c, ν; c) = {νt[Wt−(γc, ν; c)− Ict +βc]dt− cdt}10≤t<T∧τ . (PK)

Furthermore, the following defined effort process is a best response to contract γc, or, {νt}t∈[0,T∧τ ] ∈N(γ, c),
in which

νt =

µ, if It−Wt−(γc, ν; c)>βc,
ν ∈ [0, µ], if It−Wt−(γc, ν; c) = βc,
0, o.w..

(ICw)

Proof: Denote a right-continuous counting process N = {Nt}t≥0 to record the number of arrivals up to
time t, which generates a filtration FN = {FNt }t≥0. Therefore, the instantaneous arrival rate of the counting
process at time t is νt, and the left-continuous effort process ν = {νt}t≥0 is FN -predictable. Hence, the arrival
time can be expressed as τ = inf{t|dNt = 1}. Furthermore, Wt(γ

c, ν; c) defined in (2) can also be expressed
as

Wt(γ
c, ν; c) = Eν

[∫ Tc∧τ

t+

IcsdNs + (c− νs ·βc)ds
]
1t<T∧τ . (32)



Author: 27

To characterize how the agent’s continuation utility evolves over time, it is useful to consider his lifetime
expected utility, evaluated conditionally upon the information available at time t

ut(γ
c, ν; c) = Eν

[∫ Tc∧τ

0

(c− νsβc) ds+ IcsdNs

∣∣∣∣FNt ]
=

∫ t∧Tc∧τ−

0

(c− νsβc) ds+ IcsdNs +Wt(γ, ν; c) (33)

Since ut(γ, ν; c) is the expectation of a given random variable conditional on FNt , the process u(γc, ν; c) =
{ut(γc, ν; c)}t≥0 is an martingale under the probability measure Pν . Relying on this martingale property, we
now offer an alternative representation of u(γc, ν; c). Consider the process Mν = {Mν

t }t=≥0 defined by

Mν
t =Nt−

∫ t

0

νsds (34)

for all t≥ 0. The martingale representation theorem for point processes implies that the martingale u(γ, ν; c)
satisfies

ut(γ, ν; c) = u0(γ, ν; c) +

∫ t∧τ

0

Hs(γ
c, ν; c)dMν

s (35)

for all t ≥ 0, Pν-almost surely, for some FN -predictable process H(γ, ν; c) = {Ht(γ, ν; c)}t≥0. By (33) and
(35), we obtain that

dut(γ
c, ν; c) = (c− νtβc)dt+ Ict dNt + dWt(γ

c, ν; c)

=Ht(γ
c, ν; c) (dNt− νtdt) ,

which further implies that

dWt(γ
c, ν; c) = νt[−Ht(γ, ν; c) +βc]dt− cdt+HtdNt− Ict dNt. (36)

Finally, WT∧τ = 0 and dWt =Ht− Ict at dNt = 1 implies that Ht = Ict −Wt for any t, which verifies (PK).
In the following, we show that {νt}t∈[0,τ ] defined in (ICw) is a best response to contract γc. Let ũt denote

the agent’s lifetime expected payoff, given the information available at date t, when he acts according to
ν′ = {ν′t}t≥0 until date t and then reverts to ν = {νt}t≥0:

ũt =

∫ t∧Tc∧τ−

0

(c− ν′sβc) ds+ IcsdNs +Wt(γ
c, ν; c). (37)

In fact, we have ũ0− =W0− = u(γc, ν; c). We finish the proof in three steps.
Step 1: We show that if ũ= {ũt}t≥0 is an FN -submartingale under Pν that is not a martingale, then ν is

suboptimal for the agent. Indeed, in that case there exists some t > 0 such that

u(γc, ν; c) = u0−(γc, ν; c) = ũ0− <Eν′ [u′t] (38)

where u0−(γc, ν; c) and ũ0− correspond to unconditional expected payoffs at date 0. By (37), the agent is
then strictly better off acting according to ν′ until date t and then reverting to ν. The first claim follows.

Step 2: We show that if u′ is a FN -supermartingale under Pν′ , then ν is at least as good as ν′ for the
agent. Following (33) and (37), we have

ũt = ut(γ
c, ν; c) +

∫ t∧Tc∧τ

0

(νs− ν′s)βcds (39)

for all t≥ 0. Hence, since ut(γ
c, ν; c) is right-continuous with left-hand limits, so is u′. Moreover, since u′ is

non-negative, then the limit limt→Tc∧τ u
′
t exists. Hence, by the optional sampling theorem (Dellacherie and

Meyer (2011), Chapter VI, Theorem 10)),

u(γc, ν; c) = ũ0− ≥Eν′ [u′Tc∧τ ] = u0−(γc, ν′; c) = u(γc, ν′; c), (40)

where again u0−(γc, ν′; c) is an unconditional expected payoff at date 0, and the first equality follows from
(37). Hence, the second claim follows.
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Step 3: We apply the above two claims to complete the proof. For each t≥ 0,

ũt = ut(γ, ν; c) +

∫ t∧Tc∧τ

0

(νs− ν′s)βcds

= u0(γ, ν; c) +

∫ t∧Tc∧τ

0

(Ics −Ws(γ
c, ν; c))dMν

s +

∫ t∧Tc∧τ

0

(νs− ν′s)βcds

= u0(γ, ν; c) +

∫ t∧Tc∧τ

0

(Ics −Ws(γ
c, ν; c))dMν′

s +

∫ t∧Tc∧τ

0

(Ics −Ws(γ
c, ν; c))(ν′s− νs)ds+

∫ t∧Tc∧τ

0

(νs− ν′s)βcds

= u0(γ, ν; c) +

∫ t∧Tc∧τ

0

(Ics −Ws(γ
c, ν; c))dMν′

s +

∫ t∧Tc∧τ

0

(ν′s− νs) [Ics −Ws(γ
c, ν; c)−βc] ds. (41)

Since Mν′ is an FN -martingale under P ν′ , the drift of ũ has the same sign as

(ν′t− νt) [Ict −Wt(γ
c, ν; c)−βc]

for all t∈ [0, T c∧τ). If the effort process ν satisfies (ICw), then this drift remains negative for all t∈ [0, T c∧τ)
and all choices of ν′t ∈ [0, µ]. This implies that for any effort process ν′, ũ is an FN -supermartingale under
P ν′ and, thus, that ν is at least as good as ν′ for the agent. This completes the proof.

If (ICw) does not hold for the effort process ν, then choose ν′ such that for each t ∈ [0, T c ∧ τ), ν′t = µ if
Ict −Wt(γ

c, ν; c)≥ βc and ν′t = 0 if Ict −Wt(γ
c, ν; c)<βc. The drift of ũ is then everywhere non-negative and

strictly positive over a set of P ν′ -strictly positive measure. As a result of this, ũ is an FN -submartingale
under P ν′ that is not a martingale and, thus, ν is suboptimal for the agent.

B.2. Useful Definitions and Technical Lemma
Effective Cumulated Effort:

T̄ (γ, ν) := Eν
[∫ T∧τ

0

νtdt

]
, (42)

which measures the agent’s expected effective cumulated effort under contract γ when the agent chooses the
effort process ν.

Societal Value:

S(γ, ν; c) = Eν
[
R1T≤τ −

∫ T∧τ

0

νt ·βcdt
]
, (43)

which measures the expected total value net of cost produced with effort ν when the agent’s cost is c.

Lemma 2. The societal value produced is proportional to the working duration, i.e., S(γ, ν; c) = (R −
βc)T̄ (γ, ν).

Proof:

S(γ, ν; c) = Eν
[
R1T≤τ −

∫ T∧τ

0

νt ·βcdt
]

=Eν
[∫ T∧τ

0

R · νtdt− νt ·βcdt
]

= (R−βc)T̄ (γ, ν). (44)

Hence, for each moment the agent exerts effort νt, he produces an expected revenue of (R−βc)νt. Q.E.D.
Generalized incentive compatibility constraints: We generalize the incentive compatibility con-

straints presented in (BR) and subsection B.1 to the scenario when type c′ agent mimic type c agent by taking
the contract γc. First, we generalize the set N in (BR). Denote N(γc, c′) to represent the set of best-response
effort processes, when the type c′ agent chooses contract γc. That is,

u
(
γb, ν;g

)
≥ u(γb, ν′;g), ∀ν ∈N(γb, g) and ν′ ∈N . (ICg)

u
(
γg, ν; b

)
≥ u(γg, ν′; b), ∀ν ∈N(γg, b) and ν′ ∈N ′, (ICb)

where N ′ is defined in Remark 1. We can further generalize the definition of continuation utility in (2) to

Wt(γ
c, ν; c′) = Eν

[
Icτ ·1τ<Tc +

∫ Tc∧τ

t+

(c− νs ·βc′)ds
]
1t<Tc∧τ , (45)

for tyeo c with effort process ν under contract γc. Similar to Lemma 1, we have the following results which
describe the dynamics of the process Wt(γ

g, ν; b) and Wt(γ
b, ν;g), respectively, and provides an equivalent

condition to a best-response effort process.
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Lemma 3. For any contract γb, effort process ν, and operating cost g, we have

dWt(γ
b, ν;g) =

{
νt[Wt−(γb, ν;g)− Ibt +βg]dt− bdt

}
10≤t<T∧τ . (PKg)

Furthermore, the following defined effort process is a best response to contract γb, or, {νt}t∈[0,T∧τ ] ∈N(γb, g),
in which

νt =

µ, if It−Wt−(γb, ν;g)>βg,
ν ∈ [0, µ], if It−Wt−(γb, ν;g) = βg,
0, o.w..

(ICgw)

For any contract γg, effort process ν, and operating cost b, we have

dWt(γ
g, ν; b) = {νt[Wt−(γg, ν; b)− Ict +βb]dt− gdt}10≤t<T∧τ . (PKb)

Furthermore, the following defined effort process is a best response to contract γg, or, {νt}t∈[0,T∧τ ] ∈N(γg, b),
in which

νt =

µ · g/b, if It−Wt−(γg, ν; b)>βb,
ν ∈ [0, µ · g/b], if It−Wt−(γg, ν; b) = βb,
0, o.w..

(ICbw)

The proof of Lemma 3 can be adapted from the proof of Lemma 1.

B.3. Proof of Proposition 1
Part (i): Since Ict = c(T − t) +βc, we can verify that dWt(γ̂

c(T ), ν̄; c) =−cdt, Wt−(γ̂c(T ), ν̄; c) = c(T − t), and

Ict −Wt−(γ̂c(w), ν̄; c) = βc ≥ βc, Hence, following Lemma 1, we have ν̄ ∈N(γc, c). Clearly, u
(
γ̂c(T ), ν̄; c

)
=

W0−(γ̂c(w), ν̄; c) = c ·T .
Part (ii): In the contract γ̂g(T ), we have Igt = g(T − t) + βg. Following definition (45) and Lemma 3, we

can verify that Wt−(γ̂g(T ), ν0; b) = g(T − t), and Igt −Wt−(γ̂g(T ), ν0; b) = βg < βb. Hence, following Lemma

3, we have ν0 ∈N(γg(T ), b). Therefore, we have u
(
γ̂g(T ), ν0; b

)
= g ·T .

In the contract γ̂b(T ), we have Ibt = b(T − t) + βb. Following definition (45) and Lemma 3, we can verify
that

Wt−(γ̂b(T ), ν̄;g) = b(T − t) +
b− g
µ

(
1− e−µ(T−t)

)
,

Ibt −Wt−(γ̂b(T ), ν̄;g) = βb− (βb−βg)
(
1− e−µ(T−t)

)
>βb− (βb−βg) = βg,∀t∈ [0, T ].

Hence, we have ν̄ ∈N(γb, g). It is straightforward to verify that u
(
γ̂b(T ), ν̄;g

)
=W0−(γ̂b(T ), ν̄;g) = b · T +

(βb−βg) (1− e−µT ) .
Part (iii): Following definition (45) and Lemma 3, we can verify that Wt−(γ̄(t1, T ), ν0; b) = g(T − t), and

It−Wt−(γ̄(t1, T ), ν0; b) =

{
βb− (βb−βg)

(
1− e−µ(T−t1)

)
<βb, for t∈ [0, t1),

βb ≤ βb, for t∈ [t1, T ].

Hence, following Lemma 3, we have ν0 ∈N(γ̄(t1, T ), b). Clearly, we have u
(
γ̄(t1, T ), ν0; b

)
= g ·T .

Again, following Lemma 1, we can verify that

Wt−(γ̄(t1, T ), ν̄;g) =Wt,

where Wt follows (7), and

It−Wt−(γ̄(t1, T ), ν̄;g) =

{
βg ≥ βb, for t∈ [0, t1),
βb >βg, for t∈ [t1, T ].

Hence, following Lemma 1, we have ν̄ = N(γ̄(t1, T ), g). And it is straightforward to verify that

u
(
γ̄(t1, T ), ν̄;g

)
=W0− = g ·T + (βb−βg)

(
1− e−µ(T−t1)

)
.



30 Author:

B.4. Proof of Proposition 2
Proposition 12. If µR− c > 0, then the maximium societal value function, which represents the expected
sum of principal and agent’s value subject to the “promise-keeping” constraint that u(γc, νc; c) = w with
νc ∈N(γc, c), is Sc(w).

Fixing any w≥ 0, we first show that the maximium societal value function is smaller or equal to Sc(w). Since
u(γc, νc; c) = w, incentive and promise keeping constraint requires that T ≤ w/c. If µR > c, then the total
surplus is maximized by setting T =w/c and νt = µ for all t∈ [0,w/c]. That is

max
νc∈N(γc,c)

S(γc, νc; c)≤ max
ν,T≤w/c

[
R ·1τ≤T −

∫ T∧τ

0

cdt

]
= (R−βc)

(
1− e−µT

)
= Sc(w).

Next, following Proposition 1, we have ν̄ ∈N(γ̂c(w/c), c), which implies that Sc(w) is achieved by γ̂c(w/c).
Similarly, if µR− c≤ 0, then the total surplus is 0 and is achieved by setting T = 0. Q.E.D.
We are prepared to prove Proposition 2. Under contract γ̂c(w/c), we have

U(γ̂c(w/c), ν̄) = S(γc, νc; c)−u(γ̂c(w/c), ν̄; c) = Sc(w)−w= Fc(w), (46)

where the second equality follows from Proposition 1 and 12. Furthermore, Proposition 12 implies that

max
νc∈N(γc,c)

U(γc, νc) = max
νc∈N(γc,c)

S(γc, νc)−u(γc, νc; c)≤ Sc(w)−w.

Hence, we have Z({c}) = maxw≥0Fc(w).

B.5. Proof of Proposition 3
Part 1: Under pay-to-leave contract, clearly, the principal’s utility is −w.

Part 2:

U(γ̄(t1, T ), ν̄) = S(γ̄(t1, T ), ν̄;g)−u(γ̄(t1, T ), ν̄;g) = Sg(g ·T )−u(γ̄(t1, T ), ν̄;g).

where the second equality follows from Part 3 of Proposition 1 and the contract duration is T .

B.6. Proof of Proposition 4
For any pair of contracts (γg, γb) that satisfy (LL), (BR), (IR), (ICg) and (ICb), we create a vector (wg,wb, Tg)
such that, they satisfy the constraints (16) - (17), and

p{Sg (g ·Tg)−wg}+ (1− p) min

{
Sb(wb)−wb,

wg −wb
b− g

(µR− b)+−wb
}
≥ p ·U(γg, νg) + (1− p)U(γb, νb)

(47)

Then, we have Y ≥Z({g, b}). We let wg := u(γg, νg;g), wb := u(γb, νb; b), Tg be the time duration of γg.
Step 1: We check the constraints (16) - (17). First, (ICg) implies that

wg ≥max
ν
u(γb, ν;g)≥ u(γb, νb;g) =wb + (b− g)T̄ (γb, νb)≥wb, (48)

where T̄ is defined in (42). Second, (ICb) implies that

wb ≥max
ν
u(γg, ν; b)≥ u(γg, ν0; b) = g ·Tg. (49)

Hence, constraints (16)-(17) are satisfied.
Step 2: The inequality (47) clearly follows from

U(γg, νg) = S(γg, νg;g)−wg ≤ Sg(g ·Tg)−wg,

where the inequality follows from the Proposition 2 and,

U(γb, νb)≤min

{
(wg −wb)
b− g

max{µR− b,0}−wb, Sb(wb)−wb
}
,

which will be shown in the following. If R>βb, then following (48), we have

wg ≥wb + (b− g)T̄ (γb, νb) =wb +
(b− g)S(γb, νb; b)

µR− b
=wb +

(b− g)(U(γb, νb) +wb)

µR− b
(50)
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where the first equality follows from Lemma 2 and the last equality follows from S(γb, νb; b) = U(γb, νb) +
u(γb, νb; b). Rearrange (50), we have

U(γb, νb)≤ (wg −wb)(µR− b)
b− g

−wb, if R>βb. (51)

Further, following Proposition 2, we have

U(γb, νb)≤ Sb(wb)−wb. (52)

On the other hand, if R≤ βb, then

U(γb, νb)≤ 0−wb =−wb, if R≤ βb. (53)

Hence, following (51) - (53), we have

U(γb, νb)≤min

{
(wg −wb)
b− g

max{µR− b,0}−wb, Sb(wb)−wb
}
. (54)

C. Proof in Section 5

C.1. Proof of Theorem 1
Theorem 1 directly follows from Proposition 7-9.

D. Proof in Section 6

D.1. Proof of Proposition 5
Clearly, the objective (19) is decreasing in both wg and wb. Hence, the optimal choice of wg and wb are
wg =wb = g ·Tg. After plugging in wg,wb, the objective becomes

pSg(g ·Tg)− g ·Tg = p (R− g/µ)
(
1− e−µTg

)
− g ·Tg

Since the objective function is concave in Tg, it is straightforward to use the first-order condition to find the
optimal Tg, and the optimal choice of Tg follows (22).

D.2. Proof of Proposition 6
Since the objective (15) is strictly decreasing in Tg, the optimal solution should satisfy wb = g ·Tg.

max
wg,Tg

p [Sg (g ·Tg)−wg] + (1− p) min

{
Sb(g ·Tg)− g ·Tg,

wg − g ·Tg
b− g

(µR− b)− g ·Tg
}

(55)

s.t.wg ≥ g ·Tg (56)

Tg ≥ 0 (57)

If −p+(1−p)µR− b
b− g

≤ 0 (which is equivalent to R≤ b− pg
(1− p)µ

), for any fixed Tg ≥ 0, the objective is linear

decreasing in wg. Hence, the optimal solution should satisfy wg = g ·Tg. Furthermore, the optimal choice of
Tg should follow (22).

If −p + (1 − p)
µR− b
b− g

> 0, for any fixed Tg ≥ 0, the objective increases in wg for wg ∈[
g ·Tg, g ·Tg +

b− g
µ

e−µ·g/b·Tg

]
, and then decreases in wg for wg > g · Tg +

b− g
µ

e−µ·g/b·Tg . Hence, the opti-

mal solution should satisfy wg = g · Tg +
b− g
µ

e−µ·g/b·Tg . Plugging in wg to the obejective, the optimization

problem becomes

p

[
Sg (g ·Tg)− g ·Tg −

b− g
µ

e−µ·g/b·Tg

]
+ (1− p) [Sb(g ·Tg)− g ·Tg]

=p

[(
R− g

µ

)(
1− e−µTg

)
− g ·Tg −

b− g
µ

e−µ·g/b·Tg

]
+ (1− p)

[(
R− b

µ

)(
1− e−µ·g/b·Tg

)
− g ·Tg

]
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=p

(
R− g

µ

)(
1− e−µTg

)
+

[
(1− p)

(
R− b

µ

)
− p(b− g)

µ

](
1− e−µ·g/b·Tg

)
, (58)

which is a concave function of Tg and the optimal choice of Tg is

Tg =


0, R≤ (2 + p)b− pg

bp+ (1− p)g
βg,

T 1
g , R >

(2 + p)b− pg
bp+ (1− p)g

βg.
(59)

where T 1
g solves

p(µR− g)e−µT
1
g + g/b · [(1− p)(µR− b)− p(b− g)]e−µ·g/b·T

1
g = g. (60)

Therefore, if p · b≥ g, then

b− pg
(1− p)µ

≥ (2 + p)b− pg
bp+ (1− p)g

βg ≥
1 + p

p
βg, (61)

and the optimal choice of Tg follows (23) and the optimal choice of wg follows (24). If p · b < g, then

b− pg
(1− p)µ

<
(2 + p)b− pg
bp+ (1− p)g

βg <
1 + p

p
βg, (62)

and the optimal choice of Tg follows (25) and the optimal choice of wg follows (26).

D.3. Proof of Corollary 1
For any g < b, we have

βb <
b− pg

(1− p)µ
. (63)

If p < g/b, then we have

βb <
1 + p

p
βg, βb <

(2 + p)b− pg
bp+ (1− p)g

βg (64)

Part (i): If p < g/b, then following Propositions 5 and 6, we have if R ≤ min

{
βb,

1 + p

p
βg

}
or

R ∈
(
βb,

(2 + p)b− pg
bp+ (1− p)g

βg

]
, then optimal Tg = 0. Furthermore, following (62) and (64), we have if R ≤

(2 + p)b− pg
bp+ (1− p)g

βg, we have optimal Tg = 0. Furthermore, wg =wb = 0.

If p≥ g/b, then following Propositions 5 and 6, we have if R≤min

{
βb,

1 + p

p
βg

}
or R ∈

(
βb,

1 + p

p
βg

]
,

then optimal Tg = 0. Hence, if R≤ 1 + p

p
βg, then we have optimal Tg = 0. Furthermore, wg =wb = 0.

Part (ii): If p < g/b, then following Propositions 5 and 6, we have if R ∈
(

1 + p

p
βg, βb

]
, then optimal

Tg = T ∗g . Following (64), the above set is empty.

If p ≥ g/b, then following Propositions 5 and 6, we have if R ∈
(

1 + p

p
βg, βb

]
or R ∈(

max

{
βb,

1 + p

p
βg

}
,
b− pg

(1− p)µ

]
, then optimal Tg = T ∗g . Hence, following (61) and (63), we have if R ∈(

1 + p

p
βg,

b− pg
(1− p)µ

]
, then we have optimal Tg = T ∗g . Furthermore, wg =wb = g ·T ∗g .

Part (iii): If p < g/b, then following Proposition 6, we have if R>max

{
βb,

(2 + p)b− pg
bp+ (1− p)g

βg

}
, then optimal

Tg = T 1
g . By (64), we have if R >

(2 + p)b− pg
bp+ (1− p)g

βg, then optimal Tg = T 1
g . Furthermore, wg = g · T 1

g + (βb −

βg)
(

1− e−µ·g/b·T1
g

)
,wb = g ·T 1

g .
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If p≥ g/b, then following Proposition 6, we have if R>max

{
1 + p

p
βg,

b− pg
(1− p)µ

}
, then optimal Tg = T 1

g .

Hence, following (61), we have if R >
b− pg

(1− p)µ
, then optimal Tg = T 1

g . Furthermore, wg = g · T 1
g + (βb −

βg)
(

1− e−µ·g/b·T1
g

)
,wb = g ·T 1

g .

D.4. Proof of Proposition 7
Following Corollary 1 and Proposition 4, we have if R≤R(p), then

0 =Y ≥Z({g, b}).

Clearly, Γ{g,b} defined in (i) of Theorem 1 satisfies (LL), (BR), (IR), (ICg), and (ICb). Furthermore,
U(Γ{g,b}) = 0, which completes the proof.

D.5. Proof of Proposition 8
First, by definition, contract Γ∗{g,b} satisfies (LL), (BR), (IR). Second, we verify (ICg) and (ICb).

max
ν
u(γ̌(g ·T ∗g ), ν; b) = g ·T ∗g = u(γ̂g(g ·T ∗g ), ν0; b) = max

ν
u(γ̂g(g ·T ∗g ), ν; b),

where the last equality follows from Part (ii) of Proposition 1. Furthermore,

max
ν
u(γ̂g(g ·T ∗g ), ν;g) = u(γ̂g(g ·T ∗g ), ν̄;g) = g ·T ∗g = u(γ̌(g ·T ∗g ), ν0;g) = max

ν
u(γ̌(g ·T ∗g ), ν;g).

Finally, if R(p)<R≤R(p)

U(Γ∗{g,b}) = pU(γ̂g(T ∗g ), ν̄) + (1− p)U(γ̌g(g ·T ∗g ), ν̄)

= p
(
Sg(g ·T ∗g )− g ·T ∗g

)
− (1− p)g ·T ∗g =Y,

where the second equality follows from Proposition 2, and the last equality follows from part (ii) of Corollary
1, which completes the proof.

D.6. Proof of Proposition 9
First, by definition, contract Γ∗∗{g,b} satisfies (LL), (BR), and (IR). Second, we verify (ICg), and (ICb).

max
ν
u(γ̂b(g ·T 1

g /b), ν; b) = u(γ̂b(g ·T 1
g /b), ν̄; b) = g ·T 1

g = u(γ̄(t∗1, T
1
g ), ν0; b) = max

ν
u(γ̄(t∗1, T

1
g ), ν; b),

where the last equality follows from Part (iii) of Proposition 1. Furthermore,

max
ν
u(γ̄(t∗1, T

1
g ), ν;g) = u(γ̄(t∗1, T

1
g ), ν̄;g) = g ·T 1

g + (βb−βg)
(

1− e−µ(T1
g−t
∗
1)
)

= g ·T 1
g + (βb−βg)

(
1− e−µ·g/b·T1

g

)
=w∗b + (βb−βg)

(
1− e−µ·g/b·T1

g

)
= u(γ̂b(g ·T 1

g /b), ν̄;g) = max
ν
u(γ̂b(g ·T 1

g /b), ν;g),

where the third equality follows from t∗1 = (1− g/b) · T 1
g , and the sixth equality follows from Part (ii) of

Proposition 1. Finally, if R> R̄(p), then

U(Γ∗{g,b}) = pU(γ̄(t∗1, T
1
g ), ν̄) + (1− p)U(γ̂b(g ·T 1

g /b), ν̄)

= p
(
Sg(g ·T 1

g )−
(
g ·T 1

g + (βb−βg)
(

1− e−µ·g/b·T1
g

)))
+ (1− p)

(
Sb(g ·T 1

g )− g ·T 1
g

)
=Y,

where the second equality follows from Proposition 2 and 3, the last equality follows from part (iii) of
Corollary 1, which completes the proof.
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D.7. Proof of Proposition 10
Lemma 4.

wc∗ =


0, R≤ 2βc,
1

µ
log

(
µR− c
c

)
, R > 2βc.

Following Proposition 2, it is straightforward to verify that wc∗ maximizes Fc(w). Q.E.D.
We are prepared to prove the statement. First, if R≤ βb, following Lemma 4, we have wb∗ = 0. Hence, we

have w∗b ≥ 0 =wb∗.
Second, following Corollary 1, we have

w∗g =

{
0, R≤R(p),
T ∗g , R ∈ (R(p), R̄(p)].

(65)

If p < g/b, following (64), we have βb <R(p), hence, w∗g = 0≤wg∗.
If p ≥ g/b and R ≤ 2βg < R(p), then w∗g = wg∗ = 0. If p ≥ g/b and R ∈ (2βg,R(p)], then 0 = w∗g < wg∗. If

p≥ g/b and R ∈ (R(p), βb], then

w∗g = g ·T ∗g =
g

µ
log

(
p(µR− c)

c

)
<
g

µ
log

(
µR− c
c

)
=wg∗,

which completes the proof.

D.8. Proof of Proposition 11
For any g < b, we have

(2 + p)b− pg
bp+ (1− p)g

βg < 2βb (66)

In the following, we first show that there exists R2 > βb such that w∗b ≤ wb∗ if and only if R≥R2 in two
cases.

1. If p≤ g/b, following (66), Corollary 1 and Lemma 4, we have if R≤R(p), wb∗ =w∗b = 0. If R ∈ (R(p),2βb],

w∗b >w
b
∗ = 0. If R> 2βb, w

∗
b = g ·T 1

g , and wb∗ =
b

µ
log

(
µR− b
b

)
> 0. Hence, we only need to focus on the

last case. We claim that there exists R2 > 2βb such that w∗b ≤wb∗ if and only if R≥R2. Since T 1
g solves

equation (14), and the left-hand side of equation (14) strictly decreases in T 1
g , we have f1

(
wb∗/g

)
> 0 if

and only if w∗b >w
b
∗, where

f1(T 1
g ) := p(µR− g)e−µT

1
g + g/b · [(1− p)(µR− b)− p(b− g)]e−µ·g/b·T

1
g − g (67)

Next, we define

f1(wb∗/g) = p(µR− g)

(
b

µR− b

)b/g
+ (1− p)g− pg(b− g)

µR− b
− g,

= pg

[
µR− g
g

(
b

µR− b

)b/g
− b− g
µR− b

− 1

]
:= pg · f2(R) (68)

and, the claim is true if we can show that there exists R2 such that f2(R)≤ 0 if and only if R≥R2.
Since b > g, we have limR→∞ f2(R)< 0.

To facilitate our analysis, we further denote k := b/g > 1, x := (µR− b)/b− 1, hence, we have

f2(R) =
1

xk

[
(x+ 1)k− 1− k− 1

k
xk−1−xk

]
:= f3(x)/xk, (69)

and the claim is true if we can show that f ′3(x)< 0 for x> 1 and k > 1. We can verify that

f ′3(x) = k− (k− 1)2

k
xk−2− k ·xk−1 < 0,

for x> 1 and k > 1.
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2. If p > g/b, then we have R(p)< 2βb, which implies that w∗b ≥wb∗ = 0 if R≤ 2βb. If further p≥ b/(2b−g)

(which is equivalent to 2βb ≥ R̄(p)), then for R > 2βb, w
∗
b = g · T 1

g , and wb∗ =
b

µ
log

(
µR− b
b

)
> 0.

Following the above case 1, we can show that there exists R2 > 2βb such that w∗b ≤ wb∗ if and only if
R≥R2. In the following, we consider the case p∈ (g/b, b/(2b− g)).

If R ∈ [2βb, R̄(p)], w∗b = g ·T ∗g =
g

µ
log

(
p(µR− g)

g

)
and wb∗ =

b

µ
log

(
µR− b
b

)
. Clearly w∗b −wb∗ strictly

decreases in R. Either w∗b −wb∗ > 0 at R= R̄(p) or w∗b −wb∗ ≤ 0 at R= R̄(p). In the former case, we have

w∗b >wb∗ for R ∈ [2βb, R̄(p)]. When R> R̄(p), we have w∗b = g · T 1
g , and wb∗ =

b

µ
log

(
µR− b
b

)
> 0. It is

straightforward to show that w∗b is continuous in R at R= R̄(p). Hence, following the above case 1, we
can show that there exists R2 > R̄(p) such that w∗b ≤wb∗ if and only if R≥R2.

In the latter case, there exists R2 ∈ (2βb, R̄(p)] such that w∗b ≤wb∗ if and only if R ∈ [R2, R̄(p)]. Again,
since w∗b is continuous in R at R = R̄(p), following the proof of case 1, we can show that for any
R> R̄(p), we have w∗b <w

b
∗, which completes the proof.

In the following, we first show that there exists R1 > βb such that w∗g ≥ wg∗ if and only if R≥R1 in two
cases.

1. If p≤ g/b, then R̄(p)> 2βg. Hence, if R≤ 2βg, then wg∗ =w∗g = 0. If R ∈ (2βg, R̄(p)], then wg∗ >w∗g = 0.

If R> R̄(p), we have w∗g = g ·T 1
g + (βb−βg) ·

(
1− e−µ·g/b·T1

g

)
and wg∗ =

g

µ
log

(
µR− g
g

)
. We claim that

there exists R1 > R̄(p)>βb such that w∗g ≥wg∗ if and only if R≥R1. Since T 1
g solves equation (14), and

the left-hand side of equation (14) strictly decreases in T 1
g , we have f1(T )> 0 if and only if w∗g >wg∗,

where T solves

g ·T + (βb−βg) ·
(
1− e−µ·g/b·T

)
− g

µ
log

(
µR− g
g

)
= 0 (70)

and f1 follows (67). Clearly, T is a function of R and we have

∂T

∂R
=

1

1 + (βb−βg) · (1− e−µ·g/b·T )

1

µR− g
. (71)

Therefore, the claim follows from

∂f1(T )

∂R
= p ·µe−µT + p(µR− g) · (−µ)

∂T

∂R
e−µT +

g

b
(1− p)µe−µ·g/b·T +

g

b
(1− p)(µR− b)−µg

b

∂T

∂R
e−µ·g/b·T

= pµe−µT
(

1− 1

1 + (b− g)/b · e−µ·g/b·T

)
+
g

b
(1− p)µe−µ·g/b·T

(
1− µR/b− 1

µR/g− 1

1

1 + (b− g)/b · e−µ·g/b·T

)
> 0.

where the second inequality follows from (71) and if R→∞, then T →∞ and

lim
R→∞

f1(T ) = pge(βb−βg)/βg + g/b · (1− p) · geµ(1−g/b)T+(βb−βg)/βg − g > 0.

2. If p > g/b, then 2βg < R(p) < R̄(p). Hence, if R ≤ 2βg, then wg∗ = w∗g = 0. If R ∈ (2βg,R(p)], then

wg∗ > w∗g = 0. If R ∈ (R(p), R̄(p)], then wg∗ =
g

µ
log

(
µR− g
g

)
>
g

µ
log

(
(µR− g)p

g

)
= w∗g . If R > R̄(p),

then w∗g = g · T 1
g + (βb − βg) ·

(
1− e−µ·g/b·T1

g

)
and wg∗ =

g

µ
log

(
µR− g
g

)
. Since w∗g is continuous at

R = R̄(p), following the above case 1, we can show that there exists R1 > R̄(p) such that w∗g ≥ wg∗ if
and only if R≥R1.
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