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We investigate a dynamic moral hazard problem in which the agent’s capability is unknown to both the

principal and the agent in the beginning and can be learned over time. Specifically, the agent can exert

effort in order to generate random arrivals that are beneficial to the principal. The probability of arrival,

however, is determined by the agent’s capability. Not knowing the agent’s type as well as whether the agent

exerts effort or not makes it extremely hard to identify the optimal dynamic contract. Therefore, we focus

on designing dynamic contracts that achieve the best regret rate. In a discrete-time setting with two possible

agent’s capability types, we propose two types of contracts, both of which achieve the regret rate of O(lnT )

for a time horizon T . Our contracts are “history-independent,” and therefore easy to implement for the

principal. They motivate the agent to always exert effort before termination, and therefore are easy for the

agent to respond to. We also establish a regret lower bound, which is Ω(lnT ) among all contracts, including

the ones that do allow the agent to shirk. This implies that our regret rate is the best possible. We further

extend these results to continuous-time settings.
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1. Introduction

Designing dynamic contracts to address moral hazard problems over time has been a topic of study

in the recent operations research literature (see, for example, Sun and Tian 2018, Dawande et al.

2019, Gupta et al. 2023, Zorc et al. 2023). These papers generally assume that the principal and

agent both know the probability of output from the agent’s effort, even though the effort itself

is not observable by the principal. In many settings, however, even if the agent exerts effort, its

effect is not fully understood and needs to be learned over time. For example, consider that a firm

(principal) hires a sales representative (agent) to generate customers in a new market or for a new

product. The novelty of the market/product implies that neither the principal nor the agent knows

the exact arrival rate of customers in the beginning, beyond some prior beliefs. If the agent sustains

effort, after multiple arrivals have occurred, the true arrival rate will gradually reveal itself. In this

process, the principal needs to pay the corresponding rent to motivate the agent’s effort, unless the
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arrival rate in their beliefs becomes so low that it is no longer worth hiring the agent. Therefore,

the principal needs to decide how much to pay the agent for each arrival and whether/when to

terminate the contract, not only to motivate the agent’s effort, but also to learn about the arrival

rate.

Learning arrival rate in dynamic moral hazard problems could also arise in settings where the

players do not know the agent’s capability in the beginning. Consider an example to which readers

of this paper may be able to relate. When a newly graduated Ph.D. (agent) starts a faculty job at

a university (principal), neither party may know the professor’s productivity, which is gradually

revealed with papers getting accepted over time.

In this paper, we study dynamic contracts over a discrete finite planning horizon, during which

an “arrival” (say, customers) may occur if the agent exerts effort in a period. Each arrival brings

the principal a fixed revenue, while effort is costly to the agent and unobservable to the principal.

Furthermore, the probability of arrival may be either high or low. The high arrival probability

means that the market/product is profitable, or the agent is sufficiently capable to be worth hiring.

The low arrival probability, on the other hand, means that the market/product is not profitable,

or the agent is not worth hiring. For convenience, we refer to high and low arrival probability as

the agent’s type, which can be “capable” or “incapable.” At the beginning of the time horizon, the

principal and agent do not know the exact type, and share a common prior probability on the type

being capable. The principal, who can commit to a long-term contract, utilizes both a payment

schedule and a contract termination criterion to incentivize the agent to exert effort and hedge

against the risk of facing an incapable agent.

Simultaneously managing learning and moral hazard over time can be quite challenging. If the

players believe that the arrival rate tends to be low (but is still worth pursuing), the principal

needs to pay the agent more for each arrival in order to sustain the agent’s effort. However, if the

agent has shirked in the past, the agent knows that the relatively low number of arrivals is due

to the lack of effort, rather than the arrival rate being inherently low. The principal, who may

not know about past shirking, however, believes in a lower arrival rate, and hence feels obliged to

pay a higher rent than necessary. Moreover, the divergence of beliefs persists until the very end

of the planning horizon. Consequently, this persistent divergence of beliefs, and the fact that a

lower arrival rate implies higher rent payment, potentially leads to the agent’s strategic shirking

behavior, which significantly complicates contract design.

This complication means that the traditional approach of using dynamic program/optimal con-

trol to obtain optimal contracts does not work in our setting. In fact, we show in the paper that the

corresponding dynamic program formulation involves a high-dimensional state space. This implies

that the model is hard to solve even numerically, and has little hope to yield practical contracts
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or useful insights. Therefore, we utilize the regret-minimization approach that is popular in the

learning literature (see, e.g. Shalev-Shwartz 2012, Slivkins et al. 2019, Lattimore and Szepesvári

2020).

Our contributions are threefold. First, from a theoretical perspective, our paper contributes to

the dynamic moral hazard literature by considering learning the arrival rate. In particular, we

introduce the regret-minimization approach to a dynamic contract design setting in which both

the principal and the agent learn about the arrival rate of good events. Second, from a practical

perspective, our results provide prescriptive guidance on designing easy-to-implement dynamic

contracts that allow the players to learn the market condition/agent’s capability. Our proposed

contracts are easy for the principal to implement because the contracts depend on realized history

only through the total number of arrivals and the time period. These contracts are also easy for

the agent to follow because they create the incentive for the agent to always exert effort before

a potential termination. In terms of performance, our contracts achieve the optimal regret rate.

Third, we extend the results to a continuous-time counterpart of the discrete-time setting. We

have not seen the regret-minimization approach used in a continuous-time setting in the learning

literature before.

1.1. Literature Review

Our study is closely related to the extensive stream of literature on moral hazard problems, starting

from the seminal works of Holmström (1979) and Grossman and Hart (1983) on contract theory.

We focus on studying dynamic moral hazard problems, in which the agent takes private actions

over time. Many early studies of dynamic moral hazard problems consider discrete-time models

(Rogerson 1985, Spear and Srivastava 1987, Gibbons and Murphy 1992, Holmström 1999). Spear

and Srivastava (1987) proposed a key idea of formulating dynamic contract design problems recur-

sively as discrete-time stochastic dynamic programming models using agents’ promised utility as

a state variable. This modeling framework is extended to continuous-time settings and analyzed

using stochastic optimal control techniques (see, for example, Sannikov 2008, Biais et al. 2010,

for uncertainties modeled as Brownian motions and Poisson processes, respectively). We study

a dynamic moral hazard setting in which an agent exerts effort to increase the arrival rate of

either a Bernoulli process in discrete time, or a Poisson process in continuous time. Our setting in

continuous time and with the agent’s type known is similar to the one studied in Sun and Tian

(2018).

Demarzo and Sannikov (2017) and He et al. (2017) study dynamic contract design problems in

which the principal and the agent both learn some underlying “fundamentals” following a Brown-

ian motion. Players in both papers observe some signals that also follow a Brownian motion, whose
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drift is affected by the agent’s actions. The Gaussian-Gaussian structure implies that one can use

Kalman filtering to analyze the system. Both papers study the system in a “steady state”, such

that the overall volatility of the posterior dynamics remains a constant over time in equilibrium.

In contrast, the agent’s type in our setting is fixed over time. Hence, steady-state and the cor-

responding analytical approach are irrelevant in our setting. A key difference between these two

papers is that in Demarzo and Sannikov (2017) the agent has limited liability, which is similar

to our setting, while in He et al. (2017) the agent is risk averse whose utility is an exponential

function on consumption decisions. In contrast, Prat and Jovanovic (2014) is focused on finding

an optimal dynamic optimal contract with persistent and unknown agent’s type, similar to ours.

However, similar to He et al. (2017) and different from ours, the agent in Prat and Jovanovic (2014)

is risk averse with an exponential utility function. All these three continuous-time papers utilize

a first-order method, which describes a necessary condition for incentive compatibility, and verify

sufficiency after obtaining the corresponding optimal solution. As pointed out by Demarzo and

Sannikov (2017), “[the first-order approach] is a powerful approach, but analytical results are still

difficult to establish formally in discrete time.”

As mentioned earlier and elaborated in more detail in Section 2.2, the dynamic program-

ming/optimal control approach used in the previous literature is not tractable in our setting.

Therefore, we follow the regret-minimization approach from the extensive line of literature on online

optimization. We refer readers to Bubeck (2011), Hazan (2016) and the references therein for recent

surveys. The general setting of online optimization problems assumes that there is uncertainty in

the problem data. The decision maker needs to determine a sequence of decisions to optimize an

expected value over a long planning horizon. Data is revealed incrementally after each decision

is implemented. The decision maker learns the uncertainties from the data on the fly. The key

to designing an effective online optimization algorithm is to balance exploration and exploitation:

exploring suboptimal decisions to gather informative data, while exploiting solutions that align

with current data and estimates. In our setting, exploration corresponds to continuously motivat-

ing the agent to work and gradually reveal its type; exploitation can be thought of as terminating

the agent if it appears to be the incompetent type.

The MAB problem is a classic problem that exemplifies the exploration–exploitation trade-off

(see, e.g. Lattimore and Szepesvári 2020, Slivkins et al. 2019). In a standard MAB setting, the

decision maker faces a fixed set of actions, with each one termed as an “arm.” In each period, the

decision maker chooses an arm and receives a reward. The reward is drawn from some fixed but

unknown distribution that depends only on the chosen arm. The decision maker tries to maximize

the total collected reward over a fixed number of periods. The regret is often defined as the difference
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between the performance of knowing the best arm versus the proposed algorithm. Traditional MAB

problems do not involve a strategic agent to interact with, as we do.

A recent learning literature considers principal-agent settings as well. The agent in Zhu et al.

(2023) is privately informed about its own type and takes hidden actions. Furthermore, their agent

is myopic. In contrast, neither our principal nor the agent knows the agent’s type, and our agent

is strategic over the entire time horizon. Amin et al. (2013) and Amin et al. (2014) assume a

long-term strategic agent, who knows its own type, but does not take hidden actions. That is, they

consider adverse selection settings, while our study deals with moral hazard and learning. Under

a somewhat related but different context, Zhao et al. (2022) study a supply chain contract design

problem in which neither the supplier nor the retailer knows the demand distribution. The retailer,

who has no private information other than observed demands, acts according to certain learning

algorithms rather than taking the best response to the contract, and the supplier responds to the

inventory decisions of the retailer. There is no hidden action in the setting of Zhao et al. (2022).

The remainder of this paper is organized as follows. Section 2 introduces the model and the

regret-minimization formulation. In particular, Section 2.3 illustrates why the traditional recursive

formulation for dynamic program/optimal control faces the curse of dimensionality issue. Section 3

derives the regret lower bound of any contract, either incentive compatible or not. Then, Section 4

develops two discrete-time online dynamic contracts whose regret-rate upper bounds match the

lower bound from Section 3. Section 5 extends the discrete-time setting into a continuous-time one.

Finally, Section 6 concludes the paper and discusses some potential future research directions and

their challenges. All the proofs and technical materials are presented in the Appendix.

Before closing this section, we introduce some mathematical notations to be used in the rest of

the paper. For an integer T , notation [T ] represents the sequence 1, . . . , T . The use of O and Ω is

standard, that is, given functions f, g :N→ [0,∞), we say

f(x) =O(g(x)) if limsup
x→∞

f(x)

g(x)
<∞,

and

f(x) =Ω(g(x)) if lim inf
x→∞

f(x)

g(x)
> 0.

We use the notation 0 to represent a vector of 0’s of appropriate dimension. For convenience of

exposition, if t > t′, we let
∑t′

i=t xi = 0 for any sequence {xi}.

2. Model

In this section, we introduce the online dynamic contract design problem faced by a principal. We

first describe the basic problem settings in Section 2.1. Then, we formulate the regret incurred by

the online contract in Section 2.2 and discuss the inherent challenges in the problem. Finally, we

present a recursive formulation in Section 2.3, which demonstrates curse of dimensionality, and

explains why we choose to pursue the regret-minimization approach.
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2.1. Basic Settings

Consider a principal hiring an agent over a discrete time horizon t ∈ [T ]. The agent’s effort can

potentially generate an observable arrival worth R to the principal in each period. (There is no

arrival without the agent’s effort.) The agent’s effort is not observable to the principal, and costs

the agent b per period of time. The agent may be one of two types: the “capable” type that

generates an arrival with probability λ in a period when exerting effort; the “incapable” type with

probability λ. We assume that

Rλ≤ b≤Rλ , (1)

that is, the capable type is worth hiring while the incapable one is not, from a societal perspective.

Neither the principal nor the agent knows the agent’s type, and they share a common prior prob-

ability P0 in the beginning of the time horizon that the agent is capable. Therefore, the principal

needs to motivate the agent to exert effort not only for the revenue, but also to learn its type.

In each period t, let xt ∈ {0,1} represent if there is an arrival (xt = 1) or not (xt = 0). Define

Nt :=
∑t

s=1 xt to be a counting process, which generates a filtration N := {Nt}t∈[T ], where Nt =

σ{N1, . . . ,Nt}. Denote an non-negative and Nt-measurable random variable βt to be the payment

from the principal to the agent in period t, and β := {βt}t∈[T ] the corresponding payment process,

which is adapted to N . The principal also decides an N -stopping time τ to terminate the agent.

Define Γ := (β, τ) to represent a contract of the principal. In response to the contract, the agent

exerts effort according to an N -predictable effort process ν := {νt}t∈[T ], in which νt = 1 represents

exerting effort, and νt = 0 shirking, in period t. Without loss of generality, we let νt = 0 for all

t > τ , indicating that an agent should not exert effort after being terminated. Denote Pν (·) as the

probability measures induced by effort process ν.

Define the agent’s total utility under contract Γ following effort process ν as

W (Γ,ν) :=Eν

[
τ∑

t=1

βt− bνt

]
, (2)

in which Eν [·] represents taking expectation over the arrival uncertainties induced by ν, as well as

the uncertain agent’s type.

In particular, for any contract Γ, define ν̂(Γ) to be the agent’s best response effort process, such

that

W (Γ, ν̂(Γ))≥W (Γ,ν), ∀ν. (3)

Because the agent can always choose not to work at all and obtain a non-negative utility under

any contract, we must have

W (Γ, ν̂(Γ))≥ 0. (4)
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In other words, we do not need a separate explicit individual rationality constraint.

Further define the principal’s utility under contract Γ and effort process ν as

U(Γ,ν) :=Eν

[
τ∑

t=1

Rxt−βt

]
. (5)

Overall, the principal tries to solve the following dynamic contract design problem with learning,

J :=max
Γ

U(Γ, ν̂(Γ)). (6)

It is worth discussing the learning component in our problem. Generally speaking, the contract

needs to motivate the agent to exert effort to generate good events. Meanwhile, proper incentives

to motivate effort depend on the agent’s type, which is uncertain. Insufficient incentives create

persistent divergence in the belief about the agent’s type, which complicates the design of revenue

maximizing contracts. For example, if the agent chooses to shirk without the principal’s knowledge

in a period, the lack of arrival in the period does not change the agent’s belief about its capability,

but distorts downward the principal’s belief about the agent being capable. This potential diver-

gence of belief probabilities between the players implies that in order to properly model incentive

compatibility in a recursive form, the state space needs to capture all possible belief probabilities

of the agent, beyond the one held by the principal. Equivalently, the state space needs to encode

shirking that may have occurred in the past. This complexity makes it extremely hard to solve J
directly using the traditional dynamic programming/optimal control approach. We explain this in

more detail in Section 2.3.

Moreover, while both the principal and the agent learn about the agent’s type on the fly, the

principal constantly faces the well-known trade-off between exploration and exploitation. In our

context, we can think of exploration as continuously motivating the agent to exert effort. This

allows the principal to collect data towards more accurate estimation of the agent’s type, even if

the agent already appears not worth hiring under the currently available data. Exploitation can

be thought of as terminating the agent to cut the loss for future periods. Exploration may offer

payments that are too high, while exploitation may terminate the agent too late, compared with

the optimal contract if the agent’s type is known. Next, we define the regret minimization objective

for online dynamic contract design.

2.2. The Regret and Challenges

In traditional single-decision maker online learning problems, “regret” is often defined as the differ-

ence between the expected objective values of the optimal control policy with perfect information

and that of the proposed policy. In our online dynamic contract design problem, the “perfect infor-

mation” benchmark corresponds to a setting in which the principal knows the agent’s type, but
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the agent does not. Such a perfect information benchmark corresponds to a dynamic information

design problem. How to solve it to optimality is unclear. Therefore, we consider an alternative

benchmark, which corresponds to letting both the principal and the agent know about the agent’s

type. Generally speaking, even though the principal’s knowledge improves its utility, the agent’s

knowing the type may decrease the principal’s utility. Therefore, it is not a priori clear that such

a construction indeed yields an upper bound of the true optimal value J . Next, we formalize the

benchmark and establish that it is an upper bound for J .
To this end, define the societal utility under a contract Γ and effort process ν as

V (Γ,ν) :=U(Γ,ν)+W (Γ,ν), (7)

which is the total utility between the principal and the agent.

Following (4), it is clear that

max
Γ

V
(
Γ, ν̂(Γ)

)
≥J . (8)

Furthermore, define the first-best societal value given the agent’s type λ∈ {λ,λ} as

OPT(λ) :=max{T (λR− b),0}. (9)

From assumption (1), it is clear that OPT(λ) = T (λR− b) and OPT(λ) = 0. The following result

presents an upper bound for the optimal value J , which serves as the benchmark for us to define

regret.

Proposition 1. The principal’s expected utility under the optimal contract for the dynamic con-

tract design problem, J , satisfies

J ≤max
Γ

V
(
Γ, ν̂(Γ)

)
≤ P0 ·OPT(λ)+ (1−P0) ·OPT(λ) = P0Tλ(R−β), (10)

in which we define

β :=
b

λ
. (11)

The value β is the lowest payment for each arrival to guarantee that the capable agent (with

arrival probability λ) exerts effort. Furthermore, in Section EC.1.2, we show that OPT(λ̄) and

OPT(λ) equal to the principal’s optimal utility when both parties know that the agent’s type is λ̄

and λ, respectively.

For any contract Γ, define its regret as the upper bound defined in (10) minus the principal’s

utility,

Reg(Γ;T ) := P0λ(R−β)T −U(Γ, ν̂(Γ)). (12)

Later in the paper, we propose contracts that achieve a regret rates of O(lnT ). Given that the

upper bound in the regret calculation is the optimal societal value when both the principal and the
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agent know the agent’s type, our results imply that as T increases to infinity, the principal’s average

profit per period gradually approaches the first-best societal value, while the agent’s average rent

per period diminishes to zero.

There are a number of challenges in designing our contract. First of all, describing a general

history-dependent dynamic contract requires specifying the payment and stopping time under each

of the 2T trajectories of arrivals. Therefore, it is already non-trivial to even describe a dynamic

contract. Furthermore, knowing the agent’s effort process is critical for the principal to correctly

update its belief about the agent’s type. Consequently, näıvely extending an incentive compatible

contract from the case where the agent’s type is known (as in Sun and Tian 2018) may result in the

agent strategically shirking, leading to a linear regret. In the following, we describe the information

updating process assuming that the agent has been exerting effort, and then present an example

which yields a regret linear in T .

For this purpose, define the full-effort process

ν̄ := {ν1 = 1, . . . ντ = 1}, (13)

such that the agent always exerts effort under this process. For ease of exposition, we use P (·) to

represent Pν̄ (·) when the context is clear.

Equipped with these notations, we first present the following result that summarizes the two

players’ shared belief about the agent’s type under the full-effort process.

Lemma 1. After any time t with the full-effort process and history Nt such that the number of

good arrivals is Nt, the posterior belief that the agent is of type λ, denoted by Pt(Nt), is

Pt(Nt) := P
(
λ= λ | Nt

)
= P

(
λ= λ |Nt

)
=

((
λ

λ

)Nt
(
1−λ

1−λ

)t−Nt
(

1

P0

− 1

)
+1

)−1

. (14)

That is, the belief probability that agent is of type λ under the full-effort process ν̄ and history

Nt only depends on the number of arrivals Nt up to period t, which follows the expression (14)

for Pt(Nt). In the remainder of the paper, when the context is clear, we use the notation Pt to

abbreviate Pt(Nt).

Next, we show an example in which we näıvely extend the contract from Sun and Tian (2018)

by ignoring the possibility of the agent strategically shirking, and verify that the contract leads to

a regret linear in T .

Example 1. Motivated by the optimal contract in Sun and Tian (2018) for a setting without

learning, consider paying the agent a positive amount if there is an arrival in period t, and zero if

there is not, such that the agent is indifferent between working and shirking in each period. That
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is, if the belief probability that the agent is of type λ is P at the beginning of period t, the payment

for an arrival is

β(P ) :=
b

λP +λ(1−P )
. (15)

Should the agent estimate its likelihood of being λ as P , a payment β(P ) for an arrival leaves

the agent indifferent between exerting effort or not (and hence does not mind exerting effort) in

the period. Because the belief probability P = Pt(Nt) itself depends on arrivals, this contract is

history-dependent. Later in Section 4, we introduce and examine history-independent contracts,

which, surprisingly, produce the optimal regret rate.

Furthermore, the contract terminates the agent when the belief probability of type λ is too low.

Specifically, the termination time satisfies

{τ = t} :=
t−1⋂
s=1

{Ps ≥ p̄s}
⋂
{Pt < p̄t}. (16)

for a sequence of thresholds {p̄s}s∈[T ].

However, the agent’s best-response effort process facing such a seemingly reasonable contract

is to not always exert effort. Consequently, the expression Pt does not reflect the agent’s belief

in period t. In particular, Pt may underestimate the agent’s belief, because it implicitly assumes

that the agent has always exerted effort before period t. In order to illustrate the claims above, we

consider an extreme case where λ= 0, for which we can identify the agent’s best-response effort

process. We show that the corresponding regret grows linearly in T , as stated in the following

result.

Proposition 2. Consider λ = 0 and define a contract Γ̌ =
(
{β̌t}t∈[T ], τ̌) such that β̌t = β(Pt) if

xt = 1 and β̌t = 0 if xt = 0; and τ̌ is defined according to (16) for any sequence {p̄s}s∈[T ]. We have

Reg(Γ̌;T ) =Ω(T ).

□

This example demonstrates that ignoring the agent’s strategic response may yield a linear regret.

Therefore, should the agent choose to shirk in a period, the principal would have to capture the

divergence of belief probabilities to properly model incentive compatibility. In other words, if there

exist optimal contracts that allow the agent to shirk from time to time while achieving satisfactory

regret rate, such contracts need to take the agent’s reaction following all possible belief probabilities

into consideration, which appears a daunting task.

Given the complexity of the agent’s best-response effort process in general, we focus on designing

contracts that indeed create the incentive for the agent to always exert effort, and show that such a
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design yields desirable regret rate. For this purpose, we formally define a contract as being incentive

compatible (IC) if it induces the agent to always exert effort before contract termination. That is,

W (Γ, ν̄)≥W (Γ,ν), ∀ν. (IC)

Before closing this section, we provide a dynamic programming formulation to obtain the optimal

incentive-compatible contract. Even if we focus on incentive compatible contracts, the aforemen-

tioned curse of dimensionality still occurs, which further justifies our regret-minimization approach.

2.3. Recursive Formulation

Define Ĵ(w) as the optimal expected profit for the principal who delivers the agent an expected

utility of w by an incentive compatible contract. That is,

Ĵ(w) :=max
(β,τ)

Eν̄

[
τ∑

t=1

Rxt−βt

]
(17)

s.t. w=Eν̄

[
τ∑

t=1

βt− b

]

Eν̄

[
τ∑

t=1

βt− b

]
≥Eν

[
τ∑

t=1

βt− bνt

]
, ∀ν.

Note that w ≥ 0 is implied by the second constraint and inequality (4). Clearly, we can fully

characterize such an optimal incentive compatible contract by solving maxw Ĵ(w). In order to

express the optimization problem (17) in a recursive formulation, it is important to understand

that if the agent has shirked, its belief about the type may be different from the principal’s. In

particular, after seeing n arrivals up to period t, the principal’s belief is Pt(n) as defined in (14),

assuming that the agent has always exerted effort. For any s≥ n, the parameter

λs,n := λPs(n)+λ
(
1−Ps(n)

)
is the expected arrival rate after s working periods with n arrivals. The agent, knowing that it

has shirked for k periods (among the t−n periods with no arrival), has a different belief, Pt−k(n).

Consequently, the principal’s optimization in each period needs to be contingent upon each possible

shirking history of the agent. This is reflected in the following recursive form in the beginning of

period t with n≤ t− 1 arrivals up to the end of period t− 1.



12 Wang, Liang and Sun: Dynamic Contract Design with Learning

Proposition 3. For any t ∈ [T ], n ≤ t − 1, and (t − n)-dimensional vector w :=

(w0,w1, . . . ,wt−1−n)
⊺, define the following dynamic programming recursion

J(t, n,w) := max
w±,β±,I

I
{
λt,n

[
(R−β+)+J(t+1, n+1,w+)

]
+(1−λt,n)

[
−β− +J(t+1, n,w−)

]}
s.t. w0 = I(λt,n(β

+ +w+
0 )+ (1−λt,n)(β

− +w−
0 )− b)

wk = Imax
{
λt−k,n(β

+ +w+
k )+ (1−λt−k,n)(β

− +w−
k )− b,

β− +w−
k+1

}
, ∀t > 1, k= 0, . . . , t− 1−n

w+ ∈Rt−n
+ , w− ∈Rt+1−n

+ , β± ∈R+, I ∈ {0,1},

(18)

with boundary conditions

J(T +1, n′,0) = 0, and J(T +1, n′,w) =−∞, if w ̸= 0, (19)

in which n′ ≤ T , and both 0 and w are T +1−n′-dimensional vectors.

We have Ĵ(w) = J(1,0,w).

In the dynamic program, the element w0 of the state vector w represents the promised utility

with 0 shirking period before, and wk the “threat utility” (Fernandes and Phelan 2000) if the

agent has shirked k times before. Decision vector w+ represents the next period’s promised/threat

utilities when there is an arrival in period t, and w− the corresponding utilities if period t sees no

arrival. Decisions β+ and β− represent the payment when there is and there is not a good arrival in

period t, respectively. The subscript of these vectors still represents the number of shirking periods

by the end of period t. Finally, the decision I indicates whether the agent is terminated in the

beginning of period t. Clearly, the dimension of the state space grows with the number of time

periods, making the dynamic programming formulation intractable.

Consequently, in the remainder of the paper, we focus on the regret-minimization approach. In

the next section, we first present a lower bound on the rate of regret. After that, we provide two

algorithms that achieve this regret lower bound.

3. Regret Lower Bound

In this section, we establish that any contract (incentive compatible or not) cannot yield a regret

that grows slower than O(lnT ).

In order to obtain a lower bound on the regret (12), we need to upper bound the principal’s

utility, U(Γ, ν̂(Γ)). Because of (4) and (7), we know that the societal utility V (Γ, ν̂(Γ)) is an upper

bound of U(Γ, ν̂(Γ)). For clarity of exposition, we use ν̂ = {ν̂t}t∈[T ] in place of ν̂(Γ) to represent the

best-response effort process with respect to contract Γ when there is no ambiguity. Note that ν̂ is
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a stochastic process that is also parameterized by the true type of the agent. Following expressions

(2), (4), (5) and (7), we have the following,

U(Γ, ν̂(Γ))≤ V (Γ, ν̂(Γ)) =P0(λR− b)Eν̂

[
τ∑

t=1

ν̂t | λ

]
− (1−P0)(b−λR)Eν̂

[
τ∑

t=1

ν̂t | λ

]
.

Together with (12), we have

Reg(Γ, T )≥ P0λ(R−β)

(
T −Eν̂

[
τ∑

t=1

ν̂t | λ

])
+(1−P0)(b−λR)Eν̂

[
τ∑

t=1

ν̂t | λ

]
. (20)

We now consider two cases depending on whether an incapable agent exerts enough effort under

contract Γ. First, suppose that the λ-type agent exerts effort in sufficiently many periods. That is,

Eν̂

[
τ∑

t=1

ν̂t | λ

]
≥ 1

2
C lnT, (21)

for a constant C := (1 − λ)/(1 − λ) ∈ [0,1]. Dropping the first term on the right-hand side of

inequality (20), which is non-negative, we obtain

Reg(Γ, T )≥ 1

2
(1−P0)(b−λR)C lnT, (22)

which readily verifies that the regret lower bound is in the order of lnT when condition (21) holds.

Next, suppose the opposite of (21) holds, that is,

Eν̂

[
τ∑

t=1

ν̂t | λ

]
<

1

2
C lnT. (23)

For this case, we first introduce additional notations. Given a trajectory N , let τ(N ) denote the

N -stopping time in which the agent is terminated, and ν̂t(N )∈ {0,1} represent whether the agent

exerts effort in period t according to the N -predictable best-response effort process ν̂. Furthermore,

define Pν (N | λ) as the probability of observing the trajectory N given the effort process ν and

the arrival rate λ∈ {λ,λ}. We have

Pν (N | λ) := λNT (1−λ)
∑T

t=1 νt(N )−NT

T∏
t=1

1{νt(N )≥ xt} ,

which implies the following result.

Lemma 2. Given any trajectory N and effort process ν, we have

Pν

(
N | λ

)
≥C

∑T
t=1 νt(N )Pν (N | λ) . (24)
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Recall that we let ν̂t(N ) = 0 for t > τ(N ). Then, in case that condition (23) holds, there must

exist a set of trajectories A such that the following two conditions are simultaneously satisfied:∑
N∈A

Pν̂ (N | λ)≥
1

2
, and (25)

T∑
t=1

ν̂t(N )<C lnT, ∀N ∈A. (26)

Inequalities (24), (25) and (26), together with the fact that x lnx ≥ −1/e, imply the following

result.

Lemma 3. For any contract and its best-response effort process that satisfies (23), we have

Eν̂

[
T∑

t=1

(1− ν̂t) | λ

]
≥ 1

2
T−1/e(T −C lnT ). (27)

Finally, dropping the second term on the right-hand side of inequality (20), which is non-negative,

we obtain

Reg(Γ, T )≥ P0(λR− b)

(
T −Eν̂

[
τ∑

t=1

ν̂t | λ

])

= P0(λR− b)Eν̂

[
T∑

t=1

(1− ν̂t) | λ

]
≥ 1

2
P0(λR− b)T−1/e (T −C lnT ) ,

where the last inequality follows from (27).

In conclusion, we have the following result on the lower bound of the regret.

Theorem 1. For any contract Γ, we have

Reg(Γ, T )≥min

{
1

2
(1−P0)(b−λR)C lnT,

1

2
P0(λR− b)T−1/e (T −C lnT )

}
=Ω(lnT ).

In the next section, we present two contracts that achieve O(lnT ) regret rate, which implies that

the lower bound rate of Theorem 1 is tight.

4. Contract Design

As discussed in Section 2, even describing a history-dependent dynamic contract can be non-trivial,

because it may require specifying payment and stopping time under each of the 2T trajectories of

arrivals. Furthermore, the agent may manipulate the principal’s belief, which requires the principal

to anticipate the agent’s effort process and belief. In contrast, focusing on history-independent

contracts makes the dynamic contract design problem much simpler. We refer to a contract as

being history-independent if the payment upon an arrival in a period t only depends on t, and
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not on history Nt; furthermore, whether the agent is terminated in period t only depends on Nt

and not the entire history Nt. Interestingly, restricting to history-independent contracts does not

hurt the regret rate. In this section, we propose two history-independent contracts that are both

incentive compatible and easy to describe, and both can meet the optimal regret rate stated in

Section 3.

4.1. Explore-and-Exploit (EE) Contract with Dynamically Adjusted Payment

We first propose an online dynamic contract following the optimism in the face of uncertainty

principle. The widely-known Upper Confidence Bound algorithm for MAB problems exemplifies

this idea. In that problem, an arm is chosen if either the estimated expected reward is large, or the

variance of the reward is large. The general idea behind our proposed contract follows the same

vein. That is, we keep paying for the agent’s effort if either the arrival record appears strong, or

the probability that the agent has been unlucky is still relatively high. In particular, the contract

terminates the agent if the empirical arrival rate Nt/t is significantly lower than λ. Specifically,

define the following sequence for t∈ [T ],

ϵt :=
√
ln(T − t+1)/t, (28)

and terminate the agent as soon as Nt < t(λ− ϵt), where t(λ− ϵt) increases in t. That is, define the

following stopping threshold for Nt

at := tmax{0, λ− ϵt}. (29)

Similar to (16), we define the stopping time τ to be

{τ = t} :=
t−1⋂
s=1

{Ns ≥ as}
⋂
{Nt <at}, ∀t= 1, . . . , T − 1. (30)

The contract also involves paying the agent zero when there is no arrival, and a positive amount

β(t) when there is an arrival, which only depends on the time period t, regardless of past arrivals.

For this purpose, we first define P (t), the belief probability that the agent is of type λ in period t

having received at arrivals, as follows

P (t) := Pt(at), (31)

in which function Pt(·) is defined in (14). Condition on the agent not yet terminated by period t

(that is, τ > t), this probability serves as a lower bound on the belief probability that the agent is

of type λ, due to the fact that Nt ≥ at when the agent has not been terminated. Then, define the

payment β(t) as

β(t) := β(P (t−1))≥ β ∀1≤ t < τ, (32)
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Algorithm 1: “Explore-and-exploit” contract

Input: T , P0, λ, λ

Initialization: N0 = 0

for t← 1 to T do
Set ϵt, at, P

(t), and β(t) according to Equations (28), (29), (31), and (32)

end

1 for t← 1 to T do
2 if xt = 1 then
3 Pay the agent β(t)

4 end

5 Update Nt =Nt−1 +xt

6 if Nt <at then
7 Terminate the agent

8 Break
9 end

10 end

where the function β(·) is defined in (15). The payment β(t) captures the minimum payment to

ensure effort when the belief probability of type λ is P (t−1) in the beginning of period t. Putting

all together, Algorithm 1 summarizes our contract dynamics.

Intuitively, the principal specifies at as the minimum “acceptable” number of arrivals that the

agent must generate up to period t in order to continue. Furthermore, the payment β(t) provides

sufficient incentive for any myopic agent who has generated at least at arrivals up to now to continue

exerting effort in period t. The threshold at is set to be low enough, which gives an unlucky type λ

agent a chance to continue and prove itself. (An λ agent lucky enough to have received more than

at arrivals is over-paid.) On the other hand, the design also needs to ensure that at is not too low

such that the type λ agent can be screened out.

Figure 1 illustrates the contract dynamics with two sample trajectories. The trajectory of the

total number of arrivals Nt for the capable agent (type λ) is always above the threshold at until

the end of the time horizon. In comparison, the trajectory of the incapable agent (type λ) hits the

threshold at before period 20, and is terminated at that point.

Proposition 4 next asserts that the proposed contract is incentive compatible.

Proposition 4. Let Γ be the contract generated according to Algorithm 1. This contract Γ satisfies

(IC).
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Figure 1 Illustration of the “explore-and-exploit” contract with parameters λ= 0.7, λ= 0.1, P0 = 0.2, T = 100,

b= 1, and R= 3. The figure also plots two sample trajectories, one for a capable agent and the other

for an incapable agent.

Based on Proposition 4, we know that the agent always exerts effort before termination when

facing contract Γ, and both players’ belief probabilities that the agent is of type λ follow (14). The

main result of this section is the following theorem.

Theorem 2. For any instance of the online dynamic contract design problem with T periods, let

Γ be a contract as described in Algorithm 1. The total expected regret of implementing contract Γ

satisfies

Reg(Γ, T ) =O(lnT ). (33)

Comparing Theorem 2 with Theorem 1, we observe that the proposed contract achieves the

optimal regret rate. The complete proof is in the Online Appendix Section EC.3. Here, we outline

the key steps of the proof.

Proof outline. First, derived from definitions (5) and (12), we can upper bound the regret

by a summation of three separate parts as follows.

Reg(Γ̂, T )≤ P0λ
T∑

t=1

(β(t)−β)+P0

(
T −E

[
τ | λ

])
λ(R−β)+ (1−P0)E [τ | λ]λ(β̄−R), (34)

in which

β̄ := b/λ. (35)



18 Wang, Liang and Sun: Dynamic Contract Design with Learning

This result is summarized as Lemma EC.2 and proved in Appendix Section EC.3.2. The first part,

P0λ
∑T

t=1(β
(t)−β), encapsulates the expected “overpayment” if the agent is of type λ; the second

part, P0

(
T −E

[
τ | λ

])
λ(R− β), captures the loss from mistakenly terminating the type λ agent;

and the third part, (1−P0)E [τ | λ]λ(β̄−R), upper bounds the total loss due to hiring the type λ

agent. In order to establish that the regret is indeed O(lnT ), we need to demonstrate that

(1) the payment β(t) converges to β fast enough, so that the capable agent is not over-paid by

too much;

(2) the type λ agent is either not mistakenly terminated within T , or kept for long enough before

being terminated. Equivalently, the expected number of periods the principal hires is sufficiently

large; and

(3) the type λ agent is terminated fast enough.

To facilitate our discussion, we first define the following constants,

α := ln
λ(1−λ)

λ(1−λ)
> 0, α′ := ln

[(
λ

λ

)λ(
1−λ

1−λ

)(1−λ)
]
< 0 ,

c1 :=
( α

α′

)2

> 0, c2 :=−
α2

α′ > 0, and c3 :=
b
(
λ−λ

)
λ
2

(
1

P0

− 1

)
≥ 0.

(36)

It is noteworthy that these constants are independent of T . In addition, the fact that α′ < 0 is

formally verified in Lemma EC.3.

In the next lemma, we establish an upper bound on the overpayment β(t)−β for any t∈ [T ]. In
particular, we can divide the time periods into consecutive and disjoint groups, indexed by k, and

bound the per period overpayment for every period within each of the groups.

Lemma 4. let Γ be a corresponding contract as illustrated in Algorithm 1. For any k ≥ 0, and

t∈ [T ] such that

t≥max
{
c1(1+3k),1/λ

2
}
lnT,

we have

β(t)−β ≤ c3T
−c2k. (37)

The bound provided by Lemma 4 suggests that the upper bounds of overpayments decrease in

time. Furthermore, as the length of the planning horizon T increases, the number of periods within

each group increases; however, the upper bound of overpayment for a fixed group k decreases in T .

Based on Lemma 4, the next Lemma 5 verifies point (1) by showing that the over-payment term

towards a type λ agent,
∑T

t=1(β
(t)−β), is indeed upper bounded by O(lnT ).

Lemma 5. Under contract Γ, for any T ≥ 2, we have

T∑
t=1

(β(t)−β)≤
(
c1 +

1

λ
2 +

3c1
1−T−c2

)
c3 lnT ≤

(
c1 +

1

λ
2 +

3c1
1− 2−c2

)
c3 lnT. (38)



Wang, Liang and Sun: Dynamic Contract Design with Learning 19

Next, both points (2) and (3) follow from concentration inequalities. In particular, conditioning

on the type of the agent, the Hoeffding’s inequality directly implies the following expressions.

Lemma 6. For ϵt ≤ λ−λ, we have

P
(
Nt <at | λ

)
≤ e−2tϵ2t =

1

(T − t+1)2
, and

P (Nt ≥ at | λ)≤ e−2t(λ−λ−ϵt)
2

.

(39)

Because ϵt, defined in (28), decreases in t, Lemma 6 suggests that as t increases, the probability

of keeping an incapable agent decreases exponentially. Furthermore, Lemma 6 also provides an

upper bound for the probability of terminating a capable agent. Following Lemma 6, we have the

next lemma, confirming the aforementioned points (2) and (3).

Lemma 7. For the termination time τ of our contract, we have

E
[
τ | λ

]
≥ T − lnT − 1, and E [τ | λ]≤ 4 lnT +2e/T 2(

λ−λ
)2 . (40)

At last, putting together Lemma 5, Lemma 7, and inequality (34), we can obtain the upper

bound on the regret as stated in Theorem 2.

4.2. Explore-then-Commit (ETC) Contract

Now we propose another contract, following a spirit of “explore-then-commit.” Specifically, the

contract selects a switching time period t̄. Before and up to t̄, the principal pays a constant β̄

(defined in (35)) for each arrival to guarantee the agent’s effort. We may consider periods 1 to t̄ as

the “exploration” periods. At period t̄, if the belief probability Pt̄ that the agent is of type λ falls

below a threshold Pa, the agent is terminated. Otherwise, the principal continues with the agent. A

crucial difference between the proposed contract and the majority of existing explore-then-commit

algorithms in the literature is that, after period t̄, whenever the likelihood of the agent being type

λ falls below a threshold Pa (Pt < Pa for any t > t̄), the agent is also terminated. Despite this

crucial difference, for ease of exposition, we still refer to periods t̄+1 to T as the “commitment”

periods, and the proposed contract as the “explore-then-commit” contract.

In particular, we define the switching time t̄, a threshold a on the number of arrivals up to time

t̄, the corresponding threshold Pa on the belief probability that the agent is of type λ, and the

payment-upon-arrival βa after t̄ as

t̄ :=
⌈
max

{
c1(1+3/c2), 1/λ

2
}
lnT

⌉
, a :=

⌈
λt̄−

√
t̄ lnT

⌉
, Pa := Pt̄(a), and βa := β(Pa),

(41)

respectively, in which Pt̄(a) is defined in (14) and β(Pa) in (15).
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Algorithm 2: “Explore-then-commit” contract

Input: T , P0, λ, λ

Initialization: Set N0 = 0

Set β̄, t̄, a, Pa, and βa according to (35) and (41)

1 for t← 1 to t̄ do
2 if xt = 1 then
3 Pay the agent β̄

4 end

5 Update Nt =Nt−1 +xt

6 Calculate Pt according to (14)
7 end

8 if Pt̄ <Pa then
9 Terminate the agent

10 Break
11 end

12 for t← t̄+1 to T do
13 if xt = 1 then
14 Pay the agent βa

15 end

16 Update Nt =Nt−1 +xt

17 Calculate Pt according to (14)

18 if Pt <Pa then
19 Terminate the agent

20 Break
21 end
22 end

Algorithm 2 summarizes the contract dynamics. Figure 2 illustrates the dynamics of the contract

and plots two sample trajectories, similar to Figure 1.

We first have the following incentive compatibility result on the proposed “explore-then-commit”

contract.

Proposition 5. The proposed “explore-then-commit” contract satisfies (IC).

Consequently, in the following analysis, we have that the agent always exerts effort before termi-

nation, and both players’ belief probabilities that the agent is of type λ follow (14). We can derive

the following main result on the upper bound of the expected total regret.
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Figure 2 Illustration of the “explore-then-commit” contract with parameters λ= 0.7, λ= 0.1, P0 = 0.2, T = 100,

b= 1, and R= 3. The figure also plots two sample trajectories, one for a capable agent and the other

for an incapable agent.

Theorem 3. For any instance of the online dynamic contract design problem with T periods, let

Γ be an “explore-then-commit” contract as defined in Algorithm 2. The total expected regret can be

upper bounded as

Reg(Γ, T ) =O(lnT ). (42)

Theorem 3 suggests that the proposed “explore-then-commit” contract also achieves the opti-

mal regret rate. Next, we outline the proof of Theorem 3. Similar to that of Theorem 2, we can

decompose the total expected regret and bound it from above by three parts. Specifically,

Reg(Γ;T )≤ P0λ
[
(β̄−β)t̄+(βa−β)(T − t̄)

]
+P0Tλ(R−β)P

(
τ < T | λ

)
+(1−P0)λ(β̄−R)t̄.

(43)

where the first part encapsulates the “overpayment” if the agent is of type λ, and the overpayment

consists of those incurred during and after the exploration periods; the second part captures the

loss from mistakenly terminating the type λ agent before T ; the third part upper bounds the total

lost of hiring a type λ agent. We observe that the third term of (43), corresponding to the loss of

hiring a type λ agent, is linear in the length of the exploration period, which is logarithmic in T .

Therefore, this part of the regret is readily in O(lnT ). In order to establish that the total regret is

indeed logarithmic in T , we need to demonstrate that (1) the “overpayment” is sufficiently small;

and (2) the probability of type λ agent being terminated before T is sufficiently small. For (1),
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the setup of the “explore-then-commit” contract implies that (β̄−β)t̄ is at most logarithmic in T .

Therefore, we only need to show that βa−β is sufficiently small. For (2), we need to show that the

probability of terminating a type λ agent prematurely is sufficiently low.

We first bound the overpayment. The following Lemma 8 suggests that the overpayment βa−β

is bounded from above by a multiple of the inverse of T .

Lemma 8. We have

βa−β ≤ c3
T
. (44)

Therefore, (βa− β)(T − t̄) in the second term of (43) is in O(1). Next, for point (2), we invoke

the Hoeffding’s inequality to obtain the following result.

Lemma 9. The probability of terminating a capable agent before T satisfies

P
(
τ < T | λ

)
≤ 1

T
. (45)

Combining (43), (44) and (45), we have

Reg(Γ;T )≤ P0λ
[
(β̄−β)t̄+ c3(1− t̄/T )

]
+P0λ(R−β)+ (1−P0)λ(β̄−R)t̄=O(lnT ),

where the last equality follows because t̄=O(lnT ).

We conclude this section by comparing the two proposed contracts. Theoretically, both regret

upper bounds of the “explore-and-exploit” contract described in Section 4.1 and the “explore-then-

commit” contract in Section 4.2 are in the same order, and differ only in the constant terms. From

a practical perspective, the “explore-then-commit” contract appears easier to implement, because

it does not require the principal to frequently vary payments towards arrivals. We numerically

compare the regrets from the “explore-and-exploit” and the “explore-then-commit” contracts. Fig-

ure 3 illustrates the result. Here, we set the model parameters b= 1, R= 3, P0 = 0.5, λ= 0.8, and

λ= 0.3, and vary the time horizon T . For each choice of T , we generate 10,000 samples. Within

each sample, we first randomly generate the agent’s type λ ∈ {λ,λ} according to the common

prior distribution. Then in each period t∈ [T ], the simulation generates a sample trajectory of xt’s

according to Bernoulli(λ). Figure 3 clearly demonstrates that the “explore-and-exploit” contract

achieves a lower regret.

5. Continuous-Time Setting

In this section, we extend the previous analysis to a continuous-time setting, which connects our

work with prior literature on continuous-time dynamic contracting with Poisson arrivals (see, for

example, Biais et al. 2010, Sun and Tian 2018, Cao et al. 2023).
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Figure 3 Average regrets of the “explore-and-exploit” and the “explore-then-commit” contracts over different

time horizons T under parameter λ= 0.8, λ= 0.3. The horizon T takes values of 100,200, . . . ,10,000,

and for each T we ran 10,000 samples.

Consider a time horizon of length T ∈R+ with N arrivals. Define the corresponding sequence of

arrival times as {Tn}n∈{0,1,...,N} ∈ [0, T ) such that T0 = 0< T1 < T2 < . . . < TN < TN+1 := T . Define

a counting process {Nt} such that

Nt = n for t∈ [Tn, Tn+1), n∈ {0, . . . ,N},

which represents the total number of arrivals before time t. The counting process generates a

filtration N := {Nt}t∈[0,T ). The arrivals are generated according to a Poisson process with rate

being either λ or λ, depending on the agent’s type, and if the agent exerts effort. The agent’s effort

is not observable by the principal, and the instantaneous arrival rate is 0 when the agent does not

exert effort. The ex-ante probability of the agent being of type λ is P0. Therefore, given a time

horizon T , the number of arrivals N is random.

Now, we define a contract consisting of payments and a termination time. Let L := {Lt}t∈[0,T ) be

an N -adapted process tracking the principal’s cumulative payment to the agent, with L0 = 0 and

Lt−Lt′ ≥ 0, ∀t, t′ ∈ [0, T ) and t≥ t′,

which corresponds to βt ≥ 0 in the discrete-time case and captures the agent’s limited liability.

Define the termination time τ as an N -stopping time. In response to a contract Γ := (L, τ), the
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agent exerts effort according to an N -predictable effort process ν := {νt}t∈[0,T ), with νt ∈ {0,1}.

Given a contract Γ and an effort process ν, the expected utility of the agent is

W (Γ,ν) :=Eν

[∫ τ

0

dLt− bνtdt

]
. (46)

The corresponding principal’s utility is defined as

U(Γ,ν) :=Eν

[∫ τ

0

RdNt−dLt

]
. (47)

For any contract Γ, still let ν̂(Γ) be the agent’s best response effort process, such that (3) is

satisfied. The principal’s dynamic contract design problem is still (6) with W (Γ,ν) and U(Γ,ν)

defined in (46) and (47), respectively. The upper bound expression in Proposition 1 still holds, and

the regret of a contract Γ is as defined in (12).

If the agent of type λ always exerts effort, then the number Nt of good arrivals up to time t

follows a Poisson distribution with parameter λt. The following result corresponds to Lemma 1,

which summarizes the two players’ share belief about the agent’s type if the agent always exerts

effort.

Lemma 10. After any time t with the full-effort process and history Nt such that the number of

good arrivals is Nt, the posterior belief that the agent is of type λ, denoted by Pt(Nt), is

Pt(Nt) := P
(
λ= λ | Nt

)
= P

(
λ= λ |Nt

)
=

((
λ

λ

)Nt

· e(λ−λ)t ·
(

1

P0

− 1

)
+1

)−1

. (48)

5.1. Regret Lower Bound in Continuous-Time Setting

Similar to inequality (20) of Section 3, for any contract Γ and the corresponding best-response

effort process ν̂, we have

Reg(Γ, T )≥ P0λ(R−β)

(
T −Eν̂

[∫ τ

t=0

ν̂tdt | λ
])

+(1−P0)(b−λR)Eν̂

[∫ τ

t=0

ν̂tdt | λ
]
. (49)

We consider two cases depending on whether a type λ agent exerts enough effort under contract

Γ. First, suppose that the λ-type agent exerts effort in a sufficiently long time. That is,

Eν̂

[∫ τ

t=0

ν̂tdt | λ
]
≥ 1

2
C lnT, (50)

for a constant C := 1/[2(λ−λ)]. Dropping the first term on the right-hand side of inequality (49),

which is non-negative, we obtain

Reg(Γ, T )≥ 1

2
(1−P0)(b−λR)C lnT. (51)
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Now suppose that the opposite of (50) holds. That is,

Eν̂

[∫ τ

t=0

ν̂tdt | λ
]
<

1

2
C lnT. (52)

We will prove that when (52) holds, the first term on the right-hand side of (49) is at least in the

order of lnT .

We start with introducing additional notations. Note that for a generic Poisson process with rate

λ, the joint distribution of observing n arrivals over a time interval [0, T ) with arrival time epochs

{ti}ni=1 such that 0≤ t1 < t2 < . . . ,< tn <T is

f(n, t1, t2, . . . , tn;λ) = λne−λT . (53)

Online Appendix Section EC.4.2 provides a detailed derivation for (53). Based on this expression,

we consider our setting with an effort process ν and a trajectory Nt over the time horizon [0, T ).

Let n be the total number of arrivals with corresponding arrival time epochs {ti}ni=1, such that

0≤ t1 < . . . < tn < t and νti(Nt) = 1. Further, define the corresponding “effective total effort time”

as Tν(Nt) :=
∫ t

s=0
νs(Ns)ds. Following from (53), its mixed density function is

fν(n, t1, . . . , tn;λ, t) =

{
λne−λTν (Nt), if νti(Nt) = 1,∀i∈ [n],
0, otherwise.

(54)

Because the joint distributions do not depend on specific values of t1, . . . , tn, for notation clarity,

we define

fν(Nt | λ) := fν(n, t1, . . . , tn;λ, t). (55)

Besides, for any real value t, integer n and a sequence t1, . . . , tn, we use expression t1, . . . , tn ∈ [0..t)
to represent the condition that 0≤ t1 ≤ . . .≤ tn < t. With a slight abuse of notation, for any function

g(n, t1, . . . , tn), we define the conditional expectation of function g(·) by the following simplified

expression∫
g(Nt)fν(Nt | λ)dNt :=

∞∑
n=0

∫
· · ·
∫

t1,...,tn∈[0..t)

g(n, t1, . . . , tn)fν(n, t1, . . . , tn;λ, t)dt1 . . .dtn. (56)

Similar to Lemma 2, we obtain the next result following (53).

Lemma 11. Given any trajectory N and effort process ν, we have

fν(N | λ)≥ e−(λ−λ)Tν (N )fν(N | λ). (57)

In the same spirit of (25) and (26), condition (52) implies that there must exist an event A such

that the following two conditions are simultaneously satisfied:∫
N∈A

fν̂(N | λ)dN ≥
1

2
, and Tν̂(N )<C lnT, a.e. in A. (58)

Inequalities (57) and (58) imply the following result.
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Lemma 12. For any contract and its best-response effort process that satisfies (52), we have

Eν̂

[∫ T

t=0

(1− ν̂t)dt | λ
]
≥ 1

2
T−1/2(T −C lnT ). (59)

Finally, dropping the second term on the right-hand side of inequality (49), which is non-negative,

we obtain

Reg(Γ, T )≥ P0λ(R−β)

(
T −Eν̂

[∫ τ

t=0

ν̂tdt | λ
])

= P0(λR− b)Eν̂

[∫ T

t=1

(1− ν̂t)dt | λ
]

≥ 1

2
P0(λR− b)T−1/2 (T −C lnT ) ,

where the last inequality follows (59).

In conclusion, we have the following result, which lower bounds the regret.

Theorem 4. For any contract Γ, we have

Reg(Γ, T )≥min

{
1

2
(1−P0)(b−λR)C lnT,

1

2
P0(λR− b)T−1/2 (T −C lnT )

}
=Ω(lnT ).

The result demonstrates that extending the online dynamic contract design problem into a

continuous-time setting does not affect the order of the lower regret bound in the length of the

planning horizon, T .

5.2. Contract Design in Continuous-Time Setting

Here we provide a continuous-time contract design, in analogous to the discrete-time “explore-and-

exploit” contract of Section 4.1. Following the same spirit of (28), define1

εt := (e− 1)

√
2λ ln(T )

t
.

With a slight abuse of notations, define at in the same way as in (29), i.e., at := tmax{0, λ− εt}.
The agent is terminated as soon as Nt <at. Similar to (30) we define the termination time to be

{τ = t} :=∩s∈[0,t){Ns ≥ as}∩ {Nt <at}, ∀t∈ [0, T ). (60)

Because Nt’s are integers and increasing in t, whereas at is non-decreasing deterministic function

of t, the actual stopping time can only take values from a finite set. In particular, for any integer

n∈ [⌊aT ⌋], define time epoch sn such that

asn = n.

1 The reason that we have a constant factor e−1 in εt is due to the concentration inequality that we use here for the
continuous-time case. Inside the square-root term, we use lnT instead of ln(T − t+1) because the expression in (28)
creates issues when time epoch t gets too close to T .
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It may be easier to understand the termination time in terms of threshold times to receive certain

numbers of arrivals. That is, the agent can only be terminated at some sn, if the n-th arrival does

not occur by time sn, or,

{τ > sn} :=∩j∈[n]{Tj ≤ sj}, ∀n∈ [⌊aT ⌋] . (61)

The continuous-time contract also pays the agent zero when there is no arrival, and a positive

amount β(t) when there is an arrival. The payment only depends on the time period t, regardless

of past arrivals. For this purpose, similar to (31), define probability

P (t) :=

((
λ

λ

)at

· e(λ−λ)t ·
(

1

P0

− 1

)
+1

)−1

, (62)

and the corresponding payment

β(t) := β(P (t)), (63)

where the function β(·) is defined in (15). Figure 4 illustrates the dynamics of the continuous-time

contract, similar to Figure 1.

Figure 4 Illustration of our algorithm under the continuous time version with parameters λ= 0.7, λ= 0.1, P0 =

0.1, T = 100, b = 1, and R = 3. The marked points (sn, n) represent all the epochs that the agent is

possible to be terminated and the corresponding asn = n.

We have the following Proposition 6, which establishes that the proposed contract is incentive

compatible.
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Proposition 6. Consider a contract Γ that terminates according to τ defined in (60), pays the

agent β(t) if there is an arrival at time t, and zero if not. That is, dLt = β(t)dNt. This contract Γ

satisfies (IC), in which the full-effort process in the continuous time is defined as

ν̄ := {νt = 1}t∈[0,T ).

Therefore, the agent’s best-response effort process is ν̄, and both players’ belief probabilities

that the agent is of type λ follow (48).

Similar to (34), we can divide the regret into three parts, that is

Reg(Γ, T ) = P0

(
λ(R−β)T −Eν̂(Γ)

[∫ τ

0

(RdNt−dLt) | λ
])
− (1−P0)Eν̂(Γ)

[∫ τ

0

(RdNt−dLt) | λ
]

≤ P0λ

∫ T

0

(β(t)−β)dt+P0

(
T −E

[
τ | λ

])
λ(R−β)+ (1−P0)E [τ | λ]λ(β̄−R). (64)

Again, the three parts correspond to the overpayment to a type λ agent, the loss from mistakenly

terminating a type λ agent, and the loss due to hiring the type λ agent for too long. In order

to establish an upper bound on the total regret, we need to bound each of these three parts.

First, because Poisson distribution is a sub-exponential distribution, we have the following results

corresponding to Lemmas 6 and 7.

Lemma 13. For any t∈ [0, T ), we have

P
(
Nt <at | λ

)
≤ e−tε2t /((e−1)2λ) =

1

T 2
, for εt ≤ λ, and

P (Nt ≥ at | λ)≤ e−t(λ−λ−εt)
2/((e−1)2λ), for εt ≤min{λ−λ, (e− 1)λ}.

(65)

The insights revealed by Lemma 13 are similar to those discussed following Lemma 6. Lemma 13

further implies the following Lemma 14, confirming that the second and third terms on the right-

hand side of inequality (64) are at most in the order of lnT .

Lemma 14. We have

E
[
τ | λ

]
≥ T −λ, and E [τ | λ]≤ α′′ lnT +1/T, (66)

where α′′ :=max{8(e− 1)2/[λ(λ−λ)2], 2/[λλ2]}.

Similar to Lemma 4 and Lemma 5, we have the following two lemmas for bounding the first

term in (64).

Lemma 15. For any k= 1,2 . . ., if t≥ (c′2/c
′
1)

2(1+3k) lnT , we have

β(t)−β ≤ c3e
c′3k lnT , (67)

where c3 is defined in (36), and c′1, c
′
2, c

′
3 are negative constants defined as follows:

c′1 := ln

((
λ

λ

)λ

e(λ−λ)

)
, c′2 := 2(e− 1)

√
λ ln

(
λ

λ

)
, c′3 :=

c′22
c′1

.
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Then, following from Lemma 15, we obtain the next result verifying that the total overpayment

is in the order of lnT .

Lemma 16. For any T ≥ e, we have∫ T

t=0

(β(t)−β)dt≤ 4c3

(
c′2
c′1

)2

lnT +
3c3
−c′3

. (68)

Putting all of the above results together, we obtain the main result of this section, corresponding

to Theorem 2, as the following theorem.

Theorem 5. For any instance of the online dynamic contract design problem in continuous time

with a time horizon of length T , let Γ be the contract designed for the continuous time situation,

that terminates according to τ defined in (60), and pays the agent β(t) according to (63) if and only

if there is an arrival at time t. The total expected regret of implementing contract Γ satisfies

Reg(Γ, T ) =O(lnT ).

Comparing Theorem 5 with Theorem 4, we observe that the proposed continuous-time contract

achieves the optimal regret rate. This regret rate mirrors the one identified in the discrete-time

setting. In the continuous-time setting, we can interpret the termination criterion as a sequence of

“milestone times” {sn}n≥1. An agent is allowed to continue only if the n-th arrival has occurred

by time sn. In certain practical settings, these milestone times may be easier to articulate and

understood than the threshold at.

6. Conclusion

In this paper, we study a dynamic moral hazard problem in which a principal hires an agent over a

finite time horizon with length T . In each period the agent can choose to either shirk or exert costly

effort, which is not observable by the principal. The agent’s effort generates an uncertain arrival

in any period that is beneficial to the principal. The probability of arrival in a period when the

agent exerts effort can be one of two values. The high arrival probability corresponds to an agent

who is worth hiring, while a low arrival probability agent is not worth hiring. The agent’s type is

unknown to both the principal and the agent beyond a common prior, and can be learned over

time. The profit-maximizing principal can commit to a long-term contract consisting of payments

and contract termination.

Due to its complexity, we resort to a regret-minimization approach. In particular, we propose

two online dynamic contracts that motivate the agent to exert effort before termination. Moreover,

we show that the regret of both contracts is at most in the order of lnT , matching the rate of a

regret lower bound. That is, our contracts achieve the best possible regret rate. Our contracts are
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simple to describe and easy to implement, because the corresponding payment upon arrival in a

period only depends on the period index, not on any other information regarding past arrivals.

Furthermore, we obtained similar results for a continuous-time setting.

We conclude this paper with some thoughts on potential future research directions. First, in

this paper, we assume that the agent is either worth hiring or not so. In general, both types may

be worth hiring. However, such a setting appears difficult to analyze, and näıvely extending the

proposed contracts of this paper does not seem to work. If solvable, its solution may further allow

us to consider the multi-type agent case. Second, our paper assumes that when the agent shirks,

the arrival probability is zero. A natural extension is to include a “background arrival rate” even

without the agent’s effort. In such a setting, if we assume that both players know the agent’s type,

the corresponding principal’s utility may not be an upper bound of the original problem. This

is because the agent’s information rent may hurt the principal in general. (In our paper with no

background arrivals, this information rent happens to be zero.) On the other hand, the societal

utility, when assuming that both players know the agent’s type, is indeed an upper bound of the

principal’s utility in the original setting. However, even the regret-rate lower bound against such

a benchmark appears linear in the number of periods. Therefore, it is unclear whether and how

one can define a proper upper bound against which we can obtain a sub-linear regret rate. Third,

it may be interesting to study a multi-agent case with a budget constraint. One can perceive the

budget as the amount of resources/jobs to be assigned to agents in each period. The principal

can use payment schedules, termination criteria, and budget allocations to incentivize the agent to

exert effort and hedge against the risk of facing an incapable agent. The principal may be able to

leverage the competition among multiple agents to reduce rent payment.

References

Amin K, Rostamizadeh A, Syed U (2013) Learning prices for repeated auctions with strategic buyers.

Advances in Neural Information Processing Systems, volume 26 (Curran Associates, Inc.).

Amin K, Rostamizadeh A, Syed U (2014) Repeated contextual auctions with strategic buyers. Advances in

Neural Information Processing Systems, volume 27 (Curran Associates, Inc.).

Bennett G (1962) Probability inequalities for the sum of independent random variables. Journal of the

American Statistical Association 57(297):33–45.

Biais B, Mariotti T, Rochet JC, Villeneuve S (2010) Large risks, limited liability, and dynamic moral hazard.

Econometrica 78(1):73–118.

Bubeck S (2011) Introduction to online optimization. Lecture notes 2:1–86.

Cao P, Sun P, Tian F (2023) Punish underperformance with suspension: Optimal dynamic contracts in the

presence of switching cost. Management Science .



Wang, Liang and Sun: Dynamic Contract Design with Learning 31

Dawande M, Janakiraman G, Qi A, Wu Q (2019) Optimal incentive contracts in project management.

Production and Operations Management 28(6):1431–1445.

Demarzo PM, Sannikov Y (2017) Learning, termination, and payout policy in dynamic incentive contracts.

The Review of Economic Studies 84(1 (298)):182–236, ISSN 00346527, 1467937X.

Fernandes A, Phelan C (2000) A recursive formulation for repeated agency with history dependence. Journal

of Economic Theory 91(2):223–247.

Gibbons R, Murphy KJ (1992) Optimal incentive contracts in the presence of career concerns: theory and

evidence. Journal of Political Economy 100(3):468–505.

Grossman SJ, Hart OD (1983) An analysis of the principal-agent problem. Econometrica 51(1):7–45.

Gupta S, Chen W, Dawande M, Janakiraman G (2023) Three years, two papers, one course off: optimal

nonmonetary reward policies. Management Science 69(5):2852–2869.

Hazan E (2016) Introduction to online convex optimization. Foundations and Trends® in Optimization

2(3-4):157–325, ISSN 2167-3888.

He Z, Wei B, Yu J, Gao F (2017) Optimal long-term contracting with learning. The Review of Financial

Studies 30(6):2006–2065, ISSN 0893-9454, 1465-7368.

Holmström B (1979) Moral hazard and observability. The Bell Journal of Economics 10(1):74–91, ISSN

0361-915X.

Holmström B (1999) Managerial incentive problems: a dynamic perspective. The Review of Economic Studies

66(1):169–182.
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Electronic Companions

EC.1. Proofs and supplemental materials of Section 2

EC.1.1. Proof of Proposition 1

Proposition 1. The principal’s expected utility under the optimal contract for the dynamic con-

tract design problem, J , satisfies

J ≤max
Γ

V
(
Γ, ν̂(Γ)

)
≤ P0 ·OPT(λ)+ (1−P0) ·OPT(λ) = P0Tλ(R−β), (10)

in which we define

β :=
b

λ
. (11)

Proof: The first inequality follows directly from (8). Following (2), (5), and (7) we have that for

any Γ and ν,

V (Γ,ν) = Eν

[
τ∑

t=1

βt− bνt

]
+Eν

[
τ∑

t=1

Rxt−βt

]

= Eν

[
τ∑

t=1

Rxt− bνt

]

= P0Eν

[
τ∑

t=1

Rxt− bνt | λ

]
+(1−P0)Eν

[
τ∑

t=1

Rxt− bνt | λ

]

= P0Eν

[
τ∑

t=1

E
[
Rxt− bνt | νt = 1, λ

]
1{νt = 1} | λ

]

+(1−P0)Eν

[
τ∑

t=1

E [Rxt− bνt | νt = 1, λ]1{νt = 1} | λ

]
(EC.1.1)

= P0Eν

[
τ∑

t=1

(Rλ− b)νt | λ

]
+(1−P0)Eν

[
τ∑

t=1

(Rλ− b)νt | λ

]
(EC.1.2)

≤ P0T (Rλ− b)+ 0, (EC.1.3)

where (EC.1.1) uses the fact that xt = 0 conditioning on νt = 0; (EC.1.2) follows from 1{ν1 = 1}= νt

and E [xt | νt = 1, λ] = λ; and (EC.1.3) follow from assumption (1), which implies that Rλ− b > 0

and Rλ− b < 0. Thus we have

max
Γ

V (Γ, ν̂(Γ))≤max
Γ,ν

V (Γ,ν)≤ P0T (Rλ− b).

Then by taking into the definition of OPT(λ) and β, we complete the proof. □
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EC.1.2. The clairvoyant problems and Proposition EC.1

In this section, we define the clairvoyant problem where both the agent and the principal know the

exact type of the agent, then we show that the optimal expected profit of the clairvoyant problem

achieves the benchmark of the expected profit in the online version specified in Proposition 1.

When both the agent and the principal know exactly the type λ of the agent, following the same

spirit of (2)-(6), define the type λ agent’s total utility under contract Γ following effort process ν

as

W λ(Γ, ν) :=Eν

[
τ∑

t=1

βt− bνt | λ

]
;

For any contract Γ, define ν̂λ(Γ) to be the agent’s best response effort process with type λ, such

that

W λ(Γ, ν̂λ(Γ))≥W λ(Γ, ν), ∀ν, (EC.1.4)

and we must also have

W λ(Γ, ν̂λ(Γ))≥ 0; (EC.1.5)

Further define the principal’s utility given type λ under contract Γ and effort process ν as

Uλ(Γ, ν) :=Eν

[
τ∑

t=1

Rxt−βt | λ

]
; (EC.1.6)

The principal tries to solve the following dynamic contract design problem for λ∈ {λ,λ}:

J λ :=max
Γ

Uλ(Γ, ν̂λ(Γ)). (EC.1.7)

Next, we show that OPT(λ̄) and OPT(λ) equal to the principal’s optimal utility when both parties

know that the agent’s type is λ̄ and λ, correspondingly..

Proposition EC.1. We have

J λ =OPT(λ),

where OPT(λ) is defined in (9) .

Proof: Define the societal utility of a contract Γ given type λ as

V λ(Γ) := Uλ(Γ, ν̂λ(Γ))+W λ(Γ, ν̂λ(Γ))

= Eν̂λ(Γ)

[
τ∑

t=1

Rxt− bν̂λ
t | λ

]

= Eν̂λ(Γ)

[
τ∑

t=1

(Rλ− b)1
{
ν̂λ
t = 1

}
| λ

]
≤ max{T (λR− b),0}
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Following (EC.1.5) we have

J λ ≤max
Γ

V λ(Γ)≤max{T (λR− b),0}=OPT(λ). (EC.1.8)

Then we design a contract under λ, such that the asserted value can be achieved. Specifically, we

define a contract Γλ = (β, τ) as in the following. The termination time τ = 0 if λ≤ b/R, and τ = T

otherwise. The payment at period t, βt = 0 if xt = 0 and βt = b/λ if xt = 1. Then we show that

ν̂λ(Γλ) = ν̄. Specifically, if λ≤ b/R, then τ = 0, the result is trivial. If λ≥ b/R, then τ = T , thus

the agent’s expected utility of always exerting effort is

Eν̄

[
τ∑

t=1

βt− b | λ

]
=Eν̄

[
T∑

t=1

b

λ
xt | λ

]
−Tb= T

b

λ
λ−Tb= 0

For any effort strategy ν̃ ̸= ν̄, we have

Eν̃

[
τ∑

t=1

βt− bν̃t | λ

]
=

T∑
t=1

Eν̃

[
E
[
b

λ
xt− b | λ, ν̃t = 1

]]
= 0.

Combining the above two equations, we conclude that contract Γλ is incentive compatible. There-

fore, we have

Uλ(Γλ, ν̂λ(Γλ)) =Uλ(Γ, ν̄) =Eν̄

[
τ∑

t=1

Rxt−βt | λ

]
=

{
0, if λ≤ b/R

T (λR− b), otherwise,

which together with (EC.1.8) completes the proof. □

EC.1.3. Proof of Lemma 1

Lemma 1. After any time t with the full-effort process and history Nt such that the number of

good arrivals is Nt, the posterior belief that the agent is of type λ, denoted by Pt(Nt), is

Pt(Nt) := P
(
λ= λ | Nt

)
= P

(
λ= λ |Nt

)
=

((
λ

λ

)Nt
(
1−λ

1−λ

)t−Nt
(

1

P0

− 1

)
+1

)−1

. (14)

Proof: Using the conditional probability formula, we have

P
(
λ= λ | Nt

)
=

P
(
Nt, λ= λ

)
P (Nt)

=
P
(
λ= λ

)
·P
(
Nt | λ= λ

)
P
(
λ= λ

)
·P
(
Nt | λ= λ

)
+P (λ= λ) ·P (Nt | λ= λ)

=
P0λ

Nt
(1−λ)t−Nt

P0λ
Nt
(1−λ)t−Nt +(1−P0)λ

Nt(1−λ)t−Nt

=

(
1+

(1−P0)λ
Nt(1−λ)t−Nt

P0λ
Nt
(1−λ)t−Nt

)−1

=

(
1+

(
1

P0

− 1

)(
λ

λ

)Nt
(
1−λ

1−λ

)t−Nt
)−1

, (EC.1.9)
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which only depends on Nt.

P
(
λ= λ |Nt

)
=

P
(
Nt, λ= λ

)
P (Nt)

=
P (Nt)

∑
N̂t

[
P
(
N̂t |Nt

)
P
(
λ= λ | Nt

)]
P (Nt)

=
∑
N̂t

[
P
(
N̂t |Nt

)
P
(
λ= λ | Nt

)]
.

From (EC.1.9), for any N̂t such that P
(
N̂t

)
̸= 0, i.e., the number of good arrivals in N̂t is Nt, we

have

P
(
λ= λ | Nt

)
=

(
1+

(
1

P0

− 1

)(
λ

λ

)Nt
(
1−λ

1−λ

)t−Nt
)−1

.

Combining the above two inequalities we have

P
(
λ= λ |Nt

)
=
∑
N̂t

[
P
(
N̂t |Nt

)](
1+

(
1

P0

− 1

)(
λ

λ

)Nt
(
1−λ

1−λ

)t−Nt
)−1

=

(
1+

(
1

P0

− 1

)(
λ

λ

)Nt
(
1−λ

1−λ

)t−Nt
)−1

.

This completes the proof. □

EC.1.4. Technical Lemma EC.1

To prove Proposition 2, we provide the following technical lemma.

Lemma EC.1.

−
c−1∑
k=0

(
(1−λ)k(k+1)

)
=

(cλ+1)(1−λ)c− 1

λ
2 .

Proof: Let f(λ) :=
∑c−1

k=0(1−λ)k+1. Then take the derivative of f(λ) we have

f ′(λ) =−
c−1∑
k=0

(
(1−λ)k(k+1)

)
.

Since

f(λ) =
(1−λ)(1− (1−λ)c)

λ
=

1−λ

λ
− (1−λ)c+1

λ
,

we have

f ′(λ) = − 1

λ
2 −
−(c+1)(1−λ)cλ− (1−λ)c+1

λ
2 =

(cλ+1)(1−λ)c− 1

λ
2 .

This completes the proof. □
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EC.1.5. Proof of Proposition 2

Proposition 2. Consider λ = 0 and define a contract Γ̌ =
(
{β̌t}t∈[T ], τ̌) such that β̌t = β(Pt) if

xt = 1 and β̌t = 0 if xt = 0; and τ̌ is defined according to (16) for any sequence {p̄s}s∈[T ]. We have

Reg(Γ̌;T ) =Ω(T ).

Proof: Consider a case when λ= 0, where the bad agent can never make an arrival. The posterior

belief after t periods without any good arrival is

Pt =

((
1−λ

1−λ

)t(
1

P0

− 1

)
+1

)−1

=

((
1

1−λ

)t(
1

P0

− 1

)
+1

)−1

,

and if there is an arrival at period t+1, the agent will get payment

β̌t+1 =
b

Ptλ+(1−Pt)λ
=

b

Ptλ
=

b

λ

((
1

1−λ

)t(
1

P0

− 1

)
+1

)
, (EC.1.10)

then the posterior belief will be Ps = 1,∀s≥ t+1. Besides, there is a threshold ť such that if there

is no arrival up to period ť, the contract will be terminated. The agent’s optimal strategy, denoted

by ν̌, is to shirk in the first s ≤ ť period, then always exerting efforts in the following c := ť− s

periods. The expected utility of the agent is

g(c) :=
c−1∑
k=0

P0(1−λ)kλ
(
β̌s+k+1− (k+1)b

)
−P0(1−λ)ccb− (1−P0)cb

=
c−1∑
k=0

P0(1−λ)kλ

(
b

λ

((
1

1−λ

)s+k(
1

P0

− 1

)
+1

)
− (k+1)b

)
−P0(1−λ)ccb− (1−P0)cb

= P0cb

(
1

1−λ

)s(
1

P0

− 1

)
+P0b

c−1∑
k=0

(1−λ)k−P0bλ
c−1∑
k=0

(
(1−λ)k(k+1)

)
−P0(1−λ)ccb− (1−P0)cb

(∗)
= (1−P0)cb(1−λ)c−ť +P0b

1− (1−λ)c

λ
+P0bλ

(cλ+1)(1−λ)c− 1

λ
2 −P0(1−λ)ccb− (1−P0)cb

= (1−P0)cb(1−λ)c−ť +P0b
cλ(1−λ)c

λ
−P0(1−λ)ccb− (1−P0)cb

= (1−P0)cb(1−λ)c−ť +P0bc(1−λ)c−P0(1−λ)ccb− (1−P0)cb

= (1−P0)cb(1−λ)c−ť− (1−P0)cb.

Note that
(∗)
= follows from Lemma EC.1.

The agent wants to choose the best c, which is

c∗ := argmax
c

{
(1−P0)cb(1−λ)c−ť− (1−P0)cb

}
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Take the derivative of g(c) we have

g′(c) = (1−P0)b(1−λ)c−ť +(1−P0)cb(1−λ)c−ť ln(1−λ)− (1−P0)b

= (1−P0)b(1−λ)c−ť(1+ c ln(1−λ))− (1−P0)b.

Since ln(1−λ)< 0, the optimal c should be

c∗ <− 1

ln(1−λ)
+ 1.

Therefore, the probability of a good agent being fired at ť is

Pν̌

(
τ̌ = ť | λ

)
= (1−λ)c

∗
≥ (1−λ)−1/ ln(1−λ)+1 =

1−λ

e
,

where the equality uses the fact that for any x > 0, we have x−1/ lnx) = elnx/(− lnx) = 1/e. Then

following (5) and (12), we can rewrite the regret as

Reg(Γ̌, T ) = P0

(
λ(R−β)T −Eν̌

[
τ̌∑

t=1

Rxt− β̌t | λ

])
− (1−P0)Eν̂(Γ)

[
τ̌∑

t=1

Rxt− β̌t | λ

]
(EC.1.11)

= P0

(
λ(R−β)T −Eν̌

[
τ̌∑

t=1

Rxt− β̌t | λ

])
(EC.1.12)

because λ= 0. Then we have

λ(R−β)T −Eν̌

[
τ̌∑

t=1

Rxt− β̌t | λ

]

= λ(R−β)(ť− c∗)+

(
λ(R−β)c∗−Eν̌

[
ť∑

t=ť−c∗+1

Rxt− β̌t | λ

])
+λ(R−β)(T − ť)

(
1−

(
1−Pν̌

(
τ̌ = ť | λ

)))
≥ λ(R−β)(ť− c∗)+λ(R−β)(T − ť)

1−λ

e
=Ω(T ),

no matter which value ť takes, where the inequality is because β̌t ≥ β. This completes the proof.

□

EC.1.6. Proof of Proposition 3

Proposition 3. For any t ∈ [T ], n ≤ t − 1, and (t − n)-dimensional vector w :=

(w0,w1, . . . ,wt−1−n)
⊺, define the following dynamic programming recursion

J(t, n,w) := max
w±,β±,I

I
{
λt,n

[
(R−β+)+J(t+1, n+1,w+)

]
+(1−λt,n)

[
−β− +J(t+1, n,w−)

]}
s.t. w0 = I(λt,n(β

+ +w+
0 )+ (1−λt,n)(β

− +w−
0 )− b)

wk = Imax
{
λt−k,n(β

+ +w+
k )+ (1−λt−k,n)(β

− +w−
k )− b,

β− +w−
k+1

}
, ∀t > 1, k= 0, . . . , t− 1−n

w+ ∈Rt−n
+ , w− ∈Rt+1−n

+ , β± ∈R+, I ∈ {0,1},

(18)
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with boundary conditions

J(T +1, n′,0) = 0, and J(T +1, n′,w) =−∞, if w ̸= 0, (19)

in which n′ ≤ T , and both 0 and w are T +1−n′-dimensional vectors.

We have Ĵ(w) = J(1,0,w).

Proof:

For the clarity of exposition, we omit the constraints w+ ∈Rt−n
+ , w− ∈Rt+1−n

+ , β± ∈R+ in this

proof when the context is clear. According to the boundary condition, we have

J(T,NT−1,w) =max
β±,I

I
{
λT,NT−1

(R−β+)+ (1−λT,NT−1
)
(
−β−)}

s.t. w0 = I(λT,NT−1
β+ +(1−λT,NT−1

)β−− b)

wk = Imax
{
λT−k,NT−1

β+ +(1−λT−k,NT−1
)β−− b, β−} ,

∀k= 0, . . . , T − 1−NT−1

I ∈ {0,1}

= max
β±
T
,τ

E

[
τ∑

t=T

RxT −βT |NT−1

]

s.t. w0 =E

[
τ∑

s=T

βs− b |NT−1

]

wk =max
ν

Eν

[
τ∑

s=T

βs− bνs |NT−1, k

]
,

∀k= 0, . . . , T − 1−NT−1

τ ∈ {T − 1, T}.

If for any t, Nt, and w, we use the following induction hypothesis,

J(t+1,Nt,w) = max
β±
t+1,...,β

±
T
,τ

E

[
τ∑

s=t+1

Rxs−βs |Nt

]

s.t. w0 =E

[
τ∑

s=t+1

βs− b |Nt

]

wk =max
ν

Eν

[
τ∑

s=t+1

βs− bνs |Nt, k

]
,

∀k= 0, . . . , t−Nt

τ ∈ {t, t+1, . . . , T}.

Then for t with any Nt−1 and w,

J(t,Nt−1,w) = max
w±,β±,I

I

{
λt,Nt−1

[
(R−β+)+ max

β
′±
t+1,...,β

′±
T

,τ ′∈Π′
E

[
τ∑

s=t+1

Rxt−β
′

t |Nt−1 +1

]]
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+(1−λt,Nt−1
)

[
−β− + max

β
′′±
t+1,...,β

′′±
T

,τ ′′∈Π′′
E

[
τ∑

s=t+1

Rxt−β
′′
t |Nt−1− 1

]]}
s.t. w0 = I(λt,Nt−1

(β+ +w+
0 )+ (1−λt,Nt−1

)(β− +w−
0 )− b) (EC.1.13)

wk = Imax
{
λt−k,Nt−1

(β+ +w+
k )+ (1−λt−k,Nt−1

)(β− +w−
k )− b,

β− +w−
k+1

}
, when t > 1, ∀k= 0, . . . , t− 1−Nt−1 (EC.1.14)

I ∈ {0,1},

in which the feasible set Π′ is defined by the following constraints

w+
0 =E

[
τ∑

s=t+1

β
′

s− b |Nt−1 +1

]
(EC.1.13a)

w+
k =max

ν
Eν

[
τ∑

s=t+1

β
′

s− bνs |Nt−1 +1, k

]
, (EC.1.14a)

∀k= 0, . . . , t− 1−Nt,

τ ′ ∈ {t, t+1, . . . , T},

and the feasible set Π′′ is defined by the following constraints

w−
0 =E

[
τ∑

s=t+1

β
′′

s − b |Nt−1− 1

]
(EC.1.13b)

w−
k =max

ν
Eν

[
τ∑

s=t+1

β
′′

s − bνs |Nt−1− 1, k

]
, (EC.1.14b)

∀k= 0, . . . , t−Nt

τ ′′ ∈ {t, t+1, . . . , T}.

Then we have

J(t,Nt−1,w) = max
β±
t ,...,β±

T
,τ

E

[
τ∑

s=t

Rxs−βs |Nt−1

]

s.t. w0 =E

[
τ∑

s=t

βs− b |Nt−1

]
(EC.1.15)

wk =max
ν

Eν

[
τ∑

s=t

βs− bνs |Nt, k

]
, (EC.1.16)

∀k= 0, . . . , t− 1−Nt−1

τ ∈ {t− 1, t, . . . , T},

where (EC.1.15) is from combining (EC.1.13a), (EC.1.13b) and (EC.1.13); and (EC.1.16) from

(EC.1.14a), (EC.1.14b) and (EC.1.14). Therefore, for t= 1, we have

J(1,0,w) =max
β,τ

E

[
τ∑

s=1

Rxs−βs

]
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s.t. w=E

[
τ∑

s=1

βs− b

]

w= max
ν

Eν

[
τ∑

s=1

βs− bνs

]
,

τ ∈ {0,1, . . . , T}.

= Ĵ(w),

which completes the proof. □

EC.2. Proofs of statements in Section 3

EC.2.1. Proof of Lemma 2

Lemma 2. Given any trajectory N and effort process ν, we have

Pν

(
N | λ

)
≥C

∑T
t=1 νt(N )Pν (N | λ) . (24)

Proof: Let H :=
∑T

t=1 νt(N ) be the total number of periods in which the agent exerts effort under

effort process ν following trajectory N . Let N := NT be the total number of arrivals following

trajectory N .

If there exists t∈ [T ] such that xt = 1 and νt(N ) = 0, then

Pν

(
N | λ

)
= Pν (N | λ) = 0,

which directly implies (24). If for any s∈ [t] such that xs = 1 we have νs(N ) = 1, then

Pν

(
N | λ

)
= λ

N
(1−λ)H−N ,

and

Pν (N | λ) = λN(1−λ)H−N ,

Therefore,

Pν

(
N | λ

)
=

(
λ

λ

)N (
1−λ

1−λ

)H−N

·Pν (N | λ)≥
(
1−λ

1−λ

)H

Pν (N | λ) ,

which completes the proof. □
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EC.2.2. Proof of Lemma 3

Lemma 3. For any contract and its best-response effort process that satisfies (23), we have

Eν̂

[
T∑

t=1

(1− ν̂t) | λ

]
≥ 1

2
T−1/e(T −C lnT ). (27)

Proof: Following (26) and Lemma 2, for any trajectory N ∈A, we have

Pν̂

(
N | λ

)
≥CC lnTPν̂ (N | λ) = TC lnCPν̂ (N | λ) ,

which implies, due to (25), that, ∑
N∈A

Pν̂

(
N | λ

)
≥ 1

2
TC lnC . (EC.2.1)

Inequality (26) further implies

T∑
t=1

(1− ν̂t(N ))>T −C lnT, ∀N ∈A. (EC.2.2)

Then the expected number of shirking periods for a high type agent is at least

Eν̂

[
T∑

t=1

(1− ν̂t) | λ

]

=
∑
N

(
Pν̂

(
N | λ

) T∑
t=1

(1− ν̂t(N ))

)

≥
∑
N∈A

(
Pν̂

(
N | λ

) T∑
t=1

(1− ν̂t(N ))

)
≥1

2
TC lnC(T −C lnT )

≥1

2
T−1/e(T −C lnT ), (EC.2.3)

where the first inequality is because for any N , Pν̂

(
N | λ

)∑T

t=1(1 − ν̂t(Nt−1)) ≥ 0, the second

inequality is from (EC.2.2) and (EC.2.1), and the last inequality is because x lnx≥−1/e for all

x> 0, which implies (27). □

EC.2.3. Proof of Theorem 1

Theorem 1. For any contract Γ, we have

Reg(Γ, T )≥min

{
1

2
(1−P0)(b−λR)C lnT,

1

2
P0(λR− b)T−1/e (T −C lnT )

}
=Ω(lnT ).

Proof: The proof follows directly from Lemma 2 and Lemma 3. □



ec11

EC.3. Proofs of statements in Section 4

EC.3.1. Proof of Proposition 4

Proposition 4. Let Γ be the contract generated according to Algorithm 1. This contract Γ satisfies

(IC).

Proof: Assume that there is an effort process ν̂ ̸= ν̄, such that W (Γ̂, ν̂)>W (Γ̂, ν̄). Then there

must be a trajectory N such that Pν̂ (N )> 0, and for some t≤ τ(N ), we have ν̂t(N ) = 0. Denote

s(N ) :=max{t | t≤ τ(N ), ν̂t(N ) = 0}. Furthermore, denote Ñ := argmaxN{s(N ) | Pν̂ (N )> 0}, and

s̃ := s(Ñ ). According to (14) and (30), we have

Pν̂

(
λ= λ | Ñs̃−1

)
≥ Pν̄

(
λ= λ | Ñs̃−1

)
≥ P s̃−1. (EC.3.1)

Define ν̃ as a new effort process same as ν̂ except that ν̃s̃(Ñ ) = 1. In the following, we will prove

that W (Γ̂, ν̃)≥W (Γ̂, ν̂). Therefore, if we repeat this process of defining a new effort process, we

will finally get ν̄ and W (Γ̂, ν̄)≥W (Γ̂, ν̂). Then by contradiction, we get the result.

Define the forward-looking utility at period t with history Nt−1 under contract Γ following effort

process ν as

Wt(Γ, ν,Nt−1) :=Eν

[
τ∑

s=t

βt− bνt | Nt−1

]
. (EC.3.2)

Then under contract Γ̂, for any effort process ν,

Wt(Γ̂, ν,Nt−1) = Pν

(
λ= λ | Nt−1

) τ∑
m=t

(λβm− b)E
[
νm | λ,Nt−1

]
+(1−Pν

(
λ= λ | Nt−1

)
)

τ∑
m=t

(λβm− b)E [νm | λ,Nt−1] .

Since ν̂ and ν̃ are only different at period s̃ given Ñs̃−1, and ν̂t(N ) = ν̃t(N ) = 1 for any N ⊇ Ñs̃

and s̃ < t≤ τ(N ), we have

W (Γ̂, ν̃)−W (Γ̂, ν̂) = Pν̂

(
Ñs̃−1

)(
Ws̃(Γ̂, ν̃, Ñs̃−1)−Ws̃(Γ̂, ν̂, Ñs̃−1)

)
= Pν̂

(
Ñs̃−1

)[
Pν̂

(
λ= λ | Ñs̃−1

)
(λβ s̃− b)+

(
1−Pν̂

(
λ= λ | Ñs̃−1

))
(λβ s̃− b)

]
≥ Pν̂

(
Ñs̃−1

)(
P s̃−1λβ s̃ +(1−P s̃−1)λβ s̃− b

)
= 0,

where the inequality is according to (EC.3.1) and the last equation is according to (32). This

together with the statement above completes the proof. □
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EC.3.2. Technical Lemma EC.2

Lemma EC.2. Let Γ be the contract generated by Algorithm 1, then we have

Reg(Γ;T )≤ P0λ
T∑

t=1

(β(t)−β)+P0

(
T −E

[
τ | λ

])
λ(R−β)+ (1−P0)E [τ | λ]λ(β̄−R).

Proof: First, according to (5) and (12), we can rewrite the regret as

Reg(Γ;T ) = P0

(
λ(R−β)T −Eν̂(Γ)

[
τ∑

t=1

Rxt−βt | λ

])
− (1−P0)Eν̂(Γ)

[
τ∑

t=1

Rxt−βt | λ

]
,

(EC.3.3)

where β̄ = b/λ is defined in Section 4. For the first term in (EC.3.3),

λ(R−β)T −Eν̂(Γ)

[
τ∑

t=1

Rxt−βt | λ

]

= λ(R−β)T −
T∑

t=1

P
(
τ ≥ t | λ

)
λ(R−β(t))

=
T∑

t=1

λ
[
(R−β)−P

(
τ ≥ t | λ

)
(R−β(t))+P

(
τ ≥ t | λ

)
(R−β)−P

(
τ ≥ t | λ

)
(R−β)

]
=

T∑
t=1

λ
[(
P
(
τ ≥ t | λ

)
(R−β)−P

(
τ ≥ t | λ

)
(R−β(t))

)
+
(
(R−β)−P

(
τ ≥ t | λ

)
(R−β)

)]
≤

T∑
t=1

λ(β(t)−β)+
T∑

t=1

P
(
τ < t | λ

)
λ(R−β), (EC.3.4)

where the inequality follows from P
(
τ ≥ t | λ

)
≤ 1 and (32). For the second term in (EC.3.3),

−Eν̂(Γ)

[
τ∑

t=1

Rxt−βt | λ

]

= −
T∑

t=1

(R−β(t))λP (τ ≥ t | λ)

≤ λ(β̄−R)
T∑

t=1

P (τ ≥ t | λ) ,

(EC.3.5)

where β̄ = b/λ, such that β(t) ≤ β̄ and R ≤ β̄, following (1) and (32). Combining (EC.3.4) and

(EC.3.5) we get the desired result. □

EC.3.3. Proof of Theorem 2

Theorem 2. For any instance of the online dynamic contract design problem with T periods, let

Γ be a contract as described in Algorithm 1. The total expected regret of implementing contract Γ

satisfies

Reg(Γ, T ) =O(lnT ). (33)
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Proof: We can upper bound the regret by a summation of three parts. First, we have from

Lemma EC.2 that

Reg(Γ;T )≤ P0λ
T∑

t=1

(β(t)−β)+P0

(
T −E

[
τ | λ

])
λ(R−β)+ (1−P0)E [τ | λ]λ(β̄−R).

Then combining the results in Lemma 5 and Lemma 7, we can upper bound the expected total

regret in the following:

Reg(Γ;T )≤ P0λ
T∑

t=1

(β(t)−β)+P0

(
T −E

[
τ | λ

])
λ(R−β)+ (1−P0)E [τ | λ]λ(β̄−R)

≤ P0λ

(
c1 +

1

λ
2 +

3c1
1−T c2

)
c3 lnT +P0λ(R−β)(lnT +1)+ (1−P0)λ(β̄−R)

4 lnT +2e/T 2(
λ−λ

)2 ,

which completes the proof. □

EC.3.4. Proof of Lemma 4

Lemma 4. let Γ be a corresponding contract as illustrated in Algorithm 1. For any k ≥ 0, and

t∈ [T ] such that

t≥max
{
c1(1+3k),1/λ

2
}
lnT,

we have

β(t)−β ≤ c3T
−c2k. (37)

Proof: According to the calculation of β(t), we have β ≤ β(t) ≤ β as P t ∈ [0,1] for all t ∈ [T ].

According to the definition we have

β(t)−β =
b

P (t−1)λ+(1−P (t−1))λ
− b

λ

=
b
(
λ−P (t−1)λ− (1−P (t−1))λ

)
λ
(
P (t−1)λ+(1−P (t−1))λ

)
=

b
(
λ−λ

) (
1−P (t−1)

)
P (t−1)λ

2
+(1−P (t−1))λλ

=
b
(
λ−λ

)
λ
2
+(1/P (t−1)− 1)λλ

(
1

P (t−1)
− 1

)
≤

b
(
λ−λ

)
λ
2

(
1

P (t−1)
− 1

)
,

(EC.3.6)

where the inequality is because
(
1/P (t−1)− 1

)
> 0. Thus we have

β(t)−β ≤min

{
β−β,

b
(
λ−λ

)
λ
2

(
1

P (t−1)
− 1

)}
. (EC.3.7)
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Then to prove (37), it is sufficient to prove

b
(
λ−λ

)
λ
2

(
1

P (t)
− 1

)
≤ c3T

−c2k. (EC.3.8)

Substituting P (t) with equation (31), we have that Equation (EC.3.8) holds only if

b
(
λ−λ

)
λ
2

(
λ

λ

)at (1−λ

1−λ

)t−at ( 1

P0

− 1

)
≤ c3T

−c2k,

which is equivalent to (
λ

λ

)at (1−λ

1−λ

)t−at

≤ T−c2k, (EC.3.9)

by the definition of c3. By the definition we have at = tmax
{
0, λ−

√
ln(T − t+1)/t

}
. Note that

we only consider when t≥ lnT/λ
2
, such that at = t

(
λ−

√
ln(T − t+1)/t

)
≥ t
(
λ−

√
lnT/t

)
. Note

that the left-hand side of (EC.3.9) is decreasing in at. Next we prove a result stronger than (EC.3.9)

in the following: (
λ

λ

)t
(
λ−
√

lnT/t
)(

1−λ

1−λ

)t
(
1−λ+
√

lnT/t
)
≤ T−c2k. (EC.3.10)

Taking ln on both sides we have

t
(
λ−

√
lnT/t

)
ln

λ

λ
+ t
(
1−λ+

√
lnT/t

)
ln

1−λ

1−λ
≤−c2k lnT.

Rearranging the term, we have

√
t
2
(
λ ln

λ

λ
+
(
1−λ

)
ln

1−λ

1−λ

)
+
√
t ·
√
lnT ln

(
λ

λ

1−λ

1−λ

)
+ c2k lnT ≤ 0,

which is a quadratic inequality of
√
t. Recall that Equation (EC.3.8) holds if and only if the

quadratic inequality of
√
t holds. Denote

a := λ ln
λ

λ
+
(
1−λ

)
ln

1−λ

1−λ
,

b :=
√
lnT ln

(
λ

λ

1−λ

1−λ

)
,

and ck := c2k lnT.

We have that a< 0 according to Lemma EC.3, and b, ck > 0. Note that a= c2/c1 and b=−
√
lnT ·

c2/
√
c1. When k= 0, we have ck = 0. The inequality holds when

√
t≥−bT

a
=
√
lnT ·

√
c1,

that is, t≥ c1 lnT . Thus the result holds when k= 0. When k≥ 1, we have ck > 0. Then there will

be a positive root and a negative root. According to the formula of the root of quadratic equation,

the inequality holds when
√
t≥ b+

√
b2− 4ack
−2a

.
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Using the fact that
√
α+ γ ≤

√
α+
√
γ for any α,β > 0, the above inequality holds if only

√
t≥ b+ b+

√
−4ack

−2a
=

b+
√
−ack
−a

,

that is

t≥
(
b+
√
−ack
−a

)2

=

(
b

a

)2

− ck
a
− 2b

a

√
−ck

a
.

Taking into a, b and ck we have(
b

a

)2

− ck
a
− 2b

a

√
−ck

a
= c1 lnT −

−c2k lnT
c2/c1

+2
√

c1 lnT

√
−−c2k lnT

c2/c1

≤ c1 lnT (1+3k),

where the inequality is because
√
k ≤ k when k ≥ 1. Therefore, when the result holds k ≥ 1. This

together with the result when k= 0 completes the proof. □

EC.3.5. Proof of Lemma 5

Lemma 5. Under contract Γ, for any T ≥ 2, we have

T∑
t=1

(β(t)−β)≤
(
c1 +

1

λ
2 +

3c1
1−T−c2

)
c3 lnT ≤

(
c1 +

1

λ
2 +

3c1
1− 2−c2

)
c3 lnT. (38)

Proof: Note that we have

β(t)−β ≤min

{
β−β,

b
(
λ−λ

)
λ
2

(
1

P (t−1)
− 1

)}
. (EC.3.11)

From Lemma 4, for any k= 0,1, . . ., if t≥max
{
c1(1+3k),1/λ

2
}
lnT , we have

β(t)−β ≤ c3T
c2k, (EC.3.12)

where c1, c2 and c3 are positive constants defined in Lemma 4. Then we can divide the time horizon

T with k, such that

T∑
t=1

(β(t)−β)≤max

{
c1,

1

λ
2

}
lnT ·min

{
β−β, c3

}
+

⌊T/(3c1 lnT )−1/3⌋∑
k=0

⌊c1(1+3(k+1)) lnT⌋∑
t=⌈c1(1+3k) lnT⌉

(
c3T

c2k
)
.

(EC.3.13)

We bound the first term as

max

{
c1,

1

λ
2

}
lnT ·min

{
β−β, c3

}
≤
(
c1 +

1

λ
2

)
c3 lnT.
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Then we bound the second term of the right-hand side, that is

⌊T/(3c1 lnT )−1/3⌋∑
k=0

⌊c1(1+3(k+1)) lnT⌋∑
t=⌈c1(1+3k) lnT⌉

(
c3T

c2k
)

≤
⌊T/(3c1 lnT )−1/3⌋∑

k=0

(
3c1 lnT · c3T c2k

)
=3c1c3 lnT

⌊T/(3c1 lnT )−1/3⌋∑
k=0

T c2k

=3c1c3 lnT ·
1−T−c2⌊T/(3c1 lnT )−1/3⌋

1−T c2

≤3c1c3 lnT ·
1

1−T c2

Then combine the above two inequalities we can derive the result. □

EC.3.6. Proof of Lemma 6

Lemma 6. For ϵt ≤ λ−λ, we have

P
(
Nt <at | λ

)
≤ e−2tϵ2t =

1

(T − t+1)2
, and

P (Nt ≥ at | λ)≤ e−2t(λ−λ−ϵt)
2

.

(39)

Proof: Apply the Hoeffding’s Inequality, we have

P
(
Nt <λt− tϵt | λ

)
= P

(
λt−Nt > tϵt | λ

)
≤ e−2tϵ2t =

1

(T − t+1)2
, and

P
(
Nt ≥ λt− tϵt | λ

)
= P

(
Nt−λt > t(λ−λ− ϵt) | λ

)
≤ e−2t(λ−λ−ϵt)

2

, for ϵt ≤ λ−λ.

This completes the proof. □

EC.3.7. Proof of Lemma 7

Lemma 7. For the termination time τ of our contract, we have

E
[
τ | λ

]
≥ T − lnT − 1, and E [τ | λ]≤ 4 lnT +2e/T 2(

λ−λ
)2 . (40)

Proof: First, we prove the first inequality. We have {τ < t} ⊆ ∪s<t{τ = s}, which implies that

P (τ < t)≤
∑

s<t P (τ = s). Therefore,

T∑
t=1

P (τ < t)≤
T∑

t=1

t−1∑
s=1

P (τ = s) =
T−1∑
s=1

T∑
t=s+1

P (τ = s) =
T∑

t=1

P (τ = t) (T − t). (EC.3.14)

The Hoeffding’s inequality implies

P
(
λt−Nt > tϵt | λ

)
≤ e−2tϵ2t =

1

(T − t+1)2
. (EC.3.15)
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Together with (30), we have

P
(
τ = t | λ

)
=P

(
t−1⋂
s=1

{Ns ≥ s(λ− ϵs)}
⋂
{Nt < t(λ− ϵt)} | λ

)
≤ P

(
{Nt < t(λ− ϵt)} | λ

)
≤ 1

(T − t+1)2
.

Therefore, we have

T∑
t=1

P
(
τ < t | λ

)
≤

T∑
t=1

T − t

(T − t+1)2
<

T∑
t=1

1

T − t+1
< lnT +1, (EC.3.16)

in which the first inequality follows from (EC.3.14), the second inequality from (EC.3.15), and the

last on from the fact that
∑N

n=1(1/n)< lnN +1 for any integer N . Then we have

E
[
τ | λ

]
=

T∑
t=1

P (τ ≥ t) =
T∑

t=1

(1−P (τ < t)) = T −
T∑

t=1

P
(
τ < t | λ

)
≥ T − lnT − 1.

Next we prove the second inequality. When t≥ lnT/(λ−λ)2, we have ϵt ≤ λ−λ. Thus according

to the terminating rule and Lemma 6, we have

E [τ | λ] =
T∑

t=1

P (τ ≥ t | λ)

=
T∑

t=1

P
(
Nt ≥ λt− tϵt | λ

)
≤ lnT(

λ−λ
)2 + T∑

t=
⌈
lnT/(λ−λ)

2⌉e
−2t(λ−λ−ϵt)

2

.

Furthermore, when t≥ 4 lnT/
(
λ−λ

)2
, we have that

λ−λ− ϵt = λ−λ−
√

ln(T − t)

t
≥ λ−λ

2
.

Thus we have
T∑

t=
⌈
lnT/(λ−λ)

2⌉e
−2t(λ−λ−ϵt)

2

≤ 3 lnT(
λ−λ

)2 + T∑
t=

⌈
4 lnT/(λ−λ)

2⌉e
−t(λ−λ)

2
/2

≤ 3 lnT(
λ−λ

)2 + e−2 lnT 1− e−T(λ−λ)
2
/2

1− e−(λ−λ)
2
/2

≤ 3 lnT(
λ−λ

)2 + 1

T 2
· 1

1− e−(λ−λ)
2
/2

≤ 3 lnT(
λ−λ

)2 + 1

T 2

2e(
λ−λ

)2
using the fact that e−x is decreasing in x, and 1/(1− e−x)≤ e/x for any x∈ (0,1). Combining the

above two inequalities we can complete the proof. □
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EC.3.8. Proof of Proposition 5

Proposition 5. The proposed “explore-then-commit” contract satisfies (IC).

Proof: Denote Γ̂ to represent the “explore-then-commit” contract. Following the proof of Propo-

sition 4, we can define the corresponding effort process ν̂, trajectory Ñ , and time period s̃. If the

agent has not been terminated by s̃ > t̄, we must have

Pν̂

(
λ= λ | Ñs̃−1

)
≥ Pν̄

(
λ= λ | Ñs̃−1

)
≥ Pa. (EC.3.17)

The remaining proof follows the same steps as the proof of Proposition 4 after (EC.3.1), except

that we replace P (t) and β(t) in that proof with 0 and β̄, respectively, for t≤ t̄; and with Pa and

βa, respectively, for t > t̄. □

EC.3.9. Proof of Theorem 3

Theorem 3. For any instance of the online dynamic contract design problem with T periods, let

Γ be an “explore-then-commit” contract as defined in Algorithm 2. The total expected regret can be

upper bounded as

Reg(Γ, T ) =O(lnT ). (42)

Proof: First, according to (5) and (12), we can rewrite the regret as

Reg(Γ;T ) = P0

(
λ(R−β)T −Eν̂(Γ)

[
τ∑

t=1

Rxt−βt | λ

])
− (1−P0)Eν̂(Γ)

[
τ∑

t=1

Rxt−βt | λ

]
,

(EC.3.18)

where β̄ = b/λ is defined in Section 4. For the first term

λ(R−β)T −Eν̂(Γ)

[
τ∑

t=1

Rxt−βt | λ

]

= λ(R−β)T −
t̄∑

t=1

λ(R− β̄)−
T∑

t=t̄+1

P
(
τ ≥ t | λ

)
λ(R−βa)

= λ(R−β)T −
t̄∑

t=1

λ(R− β̄)−
T∑

t=t̄+1

(
1−P

(
τ < t | λ

))
λ(R−βa)

= λ(R−β)T −
t̄∑

t=1

λ(R− β̄)−
T∑

t=t̄+1

λ(R−βa)+
T∑

t=t̄+1

P
(
τ < t | λ

)
λ(R−βa)

≤ λ
[
(β̄−β)t̄+(βa−β)(T − t̄)

]
+Tλ(R−β)P

(
τ < T | λ

)
. (EC.3.19)

For the second term,

−Eν̂(Γ)

[
τ∑

t=1

Rxt−βt | λ

]
=

t̄∑
t=1

λ
(
β̄−R

)
−

T∑
t=t̄+1

P (τ ≥ t)λ(R−βa)≤ λ
(
β̄−R

)
t̄. (EC.3.20)
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Take (EC.3.19) and (EC.3.20) into (EC.3.18) we have

Reg(Γ;T )≤ P0λ
[
(β̄−β)t̄+(βa−β)(T − t̄)

]
+P0Tλ(R−β)P

(
τ < T | λ

)
+(1−P0)λ(β̄−R)t̄,

which is (43) in the main text. Then take the results in Lemma 8 and Lemma 9 into the above

inequality, we have

Reg(Γ;T )≤ P0λ
[
(β̄−β)t̄+ c3

]
+P0λ(R−β)+ (1−P0)λ(β̄−R)t̄=O(lnT ),

since t̄=O(lnT ). This completes the proof. □

EC.3.10. Proof of Lemma 8

Lemma 8. We have

βa−β ≤ c3
T
. (44)

Proof: By definition we have t̄ ≥ max
{
c1(1+3/c2), 1/λ

2
}
lnT . Then following Lemma 4 and

taking k= 1/c2 we have

β(t̄)−β ≤ c3T
−c2k =

c3
T
.

Note that βa = β(t̄) by definition, thus we complete the proof.

□

EC.3.11. Proof of Lemma 9

Lemma 9. The probability of terminating a capable agent before T satisfies

P
(
τ < T | λ

)
≤ 1

T
. (45)

Proof: When t < t̄, the agent is not terminated.

When t≥ t̄,

P (Pt ≤ Pa) = P

((λ

λ

)Nt
(
1−λ

1−λ

)t−Nt
(

1

P0

− 1

)
+1

)−1

≤

((
λ

λ

)a(
1−λ

1−λ

)t̄−a(
1

P0

− 1

)
+1

)−1


= P

((
λ

λ

)Nt
(
1−λ

1−λ

)t−Nt

≥
(
λ

λ

)a(
1−λ

1−λ

)t̄−a
)

= P

((
λ

λ

)Nt
(
1−λ

1−λ

)t−Nt

≥
(
λ

λ

)λt̄−
√
t̄ lnT (

1−λ

1−λ

)(1−λ)t̄+
√
t̄ lnT

)
(EC.3.21)

Define

f(t) :=

(
λ

λ

)λt−
√
t lnT (

1−λ

1−λ

)(1−λ)t+
√
t lnT

.



ec20

Take ln on both sides we have

lnf(t) =
(
λt−

√
t lnT

)
ln

(
λ

λ

)
+
(
(1−λ)t+

√
t lnT

)
ln

(
1−λ

1−λ

)
=
√
t
2
· ln

[(
λ

λ

)λ(
1−λ

1−λ

)(1−λ)
]
+
√
t · ln

(
1−λ

1−λ

λ

λ

)√
lnT .

Then we can write lnf(t) as a function of
√
t. Specifically, define function g as

g(u) = α′u2 +α
√
lnT ·u,

in which α and α′ are defined in (36), and α′ < 0 according to Lemma EC.3. We have lnf(t) = g(
√
t).

According to the quadratic formulation of g(u), when u≥−α
√
lnT/(2α′) =

√
(c1/4) lnT , g(u) is

decreasing in u, which implies that when t≥ (c1/4) lnT , f(t) is decreasing in t. Since t̄ > (c1/4) lnT ,

for any t≥ t̄, we have f(t)≤ f(t̄), which, together with (EC.3.21) implies that

P (Pt ≤ Pa)≤ P

((
λ

λ

)Nt
(
1−λ

1−λ

)t−Nt

≥
(
λ

λ

)λt−
√
t lnT (

1−λ

1−λ

)(1−λ)t+
√
t lnT

)
= P

(
Nt ≤ λt−

√
t lnT

)
≤ 1

T 2
,

in which the last inequality follows the Hoeffding’s Inequality.

Therefore, we have

P
(
τ < T | λ

)
=

T∑
t=t̄

P
(
τ = t | λ

)
≤

T∑
t=t̄

P
(
Pt <Pa | λ

)
≤

T∑
t=t̄

1

T 2
≤ 1

T
.

This completes the proof. □

EC.3.12. Technical Lemma EC.3

Lemma EC.3. For any 0<λ<λ< 1, we have

λ ln
λ

λ
+
(
1−λ

)
ln

1−λ

1−λ
< 0. (EC.3.22)

Proof: Denote ∆λ := λ− λ, then λ = λ−∆λ. Take λ = λ−∆λ into the left-hand side of Equa-

tion (EC.3.22) and define a new function of ∆λ, that is

f(∆λ) := λ ln
λ−∆λ

λ
+
(
1−λ

)
ln

1−
(
λ−∆λ

)
1−λ

Then we have

∂f

∂∆λ

=
λ
2

λ−∆λ

(
− 1

λ

)
+

(
1−λ

)2
1−

(
λ−∆λ

) 1

1−λ

=− λ

λ−∆λ

+
1−λ

1−
(
λ−∆λ

)
<−1+1= 0,
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where the inequality is because ∆λ ∈ (0, λ). Thus we have

f(∆λ)< f(0) = 0.

This completes the proof. □

EC.4. Proofs of statements in Section 5

EC.4.1. Proof of Lemma 10

Lemma 10. After any time t with the full-effort process and history Nt such that the number of

good arrivals is Nt, the posterior belief that the agent is of type λ, denoted by Pt(Nt), is

Pt(Nt) := P
(
λ= λ | Nt

)
= P

(
λ= λ |Nt

)
=

((
λ

λ

)Nt

· e(λ−λ)t ·
(

1

P0

− 1

)
+1

)−1

. (48)

Proof: According to (53), we have

P
(
λ= λ | Nt

)
=

P
(
λ= λ

)
f(N | λ)

P
(
λ= λ

)
f(N | λ)+P (λ= λ)f(N | λ)

=
P0λ

Nt
e−λt

P0λ
Nt
e−λt +(1−P0)λ

Nte−λt

Besides, according to the probability mass function of Poisson distribution, we have

P
(
λ= λ |Nt

)
=

P
(
λ= λ

)
P
(
Nt | λ

)
P
(
Nt | P

(
λ= λ

)
λ
)
+P (λ= λ)P (Nt | λ)

=
P0(λt)

Nte−λt

P0(λt)Nte−λt +(1−P0)(λt)Nte−λt
.

By rearranging the term we verify that P
(
λ= λ | Nt

)
= P

(
λ= λ |Nt

)
, and both equals to the

right-hand side of equation (48), which completes the proof. □

EC.4.2. A Derivation of (53)

The inter-arrival times of the Poisson process with rate λ are i.i.d. exponential random variables

with parameter λ. For a Poisson process with rate λ over time interval [0, T ), the joint distribution

of observing n arrivals and arrival time epochs {ti}ni=1 such that 0≤ t1 < t2 < . . . ,< tn <T can be

expressed as

f(n, t1, t2, . . . , tn;λ) = Πn
i=1

(
λe−λ(ti−ti−1)

)
e−λ(T−tn) = λne−λ

∑n+1
i=1 (ti−ti−1) = λne−λT .

where for ease of exposition we denote t0 = 0, and tn+1 = T . The following verification serves as a

sanity check,
∞∑

n=0

∫
· · ·
∫
0≤t1≤...≤tn<T

f(n, t1, . . . , tn;λ)dt1 . . .dtn

=
∞∑

n=0

λne−λT

∫
· · ·
∫
0≤t1≤...≤tn<T

dt1 . . .dtn

=
∞∑

n=0

λne−λT · t
n

n!

= 1,
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where the second equality is because t1, . . . , tn given n can be seen as order statistics for a sample

from n i.i.d. uniform distributions, and the third equality is according to the probability mass

function of the Poisson distribution.

EC.4.3. Proof of Lemma 11

Lemma 11. Given any trajectory N and effort process ν, we have

fν(N | λ)≥ e−(λ−λ)Tν (N )fν(N | λ). (57)

Proof: Let N be the number of arrivals in trajectory N . From (54) and (55) we have

fν(N | λ) =
(
λ

λ

)N

e−(λ−λ)Tν (N )fν(N | λ),

which implies the desired result since λ> λ. □

EC.4.4. Proof of Lemma 12

Lemma 12. For any contract and its best-response effort process that satisfies (52), we have

Eν̂

[∫ T

t=0

(1− ν̂t)dt | λ
]
≥ 1

2
T−1/2(T −C lnT ). (59)

Proof:

Eν̂

[∫ T

t=1

(1− ν̂t)dt | λ
]

≥
∫
N∈A

[∫ T

t=1

(1− ν̂t(N ))dt

]
fν̂(N | λ)dN

≥ (T −C lnT )

∫
N∈A

fν̂(N | λ)dN

≥ (T −C lnT )

∫
N∈A

e−(λ−λ)C lnTfν̂(N | λ)dN

≥ 1

2
(T −C lnT )T− 1

2 ,

where the first inequality is because 1 − ν̂t(N ) ≥ 0, the second inequality uses (58), the third

inequality uses (59), and the last inequality follows from (58). This completes the proof. □

EC.4.5. Proof of Proposition 6

We introduce some mathematical notations for this section. For any N -adapted process {Xt},

define

Xt− := lim
s↑t

Xs.
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Correspondingly, we extend the definition (56) to∫
g(Nt−)fν(Nt− | λ)dNt− :=

∞∑
n=0

∫
· · ·
∫

t1,...,tn∈[0..t)

g(n, t1, . . . , tn)fν(n, t1, . . . , tn;λ, t)dt1 . . .dtn. (EC.4.1)

We first show the following technical result.

Lemma EC.4. For any function g : {Nt−}→R, we have∫
g(Nt−)fν(Nt−)dNt− =

∫
g
(
Fν(N̂t−)

)
fν̄(N̂t−)dN̂t−.

Proof: Let Nt− be represented by n, the number of arrivals, with arrival time epochs {ti}ni=1.

Following (53), (54), (55) and (EC.4.1), we have∫
g(Nt−)fν(Nt− | λ)dNt−

=
∞∑

n=0

∫
· · ·
∫

t1,...,tn∈[0..t)

g(Nt−)fν(n, t1, . . . , tn;λ, t)dt1 . . .dtn

=
∞∑

n=0

∫
· · ·
∫

t1,...,tn∈[0..t):

νti (Nt−)=1,∀i∈[n]

g(Nt−)λ
ne−λTν (Nt−)dt1 . . .dtn

=
∞∑

n=0

∫
· · ·
∫

t1,...,tn∈[0..t):

νti (Nt−)=1,∀i∈[n]

g(Nt−)λ
ne−λTν (Nt−)

·

 ∞∑
ñ=0

∫
· · ·
∫

t̃1,...,t̃ñ∈[0..t−Tν (Nt−))

f(ñ, t̃1, . . . , t̃ñ);λ, t−Tν(Nt−))dt̃1 . . .dt̃ñ

dt1 . . .dtn
=

∞∑
n=0

∫
· · ·
∫

t1,...,tn∈[0..t):

νti (Nt−)=1,∀i∈[n]

g(Nt−)λ
ne−λTν (Nt−)

 ∞∑
ñ=0

∫
· · ·
∫

t̃1,...,t̃ñ∈[0..t−Tν (Nt−))

λñe−λ(t−Tν (Nt−))dt̃1 . . .dt̃ñ

dt1 . . .dtn

=
∞∑

n=0

∫
· · ·
∫

t1,...,tn∈[0..t):

νti (Nt−)=1,∀i∈[n]

g(Nt−)λ
ne−λTν (Nt−)

 ∞∑
ñ=0

λñe−λ(t−Tν (Nt−))

∫
· · ·
∫

t̃1,...,t̃ñ∈[0..t−Tν (Nt−))

1 ·dt̃1 . . .dt̃ñ

dt1 . . .dtn

(∗)
=

∞∑
n=0

∫
· · ·
∫

t1,...,tn∈[0..t):

νti (Nt−)=1,∀i∈[n]

g(Nt−)λ
ne−λTν (Nt−)


∞∑

ñ=0

λñe−λ(t−Tν (Nt−))

∫
· · ·
∫

t̃1,...,t̃ñ∈[0..t):

νt̃i
(Nt−)=0,∀i∈[ñ]

1 ·dt̃1 . . .dt̃ñ

dt1 . . .dtn
=

∞∑
n=0

∞∑
ñ=0

∫
· · ·
∫

t1,...,tn∈[0..t):

νti (Nt−)=1,∀i∈[n]

∫
· · ·
∫

t̃1,...,t̃ñ∈[0..t):

νt̃i
(Nt−)=0,∀i∈[ñ]

g(Nt−)λ
n+ñe−λtdt̃1 . . .dt̃ñ dt1 . . .dtn, (EC.4.2)
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where (∗) follows because
∫
s∈[0,t)

1{νs(Nt−) = 0}ds= t−Tν(Nt−). Let N̂t− be the unique trajectory

represented by the number of arrivals n̂= n+ ñ with arrival time epochs {t̂i}i∈[n̂] = {ti}i∈n∪{t̃i}i∈[ñ].

Conversely, for any trajectory N̂t− with n̂ arrivals and arrival epochs {t̂i}i∈[n̂], there exists a unique

trajectory Nt− =F(N̂t−), implying a unique partition of {t̂i}i∈[n̂] into {t̂i}i∈[n̂] = {ti}i∈[n]∪{t̃i}i∈[ñ],

where n̂= n+ ñ, νti(Nt−) = 1,∀i∈ [n] and νt̃i(Nt−) = 0,∀i∈ [ñ]. Therefore, we have

∞∑
n=0

∞∑
ñ=0

∫
· · ·
∫

t1,...,tn∈[0..t):

νti (Nt−)=1,∀i∈[n]

∫
· · ·
∫

t̃1,...,t̃ñ∈[0..t):

νt̃i
(Nt−)=0,∀i∈[ñ]

g(Nt−)λ
n+ñe−λtdt̃1 . . .dt̃ñ dt1 . . .dtn

=
∞∑

n̂=0

∫
· · ·
∫

t̂1,...,t̂n̂∈[0..t)

g(Fν(N̂t−))λ
n̂e−λtdt̂1 . . .dt̂n̂

=

∫
g
(
Fν(N̂t−)

)
fν̄(N̂t−)dN̂t−,

which completes the proof. □

Proposition 6. Consider a contract Γ that terminates according to τ defined in (60), pays the

agent β(t) if there is an arrival at time t, and zero if not. That is, dLt = β(t)dNt. This contract Γ

satisfies (IC), in which the full-effort process in the continuous time is defined as

ν̄ := {νt = 1}t∈[0,T ).

Proof: For any effort process ν and trajectory Nt, define Fν(Nt) as a trajectory generated by

the counting process {N̂s}, such that dN̂s = dNs if νs(Ns−) = 1, and dNs = 0 if νs(Ns−) = 0. The

function Fν is well defined because for any N̂t, there exists a unique Nt such that Fν(N̂t) =Nt

according to the generation process. Fix any effort process ν and our contract Γ, following (46) we

have

W (Γ,ν) =Eν

[∫ τ

0

(
β(t)dNt− bνtdt

)]
= P0Eν

[∫ τ

0

(
β(t)dNt− bνtdt

)
| λ
]
+(1−P0)Eν

[∫ τ

0

(
β(t)dNt− bνtdt

)
| λ
]
.

(EC.4.3)

For any λ∈ {λ,λ}, we have

Eν

[∫ τ

0

(
β(t)dNt− bνtdt

)
| λ
]

= Eν

[∫ T

0

1{τ ≥ t, νt = 1}
(
β(t)λdt− bdt

)
| λ
]

=

∫ T

0

Eν [1{τ ≥ t, νt = 1} | λ] (β(t)λ− b)dt

=

∫ T

0

Eν [E [1{τ ≥ t, νt = 1} | Nt−] | λ] (β(t)λ− b)dt
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=

∫ T

0

Eν [1{τ(Nt−)≥ t, νt(Nt−) = 1} | λ] (β(t)λ− b)dt

=

∫ T

0

∫
Nt−

1{τ(Nt−)≥ t, νt(Nt−) = 1}fν(Nt− | λ)dNt−(β
(t)λ− b)dt

(a)
=

∫ T

0

∫
N̂t−

1

{
τ(Fν(N̂t−))≥ t, νt(Fν(N̂t−)) = 1

}
fν̄(N̂t− | λ)dN̂t−(β

(t)λ− b)dt, (EC.4.4)

where fν(N | λ) is as defined in (55). The first equality follows from
(
β(t)dNt− bνtdt

)
= 0 when

the agent exerts no effort and the fact that the agent exerts no effort after being terminated. The

second equality follows from the Fubini’s theorem, given that the expectation of the integral must

be finite. The third equality follows from the Tower rule of calculating conditional expectation,

and the forth from that both τ and νt adapt to Nt. The sixth equality follows from the re-writing

the expectation, and finally, (a) follows from the Lemma EC.4.

Substituting (EC.4.4) into (EC.4.3) we have

W (Γ,ν) =

∫ T

0

∫
N̂t−

1

{
τ(Fν(N̂t−))≥ t, νt(Fν(N̂t−)) = 1

}
[
β(t)

(
P0fν̄(N̂t− | λ)λ+(1−P0)fν̄(N̂t− | λ)λ

)
−
(
P0fν̄(N̂t− | λ)+ (1−P0)fν̄(N̂t− | λ)

)
b
]
dN̂t−dt

(b)

≤
∫ T

0

∫
N̂t−

1

{
τ(N̂t−)≥ t, ν̄t(N̂t−) = 1

}
[
β(t)

(
P0fν̄(N̂t− | λ)λ+(1−P0)fν̄(N̂t− | λ)λ

)
−
(
P0fν̄(N̂t− | λ)+ (1−P0)fν̄(N̂t− | λ)

)
b
]
dN̂t−dt

= P0Eν̄

[∫ τ

0

(
β(t)dNt− bdt

)
| λ
]
+(1−P0)Eν̄

[∫ τ

0

(
β(t)dNt− bdt

)
| λ
]
= W (Γ, ν̄).

In order to show the inequality (b), we need to argue (1)

1

{
τ(Fν(N̂t−))≥ t, νt(Fν(N̂t−)) = 1

}
≤ 1

{
τ(N̂t)≥ t, ν̄t(N̂t) = 1

}
, (EC.4.5)

and (2)

1

{
τ(Fν(N̂t−))≥ t, νt(Fν(N̂t−)) = 1

}
= 1⇒

β(t)
(
P0fν̄(N̂t− | λ)λ+(1−P0)fν̄(N̂t− | λ)λ

)
−
(
P0fν̄(N̂t− | λ)+ (1−P0)fν̄(N̂t− | λ)

)
b≥ 0.

(EC.4.6)

We first prove (EC.4.5). Let Nt = Fν(N̂t). According to the definition of Fν , we have Ns ≤ N̂s

for any s∈ [t], which implies that τ(Nt−)≤ τ(N̂t) according to the termination rule defined in (60).

As a result, we have

1

{
τ(Fν(N̂t−))≥ t, νt(Fν(N̂t−)) = 1

}
≤ 1

{
τ(Fν(N̂t−))≥ t

}
= 1{τ(Nt−)≥ t}

≤ 1

{
τ(N̂t−)≥ t

}
= 1

{
τ(N̂t−)≥ t, ν̄t(N̂t−) = 1

}
,
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where the last equality holds because ν̄t(N̂t) = 1 if τ(N̂t)≥ t.

Next we prove (EC.4.6).

LHS=

[
β(t)

(
P0fν̄(N̂t− | λ)λ

P0fν̄(N̂t− | λ)+ (1−P0)fν̄(N̂t− | λ)
+

(1−P0)fν̄(N̂t− | λ)λ
P0fν̄(N̂t− | λ)+ (1−P0)fν̄(N̂t− | λ)

)
− b

]
(
P0fν̄(N̂t− | λ)+ (1−P0)fν̄(N̂t− | λ)

)
dN̂t−dt

=
[
β(t)

(
λP
(
λ= λ | N̂t−

)
+λP

(
λ= λ | N̂t−

))
− b
](

P0fν̄(N̂t− | λ)+ (1−P0)fν̄(N̂t− | λ)
)
dN̂t−dt

Since we have proved when τ(Fν(N̂t−))≥ t, we have τ(N̂t−)≥ t. According to (60), we have N̂t− ≥

at−, which, together with (48) and (62), implies that P
(
λ= λ | N̂t−

)
≥ P (t−). Thus according to

the definition of β(t) following (62), we have

β(t)
(
λP
(
λ= λ | N̂t−

)
+λP

(
λ= λ | N̂t−

))
− b≥ β(t)(P (t−)λ+(1−P (t−))λ)− b

= β(t)(P (t)λ+(1−P (t))λ)− b= 0 ,

which means that (EC.4.6) is true. This completes the proof. □

EC.4.6. Proof of Lemma 13

Lemma 13. For any t∈ [0, T ), we have

P
(
Nt <at | λ

)
≤ e−tε2t /((e−1)2λ) =

1

T 2
, for εt ≤ λ, and

P (Nt ≥ at | λ)≤ e−t(λ−λ−εt)
2/((e−1)2λ), for εt ≤min{λ−λ, (e− 1)λ}.

(65)

Proof: Given the type of the agent, Nt obeys a Poisson distribution with parameter λ∈ {λ,λ}.

According to Bennett’s Inequality (Bennett 1962), for the Poisson random variable Nt with param-

eter λ, we have

P (Nt−λt≥ tε | λ)≤ exp
(
−tλh

( ε
λ

))
, and

P (λt−Nt ≥ tε | λ)≤ exp
(
−tλh

( ε
λ

))
where h(u) := (1+ u) ln(1+ u)− u. When u ∈ [0, e− 1], we have h(u)≥ u2

(e−1)2
, which implies that

when ε≤ (e− 1)λ, we have

P (Nt−λt≥ tε | λ)≤ exp

(
− tε2

λ(e− 1)2

)
, and

P (λt−Nt ≥ tε | λ)≤ exp

(
− tε2

λ(e− 1)2

)
Then we have when εt ≤ (e− 1)λ,

P
(
Nt <at | λ

)
= P

(
Nt <λt− tεt | λ

)
≤ e−tε2t /((e−1)2λ) =

1

T 2
, (EC.4.7)
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and when εt ≤min{λ−λ, (e− 1)λ},

P (Nt ≥ at | λ) = P
(
Nt ≥ λt− tεt | λ

)
= P

(
Nt−λt≥ t(λ−λ− εt) | λ

)
≤ e−t(λ−λ−εt)

2/((e−1)2λ).

This completes the proof. □

EC.4.7. Proof of Lemma 14

Lemma 14. We have

E
[
τ | λ

]
≥ T −λ, and E [τ | λ]≤ α′′ lnT +1/T, (66)

where α′′ :=max{8(e− 1)2/[λ(λ−λ)2], 2/[λλ2]}.

Proof: First, we prove the first inequality. From (61) and Lemma 13, we have

P
(
τ = si | λ

)
= P

 ⋂
j∈[i−1]

{Nsj ≥ asj}
⋂
{Nsi <asi} | λ

≤ P
(
Nsi <asi | λ

)
≤ 1

T 2
. (EC.4.8)

Then we have ∫ T

t=0

P
(
τ < t | λ

)
dt=

∑
i∈[aT ]

(si− si−1)P
(
τ < si | λ

)
=
∑

i∈[aT ]

(si− si−1)P

 ⋃
k∈[i−1]

{τ = sk} | λ


≤
∑

i∈[aT ]

(si− si−1)
∑

k∈[i−1]

P
(
τ = sk | λ

)
≤
∑

i∈[aT ]

(si− si−1)
∑

k∈[i−1]

1

T 2

=
1

T 2

∑
i∈[aT ]

(si− si−1)(i− 1)

≤ 1

T 2

∑
i∈[aT ]

(si− si−1)λT

≤ λ

where the first inequality uses the union bound, the second inequality follows (EC.4.8), the third

inequality follows from the fact that aT <T , and the last inequality follow from saT <T .

Next we prove the second inequality. When t≥ α′′ lnT , we have εt ≤min{(λ− λ)/2, (e− 1)λ},

implying that P (Nt ≥ at | λ)≤ e−t(λ−λ)/(4λ(e−1)2) according to (65). Thus according to the terminat-

ing rule and Lemma 13, we have

E [τ | λ] =
∫ T

t=0

P (τ ≥ t | λ)dt



ec28

=
∑

i∈[aT ]

(si− si−1)P

⋂
k∈[i]

{Nsk ≥ ask} | λ


≤
∑

i∈[aT ]

(si− si−1)P (Nsi ≥ asi | λ)

≤ α′′ lnT +
∑

i∈[aT ]:si>α′′ lnT

(si− si−1)e
−si(λ−λ)2/(4(e−1)2λ)

≤ α′′ lnT +
∑

i∈[aT ]:si>α′′ lnT

(si− si−1)e
−α′′ lnT (λ−λ)2/(4(e−1)2λ)

≤ α′′ lnT +Te−α′′ lnT (λ−λ)2/(4(e−1)2λ)

≤ α′′ lnT +
1

T
, (EC.4.9)

where the last inequality uses α′′ ≥ 8(e− 1)2/[λ(λ−λ)2. This completes the proof. □

EC.4.8. Technical Lemma EC.5

Lemma EC.5. For any 0<λ<λ, we have(
λ

λ

)λ

e(λ−λ) < 1. (EC.4.10)

Proof: It is equivalent to prove that λ
(
lnλ− lnλ

)
+ λ − λ < 0. Let ∆ := λ − λ > 0. Define a

function g(∆) := (λ+∆)(lnλ− ln(λ+∆))+∆. Then take the derivative of g we have

g′(∆) = lnλ− ln(λ+∆)+ (λ+∆)(− 1

(λ+∆)
)+1= lnλ− ln(λ+∆)< 0,

which implies that g(∆) is decreasing in ∆ when ∆≥ 0. Consequently, when ∆> 0, we have

g(∆)< g(0) = 0,

which completes the proof. □

EC.4.9. Proof of Lemma 15

Lemma 15. For any k= 1,2 . . ., if t≥ (c′2/c
′
1)

2(1+3k) lnT , we have

β(t)−β ≤ c3e
c′3k lnT , (67)

where c3 is defined in (36), and c′1, c
′
2, c

′
3 are negative constants defined as follows:

c′1 := ln

((
λ

λ

)λ

e(λ−λ)

)
, c′2 := 2(e− 1)

√
λ ln

(
λ

λ

)
, c′3 :=

c′22
c′1

.
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Proof: According to (EC.3.7), we have

β(t)−β ≤min

{
β−β,

b
(
λ−λ

)
λ
2

(
1

P (t−1)
− 1

)}
.

From (62) we have

1

P (t)
− 1 =

(
1

P0

− 1

)(
λ

λ

)λt(1−εt)

e(λ−λ)t

=

(
1

P0

− 1

)[(
λ

λ

)λ

e(λ−λ)

]t(
λ

λ

)−2(e−1)
√

λt ln(T )

Take ln on both sides we have

ln

(
1

P (t)
− 1

)
≤ ln

(
1

P0

− 1

)
+ t ln

((
λ

λ

)λ

e(λ−λ)

)
−
√
t · 2(e− 1)

√
λ lnT ln

(
λ

λ

)
= ln

(
1

P0

− 1

)
+
√
t
2
c′1−
√
tc′2
√
lnT .

(EC.4.11)

For simplicity, let c′2,T := c′2
√
lnT , and c′3,T := c′3 lnT . Denote function C :R→R as

C(u) = c′1u
2− c′2,Tu.

According to (EC.4.10) we have c′1 < 0, thus C(u) is decreasing in u when u≥ c′2,T/2c
′
1. Then we

will prove that, for any k = 1,2, . . ., if u≥ (c′2,T/c
′
1)
√
1+3k, then C(u)≤ c′3,Tk. Using the formula

of roots of a quadratic equation, we have C(u)≤ c′3,Tk if

u≥
−c′2,T +

√
c′22,T + c′1c

′
3,Tk

−2c′1
. (EC.4.12)

Using the fact that
√
a+ b≤

√
a+
√
b for any a, b > 0, we have√

c′22,T + c′1c
′
3,Tk≤−c′2,T +

√
c′1c

′
3,Tk=−c′2,T (1+

√
k).

Thus we have

−c′3,T +
√
c′22,T + c′1c

′
3,Tk

−2c′1
≤
−c′2,T − c′2,T (1+

√
k)

−2c′1
=

c′2,T
c′1

(1+
√
k).

Since
√
k≤ k when k≥ 1, we have

1+
√
k=

√
1+ k+2

√
k≤
√
1+3k.

Combining the above two inequalities, we have

−c′2,T +
√
c′22,T + c′1c

′
3,Tk

−2c′1
≤

c′2,T
c′1

√
1+3k,

which together with (EC.4.12) implies that if u≥ (c′2
√
lnT/c′1)

√
1+3k, then C(u)≤ c′3k lnT . □



ec30

EC.4.10. Proof of Lemma 16

Lemma 16. For any T ≥ e, we have∫ T

t=0

(β(t)−β)dt≤ 4c3

(
c′2
c′1

)2

lnT +
3c3
−c′3

. (68)

Proof: From Lemma 15 we have∫ T

t=0

(β(t)−β)dt≤ 4c3

(
c′2
c′1

)2

lnT +

∫ (T (c′1/c
′
2)

2−1)/3

k=1

3c3e
c′3(k−1) lnTdk

= 4c3

(
c′2
c′1

)2

lnT +3c3

∫ (T (c′1/c
′
2)

2/ lnT−4)/3

k=0

ec
′
3k lnTdk

≤ 4c3

(
c′2
c′1

)2

lnT +3c3 ·
1

−c′3 lnT
.

Since lnT ≥ 1 when T ≥ e, we complete the proof. □

EC.4.11. Proof of Theorem 5

Theorem 5. For any instance of the online dynamic contract design problem in continuous time

with a time horizon of length T , let Γ be the contract designed for the continuous time situation,

that terminates according to τ defined in (60), and pays the agent β(t) according to (63) if and only

if there is an arrival at time t. The total expected regret of implementing contract Γ satisfies

Reg(Γ, T ) =O(lnT ).

Proof: The proof is similar to that of Theorem 2, and thus is omitted for brevity. □
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