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This paper studies a dynamic principal-agent setting in which the principal needs to dynamically schedule

an agent to work or to be suspended. When the agent is directed to work and exert effort, the arrival rate of a

Poisson process is increased, which increases the principal’s payoff. Suspension, on the other hand, serves as

a threat to the agent by delaying future payments. A key feature of our setting is a switching cost whenever

the suspension stops and the work starts again. We formulate the problem as an optimal control model with

switching, and fully characterize the optimal control policies/contract structures under different parameter

settings. Our analysis shows that when the switching cost is not too high, the optimal contract demonstrates

a generalized control-band structure. The length of each suspension episode, on the other hand, is fixed.

Overall, the optimal contract is easy to describe, compute, and implement.
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1. Introduction

Designing dynamic contracts to manage incentives is an important and challenging problem. It

often involves carefully scheduling “carrots and sticks” over time. In an environment where out-

come is stochastically determined by an agent’s unobservable effort, it is intuitive that rewards

(“carrots”), often in the form of monetary payments, follow good performance. If the agent is cash

constrained or has limited liability, however, the principal cannot charge the agent money for bad

performance. Therefore, it may not be obvious how to design penalties (“sticks”) when performance

is bad and leverage them to achieve better contracts. Due to analytical challenges, many dynamic

contract design models restrict the focus on contracts that induce agents to always exert effort (see,

for example, Demarzo and Sannikov 2006, Sannikov 2008, Biais et al. 2010, Myerson 2015, Sun and

Tian 2018). In these situations, the principal with commitment power can use potential contract
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termination as a form of penalty. That is, the principal can terminate the agent, which stops all

future payment opportunities, if the outcome has been bad for a long enough period of time. The

threat of termination helps the principal to induce effort while saving costly rewards. However,

termination itself may also be quite costly to the principal, especially in situations where a replace-

ment agent is hard to find. In this paper, we focus on an alternative approach to penalize for bad

outcomes: temporarily suspending work and pay to the agent. Note that contract termination can

be perceived as a special case of suspension, one that never ends.

Temporarily suspending an agent for a period of time in response to poor performance is common

practice in certain industries. Real estate agencies in Hong Kong, for example, often temporarily

suspend a sales representative’s work and pay when the performance has not been up to standard for

a period of time. The suspension stops when the situation changes, for example, when new business

arises, and the representative is still available to come back. Although this form of temporary

suspension is rarely written formally into employment contracts, it is a very common practice,

according to our conversations with an agent who worked at the Centaline Property, one of the

largest property agencies in Hong Kong.1

More broadly, businesses and government agencies sometimes use furloughs to temporarily relieve

an employee of job responsibilities and pay for a fixed period of time, with the promise of continuing

the employment after the furlough period ends. The recent and ongoing pandemic has witnessed

more entities using suspensions with no pay or pay reduction, or unpaid leaves, in response to

economic difficulties, for example in Hong Kong (Hong Kong Business Times 2020, Hong Kong

Economic Times 2020) and Europe (Eurofound 2020, 2021). It is fair to say that furloughs have been

used mostly to ease an employer’s financial challenges (DerStandard 2009), rather than in response

to employees’ job performance. However, with these temporary suspension control mechanisms

already in existence, one may naturally ask why we do not use them for incentive management as

well.

In case it is unclear why the principal can use suspension as a punishment, here is the intuition.

In order to motivate a rational agent to exert effort, which is a private action, the principal needs

to pay rent, either in the form of an immediate payment or as a promise to be delivered later.

During the suspension period, the agent loses this rent income. More precisely, future payments

are delayed by the suspension. Payment delay is particularly painful to an agent who is less patient

than the principal, and therefore serves as a threat. Such a threat can be used to ensure that the

agent is willing to exert effort whenever asked to. It is worth noting that during suspension, the

principal also cannot enjoy good outcomes brought by the agent’s effort. However, compared with

losing the agent forever due to termination, it is often less costly for the principal to endure a short

period of time without the agent’s effort.
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Even though the intuition may be clear at this point as to why we may use suspension to

punish underperformance, deciding how to schedule suspension episodes in a dynamic environment

remains a challenge. For example, when should suspension start? How long should suspension last?

Should the lengths of suspension periods be the same, or should they vary depending on what

triggers the suspension? In this paper, we study the optimal scheduling of payment and suspension

in a basic dynamic contract design model.

Specifically, we consider a continuous-time optimal contract design problem, in which a principal

tries to incentivize an agent to increase the arrival rate of a Poisson process. We may think of

the principal as a firm, say the aforementioned real estate agency in Hong Kong, the agent as a

sales representative, and each arrival as a successful sale. Whenever the agent exerts effort, the

instantaneous arrival rate increases. However, the effort/arrival rate is unobservable to the principal

and costly to the agent. Therefore, frequent arrivals are associated with good performance, and no

arrival for a long period of time is bad. In this dynamic setting, when the two players’ discount

rates are the same, it is optimal for the principal, who has commitment power, to never temporarily

suspend the agent (see Sun and Tian 2018, for the corresponding optimal contract). In practice,

their time discount rates are often different. In particular, the principal (employer) often possesses

more financial resources, and therefore is more patient than the agent (employee). In this case,

suspending the agent once in a while may be beneficial.

1.1. Optimal Contract Structure

Generally speaking, our analysis reveals that optimal contract structures demonstrate three pos-

sibilities depending on model parameters, as illustrated in the three regions of Figure 2 later in

the paper. First, if the switching cost is rather high, it is not worth paying for the switching cost

to start working. In this case, intuitively, it is optimal for the principal not to hire the agent. The

second possibility is when the switching cost is not that high but the revenue from each arrival is

high enough. In this case, it is optimal to motivate the agent to always work and never to suspend

or terminate the agent. This is also intuitive, because high revenue per arrival means that the prin-

cipal does not want to suspend the agent and forfeit the higher arrival rate. The third possibility

is when neither the switching cost nor the revenue is too high. In this case, the optimal contract

demonstrates intricate and rich structures.

Specifically, the optimal contract demonstrates a “control-band” policy structure, characterized

by a lower threshold θ and an upper threshold θ̄ of the agent’s total future utility, also called the

promised utility (Spear and Srivastava 1987, Abreu et al. 1990). As illustrated in Figure 1 later in

the paper, when directed to work, the agent should continue exerting effort as long as the promised

utility is above the lower threshold θ. While working, the promised utility takes a fixed upward



Cao, Sun, and Tian: Punish Underperformance with Suspension
4 Management Science 00(0), pp. 000–000, © 0000 INFORMS

jump upon each arrival, and continuously decreases between arrivals. If an arrival does not occur

for too long a period of time (bad performance) despite the agent’s effort, the promised utility

decreases to the lower threshold θ. At this point, the principal suspends the agent for a fixed period

of time. At the end of the suspension period, the agent’s promised utility is reset to the upper

threshold θ̄, when work is switched on again. Overall, Figure 1 illustrates the general promised

utility dynamics, which also involve an upper bound pw and a lower bound qw for the promised

utility, related to payments and potential random switching. In Section 4.3, we provide a complete

characterization of the contract parameters θ, θ̄, pw, and qw. Furthermore, Section EC.1.2 explains

how to easily compute these four contract parameters.

1.2. Contribution

Our paper makes the following contributions. First, we propose that temporary suspension, often

used in practice for various purposes, can be used in dynamic contracts for incentive management.

In particular, the principal can use suspension as a threat when performance has been undesirable,

which motivates the agent to work hard. Allowing temporary suspension helps the principal to

reduce contract costs, compared with always incentivizing the agent to work, or using contract

termination as a threat. A numerical example reported in Section 5.1 shows that this benefit can

be non-trivial.

Second, our results show that the optimal dynamic contract takes a simple form, which makes

it easy to implement in practice. The four parameters that characterize the contract sturcture

are easy to compute. Using these four parameters, the principal can easily manage the contract

over time. As explained in Remark 2 later in the paper, implementation of this dynamic contract

is quite simple. Following each arrival as well as after each suspension period ends, the principal

only needs to announce a deadline before which the agent needs to bring in an arrival to prevent

suspension. If suspension happens, it always lasts for a fixed period of time.

Designing optimal contracts that can endogenously decide temporary suspensions is a technically

hard problem, which explains why many dynamic contract design models generally search for

contracts that always induce effort from the agent (see, for example, Demarzo and Sannikov 2006,

Biais et al. 2010).2 Zhu (2013) and Grochulski and Zhang (2023) are exceptions, and study contract

design allowing shirking. They focus on settings where uncertain outcomes follow a Brownian

motion, instead of a jump process as in our paper. Their optimal contract structures involve

controls that constantly switch between working and shirking (a “sticky process”). Although these

are nice mathematical results, from a managerial point of view, such a control/contract is not

practical, because constantly switching between working and shirking must be quite costly in real

life. Therefore, we include a fixed cost whenever the principal switches the agent back to work from
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suspension. The switching cost poses significant analytical challenges. Specifically, in addition to the

promised utility, we have to introduce another binary system state that indicates whether the agent

has been working or under suspension. This further implies that different from the aforementioned

papers, we need to work with two value functions connected through the optimality condition.

Compared with other papers that study dynamic contracts under Poisson arrivals, such as Sun

and Tian (2018), Cao et al. (2022), and Tian et al. (2021), our analysis relies on a set of quasi-

variational inequalities to represent the optimality conditions. The other papers, on the other hand,

directly verify optimality based on proposed optimal contract structures and the corresponding

value functions, without the intricate approach based on quasi-variational inequalities. All these

papers follow the “guess-and-verify approach”, which is logically clean and clear. However, the

“verify” step in our proof is much more intricate compared with that in the aforementioned papers,

even with the correct “guess” of how to construct the value functions. Overall, our analytical

approach could be applicable to other complex dynamic contracting problems that involve state

transitions.

1.3. Literature Review

The dynamic moral hazard problem has been a subject of recent management science studies.

In particular, Zorc et al. (2019) study a delegated search problem in a discrete-time dynamic

environment. A key distinction of that paper is that the agent is risk averse and can borrow

from a bank to pay the principal. In comparison, we assume that the risk-neutral agent is cash

constrained and therefore, payment only goes from the principal to the agent. Gupta et al. (2022)

study “limited-term” non-monetary reward contracts in order to induce agents’ effort in the long

run. Their model focuses on designing near-optimal “limited-term” stationary policies.

Recent decision analysis literature also includes studies of continuous-time games. The stream

of papers Kwon et al. (2016), Kwon (2022), and Georgiadis et al. (2022) study continuous-time

stochastic games of stopping-time decisions that are based on Brownian motion uncertainties.

Continuous-time games studied in Zorc and Tsetlin (2020) and Hu and Tang (2021) do not include

Brownian motion uncertainties, but rather consider richer decision spaces for the players. Unlike

our paper, these game-theoretic papers do not focus on dynamic moral hazard issues.

Methodological breakthroughs for continuous-time moral hazard problems started from Demarzo

and Sannikov (2006) in the finance/economics literature. Earlier studies often used Brownian

motion processes to model the underlying dynamics (see, for example, Demarzo and Sannikov

2006, Sannikov 2008, Cvitanić et al. 2016). To our knowledge, the work of Biais et al. (2010) is the

first to model underlying uncertainties as a jump process to capture “large risks.” Myerson (2015)

studies a similar model in a political-economy setting with agent replacement. Contracts in both
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these papers try to reduce the arrival rate, instead of increasing the arrival rate as in our paper,

and do not consider temporary suspension.

Compared with models based on Brownian motion, the optimal contract structure for jump

processes is much easier to describe and implement. This is because the promised utility often takes

discrete jumps at arrivals, and otherwise changes deterministically. (In contrast, under Brownian

motion uncertainties, the promised utility evolves stochastically all the time.) This simplicity in the

optimal contract structure makes the model based on jump processes appealing from the practical

and managerial perspectives. Sun and Tian (2018) and Cao et al. (2022) study optimal contracts

that induce effort from an agent to increase the unobservable arrival rate of a point process. In

particular, Cao et al. (2022) correctly identify the optimal contract within the restrictive class of

contracts that motivate continued effort before termination when the two players’ discount rates

are different. Tian et al. (2021) further extend the model to a two-state setting, where the agent

exerts effort to either maintain or repair a machine, depending on which state the machine is in.

All these papers consider contracts that always induce effort before contract termination, without

temporary suspension.

Also focusing on a point process, but to decrease the arrival rate, Chen et al. (2020) study opti-

mal schedules to monitor (as well as pay) the agent. The end of that paper points out a connection

between monitoring and shirking. That is, with a proper transformation, monitoring episodes in

their optimal schedule correspond to shirking episodes in a corresponding model (without mon-

itoring) that allows shirking. We believe that our results also speak to optimal contracts with

monitoring for the case of increasing the arrival rate. In comparison, the optimal contracts in our

paper demonstrate very different structures compared with those in Chen et al. (2020). We also

need to model a fixed cost to be practical, as mentioned earlier. Tackling our problem requires dif-

ferent analysis, for example, using quasi-variational-inequality-based optimality condition, which

does not arise in Chen et al. (2020). Also trying to decrease the arrival rate of a Poisson process

in a bank-monitoring setting, Hernandez Santibanez et al. (2020) extend Pages (2013) and Pages

and Possamai (2014), and study a model that involves both adverse selection and moral hazard

while allowing shirking.

Another relevant literature is stochastic optimal control in the presence of switching cost, but not

about contract design (see, for example, Brekke and Oksendal 1994, Duckworth and Zervos 2001,

Vath and Pham 2007, Vath et al. 2008). Our work has two main differences from this literature.

First, we consider a jump process, while the aforementioned papers are all based on diffusion

processes. Second, the strategic interactions between the two players make our design and analysis

more challenging than standard single-decision-maker control problems.
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The remainder of the paper is organized as follows. We first introduce the model in Section 2.

We then describe the optimal contract structure and the overall results of the paper in Section

3. Section 4 contains detailed analysis of the optimal contract structures under different model

parameters and how to prove their optimality. Next, in Section 5, we consider several extensions of

the model. In particular, in Section 5.1, we let the switching cost approach zero, which allows us

to quantify the potential benefit of considering the suspension option. We conclude the paper in

Section 6. Further discussions, as well as proofs for all the results, are presented in the e-companion.

2. Model

Consider a continuous-time principal-agent model. The principal faces a Poisson process of arrivals,

each of which brings a revenue R to the principal. Without the agent’s effort, the base arrival rate

is µ. The agent is able to bring the arrival rate up to µ¡ µ if exerting effort, which costs the agent b

per unit of time. (For simplicity, we consider binary effort levels, consistent with Biais et al. 2010).

In order to enjoy the high arrival rate, the principal needs to direct the agent to work and provide

the working environment, such as offering office spaces, research labs, production equipment, or

supporting personnel. There is a fixed cost K ¡ 0 for the principal to set up the environment for

the agent to start working, either at the very beginning, or after a suspension period ends. Think

about this as the fixed cost related to restarting the lease for office spaces, reopening the lab,

resetting production equipment, or recruiting personnel. (We will briefly discuss the case when

stopping working also incurs a cost in Section 5.2.) Following standard assumptions, the agent has

limited liability and is cash constrained. Therefore, the principal needs to pay the agent a cost b

whenever directing the agent to work. While directed to work, the agent can either exert effort,

or shirk. Effort is not observable to the principal, who needs to design a contract to motivate the

agent’s effort. If the agent is directed to work but shirks, the agent effectively receives a shirking

benefit b. Directing the agent to work may also involve additional costs to the principal, such as

rents, maintenance fees, or personnel salaries. We denote c to represent the principal’s total cost

rate whenever directing the agent to work, including the payment for the agent’s effort cost, that

is, c¥ b.

Let Et P tI,∅u denote the working/suspension state at time t ¥ 0. In particular, state I (“on”)

represents that the agent is directed to work, while state ∅ (“off”) means that the agent is being

suspended. We assume that the principal needs to pay the fixed cost K in the very beginning in

order to hire the agent to start working. If the agent is directed to work at time t (Et � I), further

denote νt to represent the agent’s effort level, such that νt � µ and νt � µ represent that the agent

exerts effort or not, respectively, at time t.

We define ∆µ� µ�µ and make the following assumption.
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Assumption 1. R∆µ¡ c.

This is a standard assumption (see, for example, Equation (2) in Sun and Tian 2018), which ensures

that exerting effort is socially optimal when the state is I.

Both the principal and the agent are risk neutral and discount future cash flows. Discount rates

are r and ρ for the principal and the agent, respectively, such that 0  r¤ ρ. That is, the principal

is at least as patient as the agent. This paper is mostly focused on the case of r   ρ. (In Section

EC.1.3, we provide a rigorous proof for the claim in Sun and Tian (2018) that when r � ρ, it is

optimal to motivate continued effort.)

Denote right-continuous point processesN :� tNtut¥0 and S :� tStut¥0 to record the total number

of arrivals and switchings, respectively, from time 0 to t. Define a filtration F � tFtut¥0 to capture

all relevant public information up to any time t, such that Ft � σpNs, Ss : 0¤ s¤ tq. We need to

include state-switching information in the filtration because some of this is random, as we explain

next.

The principal has the commitment power to issue a long-term dynamic contract Γ� pL,D, qq.

Specifically, the contract needs to specify a payment schedule, which is captured by the cumulative

payment process L. It also needs to specify when to start and stop suspension. We use a counting

processD to capture “deterministic” switchings between the working and suspension states. Finally,

we also need to include a random switching intensity process q. These notations are formally defined

as the following.

1. L � tLtut¥0 is an F-adapted process that tracks the principal’s total payment to the agent

from time 0 to time t. In particular, at any time t, the payment can be an instantaneous

payment ∆Lt, or a flow with rate ℓt, such that dLt �∆Lt � ℓtdt.
3 Note that it is assumed

that the agent is cash constrained and has limited liability, that is, ∆Lt ¥ 0 and ℓt ¥ 0 for all

t¥ 0.

2. D � tDtut¥0 is an F-adapted counting process that records the total number of switchings

between “working” and “suspension” up to time t. That is, these switchings are “determin-

istic” with respect to Ft. In order to have a rich enough class of control policies such that

optimal contract value is attainable, we also need to allow random switchings as well, which

come next.

3. q� tqtut¥0 is an F-predictable switching intensity process, such that the probability of switch-

ing during a short time interval rt, t� δs is qtδ � opδq. In order to establish our optimality

results, we need the following technical condition on the switching intensity:

E
�» 8

0

qte
�rtdt

�
 8. (1)
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Let Q� tQtut¥0 be the corresponding counting process that records the cumulative number of

all the random switchings up to time t. Therefore, the total number of switchings by time t is

St �Dt�Qt. Knowing that the system starts with state ∅, the total number of switchings St

identifies the state at any time t¥ 0. These notations allows us to more rigorously define the

F-adapted state process E :� tEtut¥0, such that Et � Et� if and only if dSt � 1. Furthermore,

state switchings may also include the possible termination of contract, which is the last time

that the principal changes the state from working (I) to (permanent) suspension (∅), either

deterministically or randomly.

Note that only relying on history-dependent (i.e., F-adapted) switching control D is not suffi-

cient. Generally speaking, a restrictive class of control policies without random switching may not

contain the optimal one that achieves the optimal contract value. Random switching according to

the intensity process q does occur in the optimal policy that we present later in the paper.

Due to limited liability, we need the following constraint for our contract Γ, which states that

effort cost b needs to be reimbursed in real time:

ℓt ¥ b1Et�I, @t¥ 0. (LL)

Further denote a right-continuous process ν � tνtut¥0 to represent the agent’s effort level over time.

Under a general contract, the agent may not follow the effort process directed by the principal. In

fact, it is easy to make sure that the agent follows the direction to stop working under suspension,

by setting ℓt � 0 when νt � µ. In this case, the agent cannot afford to work when directed not to.

Therefore, any effort process ν that is admissible to contract Γ must satisfy νt � µ whenever Et � ∅.

2.1. The Agent’s Utility and Incentive-Compatible Contracts

Given a dynamic contract Γ� pL,D, qq and an effort process ν, the expected discounted utility of

the agent is

upΓ, νq �Eν,q

�» 8

0

e�ρtpdLt� b1νt�µdtq

�
, (2)

in which Eν,q represents expectation taken with respect to the switching intensity process q in Γ,

and arrival rates induced by the effort process ν. For simplicity of notations, when there is no

ambiguity, we omit this superscript.

A designed contract needs to induce the agent to follow directions on when to work. Formally,

define a “complying effort process” ν̄pΓq � tν̄tut¥0 for contract Γ, such that ν̄t � µ if Et � I, and

ν̄t � µ if Et � ∅, at any time t. A contract Γ is said to be incentive compatible (IC) if

upΓ, ν̄pΓqq ¥ upΓ, νq for any effort process ν admissible to Γ. (3)

That is, under IC contracts, the agent has the incentive to exert effort whenever directed to do so.
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Further define the agent’s continuation utility at any time t P r0,8q conditional on Ft as
4

WtpΓ, νq �E
�» 8

t�

e�ρps�tqpdLs� b1νs�µdsq

����Ft

�
. (4)

Therefore, Wt

�
Γ, ν̄pΓq

�
is the agent’s continuation utility at time t following the principal’s direc-

tions, which is often referred to as the promised utility (see, for example, Biais et al. 2010). It is

convenient to introduce the notation Wt�pΓ, νq � limsÒtWspΓ, νq. That is, WtpΓ, νq is the agent’s

continuation utility after observing either an arrival or a random switching that occurs at time t,

while Wt�pΓ, νq is the continuation utility evaluated before obtaining this knowledge. In a similar

vein, we define W0�pΓ, νq :� upΓ, νq.

Following standard contract theory assumptions, the agent is not required to stay in the contract.

Hence, assuming the agent’s outside option is normalized to value 0, we impose the following

participation (also called the individual rationality, IR) constraint:

WtpΓ, νq ¥ 0, @t¥ 0. (IR)

Furthermore, we assume that for any contract Γ under our consideration, the agent’s promised

utility Wt is upper bounded. That is, there exists a large enough W̄ such that

WtpΓ, νq ¤ W̄  8, @t¥ 0. (WU)

This constraint essentially captures the reality that the principal cannot keep delaying payments

while pushing the agent’s promised utility to infinity.5

The following proposition provides the evolution of the agent’s continuation utility process

WtpΓ, νq, which is often called the promise keeping (PK) condition in the dynamic contract liter-

ature (see, for example, Equation (B.8) of Sun and Tian 2018). The proposition also contains an

equivalent recursive representation of incentive compatibility, following Biais et al. (2010).

Proposition 1. piq For any contract Γ and agent’s effort process ν, there exist F-predictable

processes HpΓ, νq and HqpΓ, νq such that6

dWtpΓ, νq �rρWt�pΓ, νq� b1νt�µ�HtpΓ, νqνt� qtH
q
t pΓ, νqsdt

�dLt�HtpΓ, νqdNt�H
q
t pΓ, νqdQt, t¥ 0. (PK)

Furthermore, (IR) implies that

HtpΓ, νq ¥�Wt�pΓ, νq and H
q
t pΓ, νq ¤Wt�pΓ, νq, @t¥ 0. (5)

piiq Define β :� b{∆µ. Contract Γ being incentive compatible is equivalent to

Ht

�
Γ, ν̄pΓq

�
¥ β if Et � I. (IC)
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For notational convenience, we omit pΓ, νq from processesWt,Ht, andH
q
t when ν is the complying

effort process ν̄pΓq. Part (i) of Proposition 1 specifies the dynamics of the agent’s promised utility

over time. In particular, Ht, if positive, is the magnitude of an upward jump at time t if there is an

arrival at that time. If it is negative, then the jump is downward. In contrast, Hq
t , if positive, is the

magnitude of a downward jump at time t if there is a random switching. Condition (5) ensures that

Wt remains nonnegative after all these jumps. The reason why we set Ht to capture upward jumps

is that increasing the promised utility with an upward jump after an arrival serves as a reward to

induce effort. Although we allow Ht to be negative, later we show that it is always nonnegative

under the optimal contract. In comparison, a random switching to suspension (or termination) is

a punishment, which is associated with a downward jump of promised utility with magnitude Hq
t .

Finally, the (IC) condition is only required for state I, because in state ∅ the principal can induce

compliance by simply setting payment to zero.

Denote C to represent the set of contracts that satisfy (LL) and yield a promised utility process

tWtut¥0 that satisfies (PK), (IC), (IR), and (WU). Our contract design problem maximizes the

principal’s utility over the set C of contracts. Therefore, we introduce the principal’s utility next.

2.2. Principal’s Utility

The principal’s utility under any contract Γ P C is

UpΓq �Eν̄pΓq

�» 8

0

e�rt rRdNt�dLt�pc� bq1Et�Idts�
¸

0¤t¤8

e�rtκpEt�,Etq

�
, (6)

where we introduce notation κpEt�,Etq to represent the switching cost when the principal changes

the working/suspension state from Et� to Et, such that κp∅, Iq �K, and κpI,∅q � κp∅,∅q � κpI, Iq � 0.

Within the integral, the term RdNt represents the revenue from arrivals; dLt is the payment cost,

which satisfies (LL); and pc � bq1Et�I captures the cost rate of directing the agent to work, in

addition to reimbursing the effort cost b already included in the payment term dLt.

Our optimal contract design problem can be succinctly formulated as the following optimization

problem:

Z :�max
ΓPC

UpΓq. (7)

If the agent is ever terminated, the principal’s total expected utility after the termination is

v :�
µR

r
, (8)

which is also the baseline total expected revenue that the principal collects without hiring the

agent.

We first consider a special contract Γ̄ as an example of feasible contracts in C, which directs the

agent to always work and pays the agent β for each arrival. It is clear that contract Γ̄ satisfies all
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the aforementioned constraints for C. Under such a contract, the agent’s promised utility Wt stays

as a constant

w̄ :�
βµ

ρ
. (9)

Furthermore, it is easy to verify that the principal’s utility under contract Γ̄ is

UpΓ̄q �
pR�βqµ� c

r
�K.

We define the corresponding societal utility, which is the total utilities of the principal and the

agent, after paying for the fixed cost K, as

V̄ :�UpΓ̄q�K � w̄�
Rµ� c�pρ� rqw̄

r
. (10)

Later in the paper, we show that contract Γ̄ is optimal when the revenue per arrival R is high

enough.

3. Main Results

In this section, we summarize the main results of this paper and leave the analysis to the next

section. First, we introduce a general contract structure in Section 3.1. Later in the paper, we

show that the optimal contracts demonstrate this structure. Then, in Section 3.2, we present the

optimality condition, and the main theorem of this paper, which summarizes the optimal contract

for different model parameter settings.

3.1. An Overview of General Optimal Contract Structures

We now define a general class of dynamic contracts, which involves a control-band structure.

Specifically, we have the following definition.

Definition 1. For any four parameters θ, qw, θ̄, pw, such that 0 ¤ θ ¤ qw ¤ θ̄ ¤ pw ¤ w̄, and an

initial promised utility w0 P t0uYr qw, pws,7 define contract Γ�pw0;θ, qw, θ̄, pwq � pL�,D�, q�q as follows.

piq The dynamics of the agent’s promised utility Wt follow W0 �w0 and

dWt �
 
�ρ pw̄�Wt�qdt1Wt�Pp qw, pws�p qw� θqdQt�rp pw�Wt�q^βsdNt

(
1Et��I

� ρWt�dt1Et��∅, (11)

in which we use notation a^ b to represent minta, bu for any a, b PR, and the point process

tQtut¥0 represents the total number of random switchings up to time t, following intensity

q�t �
ρpw̄� qwqqw� θ 1Wt�� qw, if qw¡ θ. (12)

piiq The payment to the agent follows dL�0 � 0 and

dL�t � rpWt��β� pwq�dNt� bdts1Et��I. (13)
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piiiq The “deterministic” switching D� follows dD�
0 � 1 (start working) if and only if w0 ¡ 0, and

for t¡ 0,

dD�
t � 1Wt��θ̄,Et��∅� 1Wt��θ,Et��I. (14)

Figure 1 A Sample Trajectory for the Agent’s Promised Utility Following a General Contract of Definition 1

Notes. In this figure, ρ� 0.5, r� 0.2, R� 2, µ� 2, ∆µ� 1.2, and c� b� 0.3, where we set w0 � 0.5, θ� 0.1, qw� 0.2,

θ̄� 0.32, and pw� 0.65. The dotted vertical line at time t1 depicts the payment.

Figure 1 depicts the dynamics of the promised utility following a general contract of Definition 1.

As we can see, the agent is working at time 0, and the promised utility starts at w0 and gradually

decreases until the first arrival at time t1. At this point in time, an upward jump of β would take

the promised utility above pw. Therefore, the promised utility instead jumps to pw, and the principal

pays the agent Wt1� � β � pw (depicted by the dotted line at t1). No further arrival occurs until

time t2, when the promised utility reaches qw. From this point on, the promised utility stays the

same at qw, while a random switching occurs with rate q� � ρpw̄ � qwq{ qw. At time t3, there is an

arrival before a random switching occurs, which causes the promised utility to jump up by β. The

promised utility decreases to qw again at t4, and the random switching occurs at time t5, which

brings the promised utility to θ. At this point the agent is suspended, until the promised utility

increases to θ̄ at t6. There may be arrivals between t5 and t6 if µ ¡ 0, but these arrivals do not

affect the dynamics of the contract. At time t6, the principal (deterministically) switches the agent

to working again. Time epoch t7 sees another arrival, which triggers the promised utility to jump

up by β.

More generally, according to Definition 1, all the components L�, D�, and q� of the contract Γ�,

as well as the promised utility process tWtut¥0, are completely determined by parameters pθ, qw, θ̄, pwq
starting from w0. In particular, (11) indicates that the promised utility generally decreases with

a slope ρpw̄ �Wt�q when Wt� P p qw, pws and the agent is directed to work, except when there is
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an arrival (dNt � 1), which triggers an upward jump of magnitude p pw�Wt�q ^ β. This implies

that the promised utility is never above pw. When the promised utility decreases to qw, it stays

at that level until either an arrival (dNt � 1) or a random switching of state (dQt � 1) occurs.

According to (12), the random switching only occurs if qw ¡ θ and when the promised utility is

at qw. When random switching happens, (11) further indicates that the promised utility takes a

downward jump from qw to θ. Furthermore, the last term of (11) indicates that when the agent is

under suspension, the promised utility keeps increasing at rate ρWt� regardless of whether there

are arrivals. The increasing rate corresponds to accrued interests if we consider the promised utility

as a bank account balance.

According to (13), payment only occurs when the agent is directed to work. Besides reimbursing

the effort cost (bdt), the principal only pays the agent when an arrival occurs and the current

promised utility is within β below pw. The instantaneous payment, Wt� � β � pw, plus the corre-

sponding upward jump in (11), pw�Wt�, is exactly β.

Finally, (14) implies that the principal directs the agent to stop working when the promised

utility decreases to θ and to start working again when the promised utility increases to θ̄. Therefore,

if θ � qw, there is no random switching, and the switching policy is similar to the traditional

“control-band” policy between the two thresholds θ and θ̄.

Remark 1. Note that suspending the agent serves as a type of punishment. Before the promised

utility decreases to the threshold θ, any arrival brings an upward jump in the promised utility,

which makes the agent closer to getting paid, if not already being paid. However, as soon as the

agent is suspended, it takes a fixed period of time with length pln θ̄� lnθq{ρ for work to resume.

Because the effort cost is reimbursed, from the agent’s point of view, the only difference between

working and suspension is that working brings potential rent payment, while suspension delays

future rent payments for a period of time. Therefore, suspension serves as a threat to the agent,

who is less patient than the principal (ρ ¡ r). If the lower threshold θ is 0, the length of the

suspension period becomes infinity, that is, the suspension is permanent, which is equivalent to

contract termination. �

Following Definition 1, if pw � w̄, upon reaching w̄, the promised utility does not decrease any

more, and the agent is paid β for each future arrival. (Figure 1, on the other hand, depicts the

case that pw   w̄, and qw ¡ θ ¡ 0.) Therefore, after reaching w̄ the contract becomes the contract

Γ̄ defined in the end of the last section. In fact, contract Γ̄ can be expressed as a special case of

Γ�pw0;θ, qw, θ̄, pwq, such that

Γ̄� Γ�pw̄; 0,0, w̄, w̄q. (15)

If θ � qw ¡ 0, there is no random switching, and contract Γ�pw0;θ, qw, θ̄, pwq demonstrates a

“control-band” structure, where the promised utility is moving between θ and θ̄, unless an arrival
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triggers an upward jump to carry the promised utility to pθ̄, pws. In this case, the agent is never

terminated, as long as w0 ¡ 0.

If θ� 0, then following contract Γ�pw0; 0, qw, θ̄, pwq, whenever the state switches to ∅, the promised

utility must have hit θ� 0. At this point, the contract is terminated.

Another special case is not to hire the agent from the beginning, or,

Γ :� Γ�p0;θ, qw, θ̄, pwq. (16)

In this case, the agent’s promised utility starts at w0 � 0, and never climbs to be positive according

to (11). Therefore, the specific values of θ, qw, θ̄, and pw do not matter.

Later in this section, we see that contracts Γ̄ and Γ, and other special cases of the general

contract structure Γ�pw0;θ, qw, θ̄, pwq could be optimal under different model parameter settings.

Before we close this section, we have the following result, which implies that if the contract Γ�

starts the continuation utility at w0, then it delivers the agent the total utility w0.

Lemma 1. For any θ, qw, θ̄, pw such that 0¤ θ¤ qw¤ θ̄¤ pw¤ w̄, we have

u
�
Γ�pw0;θ, qw, θ̄, pwq, ν̄pΓ�pw0;θ, qw, θ̄, pwqq��w0, @w0 P t0uY r qw, pws. (17)

In order to specify a particular contract, including the optimal one, we need to identify not only

the four parameters θ, qw, θ̄, pw, but also the initial promised utility w0.

3.2. Optimal Contracts

In this section, we summarize the main result of the paper. In particular, we present optimal

contract structures under different model parameter settings. We leave the detailed optimality

analysis to the next section.

We first provide an optimality condition, in the form of quasi-variational inequalities, and show

that any function that satisfies these conditions must yield an upper bound of the optimal value

Z defined in (7). In order to prove that the dynamic contracts that we will specify later in this

section are indeed optimal, we show that our dynamic contracts achieve the upper bound.

We claim that the optimal value function is concave, although it may not be differentiable on

its entire domain. Therefore, denote C to be the set of all continuous concave functions defined on

R�. It is worth noting that any continuous concave function is differentiable except on a countable

set of points. If a function f P C is not differentiable at point w ¥ 0, we abuse notation and use

f 1pwq to represent its left derivative at w. Define operators AI and A∅ that map a function f PC
to functions AIf and A∅f , respectively, such that for all w¥ 0,

pAIfqpwq :� pµ� rqfpwq�µfpw�βq� ρpw̄�wqf 1pwq� pµR� cq� pρ� rqw, and (18)

pA∅fqpwq :� rfpwq� ρwf 1pwq� pρ� rqw�Rµ. (19)

Equipped with these notations, we are ready to present the following Verification Theorem.8
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Theorem 1. Suppose there exists a pair of nondecreasing functions VI and V∅ in C, such that

pAIVIqpwq ¥ 0, pA∅V∅qpwq ¥ 0, (20)

0¤ VIpwq�V∅pwq ¤K, and (21)

VIp0q ¥ v, V∅p0q ¥ v, (22)

for any w P R�. Then, for any contract Γ P C and value w P r0,8q such that upΓ, ν̄pΓqq � w, we

have

UpΓq ¤ V∅pwq�w.

Therefore, we have

max
wPr0,8q

tV∅pwq�wu ¥Z.

Theorem 1 indicates that V∅pwq � w is an upper bound for the principal’s utility under any

contract in C that yields an agent’s utility w. Therefore, we can interpret the function V∅pwq as

an upper bound for the societal value function that contains both the principal and the agent’s

utilities. In fact, function VIpwq can also be perceived as an upper bound for the societal value

function if the system starts from state I instead of ∅, as if the agent has been working when

the contract starts. The quasi-variational-inequality-based optimality condition (20)–(22) may not

appear intuitive. Therefore, in Section EC.1.1, we provide a heuristic derivation, which reveals

how we obtain these conditions. In a nutshell, the condition (20) describes the shape of the value

functions; the condition (21) reflects that switching from suspension to working costs K; and the

condition (22) captures the intuition that without the agent (the agent’s promised utility w� 0),

the societal value is v as defined in (8).

If both functions VI and V∅ are differentiable on R�, then this result is a classic verification

theorem, which is extensively used in the optimal control literature. In fact, a typical method of

obtaining an optimal control policy, which is called the “guess-and-verify” approach, consists of

two main steps. In the first step, we guess a candidate control (contract) structure and its related

value function. In the second step, we use the Verification Theorem to establish that this function

indeed provides an upper bound of the optimal value function, and is achievable under the guessed

contract. It is worth mentioning that the control space in our dynamic contract problem includes

potentially randomized control, which is rich enough to achieve the corresponding upper bound.

We now present our main result in the next theorem, and leave its justification to the next section

of the paper.

Theorem 2. Given model parameters r, ρ, b, c, µ, and µ, the optimal contract demonstrates

the following three possible structures.
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piq If the fixed cost K ¡ K̄pRq, in which K̄pRq is an increasing function of R to be defined in

Section 4.1, the optimal contract is Γ. That is, it is optimal not to hire the agent at all.

piiq If ρ� r ¡ µ, there exists a value R̂ and a non-increasing function KpRq for R ¥ R̂, to be

specified in Equations (28), (33), and (34) later in the paper, such that for R¥ R̂ and K P

rKpRq, K̄pRqs, contract Γ̄ is optimal. That is, it is optimal to hire the agent and offer payment

β to each arrival from the beginning.

piiiq If K, R, ρ, r, and µ do not satisfy either condition above, then there exist four parameters

pθ, qw, θ̄, pwq such that 0  θ¤ qw  θ̄  pw¤ w̄, and an initial promised utility w0, such that the

contract Γ�
�
w0;θ, qw, θ̄, pw� is optimal.

Figure 2 Partition of the pR,Kq Plane Based on Optimal Contract Structures

Note. In this figure, r� 0.2, ρ� 1.5, c� b� 0.2, ∆µ� 0.7, and µ� 1.

Figure 2 demonstrates the optimal contract structures summarized in Theorem 2. First, if the

switching cost is above K̄pRq (Region I), it is optimal for the principal not to hire the agent at all.

This is intuitive because if the fixed cost is too high to set up the operation, it is not worth hiring

the agent. Second, if the switching cost K is lower than the threshold K̄pRq but above KpRq,

then it is optimal for the principal to hire the agent and start paying β for each arrival. Note

that this case can be equivalently expressed as that the revenue R is higher than a K-dependent

threshold (Region II). This is also intuitive, because if the revenue R is high enough, it is not worth

suspending or terminating the agent, which would forfeit the higher arrival rate to receive the

revenue. Finally, the third case in Theorem 2 corresponds to the following possibilities: (i) ρ�r  µ

and K ¤ K̄pRq; (ii) ρ� r ¥ µ, R  R̂, and K ¤ K̄pRq; and (iii) ρ� r ¥ µ and K ¤KpRq. That is,

both K and R are lower than their respective thresholds (Region III). In this case, the optimal
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contract takes the general form of Γ�
�
w0;θ, qw, θ̄, pw� following Definition 1. Figure 2 depicts model

parameters such that ρ� r ¡ µ. If ρ� r ¤ µ, on the other hand, KpRq is not well defined, and

Region II no longer exists in the figure.

Remark 2. It is worth discussing how to implement the richest structured contract

Γ�
�
w0;θ, qw, θ̄, pw� in practice. Although the dynamic of the promised utility may look intricate,

the contract implementation can be quite simple. At any point in time, the principal just needs to

show when the agent needs to bring in another arrival in order to prevent suspension from kicking

in. For example, let us first consider the situation that qw� θ, that is, there is no random starting

of suspension. Following the dynamics (11), in particular, dWt � �ρpw̄ �Wt�qdt, the promised

utility evolves according to Ws � w̄�pw̄�Wtqe
ρps�tq for s¡ t without an arrival. Consequently, if

the promised utility is Wt at time t, it takes a period of time with length

dpWtq :�
1

ρ
ln

�
w̄� qw
w̄�Wt



, (23)

for the promised utility to decrease to θ without an arrival.

Therefore, in the very beginning and right after each arrival at time t while the agent has been

working, the principal just announces a “deadline” at dpWtq � t, before which the agent needs to

bring in an arrival to prevent suspension. This deadline does not change over time unless an arrival

occurs. If an arrival does occur at time t before the deadline when the promised utility takes value

Wt� right before the arrival, the suspension deadline is postponed to a new epoch following (23),

in which Wt takes value pWt� � βq ^ pw. (As mentioned before, if Wt� � β ¡ pw, the agent is paid

Wt��β� pw for this arrival.) In case there is no arrival before the deadline, the agent is suspended

for a fixed period of time, as mentioned in Remark 1. Therefore, the contract can be implemented

as a sequence of changing suspension deadlines announced after each arrival and at the end of each

suspension episode.

If qw ¡ θ, on the other hand, the principal also needs to randomize suspension. In this case, if

there is no arrival after the deadline dpWtq�t, then the principal and agent can use some commonly

observable randomization device (for example, the last two digits of a stock index) to implement

the random start of suspension. �

Before we close this section, it is worth looking at an example that numerically demonstrates

the optimal contract described in Theorem 2.

Example 1. Consider the real estate agency example mentioned in the introduction. On aver-

age, each rental sales representative brings in between 1 and 2 new tenants per month. Therefore

we set µ � 1 per month. Assume that without the representative’s effort, no tenant arrives, or

µ� 0 per month. Following our conversations with Hong Kong real estate agencies, it is reasonable
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to set R � 20000 Hong Kong dollars (HKDs), which is about one month’s rent that the agency

charges for an average apartment. Following a representative’s base salary and sales bonus levels,

we set c� b� 4000HKDs/month, implying β � 4000HKDs. We also set the time discount rates to

be r � 0.0088 and ρ� 0.0297 per month, corresponding to annual discounts of 10% and 30% for

the principal and the agent, respectively (Dohmen et al. 2012). Consider a very modest switch-

ing cost K � 100HKDs. Following Theorem 2, the optimal contract is Γ�pw0;θ, qw, θ̄, pwq, in which

w0 � 39502.07, θ� 10990, qw� 10990, θ̄� 15506.26, and pw� 51557.05, all in terms of HKDs. That

is, if the promised utility reaches pw, the sales representative has 12.95 months to bring in a new

customer to avoid suspension. Each suspension episode lasts 4.56 months.

In the next section, we provide the proof analysis for Theorem 2, relying on Theorem 1 and

construction of value functions for different model parameter settings.

4. Analysis for Theorem 2

In this section, we present the main steps to prove Theorem 2 based on the “guess-and-verify”

approach described in the last section. First, we follow Theorem 1 to study potential forms of the

value functions. Many details of the proofs are presented in the e-companion.

In order to identify optimal value functions, it is worth considering functions that satisfy con-

ditions (20) and (22) with equality. First, consider the suspension state ∅. A function V pwq that

satisfies V p0q � v and the ordinary differential equation pA∅V qpwq � 0 must have the form

Vcpwq � v�w� cwr{ρ, (24)

for some constant c. Later in the paper, we show that the suspension state’s value function indeed

takes this form under certain model parameter settings and for certain w values.

Next, we consider the working state I. In particular, consider a generic function V
rw that is

differentiable on r0, rws for some rw ¤ w̄, takes a constant value for w ¥ rw, and satisfies (20) with

pAIV qpwq � 0. That is, V
rw satisfies the differential equation

pµ� rqV
rwpwq�µV rw

�
pw�βq^ rw�� ρpw̄�wqV 1

rwpwq� pµR� cq� pρ� rqw� 0, (25)

with boundary condition

V
rwpwq � V̄ p rwq, @w¥ rw, (26)

in which V̄ p�q is defined as

V̄ pwq :�
Rµ� c�pρ� rqw

r
, (27)

such that V̄ pw̄q � V̄ . Lemma EC.2 in Section EC.3.1 establishes the existence and uniqueness of

function V
rwpwq, and summarizes its key properties.



Cao, Sun, and Tian: Punish Underperformance with Suspension
20 Management Science 00(0), pp. 000–000, © 0000 INFORMS

We also desire the boundary condition V
rwp0q � v. Figure 4(a) demonstrates an example in which

we can find a rw value such that this boundary condition holds. As we can see, if we increase rw to

take three different values, w̃1, w̃2, and w̃3, the entire function decreases as rw increases, consistent

with Lemma EC.2. This implies that at w � 0, we have Vw̃1
p0q ¡ Vw̃2

p0q ¡ Vw̃3
p0q. In particular,

we can identify a particular rw � w̃2 such that Vw̃2
p0q � v. Following Lemma EC.2, this situation

corresponds to model parameters that satisfy the following condition.

Condition 1.

µ¥ ρ� r or R  R̂ :�

�
c

b
�

pρ� rqµ

∆µpρ� r�µq
�
ρ�µ

ρ

�
β. (28)

Condition 1 means that either the time discount (patience) levels between the principal and the

agent are not too different (their difference is not more than the arrival rate under the agent’s

effort) or the revenue per arrival is low enough.

Figure 3 Solutions to Differential Equation (25) as rw Varies

(a) Value Functions under Condition 1 (b) Value Functions under Condition 2

Notes. (i) For the left panel, r � 0.2, ρ� 0.5, c� 0.2, R� 2, ∆µ� 0.7, and µ� 2. In this case, w̄ � 1.14, and we let

w̃1 � 0.6, w̃2 � 0.9, and w̃3 � 1. (ii) For the right panel, r � 0.2, ρ� 1.2, c� b� 1, R� 5, ∆µ� 0.8, and µ� 0.9. In

this case, w̄� 0.94, and we let w̃1 � 0.6, w̃2 � 0.85, and w̃3 � w̄.

However, in general, we may not be able to find a value rw¤ w̄ to satisfy the boundary condition

V
rwp0q � v. Figure 4(b), for example, depicts another model parameter setting such that as we

increase rw to approach w̄, the corresponding limiting value Vw̄p0q is always higher than v. In this

case, we cannot use (25)–(26) to determine the optimal value function. This situation corresponds

to model parameters that follow the next condition, opposite to Condition 1.9
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Condition 2.

µ  ρ� r and R¥ R̂.

Condition 2 states that the principal is much more patient than the agent (their discount rates

different by more than the arrival rate under the agent’s effort) and that the revenue for each

arrival is high enough.

Generally speaking, the solution V
rw that satisfies (25) with boundary condition (26) may not be

concave; see Cao et al. (2022) for such an example. Therefore, we may need to construct a concave

value function according to the following result.

Lemma 2. For any rw P p0, w̄q, consider the function V
rw that uniquely solves (25)–(26).

piq There exists a rw-dependent threshold qwp rwq P r0, rwq, such that V 2
rwpwq   0 over w P p qwp rwq, rwq

and V 2
rwpwq ¡ 0 over w P r0, qwp rwqq. Moreover, we have qwp rwq ¤ p1� r{ρqβ.

piiq Define function

V
rwpwq :�

"
V
rwp qwp rwqq�V 1

rwp qwp rwqq � pw� qwp rwqq, w P r0, qwp rwqq,
V
rwpw^ rwq, w P r qwp rwq,8q.

Function V
rwpwq is increasing and concave in w on r0, rwq.

piiiq Fixing any rw1 and rw2 with 0  rw1   rw2   w̄, we have

V
rw1
pwq ¡ V

rw2
pwq, and V 1

rw1
pwq   V 1

rw2
pwq,@w P r0, rw1q.

Therefore, if function V
rw is not concave, we construct a concave function V

rw by attaching a linear

piece on
�
0, qwp rwq� to the concave part of function V

rwpwq for w ¥ qwp rwq. This function is closely

related to the optimal value function when the state is I, as we show in the next two subsections.

4.1. High Switching Cost K (Area I of Figure 2)

In order to properly define the threshold K̄pRq in Theorem 2, we need to consider Conditions 1

and 2 seperately. For notational brevity, we drop the dependency on R for K̄pRq and KpRq defined

in Theorem 2 in this section.

4.1.1. Condition 1. Under Condition 1, the optimal value function for state I relies on the

following result.

Lemma 3. Under Condition 1, there exists a unique pw in r0, w̄q such that V
pwp0q � v, in which

the concave function V
pw is defined in Lemma 2 with pw replacing rw. Furthermore, if qwppwq ¡ 0, then

V 1
pwp0q � V 1

pwp qwppwqq ¡ 1.

Lemma 3 allows us to uniquely identify an upper bound pw and a function V
pw, which is independent

of the switching cost K, along with a lower bound qwppwq, as defined in Lemma 2. If qwppwq ¡ 0, the

value function V
pw is linear on the interval r0, qwppwqq, which is associated with randomized control.

We first consider a very high switching cost.
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Proposition 2. Under Condition 1 and K ¥ V̄ ppwq� v, in which the upper bound pw is defined

according to Lemma 3 and function V̄ pwq is defined in (27), functions

VIpwq � V
pwpwq and V∅pwq � v

satisfy the optimality condition (20)–(22). Furthermore, UpΓq � v, in which contract Γ is defined

in (16).

Following Theorem 1, we know that for any contract Γ such that the agent’s utility upΓq �w, we

have

UpΓq ¤ v�w¤ v�U
�
Γ
�
,

in which the last equality follows from Proposition 2. Therefore, contract Γ is optimal under

Condition 1 and K ¥ V̄ ppwq� v.
Lemma 4. Under Condition 1 and K   V̄ ppwq�v, there exist K-dependent values θ̄K P r qwppwq, pws

and mK P r0,V 1
pwp0qs such that

V
pwpθ̄

Kq �mK θ̄K �K � v, and V 1
pwpθ̄

Kq �mK . (29)

Furthermore, we have that θ̄K is increasing in K, mK is decreasing in K, and limKÓ0 θ̄
K � qwppwq.

With the help ofmK , we can define the following bound for the switching costK, which corresponds

to the bound K̄ in Theorem 2 when model parameters satisfy Condition 1:

K̄1 :� inf
 
K P

�
0, V̄ ppwq� v� | mK   1

(
. (K1)

Geometrically, Lemma 4 implies that the line mKw � v is tangent to the curve V
pwpwq �K at

w� θ̄K . Therefore, we define the following societal value function for state ∅,

V∅pwq �

"
mKw� v, w P

�
0, θ̄K

�
,

V
pwpwq�K, w P

�
θ̄K , pw� , (30)

which is clearly concave, and linear on
�
0, θ̄K

�
with slope mK . For any K ¡ K̄1, the slope mK is

less than or equal to 1 according to (K1) and Lemma 4. Therefore, the corresponding principal’s

utility function, V∅pwq � w, is monotonically non-increasing and taking its maximum value at

V∅p0q � v�UpΓq.

Similar to Proposition 2, we have the following result.

Proposition 3. Under Condition 1 and K P rK̄1, V̄ ppwq � vs, functions VIpwq � V
pwpwq and

V∅pwq as defined in (30) satisfy the optimality condition (20)–(22).
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Therefore, the only difference between Propositions 2 and 3 is the value function for state ∅. The

optimal contract is the same Γ, which is not to hire the agent. Figure 4 shows an example of

the societal value functions. It is clear that V∅pwq is linear over the interval
�
0, θ̄K

�
. Furthermore,

functions VIpwq and V∅pwq are “parallel” with a difference of K for w¥ θ̄K . At time t, if the state

Et � ∅ and the promised utilityWt ¡ θ̄K (which would never happen under the optimal contract), it

is optimal to switch the agent to work, which explains the difference K between the value functions.

Figure 4 Illustration of Optimal Societal Value Functions for Area I of Figure 2

I

Notes. In this figure, r� 0.2, ρ� 0.5, c� b� 0.2, R� 2, ∆µ� 0.7, K � 4, and µ� 2. Hence, w̄� 1.14, V
pwppwq � 17.67,

and v� 13.

4.1.2. Condition 2. Define a threshold for the switching cost

K̄2 :� V̄ � v� w̄. (K2)

Under Condition 2, function V
pw from Lemma 3 no longer exists, because the boundary condition

V
rwp0q � v does not hold for any rw P r0, w̄s. In this case, the principal needs to set the agent’s

promised utility at w̄ or 0, but never in between. The corresponding value function is linear over

the interval r0, w̄s, connecting v at w� 0 and V̄ at w� w̄, where V̄ is defined in (10).

Proposition 4. Suppose model parameters satisfy Condition 2. If K ¡ V̄ � v, functions

VIpwq :�

$&% v�
V̄ � v

w̄
�w, w P r0, w̄s,

V̄ , w¥ w̄,
(31)
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and V∅pwq � v satisfy the optimality condition (20)–(22); if K̄2  K ¤ V̄ � v, on the other hand,

functions VIpwq defined in (31) and

V∅pwq :�

$&% v�
V̄ � v�K

w̄
�w, w P r0, w̄s,

V̄ �K, w¥ w̄.
(32)

satisfy (20)–(22).

Note that if K ¡ K̄2, the slope
V̄ � v�K

w̄
  1, which implies that the function V∅pwq � w is

monotonically decreasing. Therefore, for any contract Γ such that upΓq �w, we have

U
�
Γ
�
� v� V∅p0q ¥ V∅pwq�w¥UpΓq,

which implies the optimality of contract Γ.

To summarize, define K̄ to be K̄1 under Condition 1 and K̄2 under Condition 2. The following

result corresponds to part (i) of Theorem 2.

Theorem 3. If K ¥ K̄, it is optimal for the principal not to hire the agent.

4.2. Medium Switching Cost K or High Revenue R (Area II of Figure 2)

We first provide the following expression for the threshold KpRq, which is well defined under

Condition 2:

K �KpRq :�
1

r

#
R∆µ� c�βµ�

µρ

ρ� r�µ

�
pR∆µ� cq

ρ� r�µ

µpρ� rq
�
r

ρ
β

�1�r{ρ

� w̄r{ρ

+
1RPrR̂,R̄s (33)

in which R̄ :�

�
c

b
�

pρ� rqµ

∆µpρ� r�µq

�
β. (34)

The following result helps us identify the value function V∅.

Lemma 5. Under Condition 2 and K P rK,K̄2q, there exists a set of K-dependent parameters

pcK ,mK , θKq with

cK ¡ 0 and mK P

�
ρ� r

ρ� r�µ
,
V̄ � v

w̄



, (35)

such that

VcK pθKq � V̄ �mKpw� w̄q, (36)

V1
cK
pθKq �mK , and (37)

VcK pw̄q � V̄ �K, (38)

in which VcK is defined in (24) with cK replacing c. Furthermore, we have that cK is decreasing in

K, mK is increasing in K, and θK is decreasing in K.
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We first define function V∅pwq by extending function VcK to include w¡ w̄:

V∅pwq :�

"
VcK pwq, w P r0, w̄s,
V̄ �K, w¡ w̄.

(39)

Futher define the following function for state I, which is obtained by smooth-pasting between the

function VcK and a linear piece for the interval rθK , w̄s:

VIpwq :�

$&%VcK pwq, w P r0, θKs,
V̄ �mKpw� w̄q, w P rθK , w̄s,
V̄ , w¡ w̄.

(40)

Figure 5 gives an example of the societal value functions VIpwq and V∅pwq, as defined in (40)

and (39), respectively. As we can see, the two functions are the same for w   θK , and have the

same derivative at w� θK . The two functions then diverge for w¡ θK , with function VIpwq being

piece-wise linear in this interval. For w¥ w̄, both functions become constant, and differ by exactly

K.

Figure 5 Illustration of Optimal Societal Value Functions for Area II of Figure 2

I

Notes. In this figure, r � 0.2, ρ� 0.5, c� b� 0.3, R� 10, ∆µ� 0.2, K � 1.6, and µ� 0.6. Hence, w̄ � 0.9, θK � 0.1,

V̄ � 24.9, and v� 20.

Proposition 5. Under Condition 2 and K P rK,K̄2q, functions V∅pwq and VIpwq as defined in

(39) and (40), respectively, satisfy the optimality condition (20)–(22).

Furthermore, for any w¥ 0, we have

U
�
Γ̄
	
� V̄ � w̄�K � V∅pw̄q� w̄, (41)

in which Γ̄ is defined in (15).
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The fact that V1
cpwq ¡ 1 for any c and w implies that the derivative of V∅pwq is higher than 1 for

any w P r0, w̄q. Therefore, function V∅pwq �w is maximized at w̄. Hence, for any contract Γ that

yields the agent’s utility upΓq �w, we must have

UpΓq ¤ V∅pwq�w¤ V∅pw̄q� w̄¤U
�
Γ̄
	
,

implying the optimality of contract Γ̄. To summarize, we have the following result, which corre-

sponds to part (ii) of Theorem 2.

Theorem 4. Under Condition 2 and K P rK,K̄2q, it is optimal to hire the agent and pay β for

each arrival.

4.3. Low K and R (Area III of Figure 2)

More interesting and richer structure occurs under the following condition.

Condition 3. The model parameters satisfy either Condition 1 and K   K̄1 or Condition 2 and

K  K.

In this case, the value function for state I is no longer V
pwpwq. Recall the function V

rw defined in

Lemma 2 for any rw P p0, w̄q. When the switching cost K is low, the additional boundary condition

that allows us to identify a particular rw to obtain a value function is no longer at w� 0. Instead, we

need to identify the threshold θ, at which point the value functions for states ∅ and I are connected.

In particular, when the promised utility is below θ, the principal should suspend the agent, which

allows the promised utility to increase, according to (11). For state ∅, we use function Vcpwq defined

in (24) as the value function. The next result allows us to identify all the parameters, including

the constant c in (24).

Proposition 6. Under Condition 3, there exists a set of parameters pc, ŵ, ϑ̄, ϑq with c¡ 0 and

ϑ  ϑ̄  ŵ  pw, in which pw is defined in Lemma 3, such that

Vŵpϑq �Vcpϑq, (42)

V 1
ŵpϑq �V1

cpϑq, (43)

Vŵpϑ̄q �Vcpϑ̄q�K, and (44)

V 1
ŵpϑ̄q �V1

cpϑ̄q ¡ 1, (45)

in which Vŵ is defined in Lemma 2 with ŵ replacing rw, and Vc is defined in (24) with c replacing

c. Moreover, we have ϑ̄¡ qwpŵq, in which qwpŵq is defined in Lemma 2(i), with ŵ replacing rw.
Equations (42) and (43) are called value-matching and smooth-pasting conditions, respectively,

in the optimal control literature, and these occur at the promised utility threshold ϑ when the state
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is switched from I to ∅. Similarly, (44) and (45) specify the value-matching and smooth-pasting

conditions when the state is switched from ∅ to I at promised utility ϑ̄, except that the values

between the two states differ by K. The proof of Proposition 6 is rather intricate and takes four

key steps, as shown in Section EC.3.9. Relying on these key steps, we illustrate how to compute ϑ̄

and ϑ in Section EC.1.2.

Equipped with Proposition 6, we define the following optimal value functions:

VIpwq :�

"
Vcpwq, w P r0, ϑq,
Vŵpwq, w¥ ϑ,

and V∅pwq :�

"
Vcpwq, w P r0, ϑ̄q,
Vŵpwq�K, w¥ ϑ̄.

(46)

Figure 6 depicts functions VI and V∅ defined in (46). In particular, functions VIpwq and V∅pwq

are identical for w¤ ϑ. Furthermore, function VIpwq is linear in the interval rϑ, qwpŵqs, while V∅pwq

remains to be Vcpwq for w¤ ϑ̄. For higher w such that w¥ ϑ̄, however, function V∅pwq is a parallel

shift of VIpwq, where the two functions differ by K.

Figure 6 Illustration of Optimal Societal Value Functions for Area III of Figure 2

I

Notes. In this figure, r� 0.05, ρ� 1, c� b� 0.3, R� 112, ∆µ� 0.1, K � 40, and µ� 1.95. Hence, w̄� 5.85, ϑ� 0.18,

qwpŵq � 0.45, ϑ̄� 5.22, and ŵ� 5.62.

Note that by expression (45) of Proposition 6, the slope of V∅pwq at w � ϑ̄ is larger than 1.

(Figure 6 does not appear this way because of different scales of the x and y-axes. — The value

of ŵ is around 5, while the difference V∅pŵq�V∅p0q is around a few thousand.) This implies that

the principal’s utility function V∅pwq�w for state ∅ is maximized at a point higher than ϑ̄.
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Now, we specify the optimal contract structure as follows. For any w P rϑ _ qwpŵq, ŵs, define
contract

Γ̂pwq :� Γ�
�
w; ϑ, pϑ_ qwpŵqq, ϑ̄, ŵ�

, (47)

where we use notation a_b to denote maxta, bu for any a, b PR. The term ϑ_ qwpŵq as the thresholdqw of Definition 1 implies that random switching from I to ∅ occurs under this contract if and only

if ϑ  qwpŵq. If ϑ¥ qwpŵq, on the other hand, contract Γ̂pwq demonstrates the typical control-band

structure.

The following result implies that these contracts are indeed related to the optimal ones.

Proposition 7. Under Condition 3, functions VI and V∅ defined in (46) satisfy the optimality

condition (20)–(22). Furthermore, for any w P rϑ_ qwpŵq, ŵs, we have

U
�
Γ̂pwq

	
� V∅pwq�w. (48)

Note that it is quite involved to verify that VIpwq satisfies AIVI ¥ 0 in condition (20) for w P

r0, ϑs. As one can imagine, we need to show that the function AIVI is always monotone in this

interval. However, this function is not convex. In the proof presented in Section EC.3.12, we have

to establish that either AIVI’s first-order derivative is negative, or its second-order derivative is

positive, throughout this interval. Together with the fact that the functionAIVI takes a non-negative

value and negative derivative at ϑ, this guarantees AIVI ¥ 0. Corresponding proofs in the existing

literature, such as Duckworth and Zervos (2001) and Vath and Pham (2007), are much simpler in

comparison. In particular, Vath and Pham (2007) rely on showing convexity/concavity to verify

quasi-variational inequalities.

The following theorem corresponds to part (iii) of Theorem 2.

Theorem 5. Under Condition 3, the contract Γ̂pw�
0 q is optimal, in which w�

0 P rϑ̄, ŵs is a max-

imizer of the function V∅pwq�w, where function V∅ is defined in (46).

5. Discussions

In this section, we discuss three extensions to the basic model. First, we let the switching cost K

approach 0 in Section 5.1. Then, we study the cases in which there is also a fixed cost to switch

from state I to ∅ in Section 5.2. Finally, we allow an extra cost per unit of time during suspension

in Section 5.3.
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5.1. Switching Cost K Approaching Zero

In this subsection, we discuss impacts of the switching cost K on the optimal contract, especially

when K approaches zero. Note that when K � 0, if Condition 3 does not hold, the principal should

either not hire the agent or always motivate the agent to work.

Proposition 8. Under Condition 3, thresholds ϑ and ϑ̄ defined in Proposition 6 are decreasing

and increasing in K, respectively. Furthermore, these two values converge to the same value as K

approaches 0, or equivalently,

θ0 :� lim
KÓ0

ϑ� lim
KÓ0

ϑ̄. (49)

The monotonicity of ϑ and ϑ̄ implies that the limit θ0 is an upper or lower bound for these

thresholds. In Section EC.1.2, we demonstrate an algorithm to compute the optimal contract for

general K values, in which computing θ0 is the first step.

Proposition 8 also implies that, as K approaches 0, the control band between ϑ and ϑ̄ diminishes.

Consequently, switching occurs more and more frequently. In the limit asK becomes zero, whenever

the promised utility reaches the threshold θ0, with a positive probability, the number of switchings

will approach infinity in a finite time period, and thus, the promised utility will oscillate around

θ0. A similar, although not identical, phenomenon in the optimal contract structures arises in the

Brownian motion uncertainty case, as demonstrated in Zhu (2013), where the promised utility

becomes “sticky” when the promised utility reaches a threshold.

Intuitively, a high-switching-frequency control policy appears impractical. Therefore, it is instruc-

tive to reflect on basic modeling choices. If the switching cost is fairly low, it is often a good

practice to ignore it when building the first model. However, if the corresponding optimal switching

frequency is extremely high, any cost associated with switching cannot be ignored any more.

Although the optimal control is not practical if K � 0, we can still study the corresponding

optimal value function, which sheds lights on the value of the suspension option, compared with

always inducing the agent to work until potential termination. By Proposition 8, we have the

following result, which allows us to construct the optimal value function for K � 0.

Theorem 6. Under Condition 3, the following quantities are well defined:

ŵ0 :� lim
KÓ0

ŵ, and c0 :� lim
KÓ0

c, (50)

in which ŵ and c are defined according to Proposition 6. Further define function

Vθ0pwq :�

"
Vc0pwq, w P r0, θ0s,
Vŵ0

pwq, w¡ θ0.

Functions VI � V∅ �Vθ0 satisfy (20)–(22) in which we set K � 0.
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Table 1 Parameters of the Cases with Relative Difference that is Greater than 10%

r µ ∆µ{µ c{pR∆µq Relative Difference
0.01 1.9 0.9 0.5 68.74%
0.01 1.45 0.9 0.5 58.05%
0.01 1 0.9 0.5 42.14%
0.1 1.9 0.9 0.5 30.06%
0.1 1.45 0.9 0.5 28.36%
0.1 1 0.9 0.5 24.47%
0.01 0.55 0.9 0.5 20.40%
0.1 0.55 0.9 0.5 14.61%

Theorem 6 implies that as K approaches zero, the optimal value functions for positive K values

converge to a value function Vθ0 , which is an upper bound of the optimal value function for

K � 0. Therefore, function Vθ0 serves as a benchmark for potential benefits of the switching option.

Proposition EC.1 in Section EC.1.2 describes how to compute the function Vθ0 directly, rather

than treating it as the limit of a sequence of functions.

Following Theorem 6, we define the optimal principal’s utility under K � 0 as

Ū :�max
w¥0

tVθ0pwq�wu .

It is worth comparing this value with the principal’s utility without the suspension option, which

is obtained in Cao et al. (2022), defined as

U :�

"
maxw¥0 tVpwpwq�wu , under Condition 1,
V̄ � w̄, under Condition 2.

(51)

Therefore, it is clear that if model parameters do not satisfy Condition 3, the switching option does

not bring any value to the principal. Under Condition 3, we conduct a numerical test to compute

the relative difference, pŪ �Uq{U .

In particular, we consider the following model parameters. Fix ρ� 1, R� 10 and c� b. Take r

from the set t0.01,0.1,0.5,0.9,0.99u, µ from t0.1,0.55,1.1,1.45,1.9u, ∆µ{µ from t0.1,0.5,0.9u, and

c{pR∆µq from t0.1,0.5,0.9u, so that model parameters satisfy Assumption 1 and r   ρ. Among

these 225 cases, 85 of them satisfy Condition 3. The mean of the relative differences among these

85 cases is 3.71%. However, in 8 cases, the relative difference exceeds 10%. We list the parameters

of these 8 cases in Table 1. As we can see, these cases correspond to r being very low (taking

values 0.01 and 0.1), µ being not too low (no lower than 0.55), ∆µ close to µ (ratio being 0.9), and

c{pR∆µq neither close to 0 nor close to 1. The maximum improvement of considering the switching

option can be as high as 68.74%.
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5.2. Positive Switching Cost From On to Off

Now, we briefly discuss a generalization of our basic model, which involves a fixed cost, call it K,

for the principal to direct the agent to stop working, including terminating the contract. Instead of

providing a comprehensive summary of all results, we provide the key ideas and leave some details

for the reader to fill in.

The general contract structure, Γ� of Definition 1, remains optimal. In order to identify the

specific parameters of the policy structure, we describe the optimal value functions.

First of all, in the verification theorem, condition (21) is revised to �K ¤ VI � V∅ ¤ K, and

the second inequality in (22) changes to V∅p0q ¥ v �K. The key idea for constructing the value

functions is that when w  θ, function VI is a downward parallel shift of V∅ by K. Accordingly, the

value-matching and smooth-pasting conditions of Proposition 6 become

VIpθq � V∅pθq�K, V 1
I pθq � V 1

∅pθq,

VIpθ̄q � V∅pθ̄q�K, and V 1
I pθ̄q � V 1

∅pθ̄q.

Figure 7 depicts the value functions. Similar to Figure 6, function VIpwq is linear in the interval

w P rθ, qws. Furthermore, for w ¤ θ, function VIpwq is a downward parallel shift from V∅pwq by K,

while for w¥ θ̄, function V∅pwq is a downward parallel shift from VIpwq by K.

Figure 7 Illustration of Optimal Societal Value Functions with Positive Switching Cost from On to Off

I

Notes. In this figure, r� 0.05, ρ� 1, c� b� 0.3, R� 112, ∆µ� 0.1, K� 10, K � 30, and µ� 1.95. Hence, w̄� 5.85,

θ� 0.2, qw� 0.46, θ̄� 5.21, and pw� 5.62.
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5.3. Extra Cost Per Unit of Time During Suspension

In practice, the principal may suffer an exogenous opportunity cost per unit of time whenever the

agent is under suspension. For example, when the firm is under competitive pressure, not having

access to the agent’s work may cost the firm more than the lost revenue. Hence, it would be

reasonable to incorporate a cost rate cs to the principal over the duration of suspension, in addition

to the fixed cost of restarting the agent that has been considered previously. Consequently, the

principal’s total expected utility after the termination, v, becomes pµR� csq{r, and the operator

A∅ is changed to:

pA∅fqpwq :� rfpwq� ρwf 1pwq� pρ� rqw�Rµ� cs.

Therefore, the solution to pA∅V qpwq � 0 with boundary condition V p0q � v still has the form

v�w� cwr{ρ. That is, the introduction of the suspension cost rate cs may change the value of v,

but not the form of the optimality condition. Going through the proofs, we find that the value

of v does not change our main results, although some derived quantities, such as R̂, need to be

modified accordingly.

6. Concluding Remarks

We have fully solved the optimal contract design problem that dynamically schedules an agent

to work and temporarily suspend work over time, depending on past arrival times. Our main

result shows that when the fixed cost to start working is high enough, the principal should not

hire the agent. Otherwise, if the revenue per arrival is high enough, the principal should never

suspend the agent and pays a fixed amount for each arrival from the beginning. If neither the

fixed cost nor the revenue per arrial is too high, the contract demonstrates a rich but also easy-to-

implement structure. In particular, the principal only needs to announce a deadline before which

the agent needs to bring in an arrival to prevent suspension after each arrival and at the end of

each suspension episode. If suspension happens, it lasts for a fixed period of time. It is interesting

to see that such an easy-to-implement contract structure turns out to be optimal.

The fundamental uncertainty in our model is the arrival process. Keeping the per-unit-time

revenue the same, if we scale the system such that the arrival rate becomes very large, uncertainty

essentially diminishes, and the system achieves its first best. In contrast, if the arrival rate is very

small, each arrival becomes so valuable such that the simple Γ̄ contract should be optimal. In

Section EC.1.4, we formally investigate these insights.

It is worth noting that there may be good reasons why in practice we rarely observe firms

using suspension as an incentive tool. For example, our model does not capture all the hidden

cost of maintaining an employee under suspension, who may become disgruntled, or leave the firm
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voluntarily. Otherwise, if the cost of replacing an agent is low, the firm may prefer to terminate

the contract and replace the agent immediately, instead of keeping the focal one under suspension.

As for any models, factors that are not captured deserve caution.

There are natural extensions to this model. For example, our model assumes that the principal

undertakes the fixed switching cost. There could be settings where this cost is incurred to the agent

and not observable to the principal. In such a setting, even if the principal reimburses this cost, the

contract needs to mitigate the incentive for the agent to divert this fund for other purposes instead

of switching on effort. Such a model poses additional challenges, and is left to future investigation.
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Endnotes

1. For its website, see https://hk.centanet.com/info/en/index.

2. A standard approach in this literature is to first focus on the class of contracts that only

motivate the agent to always work. After obtaining the optimal contract in this restrictive class,

the authors provide a sufficient condition on model parameters under which the optimal contract

indeed falls into this restricted class (see, for example, Demarzo and Sannikov 2006, Biais et al.

2010).

3. Here, we implicitly assume that the continuous part of L, Lc is absolutely continuous with

respect to the Lebesgue measure on R�.

4. Notation WtpΓ, νq represents the agent’s continuation utility after observing either an arrival

or a random switching that occurs at time t, which may trigger an instantaneous payment at time

t. Hence, in its definition (4), we use the Lebesgue-Stieltjes integral
³8
t�

to exclude the possible

instantaneous payment at time t.

5. The specific choice of the upper bound W̄ is not important, as long as it is high enough such

that constraint (WU) is not binding at optimality. Technically, we need this constraint to establish

that a process related to WtpΓ, νq is a martingale in the proof of Theorem 1 that comes later in

the paper.
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6. Technically speaking, all time indices in the dt term in (PK) should be t�. However, it does

not make any difference as there is no jump in the dt term. This kind of confusion also appears in

other places, causing no harm to the results.

7. If the initial promised utility w0 lies in p0, qwq, a public randomization is required in the optimal

contract, and if w0 ¡ pw, there will be an initial instantaneous payment. It cannot be optimal for

the principal to set the value of w0 in these two intervals. Hence, to reduce technical complexity,

we impose that w0 P t0uY r qw, pws without loss of optimality for the proposed contract.

8. In this paper, we use terminologies such as “increasing” and “decreasing” in the strict sense,

and specify “nondecreasing” and “nonincreasing” accordingly.

9. Condition 2 corresponds, but is not identical, to Equation (13) of Cao et al. (2022). The

difference is due to model assumptions. The model in Cao et al. (2022) assumes that the effort cost

is not immediately reimbursed, while it is in our model.
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E-Companion for “Punish Underperformance with
Suspension — Optimal Dynamic Contracts in the Presence of
Switching Cost”

In this e-companion, we present some further discussions in Section EC.1, and provide all the

proofs that are omitted from the main paper in Sections EC.2–EC.4.

EC.1. Further Discussions

This section contains four parts. Section EC.1.1 gives a heuristic derivation of the optimality

condition (20)–(22) for the optimal value functions VI and V∅, which appears in Section 3.2. Sec-

tion EC.1.2 demonstrates how to compute the optimal contract parameters. Furthermore, we con-

sider a special case of equal time discount in Section EC.1.3 and investigate the effect of arrival

rate under fixed revenue rate in Section EC.1.4.

EC.1.1. A Heuristic Derivation of the Optimality Condition (20)–(22)

In this section, we provide a heuristic derivation of the optimality condition for the principal’s

utility functions and of the main features of the optimal contract, whose main idea follows from

Section 4.1 in Biais et al. (2010). However, our arguments are not exactly the same, due to the

presence of switching and randomization. Let FIpwq and F∅pwq be the principal’s optimal utility

function that yields an agent’s utility w when the initial state is I and ∅, respectively.
For any t¥ 0, let us first characterize the evolution of the principal’s utility function FEt�pWt�q.

Since the principal discounts the future utility flow at rate r, his expected flow rate of utility at

time t is rFEt�pWt�q. This must be equal to the sum of expected cash flow, the (possible) switching

cost, and the expected rate of change in his continuation utility over pt�dt, ts. Hence, we have

rFEt�pWt�qdt� rν̄tR�pc� bq1Et�Isdt�dLt�Et�r�κpEt�,Etq�dFEtpWtqs, (EC.1)

where Et�r�s :�Er�|Ft�s.

Following the discussions in Section 3.2, we assume that for any ε P tI,∅u, Fεp�q is concave and

differentiable on R�. The actual value function might not be differentiable on the entire domain

R�, which is an issue frequently arising in the optimal control literature, and often addressed by the

viscosity solution approach. Since this section is devoted to a heuristic derivation of the optimality

equation for the optimal utility function Fε, we assume that Fε is smooth enough temporarily.

Recall that dLt � ℓtdt�∆Lt. Note that under any admissible IC contract, 1νt�µ � 1Et�∅ and

1νt�µ � 1Et�I. Using (PK) and regarding Fεpwq as a function of pw,εq, we apply calculus of point

processes to the process pW,Eq to obtain

dFEtpWtq �
�
ρWt�� b1Et�I�Htν̄t� qtH

q
t � ℓt

�
F 1

Et�pWt�qdt
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�
�
FEt�pWt��∆Ltq�FEt�pWt�q

�
�
�
FEt�pWt��Htq�FEt�pWt�q

�
dNt

�
�
FEt�pWt��H

q
t q�FEt�pWt�q

�
dQt�

�
FEtpWtq�FEt�pWtq

�
.

Plugging the above formula into (EC.1) and using Et�dNt � ν̄tdt as well as Et�dQt � qtdt, we

have

rFEt�pWt�qdt�
�
Rν̄t�pc� bq1Et�I� ℓt�

�
ρWt�� b1Et�I�Htν̄t� qtH

q
t � ℓt

�
F 1

Et�pWt�q

�
�
FEt�pWt��Htq�FEt�pWt�q

�
ν̄t�

�
FEt�pWt��H

q
t q�FEt�pWt�q

�
qt

�
dt

�∆Lt�FEt�pWt��∆Ltq�FEt�pWt�q�Et�

�
�κpEt�,Etq�FEtpWtq�FEt�pWtq

�
. (EC.2)

Here, ℓt, ∆Lt, Ht, H
q
t , qt, and Et are all control variables. Besides, the contract might be ter-

minated at time t by paying off the promised utility to the agent instantaneously. Hence, we have

FEtpWtq ¥ v�Wt. That is, Fεpwq ¥ v�w for any w PR� and ε P tI,∅u.
We first optimize the constant-order terms on the right-hand side in (EC.2). Considering that

the optimized constant-order terms should be zero, we have

max
∆Lt¥0

 
�∆Lt�FEt�pWt��∆Ltq�FEt�pWt�q

(
� 0, and (EC.3)

max
EtPtI,∅u

 
�κpEt�,Etq�FEtpWtq�FEt�pWtq

(
� 0. (EC.4)

Equation (EC.3) yields that F 1
εpwq ¥ �1 for any w P R� and ε P tI,∅u. Let pwε � inftw ¥ 0 |

F 1
εpwq ��1u. The concavity of Fεp�q implies that at any time instant t, it is optimal for the principal

to pay ∆Lt �maxtWt�� pwEt� ,0u instantaneously to the agent.

Equation (EC.4) yields that FIpwq ¥ F∅pwq and F∅pwq ¥ FIpwq �K for any w P R�. Besides,

Et � Et� only if �κpEt�,Ec
t�q�FEc

t�
pWtq�FEt�pWtq � 0, where εc is I if ε� ∅ and is ∅ if ε� I.

Next, we consider the controls such that ∆Lt � 0 and Et � Et�. If we plug these values into

(EC.2), the symbol “=” should be replaced by “¤” due to the suboptimality of these controls.

Comparing the dt-order terms on both sides of the resulting inequality yields

rFEt�pWt�q ¥max
!
Rν̄t�pc� bq1Et�I� ℓt�

�
ρWt�� b1Et�I�Htν̄t�H

q
t qt� ℓt

�
F 1

Et�pWt�q

�
�
FEt�pWt��Htq�FEt�pWt�q

�
ν̄t�

�
FEt�pWt��H

q
t q�FEt�pWt�q

�
qt

)
, (EC.5)

where the maximization is taken over the set of controls pℓt,Ht,H
q
t , qtq that satisfies ℓt ¥ b1Et�I,

the IR constraint (5), and the IC constraint (IC).

Inequality (EC.5) can be written as two inequalities, for working and suspension states. If Et� � I,

by omitting the time index, (EC.5) becomes

rFIpwq ¥Rµ�pc� bq� pρw� bqF 1
I pwq

�max
!
� ℓ�pℓ�µh� qhqqF 1

I pwq�µpFIpw�hq�FIpwqq� pFIpw�h
qq�FIpwqqq

)
, (EC.6)
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where the maximization is taken over the set of pℓ,h,hq, qq that satisfies

ℓ¥ b, h¥ β, hq ¤w, q¥ 0. (EC.7)

If Et� � ∅, then (EC.5) becomes

rF∅pwq ¥Rµ� ρwF 1
∅pwq�max

!
� ℓ�pℓ�µh� qhqqF 1

∅pwq�µ
�
F∅pw�hq�F∅pwq

�
�
�
F∅pw�h

qq�F∅pwq
�
q
)
, (EC.8)

where the maximization is taken over the set of pℓ,h,hq, qq that satisfies

ℓ¥ 0, h¥�w, hq ¤w, q¥ 0. (EC.9)

Recall that VIpwq � FIpwq�w and V∅pwq � F∅pwq�w. Then, based on the above discussions, we

have the following basic properties of VI and V∅:

1. VIpwq ¥ v and V∅pwq ¥ v for any w PR�.

2. V 1
I pwq ¥ 0 and V 1

∅pwq ¥ 0 for any w P R� (this follows from the fact that F 1
I pwq ¥ �1 and

F 1
∅pwq ¥�1).

3. Both VI and V∅ are concave on R�.

4. VI (resp. V∅) will take constant value on r pwI,8q (resp. r pw∅,8q).

5. VIpwq ¥ V∅pwq and V∅pwq ¥ VIpwq�K for any w PR�.

We proceed to analyze (EC.6), which can be rewritten as follows in terms of VI:

rVIpwq ¥Rµ� c�pρ� rqw�pρw� bqV 1
I pwq�max

!
� ℓV 1

I pwq�
�
VIpw�hq�VIpwq�hV

1
I pwq

�
µ

�
�
VIpw�h

qq�VIpwq�h
qV 1

I pwq
�
q
)
, (EC.10)

where the maximization is taken over the constraints (EC.7).

Optimizing the right-hand side of (EC.10) with respect to ℓ, we have ℓ� � argmaxℓ¥bt�ℓV
1
I pwqu �

b if w P r0, pwIq, where we use the fact that V 1
I pwq ¡ 0 for w P r0, pwIq.

Optimizing the right-hand side of (EC.10) with respect to h, we have h� � argmaxh¥βtVIpw�

hq�V 1
I pwqhu � β, by noting that VIpw�hq�V

1
I pwqh is decreasing in h on r0,8q, since V 1

I pw�hq�

V 1
I pwq ¤ 0 for any h¥ 0 due to the concavity of VI.

Note that maxhq¤wtVIpw�h
qq�VIpwq�h

qV 1
I pwqu � 0. Hence, (EC.10) reduces to

rVIpwq ¥Rµ� c�pρ� rqw� ρpw̄�wqV 1
I pwq�µpVIpw�βq�VIpwqq, (EC.11)

for w PR�, which can be rewritten as pAIVIqpwq ¥ 0 by using the operator AI defined in (18).
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We next analyze (EC.8), which can be rewritten as follows in terms of V∅:

rV∅pwq ¥Rµ�pρ� rqw� ρwV 1
∅pwq�max

!
� ℓV 1

∅pwq�µ
�
V∅pw�hq�V∅pwq�hV

1
∅pwq

�
�
�
V∅pw�h

qq�V∅pwq�h
qV 1

∅pwq
�
q
)
, (EC.12)

where the maximization is taken over the constraint set (EC.9).

Optimizing the right-hand side of (EC.12) with respect to ℓ, we have ℓ� � argmaxℓ¥0t�ℓV
1
∅pwqu �

0 if w P r0, pw∅q. Optimizing the right-hand side of (EC.12) with respect to h, we have h� �

argmaxh¥�wt�V
1
∅pwqh � V∅pw � hqu � 0, by noting that �V 1

∅pwqh � V∅pw � hq is increasing in

h for h   0 and decreasing in h for h ¡ 0 due to the concavity of V∅. Additionally, we have

maxhq¤wtV∅pw�h
qq�V∅pwq�h

qV 1
∅pwqu � 0. Consequently, (EC.12) can further reduce to

rV∅pwq ¥Rµ�pρ� rqw� ρwV 1
∅pwq, (EC.13)

which can be rewritten as pA∅V∅qpwq ¥ 0.

Summarizing the above discussions yields the optimality condition (20)–(22).

EC.1.2. Computing Contract Parameters

For K � 0, we have the following results. Since these results have been established in the second

part of the proof of Proposition 8, we omit its proof.

Proposition EC.1. piq Under Condition 1 and K̄1 ¡ 0, we have θ0 � θ0, where θ0 and θ0 are

defined in Proposition 8 and Lemma EC.5, respectively. Correspondingly, we have ŵ0 � rwpθ0q
and c0 �Cpθ0q, in which functions rwp�q and Cp�q are defined in Lemma EC.4.

piiq Under Condition 2 and K ¡ 0, define a lower bound

qθ :� pV̄ � vqpρ� r�µq� pρ� rqw̄

µpρ{r� 1q
.

Similar to Lemmas EC.4 and EC.5, for any θ P pqθ, w̄q, there exist unique values rwpθq P pθ, w̄q
and Cpθq, such that if we set ŵ� rwpθq, c�Cpθq, and ϑ� θ, the value-matching and smooth-

pasting conditions (42) and (43) are satisfied. Furthermore, value θ0 :� inftθ P pqθ, w̄q | rw1pθq ¥

0u is well defined, and we have θ0 � θ0, ŵ0 � rwpθ0q, and c0 �Cpθ0q.

For any θ P p0, w̄q, function hp rw,θq, as defined in (EC.71), is decreasing in rw with hp rwpθq, θq � 0.

Hence, rwpθq can be efficiently found by a binary search procedure, starting from lower bound θ

and upper bound w̄. Consequently, Cpθq can also be immediately computed as C1p rwpθq, θq, with
C1p rw,θq defined in (EC.70). Therefore, following Proposition EC.1, in order to determine the

optimal contract parameters for K � 0 under Condition 3, we only need to find θ0. Based on the

definition of θ0 (see part (ii) of Proposition EC.1), this value can be determined by a line search to
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check at which point rwpθq is no longer increasing, starting from 0 under Condition 1 and K̄1 ¡ 0,

or from qθ under Condition 2 and K ¡ 0.

Computation of the optimal contract parameters for K ¡ 0 is more complex. We only demon-

strate how to compute the control-band parameters pc, ŵ, ϑ̄, ϑq under Condition 1 and K   K̄1

or under Condition 2 and K  K, as the optimal contract in other cases takes a simpler form.

Take the case under Condition 1 and K   K̄1 for illustration. Note that for any θ P p0, θ0q, the

value θ̄pθq can be determined by (EC.74) using a line search procedure. Hence, function ψpθq, as

defined in (EC.75), can be readily computed for each θ P p0, θ0q. Since, by Lemma EC.7, function

ψpθq is decreasing in θ with ψpϑq �K, the quantity ϑ can be efficiently found by a binary search

procedure, starting from lower bound 0 and upper bound θ0. The three other parameters, c, ŵ,

and ϑ̄, are thus immediately computed as Cpϑq, rwpϑq, and θ̄pϑq. For the case under Condition 2

and K  K, the only difference is that the initial lower bound for the binary search is qθ.
The above procedure can be summarized by the following four subroutines.

Subroutine 1.Given θ P p0, w̄q, compute w̃pθq: Binary search on rθ, w̃s to determine w̃pθq accord-

ing to hpw̃pθq, θq � 0 where function hp rw,θq is defined in (EC.71).

Subroutine 2. Given θ P p0, w̄q, compute Cpθq: Following Subroutine 1, we obtain w̃pθq. Then,

Cpθq �C1pw̃pθq, θq with C1p rw,θq defined in (EC.70).

Subroutine 3. Given θ P p0, θ0q, compute θ̄pθq: Following Subroutines 1 and 2, we obtain w̃pθq

and Cpθq. Then, we calculate θ̄pθq by (EC.74) using a line search procedure.

Subroutine 4. Given θ P p0, θ0q, compute ψpθq: Following Subroutines 1-3, we obtain w̃pθq,

Cpθq, and θ̄pθq. Then, we compute ψpθq, as defined in (EC.75).

With the above four steps, the optimal control-band parameters can be computed by Algorithm 1

below.

Algorithm 1 Compute pc, ŵ, ϑ̄, ϑq.

1: Line search to determine θ0 according to w̃1pθq � 0, in which function w̃pθq is computed accord-

ing to Subroutine 1.

2: Binary search to determine ϑ according to ψpϑq � K, where ψpϑq can be computed using

Subroutine 4.

3: Following Subroutines 1-3, we obtain ŵ� w̃pϑq, c�Cpϑq, and ϑ� θ̄pϑq, respectively.

EC.1.3. Equal Discount Rate

In the study of dynamic contracts without the switching option, Sun and Tian (2018) claimed,

without a formal proof, that under equal discount rates, it is optimal for the principal to always
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induce the agent to work before contract termination. In our context with switching, this claim

corresponds to never switching the agent to suspension and then working again. Here, we provide

a formal proof that validates this claim for any K ¥ 0.

When the two players’ discount rates are the same, that is, r� ρ, various expressions in the main

body of the paper become simpler. For example, the value V̄ defined in (10) becomes

V̄e :�
µR� c

r
, (EC.14)

and the differential equation (25), which plays an essential role in deciding the optimal value

functions, becomes

pµ� rqVepwq�µVeppw�βq^ w̄q� rpw̄�wqV
1
e pwq� pµR� cq � 0. (EC.15)

According to Lemma 3 of Sun and Tian (2018), differential equation (EC.15) with boundary

condition Vep0q � v has a unique solution Ve on r0, w̄s, which is increasing and strictly concave, with

Vepwq � V̄e for all w¥ w̄. Theorem 1 still holds, in which the operators AI and A∅ are simplified to

pAIfqpwq � pµ� rqfpwq�µfpw�βq� rpw̄�wqf 1pwq� pµR� cq, and

pA∅fqpwq � rfpwq� rwf 1pwq�Rµ,

respectively, for differentiable function f .

Furthermore, when r� ρ, effectively Condition 1 holds. In particular, we will show that the value

function for state I is Ve defined above. Furthermore, the upper threshold V̄ ppwq� v in Proposition

2 becomes

K̄e :� V̄e� v. (EC.16)

In order to define the lower threshold for the switching cost, we need to define the value function for

state ∅. Note that when r� ρ, function V
pw becomes Ve, with pw being w̄ and qwppwq being 0. Hence,

following Lemma 4, if K   K̄e, there exist K-dependent values θ̄K P r0, w̄s and mK P r0, V 1
e p0qs such

that

Vepθ̄
Kq �mK θ̄K �K � v, and V 1

e pθ̄
Kq �mK .

Then, similar to (30), we define the following societal value function for the suspension state:

V∅pwq �

"
mKw� v, w P

�
0, θ̄K

�
,

Vepwq�K, w P
�
θ̄K , w̄

�
.

(EC.17)

Figure EC.1 depicts the value functions. It is clear that V∅ is linear over the interval r0, θ̄Ks.

Furthermore, VIpwq and V∅pwq are “parallel” with a difference of K for w¥ θ̄K .

The following theorem summarizes the optimality results.
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Figure EC.1 Illustration of Optimal Societal Value Functions with Equal Discount Rates

I

Notes. In this figure, r � 0.5, ρ� 0.5, c� b� 0.2, R� 2, ∆µ� 0.7, K � 1.5, and µ� 2. Hence, θ̄K � 0.51, w̄ � 1.14,

V̄e � 7.6, and v� 5.2.

Theorem EC.1. Consider r� ρ. For any w¥ 0, we have

UpΓ,∅q � v.

If K ¥ K̄e, functions VI � Ve and V∅ � v satisfy (20)–(22).

If K   K̄e, on the other hand, functions VI � Ve and V∅ as defined in (EC.17) satisfy (20)–(22).

Furthermore, if V 1
e pθ̄

Kq ¡ 1, for any w¥ θ̄K, we have

UpΓ�pw; 0,0, w̄, w̄qq � V∅pwq�w.

Proof. Using a similar argument as that in the proof of Proposition 2, we can show that (i)

UpΓ,∅q � v, and (ii) under the condition that K   K̄e andm
K ¡ 1, U

�
Γ�pw; 0,0, w̄, w̄q

�
� V∅pwq�w

for any w¥ θ̄K with V∅ as defined in (EC.17).

Next, we show that under condition K ¥ K̄e, functions VI � Ve and V∅ � v satisfy (20)–(22). By

the definition of Ve, it is clear that AIVI � 0. Moreover, pA∅V∅qpwq � rv � µR � 0 for any w ¥ 0.

Hence, (20) holds.

Note that Ve is increasing on r0, w̄s (see Lemma 3 of Sun and Tian 2018). Hence, for any w¥ 0,

we have VIpwq�V∅pwq ¥ Vep0q� v� 0 and VIpwq�V∅pwq ¤ V̄e� v� K̄e ¤K. Therefore, (21) holds.

Finally, it is evident that (22) holds.
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It remains to show that under condition K   K̄e, functions VI � Ve and V∅ as defined in (EC.17)

satisfy (20)–(22). Obviously, AIVI � 0. Moreover, we have

pA∅V∅qpwq � rV∅pwq� rwV
1
∅pwq�µR� rw

�
V∅pwq�V∅p0q

w
�V 1

∅pwq



¥ 0,

where the equality follows from V∅p0q � v, and the inequality follows from the concavity of V∅.

Hence, (20) holds.

If w¥ θ̄K , then VIpwq�V∅pwq �K. If w P r0, θ̄Ks, then V 1
I pwq�V

1
∅pwq � V 1

e pwq�V
1
e pθ̄

Kq ¥ 0 due

to the concavity of Ve, which implies that VIpwq � V∅pwq ¥ VIp0q � V∅p0q � 0 and VIpwq � V∅pwq ¤

VIpθ̄
Kq�V∅pθ̄

Kq �K. Hence, (21) holds. It is straightforward to see that (22) holds. �

Therefore, in the equal discount case, contract Γ�pw�
e ; 0,0, w̄, w̄q is optimal ifK   K̄e andm

K ¡ 1,

in which w�
e P r0, w̄s is the unique maximizer of function Ve such that w�

e ¡ θ̄K . Otherwise, it is

optimal for the principal not to hire the agent at all. Note that because the threshold θ in contract

Γ�pw; 0,0, w̄, w̄q is zero, the principal does not direct the agent to stop working until the promised

utility has reached 0. At this point, the promised utility cannot become positive again, and the

contract is terminated. Therefore, in all these cases, it is never optimal for the principal to direct

the agent to stop working and restart later.

EC.1.4. Effect of Arrival Rate Under Fixed Revenue Rate

In this section, we investigate the effect of arrival uncertainty on the optimal contract. In particular,

we fix the revenue rates per unit of time (Rµ and Rµ), the cost rates (c and b), and the switching

cost (K), and see how the optimal contract changes with the revenue R. In particular, when R

approaches zero, the arrival rate effectively approaches infinity, and the system behaves more like

a deterministic one. In this case, mitigating uncertainty effectively removes the rent that the agent

is able to obtain. The system should become efficient. On the flip side, if R approaches infinity, the

system is extremely uncertain.

For this purpose, we fix A :� R∆µ and B :� Rµ and let them be fixed input parameters. In

this setup, we can write all results as well as relevant quantities appeared in the paper in terms

of A and B, with µ and ∆µ replaced as µ�B{R and ∆µ�A{R, respectively. It is easy to check

that quantities v, w̄, V̄ p�q, and V̄ are all independent of R. Hence, the results in Theorem 2 still

hold. Moreover, we have the following result, which explores two extreme cases, the case of extreme

uncertainty (i.e., R Ò 8) and that of no uncertainty (i.e., R Ó 0). Note that the first-best societal

utility, by considering whether or not to hire the agent, is

V FB :� v�

�
R∆µ� c

r
�K

��
.
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Proposition EC.2. Fix model parameters A, B, c, b, and K.

piq As R Ò 8, it is optimal for the principal to not hire the agent if K ¡ V̄ � v� w̄, and to hire

the agent and offer contract Γ̄ (paying β � bR{A to each arrival) otherwise.

piiq As R Ó 0, it is optimal for the principal not to hire the agent if K ¥ pA � cq{r. If K  

pA� cq{r, on the other hand, the principal will hire the agent and implement the contract

Γ�R
�
w�R

0 ; ϑR, pϑR_ qwpŵRqq, ϑ̄R, ŵR
�
as defined in (47) and Theorem 5, in which the super-

script R highlights the parameters’ dependence on R. Furthermore, we have

lim
RÓ0

w�R
0 � lim

RÓ0
ϑR � lim

RÓ0
qwpŵRq � lim

RÓ0
ϑ̄R � lim

RÓ0
ŵR � 0, (EC.18)

and

lim
RÓ0

UR
�
Γ�R

�
w�R

0 ; ϑR, pϑR_ qwpŵRqq, ϑ̄R, ŵR
�	

�
A�B� c

r
�K � V FB. (EC.19)

In either case, the optimal contract yields the first-best societal utility asymptotically.

Proof. First, we show part (i). Note that R¥ R̂ if and only if

R¥
pA�BqrpA� cqAρ� bpρ� rqpA�Bqs

ρpρ� rqpA2� cA� bA� bBq
�: R̆.

Hence, Condition 2 holds as R Ò8. Consequently, we have limRÒ8 K̄ � limRÒ8 K̄2 � V̄ � v� w̄ and

limRÒ8K � 0 by (34). The result stated in part (i) follows immediately from Theorem 2.

Next, we prove part (ii). Fix any contract Γ P C. Define σ :� inftt¥ 0 | Et � Iu, which will take

value 8 if the principal does not hire the agent under contract Γ. We have

UpΓq ¤Eν̄pΓq

�» 8

0

e�rt
�
RdNt� c1Et�Idt

�
�

¸
0¤t¤8

e�rtκpEt�,Etq

�

�Eν̄pΓq

�» 8

0

e�rt
�
Rpµ1Et�I�µ1Et�∅q� c1Et�I

	
dt�

¸
0¤t¤8

e�rtκpEt�,Etq

�

¤Eν̄pΓq

�» σ

0

e�rtRµdt�

» 8

σ

e�rtpRµ� cqdt� e�rσK

�
�
Rµ

r
�Eν̄pΓq re�rσs

�
R∆µ� c

r
�K



�
Rµ

r
�

�
R∆µ� c

r
�K


�

,

where the first inequality follows by plugging (LL) into (6), and the second inequality follows from

Assumption 1. Therefore, if K ¥ pR∆µ � cq{r � pA � cq{r, then we have UpΓq ¤ Rµ{r � UpΓq,

which demonstrates that it is optimal for the principal not to hire the agent. (We point out this

result does not depend on the value of R.)
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If K   pA� cq{r, then we have

UpΓq ¤ V̄ p0q�K � pRµ� cq{r�K � pA�B� cq{r�K. (EC.20)

Denote the set of positive R’s that satisfy Condition 1 as R. Clearly, R PR when it is sufficiently

small. For any R PR, Lemma 3 holds, which demonstrates that pwR is well defined.

To show the second assertion in part (ii), we need the following limiting result:

lim
RÓ0

pwR � 0, (EC.21)

which will be proved later using a contradictory argument. This result further implies that

limRÓ0 K̄
R
1 � V̄ p0q � v � pA� cq{r. In fact, note that the line w � v � K̄R

1 (as a function of w) is

above the curve VR
pwRpwq for any R PR. Hence, we have K̄R

1 ¥ VR
pwRppwRq� pwR�v� V̄ ppwRq� pwR�v.

In addition, we have K̄R
1 ¤ V̄ ppwRq � v. Sending R to zero and using (EC.21), we obtain that

limRÓ0 K̄
R
1 � pA� cq{r. Consequently, Condition 3 holds as R Ó 0 if K   pA� cq{r, which demon-

strates that the contract Γ�R
�
w�R

0 ; ϑR, pϑR_ qwpŵRqq, ϑ̄R, ŵR
�
as defined in (47) and Theorem

5 is well defined, establishing the second assertion in part (ii).

The limiting result (EC.18) follows immediately by noting that ŵR   pwR from Proposition 6 and

using (EC.21). Applying Proposition 7 and Theorem 5, we obtain that

UR
�
Γ̂Rpw�R

0 q
	
� VR

ŵRpw
�R
0 q�w�R

0 �K �max
w¥0

 
VR
ŵRpwq�w

(
�K

¥ VR
ŵRpŵ

Rq� ŵR�K � V̄ pŵRq� ŵR�K,

which further implies that

lim inf
RÓ0

UR
�
Γ̂Rpw�R

0 q
	
¥ lim

RÓ0

 
V̄ pŵRq� ŵR

(
�K � V̄ p0q�K

by (EC.21). This, combining with (EC.20), establishes (EC.19).

It remains to show (EC.21). Note that pwR P r0, w̄q for any R PR. Hence, tpwRuRPR is a bounded

sequence. If limRÓ0 pwR � 0 fails to hold, according to the Bolzano–Weierstrass theorem, there

exists a sequence tRnunPN with Rn PR and limnÑ8Rn � 0, and a number w; P p0, w̄s, such that

limnÑ8 pwRn �w;. Then, we show that

lim
nÑ8

V Rn

pwRn
pwq ��8 (EC.22)

for any w P r0,w;q. Suppose, to the contradictory, that (EC.22) fails to hold for some w: P r0,w;q.

Then, we have a subsequence tRn1un1PN with limnÑ8Rn1 � 0 such that limn1Ñ8 V
Rn1

pw
R
n1
pw:q exists and

is finite. Recall from Lemma 2 that V R
pwRp�q is continuous and increasing. Using a diagonalization
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argument, we can show that there exists a further subsequence tRn2u � tRn1un1PN and a finite-valued

continuous function vp�q defined on rw:,w;s such that

lim
n1Ñ8

V
Rn2

pw
R
n2
pwq � vpwq (EC.23)

for any w P rw:,w;s. (First, we establish the weakly convergence of these functions at all ratio-

nal numbers on rw:,w;s; then we use these functions’ continuity and monotonicity to show the

weakly convergence on the entire interval rw:,w;s.) Moreover, vp�q is nondecreasing on rw:,w;s,

with vpw;q � V̄ pw;q.

Rewriting (25) in terms of A, B with µ and β replaced, we obtain

ρ pw̄�wq pV R
pwRq

1pwq� rV R
pwRpwq� pA�B� cq� pρ� rqw�

A�B

R

�
V R
pwR

��
w�

bR

A

�
^ pwR

	
�V R

pwRpwq

�
,

or equivalently,

ρ
d

dw

�
pw̄�wqV R

pwRpwq
�

�
A�B

R

�
V R
pwR

��
w�

bR

A

�
^ pwR

	
�V R

pwRpwq

�
�pρ� rqV R

pwRpwq� pA�B� cq� pρ� rqw.

Integrating the above equation from w to pwR yields

ρ
�
pw̄� pwRqV R

pwRppwRq� pw̄�wqV R
pwRpwq

�
�

»
pwR

w

"
A�B

R

�
V R
pwR

��
u�

bR

A

�
^ pwR

	
�V R

pwRpuq

�
�pρ� rqV R

pwRpuq� pA�B� cq� pρ� rqu

*
du.

(EC.24)

Note that»
pwR

w

�
V R
pwR

��
u�

bR

A

�
^ pwR



�V R

pwRpuq

�
du�

#³
pwR

w
pV R

pwRppwRq�V R
pwRpuqqdu, w P ppwR� bR

A
, pwRs,

bR
A
V R
pwRppwRq�

³w� bR
A

w
V R
pwRpuqdu, w P r0, pwR� bR

A
s.

Now consider Equation (EC.24) for the subsequence tRn2u and for any w P rw:,w;q. As w P

r0, pwR� bR
A
s for sufficiently small R, by L’Hopital’s rule and (EC.23), we have

lim
n2Ñ8

³
pw
R
n2

w

�
V

Rn2

pw
R
n2

��
u� bR

A

�
^ pwRn2

�
�V

Rn2

pw
R
n2
puq

�
du

Rn2
�
b

A
V̄ pw;q�

b

A
vpwq.

Therefore, letting n2Ñ8 in (EC.24) and applying (EC.23), we obtain

ρ
�
pw̄�w;qV̄ pw;q� pw̄�wqvpwq

�
�
bpA�Bq

A
pV̄ pw;q� vpwqq�

» w;

w

r�pρ� rqvpuq� pA�B� cq� pρ� rqusdu.
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Therefore, v is differentiable, and thus the above equality can be written as

ρwv1pwq � rvpwq� pA�B� cq� pρ� rqw,

by noting that w̄� bpA�Bq{pρAq.

Using the boundary condition vpw;q � V̄ pw;q, we have

vpwq � V̄ pw;q�w�w;�
ρ

r
w;

�
1�

� w
w;

	r{ρ
�

for w P rw:,w;s,

which is decreasing on rw:,w;s, reaching a contradiction with the fact that vp�q is nondecreasing

on rw:,w;s. Hence, (EC.22) holds.

Furthermore, we have limnÑ8 VRn

pwRn
p0q � �8 by noting that V

rw ¤ V
rw for any rw P p0, w̄q. This

contradicts VR
pwRp0q � v. The proof of (EC.21) is complete. �

As R approaches infinity, the arrival stream is extremely uncertain, and thus it is hard for

the principal to distinguish whether the agent exerts effort or not. Hence, it is expected that the

promised utility plays little role in the incentive and thus payment should be made completely

based on whether an arrival occurs or not. Part (i) of Proposition EC.2 validates this intuition.

Part (ii) of Proposition EC.2 states the result for another extreme case. As R approaches zero,

there is essentially no arrival uncertainty. In the absence of information asymmetry (in term of the

agent’s effort rate), the system’s first best can be achieved. In fact, the first-best societal utility is

V FB, which indeed is asymptotically achieved under the proposed contract.

EC.2. Proofs of the Results in Sections 2 and 3
EC.2.1. Proof of Proposition 1

The proof of part (i) is exactly the same as that of Proposition 1 in Cao et al. (2022), in which

random termination instead of random switching may take place. The proof of part (ii) is similar to

that of Lemma 6 in Sun and Tian (2018). To keep this paper self-contained, we provide a complete

proof here.

(i) Define the agent’s total expected discounted utility conditional on Ft as

utpΓ, νq :�Eν,q

�» 8

0

e�ρs
�
dLs� b1νs�µds

� ����Ft

�
�

» t

0

e�ρs
�
dLs� b1µs�µds

�
� e�ρtWtpΓ, νq. (EC.25)

In what follows, we omit pΓ, νq from all relevant quantities for the sake of easing notation. Given

an effect process ν, we use IN
rt1,t2s

to denote the set of arrival time epochs during rt1, t2s. Moreover,

we denote IN
t :� IN

r0,ts and IN :� IN
r0,8q. Similarly, we use IQ

rt1,t2s
to denote the set of randomized
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switching time epochs during rt1, t2s under the switching intensity process tqtut¥0. Moreover, we

denote IQ
t :� IQ

r0,ts and IQ :� IQ
r0,8q.

At any time instant ζ�, Wζ� can jump to WN
ζ triggered by an arrival at time ζ, or jump to

WQ
ζ triggered by a randomized switching, or jump to WL

ζ triggered by an instantaneous payment.

(Here, the agent’s promised utility will not jump caused by a deterministic switching.) Therefore,

we can decompose Wζ (for ζ ¡ t) into its discrete part

¸
t¤ξ¤ζ

�
pWN

ξ �Wξ�q1ξPIN
rt,ζs

�pWQ
ξ �Wξ�q1ξPIQ

rt,ζs
�pWL

ξ �Wξ�q1ξPIL
rt,ζs

�
and its absolutely continuous part

W c
ζ :�Wζ �

¸
t¤ξ¤ζ

�
pWN

ξ �Wξ�q1ξPIN
rt,ζs

�pWQ
ξ �Wξ�q1ξPIQ

rt,ζs
�pWL

ξ �Wξ�q1ξPIL
rt,ζs

�
,

where we use IL
rt,ζs to denote the set of time epochs in rt, ζs such that a positive instantaneous

payment occurs. Hence, we have ξ P IL
rt,ζs if ∆Lξ ¡ 0 and ξ P rt, ζs.

According to the definition of admissible contract, we know that both WN
t and WQ

t is Ft-

predictable. However, WL
t can also depend on dNt and dQt, that is, W

L
t is Ft-adaptive.

Fix any t1 ¡ t. By calculus of point process, we have

e�ρt1Wt1 � e
�ρtWt �

» t1

t

e�ρζ
�
� ρWζdζ �dW c

ζ

�
�

¸
ζPpt,t1s

e�ρζ

�
pWN

ζ �Wζ�q1ζPIN
pt,t1s

�pWQ
ζ �Wζ�q1ζPIQ

pt,t1s

�pWL
ζ �Wζ�q1ζPIL

pt,t1s

�
.

(EC.26)

Note that the process tutut¥0 is an F-martingale. Hence, for any time points t1 ¡ t, we have

ut �Etrut1s, where we recall that Etr�s �Er�|Fts. Consequently, we have

0�Etrut1s�ut

�Etre
�ρt1Wt1 � e

�ρtWts�Et

�» t1

t�

e�ρζ
�
dLζ � b1νζ�µdζ

��

�Et

�» t1

t

e�ρζ
�
� ρWζdζ �dW c

ζ

��

�Et

$&% ¸
ζPpt,t1s

e�ρζ

�
pWN

ζ �Wζ�q1ζPIN
pt,t1s

�pWQ
ζ �Wζ�q1ζPIQ

pt,t1s

�pWL
ζ �Wζ�q1ζPIL

pt,t1s

�,.-
�Et

�» t1

t�

e�ρζ
�
dLs� b1νζ�µdζ

��

�Et

#» t1

t

e�ρζ
!�
� ρWζ �pWN

ζ �Wζ�qνζ �pWQ
ζ �Wζ�qqζ

�
dζ �dW c

ζ

)
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�
¸

ζPpt,t1s

e�ρζ
�
pWL

ζ �Wζ�q1ζPIL
pt,t1s

�+
�Et

�» t1

t�

e�ρζpdLζ � b1νζ�µdζq

�
,

where the second equality follows from (EC.25), and the third from (EC.26). The fourth equality

follows from the facts that tQtut¥0 is a counting process with intensity qt, and that Nt is a counting

process with intensity νt, as well as Lemma L3 in Chapter II of Brémaud (1981), noting that

Et

» t1

t

e�ρζ |pWN
ζ �Wζ�qνζ |dζ ¤ W̄µ

» t1

t

e�ρζdζ  8, and (EC.27)

Et

» t1

t

e�ρζ |pWQ
ζ �Wζ�qqζ |dζ ¤ W̄Et

» 8

t

e�ρζqζdζ ¤ W̄Et

» τ

t

e�rζqζdζ  8, (EC.28)

in view of (WU), ρ¡ r, and (1).

Recall that dLt � ℓtdt�∆Lt. For any t  t1   τ , the above equality can be stated as

Et

#» t1

t

e�ρζ
�
� ρWζ �pWN

ζ �Wζ�qνζ �pWQ
ζ �Wζ�qqζ � b1νζ�µ� ℓζ

�
dζ �dW c

ζ

+
�Et

¸
ζPpt,t1s

e�ρζ
�
pWL

ζ �Wζ�q1∆Lζ¡0�∆Lζ

�
� 0. (EC.29)

Consider any time t. Letting t1 Ó t in (EC.29) yields

EtrpW
L
t �Wt�q1∆Lt¡0�∆Lts � 0, (EC.30)

which further implies

dW c
t �

�
ρWt��pWN

t �Wt�qνt�pWQ
t �Wt�qqt� b1νt�µ� ℓt

�
dt, t¥ 0. (EC.31)

Let Ht :�WN
t �Wt� and Hq

t :��WQ
t �Wt�. Then, both Ht and H

q
t are Ft-predictable. Besides,

since WL
t is Ft-adaptive, (EC.30) in fact is equivalent to

pWL
t �Wt�q1∆Lt¡0�∆Lt � 0. (EC.32)

We also have

dWt � dW c
t �pWN

t �Wt�qdNt�pWQ
t �Wt�qdQt�pWL

t �Wt�q1∆Lt¡0. (EC.33)

Combining (EC.31)–(EC.33), we obtain (PK).

Relationship (5) follows immediately by noting WN
t ¥ 0 and WQ

t ¥ 0 for all t¥ 0.

(ii) Let rutpΓ, ν
1, νq denote the agent’s total expected discounted utility conditional on Ft under

contract Γ, when he follows effort process ν 1 � tν 1tut¥0 before time t and then effort process ν after

time t:

rutpΓ, ν
1, νq �

» t

0

e�ρs
�
dLs� b1ν1s�µds

�
� e�ρtWtpΓ, νq. (EC.34)
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Here, ru0�pΓ, ν
1, νq can be interpreted in a similar vein as that for W0�pΓ, νq. In fact, we haveru0�pΓ, ν

1, νq �W0�pΓ, νq � upΓ, νq. In what follows, we write ν̄ instead of ν̄pΓq to ease notation. By

the above definition, we have

rutpΓ, ν, ν̄q � utpΓ, ν̄q�

» t

0

e�ρsbp1ν̄s�µ� 1νs�µqds. (EC.35)

Besides, by (PK) and (EC.25), we obtain that

dutpΓ, νq � e�ρt
�
dLt� b1µt�µdt

�
� e�ρt

�
dWtpΓ, νq� ρWtpΓ, µqdt

�
� e�ρt

�
HtpΓ, νqpdNt� νtdtq�H

q
t pΓ, νqpdQt� qtdtq

�
. (EC.36)

Therefore, for any time points t  t1, we have (below, we add superscript ν in some expectation

operators, to indicate that the related random variables are induced by the effort process ν)

Etrrut1pΓ, ν, ν̄qs� rutpΓ, ν, ν̄q �Etrut1pΓ, ν̄qs�utpΓ, ν̄q�Eν
t

�» t1

t

e�ρsbp1ν̄s�µ� 1νs�µqds

�

�Eν
t

�» t1

t�

e�ρs
�
HspΓ, ν̄qpdNs� ν̄tdsq�H

q
s pΓ, ν̄qpdQs� qsdtq� bp1ν̄s�µ� 1νs�µqds

��

�Eν
t

�» t1

t

e�ρs
�
HspΓ, ν̄qpνs� ν̄sq� bp1ν̄s�µ� 1νs�µq

	
ds

�
, (EC.37)

where the first equality follows from (EC.35) and the second equality follows from (EC.36). The last

equalities uses the fact that conditional on Ft and under effort process ν, tNsusPpt,t1s and tQsusPpt,t1s

are counting processes with intensities νs and qs respectively, which follows by applying Lemma

L3 in Chapter II of Brémaud (1981) with the aid of (EC.27) and (EC.28).

Since both ν and ν̄ are admissible, we have νt � ν̄t � µ whenever Et � ∅. Hence, we have

HspΓ, ν̄qpνs� ν̄sq� bp1ν̄s�µ� 1νs�µq ��pHspΓ, ν̄q�βq∆µ1Es�I,νs�µ (EC.38)

for any s ¥ 0. Therefore, if (IC) holds, then we have Etrrut1pΓ, ν, ν̄qs ¤ rutpΓ, ν, ν̄q by (EC.37) and

(EC.38), which implies that trutpΓ, ν, ν̄qut¥0 is an F-supermatingale. By (IR) and (WU), we can

add ru8pΓ, ν, ν̄q :� ³8
0
e�ρs

�
dLs� b1νs�µds

�
as the last element of this supermartingale. Therefore,

upΓ, ν̄q � ru0�pΓ, ν, ν̄q ¥Erru8pΓ, ν, ν̄qs � upΓ, νq,

implying the incentive compatibility of ν̄ under contract Γ.

If (IC) fails to hold, then we consider an effort process ν such that νt � µ if and only if HtpΓ, ν̄q ¥

β and Et � I. Clearly, ν is admissible, and the expression in (EC.38) becomes �pHspΓ, ν̄q �

βq∆µ1Es�I,HspΓ,ν̄q β, which is always non-negative and positive on a set of positive measure. Thus,

by (EC.37), there exists a time t ¡ 0 such that E0�rrutpΓ, ν, ν̄qs ¡ ru0�pΓ, ν, ν̄q � upΓ, ν̄q. Define

another effort process ν 1 which follows ν until time t and then switches to ν̄, which is also admissi-

ble. Moreover, we have upΓ, ν 1q � E0�rrutpΓ, ν, ν̄qs, which indicates upΓ, ν 1q ¡ upΓ, ν̄q, contradicting

(3). The proof is complete.
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EC.2.2. Proof of Lemma 1

If we can show that (PK) holds under contract Γ�pw0;θ, qw, θ̄, pwq, then (17) follows immediately from

(2) and (4) with t� 0. In fact, (PK) holds by setting Ht � β1Et��I and H
q
t � p qw� θq1Wt�� qw,Et��I.

EC.2.3. Proof of Theorem 1

Fix any contract Γ P C. The agent’s promised utility follows a processW with its dynamics described

by (PK) with νt � µ for Et � I and νt � µ for Et � ∅.
Recall that dLt � ℓtdt�∆Lt. Write ϕpw,εq � Vεpwq �w for any w PR� and ε P tI,∅u. Applying

the change-of-variable formula (see, for example, Theorem 70 of Chapter IV in Protter 2003, pp.

214) for processes of locally bounded variation to the process pW,Eq and using (PK), we have

e�rTϕpWT ,ET q � ϕpW0�,E0�q�

» T

0�

e�rt
�
pρWt�� b1νt�µ�Htνt� qtH

q
t � ℓtq �Dt�

� rVEt�pWt�q
�
dt�

¸
0¤t¤T

e�rt∆ϕpWt,Etq

for any T ¥ 0, where Dt� is the left derivative of ϕpw,Et�q with respect to w at Wt�, that is,

Dt� � V 1
Et�pWt�q � 1, by recalling that we use f 1pwq to represent the left derivative of f at w for

any absolutely continuous function defined on R�. Besides, we have

∆ϕpWt,Etq � ϕpWt,Etq�ϕpWt,Et�q

�ϕpWt��HtdNt�H
q
t dQt�∆Lt,Et�q�ϕpWt��HtdNt�H

q
t dQt,Et�q

�ϕpWt��HtdNt�H
q
t dQt,Et�q�ϕpWt�,Et�q for t¡ 0,

and

∆ϕpW0,E0q � ϕpW0,E0q�ϕpW0,E0�q�ϕpW0,E0�q�ϕpW0�,E0�q

by noting that dN0 � dQ0 � 0 with probability 1.

Define MN � tMN
t ut¥0 and MQ � tMQ

t ut¥0 by

MN
t �Nt�

» t

0

νsds and MQ
t �Qt�

» t

0

qsds.

Note that¸
0 t¤T

�
ϕpWt��HtdNt�H

q
t dQt,Et�q�ϕpWt�,Et�q

�
�

» T

0�

e�rt
!
rϕpWt��Ht,Et�q�ϕpWt�,Et�qsdNt�rϕpWt��H

q
t ,Et�q�ϕpWt�,Et�qsdQt

)
�

» T

0�

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
dMN

t �

» T

0�

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
νtdt

�

» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
dMQ

t �

» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
qtdt,
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where the first equality uses the fact that tt P r0, T s | dNt � dQt � 1u has a Lebesgue measure 0

with probability 1. Summarizing the above formulas, we obtain

e�rTϕpWT ,ET q � ϕpW0�,E0�q�

» T

0�

e�rtrϕpWt��Ht,Et�q�ϕpWt�,Et�qsdM
N
t �

�

» T

0�

e�rtrϕpWt��H
q
t ,Et�q�ϕpWt�,Et�qsdM

Q
t �A1�A2�A3�A4�A5,

(EC.39)

where

A1 :�

» T

0�

e�rt
!
pρWt�� b1νt�µ�Htνt� ℓt�q �

�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q

� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

)
dt,

A2 :�
¸

0 t¤T

e�rt
�
ϕ
�
Wt��HtdNt�H

q
t dQt�∆Lt,Et�

�
�ϕ

�
Wt��HtdNt�H

q
t dQt,Et�

��
,

A3 :�
¸

0¤t¤T

e�rtrϕpWt,Etq�ϕpWt,Et�qs,

A4 :�

» T

0�

e�rtqt

!
Hq

t

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

)
dt,

A5 :� ϕpW0,E0�q�ϕpW0�,E0�q.

Below we treat each term separately.

Consider first A1. If Et� � I, then νt� � µ and ϕpWt�,Et�q � VIpWt�q �Wt�. Since the contract

Γ is incentive compatible, we have Ht ¥ β by Proposition 1(ii). Consequently, we have

pρWt�� b1νt�µ�Htνt� ℓtq �
�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

� pρWt�� b�Htµ� ℓtq �
�
V 1
I pWt�q� 1

�
� r � pVIpWt�q�Wt�q� rVIpWt��Htq�VIpWt�q�Hts �µ

� ρWt� �
�
V 1
I pWt�q� 1

�
� r � pVIpWt�q�Wtq� pℓt� bq �

�
V 1
I pWt�q� 1

�
�
�
VIpWt��Htq�VIpWt�q�V

1
I pWt�qHt

�
�µ

¤ ρWt� � pV
1
I pWt�q� 1q� r � pVIpWt�q�Wt�q� ℓt� b�rVIpWt��βq�VIpWt�q�V

1
I pWt�qβs �µ

��
�
pµ� rqVIpWt�q�µVIpWt��βq� ρpw̄�Wt�qV

1
I pWt�q� pµR� cq� pρ� rqWt�

�
� ℓt�rRµ�pc� bqs

��pAIVIqpWt�q� ℓt�rRµ�pc� bqs

¤ ℓt�rRµ�pc� bqs.

Here, the first inequality follows from (i) VIpWt�q ¥ 0 (this follows from the fact that VI is nonde-

creasing) and (ii) Ht ¥ β, and β � argmaxh¥βtVIpw� hq � VIpwq � V
1
I pwq � hu due to the concavity

of VI, and the last inequality follows from (20).
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If Et� � ∅, then νt� � µ. It follows from (5) that Ht ¥�Wt�. Therefore, we have

pρWt�� b1νt�µ�Htνt� ℓtq �
�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

�pρWt��Htµ� ℓtq �
�
V 1
∅pWt�q� 1

�
� r � pV∅pWt�q�Wt�q�

�
V∅pWt��Htq�V∅pWt�q�Ht

�
�µ

�ρWt� �
�
V 1
∅pWt�q� 1

�
� r � pV∅pWt�q�Wt�q� ℓt �

�
V 1
∅pWt�q� 1

�
�
�
V∅pWt��Htq�V∅pWt�q�V

1
∅pWt�qHt

�
�µ

¤ρWt� �
�
V 1
∅pWt�q� 1

�
� r � pV∅pWt�q�Wt�q� ℓt

��
�
rV∅pWt�q� ρWt� �V

1
∅pWt�q� pρ� rqWt��Rµ

�
� ℓt�Rµ

��pA∅V∅qpWt�q� ℓt�Rµ

¤ℓt�Rµ,

where the first inequality follows from (i) V 1
∅pWt�q ¥ 0 (this follows from the fact that V∅ is non-

decreasing) and (ii) Ht ¥�Wt�, and 0� argmaxh¥�wtV∅pw� hq � V∅pwq � V 1
∅pwq � hu due to the

concavity of V∅, and the last inequality follows from (20).

Combining the above two cases yields

pρWt�� b1νt�µ�Htνt� ℓtq �
�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

¤ ℓt�rRνt�pc� bq1νt�µs (EC.40)

for any t¡ 0.

Consider next A2. We have

ϕpWt��HtdNt�H
q
t dQt�∆Lt,Et�q�ϕpWt��HtdNt�H

q
t dQt,Et�q

� VEt�pWt��HtdNt�H
q
t dQt�∆Ltq�VEt�pWt��H

q
t dQt�HtdNtq�∆Lt

¤∆Lt, @t¡ 0, (EC.41)

where the inequality follows from the facts that ∆Lt ¥ 0 and that Vε is nondecreasing for any

ε P tI,∅u.

Consider now A3. By considering four possible value combinations of pEt�,Etq and using (21),

we have

ϕpWt,Etq�ϕpWt,Et�q � VEtpWtq�VEt�pWtq ¤ κpEt�,Etq. (EC.42)

Consider next A4. We have

Hq
t

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�Hq
t V

1
Et�pWt�q�VEt�pWt��H

q
t q�VEt�pWt�q ¤ 0,
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where the inequality follows from the concavity of Vε for any ε P tI,∅u. This, together with qt ¥ 0,

yields

A4 �

» T

0�

e�rtqt

!
Hq

t

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

)
dt¤ 0. (EC.43)

Consider finally A5. It follows from (2) and (4) with t� 0 that ErW0�∆L0s �W0�. Therefore,

we have

ErϕpW0,E0�qs�ϕpW0�,E0�q �ErVE0�pW0qs�VE0�pW0�q�
�
ErW0�s�W0�

�
¤ VE0�

�
ErW0s

�
�VE0�pW0�q�Er∆L0s ¤Er∆L0s, (EC.44)

where the first inequality follows from the concavity of Vε for any ε P tI,∅u and the Jensen’s

inequality, and the second inequality follows from the facts that Vε is nondecreasing and that

W0� �ErW0�L0s ¥ErW0s.

Combining (EC.39)–(EC.43), we have

e�rTϕpWT ,ET q ¤ϕpW0�,E0�q�

» T

0�

e�rtrϕpWt��Ht,Et�q�ϕpWt�,Et�qsdM
N
t

�

» T

0�

e�rtrϕpWt��H
q
t ,Et�q�ϕpWt�,Et�qsdM

Q
t

�

» T

0�

e�rtrℓt�pRνt�pc� bq1νt�µqsdt�
¸

0 t¤T

e�rt∆Lt

�
¸

0¤t¤T

e�rtκpEt�,Etq�ϕpW0,E0�q�ϕpW0�,E0�q

for any T ¡ 0, which can be displayed as

ϕpW0�,E0�q ¥e
�rTϕpWT ,Etq�

» T

0

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
dMN

t

�

» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
dMQ

t

�

» T

0�

e�rt
�
RdNt�dLt�pc� bq1Et�Idt

�
�

¸
0¤t¤T

e�rtκpEt�,Etq

�ϕpW0�,E0�q�ϕpW0,E0�q.

Taking expectation in the above inequality yields

ϕpW0�,E0�q ¥Ere�rTϕpWT ,ET qs�E
�» T

0�

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
dMN

t

�
�E

�» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
dMQ

t

�
�E

�» T

0�
e�rt

�
RdNt�dLt�pc� bq1Et�Idt

�
�

¸
0¤t¤T

e�rtκpEt�,Etq

�
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�ϕpW0�,E0�q�EϕpW0,E0�q

¥Ere�rTϕpWT ,ET qs�E
�» T

0�

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
dMN

t

�
�E

�» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
dMQ

t

�
�E

�» T

0

e�rt
�
RdNt�dLt�pc� bq1Et�Idt

�
�

¸
0¤t¤T

e�rtκpEt�,Etq

�
(EC.45)

for any T ¡ 0, where the last inequality follows from (EC.44).

We claim that it suffices to consider the case that

E
�» 8

0�

e�rt|Ht|νtdt

�
 8. (EC.46)

Otherwise, we have E
�³8

0�
e�rt|Ht|νtdt

�
� 8. It follows from (PK) and (WU) that dLt ¥ pHt �

W̄ q�dNt for t¡ 0. Hence, we have

E
�» 8

0

e�rtdLt

�
¥E

�» 8

0�

e�rtpHt� W̄ q�dNt

�
�E

�» τ

0�

e�rtpHt� W̄ q�νtdt

�
¥E

�» 8

0�

e�rtp|Ht| � W̄ qνtdt

�
¥E

�» 8

0�

e�rt|Ht|νtdt

�
�
W̄µ

r
�8,

where the first equality follows from Equation (2.3) in Chapter II of Brémaud (1981), the second

inequality follows from Ht ¥ �Wt� ¥ �Rµ{r in view of (5) and (WU), and the third inequality

follows from νt ¤ µ. Then, we have

UpΓq ¤Eν̄pΓq

�» 8

0

e�rt
�
RdNt�dLt

��
¤
Rµ

r
�Eν̄pΓq

�» 8

0

e�rtdLt

�
��8,

and thus the desired result follows immediately.

Given (EC.46), we have

E
�» 8

0�

e�rt|ϕpWt��Ht,Et�q�ϕpWt�,Et�q|νt

�
dt

¤ max
w¡0,εPtI,∅u

t|V 1
ε pwq� 1|u �E

�» 8

0�

e�rt|Ht|νtdt

�
 8,

where maxw¡0,εPtI,∅ut|V
1
ε pwq� 1|u  8 follows from the concavity of Vε and the fact that V 1

ε ¥ 0. It

follows from Lemma L3, Chapter II in Brémaud (1981) that �M � t�Mtut¥0, defined by

�Mt :�

» t

0�

e�rsrϕpWs��Hs,Es�q�ϕpWs�,Es�qsdM
N
s ,

is an F-martingale. Hence, Er�MT s �Er�M0s � 0, that is,

E
�» T

0�

e�rtrϕpWt��Ht,Et�q�ϕpWt�,Et�qsdM
N
t

�
� 0.
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Similarly, using (1), we can show that

E
�» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

	
dMQ

t

�
� 0.

It follows from (22) and the fact that both VI and V∅ are nondecreasing that ϕpw,εq ¥ v � w

for any ε P tI,∅u. Letting T Ñ8 in (EC.45) and using (WU), we have ϕpW0�,∅q ¥ UpΓq with

W0� � upΓ, ν̄pΓqq. Hence, the desired result is obtained.

A byproduct of the proof of Theorem 1 is the following result. In the remaining of this e-

companion, whenever we need to prove that certain contract achieves the upper bound, we will

use this result together with Lemma 1.

Proposition EC.3. Suppose that the conditions stated in Theorem 1 hold. Furthermore, sup-

pose that there exists a contract Γ� P C such that the corresponding agent’s promised utility Wt

satisfies

pρWt�� b1νt�µ�Htνt� ℓtq
�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

� ℓt�rRνt�pc� bq1νt�µs, (EC.47)

ϕpWt��HtdNt�H
q
t dQt�∆Lt,Et�q�ϕpWt��HtdNt�H

q
t dQt,Et�q �∆Lt, (EC.48)

ϕpWt,Etq�ϕpWt,Et�q � κpEt�,Etq, (EC.49)

qt

!
Hq

t

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

)
� 0, (EC.50)

for any t¡ 0 and

ErϕpW0,E0�qs�ϕpW0�,E0�q �Er∆L0s. (EC.51)

Then, for any value w P r0,8q such that upΓ�, ν̄pΓ�qq �w, we have

UpΓ�q � V∅pwq�w.

Proof. Equalities (EC.47)–(EC.51) demonstrate that all the inequalities in the proof of

Theorem 1, (EC.40)–(EC.44), hold with equalities under contract Γ�. The desired result can be

shown by going through the proof of Theorem 1, with all inequalities replaced by equalities. �

EC.2.4. Proof of Theorem 2

In view of Theorems 3–5, it remains to show that K̄pRq is increasing in R and KpRq is decreasing

in R on pc{∆µ, R̄q.

First, under Condition 2, we have K̄ � K̄2 � V̄ � v � w̄ �
∆µ �R� c�µβ

r
, which is clearly

increasing in R.
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Second, under Condition 1, we have K̄ � K̄1. By the definition of K̄1, we only need to show

that mK is decreasing in R, since mK is decreasing in K by Lemma 4. Observe that mK has the

following characterization:

mK �max
x¡0

"
V
pwpxq� v�K

x

*
.

Hence, it suffices to show that V
pwpxq� v is decreasing in R for any x¡ 0. Note that for any x¡ 0,

we have V
pwpxq� v�

³x
0
V 1
pwpyqdy. Hence, the desired result is obtained if we can show that V 1

pwpyq is

decreasing in R for any y¥ 0, which is exactly Lemma EC.1(iii) below.

Lemma EC.1. Let R vary and other model parameters µ, µ, c, b, and K be fixed.

piq Both V 1
rwpwq and V 1

rwpwq do not depend on R for any w¥ 0.

piiq pw is decreasing in R.

piiiq V 1
pwpwq is decreasing in R for any w¥ 0.

Proof. (i) Note that V 1
rw satisfies (EC.54) on r0, rws, with the boundary condition that V 1

rwpwq � 0

for all w¥ rw. As (EC.54) does not involve parameter R, its unique solution V 1
rw is also independent

of R, which also implies the independence of V 2p rwq on R. Therefore, qwp rwq is also independent of

R, by Lemma 2(i), which in turn concludes the independence of V 1
rw on R by Lemma 2(ii).

(ii) This part can be shown using a similar line as that in the proof of Proposition 1 in Cao et al.

(2022). Specifically, we define ψpR, rwq :� V
rwp0;Rq� v, where we write V

rwp�;Rq instead of V
rwp�q to

highlight the dependence on R. (Note that we adopt a different notation from those in Section

EC.1.4 as the parameter settings are different.) Then, we have

ψpR, rwq � V
rwp rw;Rq� »

rw

0

V 1
rwpyqdy� v�

∆µpR�βq� pρ� rq rw
r

�

»
rw

0

V 1
rwpyqdy,

which is linear and increasing in R for any rw P r0, w̄s, where have we used part (i) in this lemma.

Hence, the desired result is obtained by noting that ψpR, pwq � 0.

(iii) This result follows immediately from parts (i) and (ii), combining with the monotonicity of

V 1
rwpyq in rw (see Lemma 2(iii)). �

It remains to show that K is non-increasing in R. This can be obtained by taking the first-order

derivative of K with respect to R in (33), investigating its sign and noting from Assumption 1 that

R¡ c{∆µ.

EC.3. Proofs of the Results in Section 4
EC.3.1. Proof of Lemma 2

This result follows almost the same logic as that for the proof of Lemmas 2 and 3 in Cao et al.

(2022) and uses Lemma EC.2 below. However, there are minor differences as both β and w̄ in Cao
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et al. (2022) take different values from ours. Hence, to make this paper self-contained, we provide

a complete proof here.

We first present Lemma EC.2 below because it will be frequently used in the subsequent analysis.

Lemma EC.2. For any rw P r0, w̄q, there exists a unique function V
rw in C1pr0, rwsq that solves the

differential equation (25) on r0, rws with boundary condition (26). We further extend the domain

of V
rw to R� by letting V

rwpwq � V
rwp rwq for all w ¡ rw. Then, function V

rwpwq has the following

properties.

piq V
rwp�q PC

1pR�qXC
2pR�zt rwuqXC3pR�zt rw, rw�βuq.

piiq For any given w¥ 0, define function vp rwq :� V
rwpwq. We have vp�q PC1pr0, w̄qq.

piiiq Function V
rwpwq is increasing in w on r0, rws.

pivq For any rw1 and rw2 such that 0  rw1   rw2   w̄, we have V
rw1
pwq ¡ V

rw2
pwq and V 1

rw1
pwq   V 1

rw2
pwq

for w P r0, rw1q.

pvq If ρ¤ r� µ, then for any w P r0, w̄q, V
rwpwq approaches negative infinity as rw approaches w̄

from below.

pviq If ρ¡ r�µ, then for any w P r0, w̄s, we have

lim
rwÒw̄

V
rwpwq � V̄ �

ρ� r

ρ� r�µ
pw̄�wq,

where V̄ is defined in (10). Furthermore, V̄ �
ρ� r

ρ� r�µ
w̄¥ v is equivalent to R¥ R̂.

Proof. Step 1 in the proof of Proposition 4 in Sun and Tian (2018) has already shown the

existence and uniqueness of a function satisfying (25) with boundary condition (26). Here, we

adopt their idea with argument slightly modified. First, we observe that (25) reduces to an ordinal

differential equation (ODE) on the interval rp rw� βq�, rws, as V
rwpw� βq � V̄ p rwq for all w P rp rw�

βq�, rws. Therefore, this problem can be “backwardly” treated as an initial value problem, which

satisfies the conditions stated in Cauchy–Lipschitz theorem and thus admits a unique continuously

differential solution on rp rw�βq�, rws. In fact, we have

V
rwpwq �

$'&'%
V̄ p rwq� ρ� r

r�µ� ρ
p rw�wq� b

rw

�
pw̄�wq

r�µ
ρ �pw̄� rwq r�µ

ρ
�
, ρ� r�µ

V̄ p rwq� ρ� r

ρ
p rw�wq� pρ� rqpw̄�wq

ρ
ln
� w̄�w
w̄� rw	

, ρ� r�µ
(EC.52)

for w P rp rw�βq�, rws, where
b
rw :�

r� ρ

r�µ� ρ
�

ρ

r�µ
pw̄� rwq ρ�r�µ

ρ . (EC.53)

In general, for any k P N, given that the values of Vw̃ on w P rp rw � kβq�, rws all determined,

(25) is an ODE on the interval rp rw�pk� 1qβq�, p rw� kβq�s, whose unique solution can be shown
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by verifying the conditions in Cauchy–Lipschitz Theorem. By induction on k, we can extend the

solution to (25) to the entire interval r0, rws, as desired.
Next, we show that such a function V

rw possesses properties (i)–(vi).

(i) It follows from (25) and the boundary condition at rw that V
rwp�q PC

1pR�q. Taking derivative

in (25) with respect to w and noting that V
rwpwq � V̄ p rwq for all w¥ rw, we have

pµ� rqV 1
rwpwq�µV

1
rwpw�βq� ρpw̄�wqV

2
rwpwq� ρV

1
rwpwq� ρ� r� 0 (EC.54)

for w P r0, rwq, which implies that V
rwp�q PC

2pr0, rwqq. Moreover, V 2
rwp rw�q��pρ� rq{

�
ρpw̄� rwq�  0.

Also, by the definition of V
rw on p rw,8q, we have V 2

rwpwq � 0 for w ¡ rw and thus V 2
rwp rw�q � 0.

Therefore, V
rwp�q PC

2pR�zt rwuq.
Similarly, taking derivative in (EC.54) with respect to w yields

ρpw̄�wqV 3
rw pwq � µ

�
V 2
rwpw�βq�V

2
rwpwq

�
�p2ρ� rqV 2

rwpwq, (EC.55)

for w P r0, rwq. Note that V 2
rw does not exist only at rw, which demonstrates that V 3

rw does not exist

at rw and rw�β (if it is nonnegative). That is, V
rwp�q PC

3pR�zt rw, rw�βuq.
(ii) Fix any w¥ 0. If rw¤w, then vp rwq � V

rwpwq � V̄ p rwq, which implies that vp�q PC1pr0,w^ w̄qq.

Hence, the desired property is obtained if w¥ w̄.

Now suppose that w  w̄ and rw P pw, w̄q. By the above discussion, we have vp�q PC1pr0,wsq. For

any w1 P rw, rws, it follows from (25) that

ρV 1
rwpw

1q ��
pµ� rqV

rwpw
1q

w̄�w1
�
µV

rw

�
pw1�βq^ rw�
w̄�w1

�
pµR� cq� pρ� rqw1

w̄�w1
.

Integrating the above equation with respect to w1 from w to rw yields

ρ
�
V
rwp rwq�V rwpwq

�
��pµ� rq

»
rw

w

V
rwpw

1q

w̄�w1
dw1�µ

»
rw

w

V
rw

�
pw1�βq^ rw�
w̄�w1

dw1

�

»
rw

w

pµR� cq� pρ� rqw1

w̄�w1
dw1.

First, using the above equality, we can obtain that vp rwq � V
rwpwq is continuous in rw on rw, w̄q.

Then, again using this equality, we conclude that V
rwpwq is continuously differentiable in rw on

rw, w̄q, which, combining with vp�q PC1pr0,wsq, yields that vp�q PC1
�
r0, w̄q

�
.

(iii) We show this result by a contradictory argument. Suppose that wp :� suptw PR� | V
1
rwpwq  

0u exists. Recall from the proof for part (ii) of this lemma that V 2
rwp rw�q   0. Hence, we have

wp P r0, rwq, V 1
rwpw

pq � 0, and V 1
rw ¡ 0 on pwp, rwq. Evaluating (25) at wp gives

rV
rwpw

pq � µR� c�pρ� rqwp�µ
�
V
rw

�
pwp�βq^ rw��V

rwpw
pq
�

¡ µR� c�pρ� rqwp ¡ rV
rwp rwq,
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where the first inequality uses V 1
rw ¡ 0 on pwp, rwq. This reaches a contradiction with V

rwpw
pq   V

rwp rwq.
(iv) We first show the second claim. Suppose it fails to hold. Since V 1

rw1
p rw1q � 0 and V 1

rw2
p rw1q ¡

0, the quantity w: :� suptw P r0, rw1q | V
1
rw1
pwq ¥ V 1

rw2
pwqu is well defined, and satisfies V 1

rw1
pw:q �

V 1
rw2
pw:q by part (ii) of this lemma. Evaluating (25) at w: for both rw1 and rw2, we obtain

µpV
rw1
pw:�βq�V

rw2
pw:�βqq � pr�µqpV

rw1
pw:q�V

rw2
pw:qq.

Hence, we have

V
rw1
pw:�βq�V

rw2
pw:�βq � V

rw1
pw:q�V

rw2
pw:q�

» β

0

�
V 1
rw1
pw:� yq�V 1

rw2
pw:� yq

�
dy

  V
rw1
pw:q�V

rw2
pw:q �

µ

r�µ

�
V
rw1
pw:�βq�V

rw2
pw:�βq

�
,

which indicates that both V
rw1
pw:� βq � V

rw2
pw:� βq and V

rw1
pw:q � V

rw2
pw:q are negative. By the

definition of w:, we have V 1
rw1
  V 1

rw2
on pw:, rw1s, which implies that

V
rw1
pw:q�V

rw2
pw:q � V

rw1
p rw1q�V rw2

p rw1q�

»
rw1

w:

�
V 1
rw1
pyq�V 1

rw2
pyq

�
dy

¡ V
rw1
p rw1q�V rw2

p rw1q ¡ V̄ p rw1q� V̄ p rw2q ¡ 0. (EC.56)

This contradiction indicates the correctness of the second claim. The first claim follows by

replacing w: by any w P r0, rw1q in (EC.56).

(v) For any w P rpw̄� βq�, w̄q, we have w P rp rw� βq�, rws when rw is close to w̄ from below and

thus (EC.52) is valid. Letting rw Ò w̄ in (EC.52), we obtain that lim
rwÒw̄ V rwpwq ��8.

If w P r0, rw̄� βq�, w̄qq, then using the fact that V
rw is nondecreasing on R�, we obtain V

rwpwq ¤

V
rw

�
pw̄ � βq�

�
, which yields that limsup

rwÒw̄ V rwpwq ¤ lim
rwÒw̄ V rw

�
pw̄ � βq�

�
� �8, concluding the

desired result.

(vi) Note that ρ¡ r�µ implies w̄  β. Hence, (EC.52) is valid for all w P r0, rws. Therefore, the
first claim follows by letting rw Ò w̄ in (EC.52) and using lim

rwÒw̄ b rw � 0. The second claim is trivial

by the definition of R̂. �

We proceed to prove Lemma 2 as follows.

Proof of Lemma 2. (i) From (EC.52), we have

V 2
rwpwq ��

ρ� r

ρ
pw̄� rwq ρ�r�µ

ρ pw̄�wq
�2ρ�r�µ

ρ   0

for any w P rp rw�βq�, rwq. (The above expression also holds if µ� r� ρ.) Hence, the desired result

holds with qwp rwq � 0 if rw¤ β.

Now consider the case that rw ¡ β. In this case, we have w̄ ¡ β, which gives ρ   µ. Define

wc :� inftw P r0, rwq | V 2
rwpwq ¥ 0u. If the set is empty, we set wc � 0. By Lemma EC.2(i), we have

V 2
rw   0 on pwc, rwq. Hence, the desired result holds with qwp rwq � 0 if wc � 0.
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Next, we suppose that wc ¡ 0. Since V
rw is strictly concave on r rw� β, rwq, we have wc   rw� β.

According to Lemma EC.2(i), we have V 2
rwpw

cq � 0 and V 2
rw   0 on pwc, rwq.

It follows from (EC.54) at wc that

µ
�
V 1
rwpw

c�βq�V 1
rwpw

cq
�
� pρ� rq

�
1�V 1

rwpw
cq
�
,

which implies

V 1
rwpw

c�βq �
pµ� ρ� rqV 1

rwpw
cq� pρ� rq

µ
. (EC.57)

Moreover, since V 1
rw decreases over pwc, rwq, we have V 1

rwpw
c�βq   V 1

rwpw
cq, which yields

V 1
rwpw

cq ¡ 1, (EC.58)

in view of (EC.57) and ρ  µ. Evaluating (25) at wc gives

rV
rwpw

cq � µR� c�pρ� rqwc� ρpw̄�wcqV 1
rwpw

cq�µ
�
V
rwpw

c�βq�V
rwpw

cq
�

¡ µR� c�pρ� rqwc� ρpw̄�wcqV 1
rwpw

cq�µβV 1
rwpw

c�βq

� µR� c�pρ� rqpwc�βq�
�
ρpwc�βq� rβ

�
V 1
rwpw

cq, (EC.59)

where the inequality follows from the strict concavity of V
rw on pwc,wc� βq, and the last equality

uses (EC.57) and ρw̄� µβ.

Below we distinguish two cases.

Case 1: ρpwc�βq� rβ ¥ 0. It follows from (EC.58) and (EC.59) that

rV
rwpw

cq ¡ µR� c�pρ� rqpwc�βq� ρpwc�βq� rβ

� µR� c� rwc

¡ µR� c¡ rV
rwp rwq,

which contradicts Lemma EC.2(iii).

Case 2: ρpwc�βq� rβ   0. In this case, we have

0 wc  
pρ� rqβ

ρ
. (EC.60)

Below, we will show that

V 2
rw ¡ 0 on r0,wcq. (EC.61)

Evaluating (EC.55) at wc and using V 2
rwpw

cq � 0, we obtain

ρpw̄�wcqV 3
rw pw

cq � µV 2
rwpw

c�βq   0,
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which implies that V 2
rw ¡ 0 on pwc � ϵ,wcq for some ϵ ¡ 0. If (EC.61) fails to hold, then wd :�

suptw P r0,wcq | V 2
rwpwq ¤ 0u is well defined, satisfying wd P r0,wcq. Moreover, we have V 2

rwpw
dq � 0

and V 3
rw pw

dq ¥ 0. (Note that wc   rw�β, indicating that V 3
rw pw

dq exists by Lemma EC.2(i).) Hence,

evaluating (EC.55) at wd gives ρpw̄�wdqV 3
rw pw

dq � µV 2
rwpw

d � βq ¥ 0. By the definition of wc, we

have wd�β ¤wc. Consequently, it follows from (EC.60) that wd ¤wc�β   0, which is impossible.

Therefore, (EC.61) holds. Letting qwp rwq �wc, we obtain the proof of the first claim in part (i). The

second claim in part (ii) follows immediately by (EC.60).

(ii) This claim holds trivially by the first claim in part (i) and Lemma EC.2(iii).

(iii) To ease notation, we write qwp rw1q and qwp rw2q as qw1 and qw2 respectively. First, we show the

second claim, that is, V 1
rw1
pwq   V 1

rw2
pwq for any w P r0, rw1s, by considering the following two cases.

Case 1: qw1 ¤ qw2. In this case, we have

V 1
rw1
pwq � V 1

rw1
pwq   V 1

rw2
pwq � V 1

rw2
pwq (EC.62)

for any w P r qw2, rw1s, where the two equalities follows from the definition of function V
rw and qw1 ¤ qw2,

and the inequality follows from Lemma EC.2(iv). If w P r0, qw2s, then we can derive the desired

inequality as follows:

V 1
rw1
pwq ¤ V 1

rw1
p qw1q � V 1

rw1
p qw1q   V 1

rw2
p qw1q   V 1

rw2
p qw2q � V 1

rw2
p qw1q � V 1

rw2
pwq.

Here, the first inequality uses the definition and the concavity of V
rw1
, the second inequality uses

Lemma EC.2(iv), and the last inequality uses Lemma 2(i).

Case 2: qw1 ¡ qw2. In this case, we have

V 1
rw1
pwq � V 1

rw1
pw_ qw1q   V 1

rw2
pw_ qw1q ¤ V 1

rw2
pw_ qw2q � V 1

rw2
pwq (EC.63)

for all w P r0, rw1s, where the first inequality uses Lemma EC.2(iv) and the second inequality uses

the concavity of V
rw2

and the fact that w_ qw1 ¥w_ qw2.

The first claim can be readily obtained using the second claim. In fact, for any w P r0, rw1s, we

have

V
rw1
pwq�V

rw2
pwq � V

rw1
p rw1q�V

rw2
p rw1q�

»
rw1

w

�
V 1
rw1
pyq�V 1

rw2
pyq

�
dy

¡ V
rw1
p rw1q�V

rw2
p rw1q ¡ V̄ p rw1q� V̄ p rw2q ¡ 0,

where the second inequality uses part (ii) of this lemma. �
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EC.3.2. Proof of Lemma 3

It follows from Lemma 2(iii) that V
rwp0q is decreasing in rw on p0, w̄q. By Lemma EC.2(v) and

(vi), we have that lim
rwÒw̄ V

rwp0q is either �8 or V̄ � ρ�r
ρ�r�µ

w̄, which is less than v according to

Condition 1. Moreover, lim
rwÓ0 V rwp0q � V̄ p0q ¡ v by Assumption 1. Therefore, the first claim is

obtained by Lemma EC.2(ii).

For the second claim, we observe that by the proof of Lemma 2(i), if qwp rwq ¡ 0, it must be equal

to wc, in which case (EC.58) holds. This immediately concludes the result by the definition of V
rw.

EC.3.3. Proof of Proposition 2

Clearly, following the definition of Γ as in (16), UpΓq � v trivially holds. Hence, it remains to show

that functions VIpwq � V
pwpwq and V∅pwq � v satisfy the optimality condition (20)–(22).

First, we show that pAIVIqpwq ¥ 0 for any w P R�. If w P r qwppwq, pwq, by the definition of V
pw, we

have pAIVIqpwq � 0. If w P rpw,8q, then we have

pAIVIqpwq � pµ� rqV
pwppwq�µVpwppwq� pµR� cq� pρ� rqw

� pρ� rqpw� pwq ¥ 0.

If w P r0, qwppwqq (if we discuss this case, it is implicitly assumed that qwppwq ¡ 0), then we have

V
pwpwq � v�V 1

pwp qwppwqqw. Consequently,
pAIVIqpwq � pµ� rq

�
v�V 1

pwp qwppwqqw��µVpwpw�βq� ρpw̄�wqV 1
pwp qwppwqq� pµR� cq� pρ� rqw.

Let the last expression be gIpwq. Obviously, gIp qwppwqq � 0. Moreover, for w P r0, qwppwqq, we have

g1Ipwq � pµ� rqV 1
pwp qwppwqq�µV 1

pwpw�βq� ρV 1
pwp qwppwqq� ρ� r

� pρ� rq
�
1�V 1

pwp qwppwqq��µ�V 1
pwp qwppwqq�V 1

pwpw�βq
�

¤ pρ� rq
�
1�V 1

pwp qwppwqq��µ�V 1
pwp qwppwqq�V 1

pwp qwppwq�βq�� 0,

where the inequality follows from the concavity of V
pw, and the last equality uses the facts that

ρpw̄� qwppwqqV2
pwp qwppwqq � pρ�rq

�
V 1
pwp qwppwqq�1

�
�µ

�
V 1
pwp qwppwq�βq�V 1

pwp qwppwqq� by (EC.54) and that

V2
pwp qwppwqq � 0. Consequently, gIpwq ¥ 0 for all w P r0, qwppwqq.
Therefore, we have pAIVIqpwq ¥ 0 for any w PR�. Obviously, we have pA∅V∅qpwq � pρ� rqw¥ 0.

Hence, (20) holds.

It follows from the facts that VIpwq ¥ VIp0q � v � V∅pwq and that V∅pwq � v ¥ V̄ ppwq � K �

V
pwppwq�K ¥ VIpwq�K (due to K ¥ V̄ ppwq� v) that both (21) and (22) hold.
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EC.3.4. Proof of Lemma 4

Define

gpw,Kq :� V
pwpwq�V 1

pwpwqw� v�K. (EC.64)

Then, we have

gp qwppwq,Kq ��K   0, (EC.65)

where the equality uses the linearity of V
pw on r0, qwppwqs. In addition,

gppw,Kq � V
pwppwq� v�K ¡ 0,

where the equality follows from V 1
pwppwq � 0 and the inequality follows from the condition that

K   V̄ ppwq� v. Furthermore, we have

Bgpw,Kq

Bw
��V2

pwpwqw¡ 0 for w P p qwppwq, pwq,
where the inequality follows from the fact that V

pw is strictly concave on p qwppwq, pwq. Since gpw,Kq
is continuous in w (recalling that V

pw is continuously differentiable), for any K ¡ 0, there exists

a unique θ̄K P p qwppwq, pwq such that gpθ̄K ,Kq � 0. Hence, (29) holds if we define mK :� V 1
pwpθ̄

Kq.

Furthermore, by the implicit function theorem, we have

dθ̄K

dK
��

Bgpw,Kq

BK
Bgpw,Kq

Bw

�
1

Bgpw,Kq

Bw

¡ 0,

which implies that θ̄K is increasing in K. Since V 1
pwpwq is decreasing in w, we have mK � V 1

pwpθ̄
Kq is

decreasing in K. Finally, the limiting result limKÓ0 θ̄
K � qwppwq is implied by (EC.65).

EC.3.5. Proof of Proposition 3

Obviously, (22) holds since VIp0q � V∅p0q � v. Note that it has been shown in the proof of Propo-

sition 2 that pAIVIqpwq ¥ 0 for any w PR�. Hence, it remains to establish the second part of (20),

as well as (21), by considering the following three cases.

Case 1: w P r0, θ̄Kq. In this case, we have pA∅V∅qpwq � pρ� rqp1�mKqw ¥ 0, where we have

used the fact that mK ¤ 1, which follows from Lemma 4, the definition of K̄1 as in (K1), and the

condition that K ¥ K̄1. Besides, we have

V∅pwq �
�
1�

w

θ̄K

	
v�

w

θ̄K
� pV

pwpθ̄
Kq�Kq

¤
�
1�

w

θ̄K

	
V
pwp0q�

w

θ̄K
�V

pwpθ̄
Kq ¤ V

pwpwq � VIpwq,
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where the second inequality follows from the concavity of V
pw. Finally, we have

V∅pwq�VIpwq�K �mKw� v�K �V
pwpwq

� V
pwpθ̄

Kq�mK � pθ̄K �wq�V
pwpwq �

» θ̄K

w

�
V 1
pwpyq�m

K
�
dy¡ 0,

where the second equality follows from the first equality in (29), and the inequality follows from

the concavity of V
pw and mK � V 1

pwpθ̄
Kq.

Case 2: w P rθ̄K , pwq. First, we show that pA∅V∅qpwq ¥ 0 in this case. Note that V∅pwq � V
pwpwq�K

for w P rθ̄K , pwq. Hence, pA∅V∅qpwq ¥ 0 is equivalent to

f1pwq :� rpV
pwpwq�Kq� ρwV 1

pwpwq� pρ� rqw�Rµ¥ 0.

For w P r qwppwq, pws, it holds that pAIVpwqpwq � 0. That is,

f2pwq :� pµ� rqV
pwpwq�µVpwpw�βq� ρpw̄�wqV 1

pwpwq� pµR� cq� pρ� rqw� 0. (EC.66)

Recall that θ̄K P p qwppwq, pwq. Hence, it suffices to show that

f3pwq :� f2pwq� f1pwq � µ
�
V
pwpwq�V

pwpw�βq
�
� ρw̄V 1

pwpwq� rK �pR∆µ� cq   0

for w P rθ̄K , pwq.
It follows from (29) that f1pθ̄

Kq � pρ� rqθ̄Kp1�mKq ¡ 0. Hence, f3pθ̄
Kq   0. Hence, it is enough

to show that f 13pwq ¤ 0, or equivalently, µpV 1
pwpwq�V 1

pwpw�βqq� ρw̄V2
pwpwq ¤ 0, for w P rθ̄K , pwq.

Taking derivative with respect to w in (EC.66) yields

pµ� rqV 1
pwpwq�µV 1

pwpw�βq� ρpw̄�wqV2
pwpwq� ρV 1

pwpwq� ρ� r� 0

for w P r qwppwq, pws. Hence, for w P rθ̄K , pwq, we have

µ
�
V 1
pwpwq�V 1

pwpw�βq
�
� ρw̄V2

pwpwq � pρ� rqpV 1
pwpwq� 1q� ρwV2

pwpwq ¤ 0,

where the inequality follows from the fact that V 1
pwpθ̄

Kq �mK ¤ 1 and the concavity of V
pw. Hence,

we have pA∅V∅qpwq ¥ 0 for w P rθ̄K , pwq. Note that V∅pwq � VIpwq �K � 0. Therefore, (21) trivially

holds.

Case 3: w P rpw,8q. It is straightforward to see that pA∅V∅qpwq � rpV
pwppwq�Kq�pρ�rqw�Rµ¡

rv�Rµ� 0 and V∅pwq�VIpwq�K � 0.
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EC.3.6. Proof of Proposition 4

First, we show that under Condition 2 and K ¡ V̄ � v, functions VIpwq as defined in (31) and

V∅pwq � v satisfy the optimality condition (20)–(22). Note that the first inequality in Condition 2

implies w̄  β. If w P r0, w̄s, then we have

pAIVIqpwq � pµ� rqVIpwq�µVIpw�βq� ρpw̄�wqV
1
I pwq� pµR� cq� pρ� rqw

� pµ� rq
�
v�

V̄ � v

w̄
w
	
�µV̄ � ρpw̄�wq

V̄ � v

w̄
�pµR� cq� pρ� rqw

� pw̄�wq

�
V̄ � v

w̄
pρ� r�µq� pρ� rq

�
¥ 0.

Here, it is worth pointing out that although at w̄, VI is not differentiable, its left derivative exists

and is pV̄ � vq{w̄.

If w P pw̄,8q, then

pAIVIqpwq � pµ� rqV̄ �µV̄ �pµR� cq� pρ� rqw� pρ� rqpw� w̄q ¡ 0.

Combining the above two cases yields pAIVIqpwq ¥ 0 for any w P R�. Besides, for any w P R�,

pA∅V∅qpwq � pρ� rqw¥ 0. Hence, (20) holds.

It is straightforward to see that VIpwq�V∅pwq ¥ 0, and V∅pwq � v ¥ V̄ �K ¥ VIpwq�K. Hence,

(21) holds. Obviously, VIp0q � V∅p0q � v, implying (22).

Second, we show that under Condition 2 and K̄2   K ¤ V̄ � v, functions VIpwq and V∅pwq

as defined in (31) and (32), respectively, satisfy (20)–(22). According to the proof for the case

under Condition 2 and K ¡ V̄ � v, we have pAIVIqpwq ¥ 0 for any w P R�. Below, we show that

pA∅V∅qpwq ¥ 0 for all w PR�.

If w P r0, w̄s, then

pA∅V∅qpwq � rV∅pwq� ρwV
1
∅pwq� pρ� rqw�Rµ� pρ� rq

�
1�

V̄ � v�K

w̄

	
w¥ 0.

Here, we mention that although at w̄, V∅ is not differentiable, its left derivative exists and is

pV̄ � v�Kq{w̄.

If w P pw̄,8q, then we have

pA∅V∅qpwq � rV∅pwq� ρwV
1
∅pwq� pρ� rqw�Rµ

� rpV̄ �Kq� pρ� rqw�Rµ¡ rpV̄ �K � vq ¡ 0.

Therefore, (20) holds. Note that VIpwq�V∅pwq �K for w P rw̄,8q and VIpwq�V∅pwq �K{w̄ �w

for w P r0, w̄q. Hence, (21) holds. Besides, VIp0q � V∅p0q � v and thus (22) holds.
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EC.3.7. Proof of Lemma 5

The results stated in Lemma 5 hold in fact for any K P p0, K̄2q. Below, we will show this slightly

generalized version.

For any θ P r0, w̄s, it is straightforward to verify that functions

C1pθq :�
V̄ � v� w̄

r{ρ � θr{ρ�1rpρ{r� 1qθ� w̄s
and mpθq :�

pρ{r� 1qθ� V̄ � v

pρ{r� 1qθ� w̄
(EC.67)

satisfy (36) and (37), with θ replacing θK , C
1pθq replacing cK , and mpθq replacing mK . Moreover,

it follows from Condition 2 and K P p0, K̄2q that C
1pθq ¡ 0. Note that the denominator of C1pθq

is decreasing in θ, as its derivative with respect to θ is always negative when θ P p0, w̄q. Therefore,

C1pθq is increasing in θ on r0, w̄s. That mpθq is strictly decreasing in θ on r0, w̄s is straightforward.

We have the following result, which is stated as a lemma for the ease of reference. Its proof is

elementary and thus omitted.

Lemma EC.3. Under Condition 2 and K P p0, K̄2q, function ψ1pθq, defined by

ψ1pθq � V̄ � v� w̄�C1pθq � pw̄qr{ρ,

is continuous and decreasing in θ on r0, w̄s. Moreover, ψ1pw̄q � 0 and ψ1p0q � V̄ � v � w̄ ¡ K.

Consequently, there exists a unique number θK P p0, w̄q such that ψ1pθKq �K. Furthermore, θK is

decreasing in K with limKÓ0 θK � w̄.

Lemma EC.3 immediately implies that the triple pθK , cK ,mKq with cK �C1pθKq, mK �mpθKq

satisfies (36)–(38), which also states the monotonicity of θK in K. The monotonicity of cK and mK

in K follows from that of C1pθq and mpθq in θ.

Finally, we show that under Condition 2, K ¥K if and only if (35) holds. First, according to

the monotonicity of mK in K, (35) is equivalent to

K ¥ qK2, in which qK2 :� inf

"
K P p0,K2s

���� mK ¥
ρ� r

ρ� r�µ

*
. (EC.68)

Next, it follows from (EC.67) and limKÓ0 θK � w̄ that

lim
KÓ0

cK �
V̄ � v� w̄

w̄�r{ρ
and lim

KÓ0
mK � 1�

rpV̄ � v� w̄q

ρw̄
�
R∆µ� c

µβ
.

It is straightforward to verify that limKÓ0mK ¥ pρ� rq{pρ� r� µq if and only if R¥ R̄, where

R̄ is defined in (34). Hence, by the definition of qK2 and the monotonicity of mK in K, it is clear

that qK2 � 0 if and only if R¥ R̄.

If R  R̄, we have m
|K2
� pρ� rq{pρ� r�µq. Evaluating (EC.67) at θ� θ

|K2
gives

θ
|K2
�
V̄ � v�pρ� rq{pρ� r�µqw̄

µ{pρ� r�µq � pρ{r� 1q
and c

|K2
�

µ

ρ� r�µ

ρ

r
θ
|K2

1�r{ρ.
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Substituting these values into (38) with K � qK2, we obtain the following closed-form expression ofqK2:

qK2 � V̄ � v� w̄�
µ

ρ� r�µ

ρ

r

�
V̄ � v�pρ� rq{pρ� r�µq � w̄

µ{pρ� r�µq � pρ{r� 1q

�1�r{ρ

w̄r{ρ. (EC.69)

The proof is complete by verifying that K � qK2.

EC.3.8. Proof of Proposition 5

By the definition of contract Γ̄, it is clear that UpΓ̄q � V̄ � w̄�K � V∅pw̄q � w̄. Hence, it remains

to show that under Condition 2 and K P rK,K̄2q, functions VIpwq and V∅pwq as defined in (40) and

(39), respectively, satisfy the optimality condition (20)–(22).

Obviously, (22) holds as VIp0q � V∅p0q � v. We proceed to verify that VIpwq and V∅pwq satisfy

(20) and (21).

We show that pAIVIqpwq ¥ 0 for all w PR� by considering the following cases.

Case 1: w P rθK , w̄s. We have

pAIVIqpwq � pµ� rqpV̄ �mK � pw� w̄qq�µV̄ � ρpw̄�wq �mK �pµR� cq� pρ� rqw

� pw̄�wqrmK � pρ� r�µq� pρ� rqs ¥ 0.

Here, we mention that although at w̄, VI is not differentiable, its left derivative exists and is mK .

Case 2: w P r0, θKq. In this case, we have

pAIVIqpwq � pµ� rqVIpwq�µVIpw�βq� ρpw̄�wqV
1
I pwq� pµR� cq� pρ� rqw

� µVIpwq�µVIpw�βq� ρw̄V
1
I pwq�∆µ �R� c

� µ
�
v�w� cKw

r{ρ
�
�µV̄ �µβ

�
1� cKw

r{ρ�1r{ρ
�
�∆µ �R� c�: gIpwq,

where the second equality follows from A∅VI � 0 on r0, θKq, and the third equality follows from

β ¡ µβ{ρ� w̄ due to Condition 2.

Since VI is continuously differentiable on r0, w̄q, pAIVIqpwq is also continuous in w on r0, w̄q,

which implies that gIpθKq ¥ 0. Hence, it suffices to show that gIpwq is decreasing in w. Using

g1Ipwq � µ�µr{ρ � cKw
r{ρ�2

�
w�pr� ρq{ρ �β

�
, we have

g1IpθKq � µ�µr{ρ � cK � pθKq
r{ρ�2

�
θK �pr� ρq{ρ �β

�
� µ�µ �

mK � 1

θK
�
�
θK �pr� ρq{ρ �β

�
  µ�µ

�
ρ� r

ρ� r�µ
� 1


�
1�

pr� ρq �β

ρθK



  µ�µ

µ

ρ� r�µ

�
1�

pr� ρq �β

ρw̄



� 0,
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where the second equality follows from (37), the first inequality follows from (35) and the fact

that θK �pr� ρq{ρ � β   w̄�pr� ρq{ρ � β � pµ� r� ρq{ρ � β   0, and the last equality follows from

w̄� µβ{ρ. Besides, we have

g2I pwq � r{ρpr{ρ� 1q � cKw
r{ρ�3rµw� ρw̄pr{ρ� 2qs

¥ r{ρpr{ρ� 1q � cKw
r{ρ�3rµw̄� ρw̄pr{ρ� 2qs

� r{ρpr{ρ� 1q � cKw
r{ρ�3pµ� r� 2ρqw̄¡ 0,

where the last inequality follows from ρ¡ r�µ. Therefore, g1Ipwq   0 for w P r0, θKs.

Case 3: w P pw̄,8q. We have

pAIVIqpwq � pµ� rqV̄ �µV̄ �pµR� cq� pρ� rqw� pρ� rqpw� w̄q ¡ 0.

Combining the above three cases yields pAIVIqpwq ¥ 0 for any w PR�.

Next, we establish pA∅V∅qpwq ¥ 0 for all w PR�. Obviously, we have pA∅V∅qpwq � 0 for w P r0, w̄s.

(Again, although V∅ is not differentiable at w̄, its left derivative exists.) If w P pw̄,8q, then

pA∅V∅qpwq � rpV̄ �Kq� pρ� rqw�Rµ¡ rpV̄ �Kq�Rµ� rpV̄ �K � vq ¡ 0,

proving (20).

Below we establish (21). If w P r0, θKs, we have VIpwq � V∅pwq � 0, and if w P rw̄,8q, we have

VIpwq�V∅pwq �K. If w P pθK , w̄q, we have

V 1
I pwq�V

1
∅pwq �mK �V 1

∅pwq ¥mK �V 1
∅pθKq � 0,

which implies that VI� V∅ is increasing on rθK , w̄s. Consequently, we have 0¤ VIpwq � V∅pwq ¤K

for w P pθK , w̄q.

EC.3.9. Proof of Proposition 6

The proof of Proposition 6 is rather intricate, which takes a total of four key steps. These steps

illustrate how to identify thresholds ϑ̄ and ϑ in computation. Furthermore, these steps help us

establish θ0 in Proposition EC.1. As Condition 3 contains two cases, we consider these cases

separately below.

EC.3.9.1. Condition 1 and K   K̄1. In Step 1, fixing any θ, we identify bound ŵ and slope

c as functions of θ to satisfy (42) and (43).

Lemma EC.4. For any θ P p0, w̄q, there exist unique values rwpθq P pθ, w̄q and Cpθq, in place of

ŵ and c, respectively, such that value-matching and smooth-pasting conditions (42) and (43) are

satisfied at ϑ� θ.
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Proof. For any rw P rθ, w̄q, define

C1p rw,θq � pV
rwpθq� v� θqθ

�r{ρ and C2p rw,θq � ρ{r � pV 1
rwpθq� 1qθ1�r{ρ. (EC.70)

It follows from Lemma 2(iii) that C1p rw,θq is decreasing in rw and C2p rw,θq is increasing in rw on

rθ, w̄q. Note that

C1pθ, θq � pVθpθq� v� θqθ
�r{ρ

�

�
µR� c�pρ� rqθ

r
� v� θ



� θ�r{ρ ¡�

ρ

r
θ1�r{ρ �C2pθ, θq,

where the second and the third equalities follow from the boundary conditions at θ (see

Lemma EC.2), and the inequality follows from Assumption 1. Besides, Lemma EC.2(v) demon-

strates that C1p rw,θq Ñ �8 and C2p rw,θq Ñ 8 as rw Ò w̄. In view of Lemma EC.2(i), both

C1p rw,θq and C2p rw,θq are continuous in rw. Hence, there exists a unique rwpθq P pθ, w̄q such that

C1p rwpθq, θq � C2p rwpθq, θq. Let Cpθq :� C1p rwpθq, θq. Then, rwpθq and Cpθq satisfy (42)–(43), as

desired. �

Step 2 determines an interval to further identify θ.

Lemma EC.5. Value θ0 :� inftθ P p0, w̄q | rw1pθq ¥ 0u is well defined. Furthermore, we have thatrwpθq is decreasing and Cpθq is increasing for θ P p0, θ0q, with rw1pθ0q � 0. Moreover, Cpθq ¡ 0 for

any θ P p0, θ0q.

Proof. Define

hp rw,θq :� V
rwpθq� v� θ� ρ{r � pV 1

rwpθq� 1qθ. (EC.71)

By Lemma 2(iii), hp rw,θq is decreasing in rw. Besides, hp rwpθq, θq � 0. Note that hp rw,θq is continu-
ously differentiable in rw and θ by Lemma EC.2(i) and (ii). Hence, rwpθq is continuously differentiable

in θ.

Since hp rw,0q � V
rwp0q � v, we have rwp0q � pw ¡ 0. Besides, it follows from rwpθq P pθ, w̄q that

limθÒw̄ rwpθq � w̄¡ pw.
Write h1p rw,θq � Bhp rw,θq{B rw and h2p rw,θq � Bhp rw,θq{Bθ. Then, we have h1p rw,θq   0,

h2p rw,θq � ρ� r�pρ� rqV 1
rwpθq� ρθV2

rwpθq

r
, and rw1pθq ��

h2p rwpθq, θq
h1p rwpθq, θq .

It follows from K  K1 and Lemma 4 that mK � V 1
pwpθ̄

Kq ¡ 1, which implies that V 1
pwp0q ¡ 1 by

the concavity of V
pw. Therefore, we have h2p rwp0q,0q � pρ� r� pρ� rqV 1

pwp0qq{r   0, which in turn

gives rw1p0q   0. Therefore, rwpθq is strictly decreasing in θ when θ is near 0.
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It follows from limθÒw̄ rwpθq � w̄ ¡ pw � rwp0q and the continuity of rw1pθq in θ that value θ0 :�

inftθ P p0, w̄q | rw1pθq ¥ 0u is well defined, satisfying rw1pθq   0 for any θ P r0, θ0q and rw1pθ0q � 0.

Consequently, we have

ρ� r�pρ� rqV 1
rwpwqpwq� ρwV2

rwpwqpwq   0 for any w P r0, θ0q, and (EC.72)

ρ� r�pρ� rqV 1
rwpθ0qpθ

0q� ρθ0V2
rwpθ0qpθ

0q � 0. (EC.73)

Note that rwpθq is decreasing in θ on r0, θ0q. We claim that Cpθq is increasing in θ on r0, θ0q. In

fact, for any θ P p0, θ0q, we have

C 1pθq �C 1
1p rwpθq, θq � d

dθ

��
V
rwpθqpθq� v� θ

�
θ�r{ρ

�
�
�
V 1
rwpθqpθq� rw1pθq �

BV
rwpθqpθq

B rwpθq � 1
	
θ�r{ρ�

r

ρ

�
V
rwpθqpθq� v� θ

�
θ�r{ρ�1

� rw1pθq �
BV

rwpθqpθq

B rwpθq ¡ 0,

where the last equality follows from C1p rwpθq, θq � C2p rwpθq, θq, and the inequality follows fromrw1pθq   0 and BV
rwpwq{B rw  0 due to Lemma 2(iii).

Note that V 1
pwp0q ¡ 1. Hence, by the continuity of rwpθq in θ and Lemma EC.2(i) and (ii), there

exists a number ϵ¡ 0 such that V 1
rwpθqpθq ¡ 1 for any θ P p0, ϵq. Consequently, Cpθq �C2p rwpθq, θq ¡ 0

for any θ P p0, ϵq, which implies that Cpθq ¡ 0 for any θ P p0, θ0q by noting that Cpθq is strictly

increasing in θ on r0, θ0q. �

Next, in Step 3, we define the upper threshold θ̄ as a function of θ, such that smooth pasting

condition (45) is satisfied.

Lemma EC.6. We have:

piq for any θ P p0, θ0q, the threshold

θ̄pθq :� inf
 
w¡ θ | V 1

rwpθqpwq ¤ 1�Cpθqr{ρ �wr{ρ�1
(

(EC.74)

is well defined;

piiq as a function of θ, threshold θ̄pθq is decreasing and continuous in θ on r0, θ0q; and

piiiq limθÒθ0 θ̄pθq � θ0.

Proof. (i) Define Ψpw,θq � V 1
rwpθqpwq � 1� Cpθqr{ρ � wr{ρ�1. It follows from Lemma EC.5 and

Lemma 2(iii) that Ψpw,θq is decreasing in θ on p0, θ0q. Therefore, for any w P p0, θq, we have
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Ψpw,θq  Ψpw,wq � 0, which implies that θ� inftw¥ 0 |Ψpw,θq � 0u as Ψpθ, θq � 0. Moreover, we

have

BΨ

Bw
pθ, θq � V2

rwpθqpθq�Cpθqr{ρ � pr{ρ� 1qθr{ρ�2

� V2
rwpθqpθq�C2p rwpθq, θqr{ρ � pr{ρ� 1qθr{ρ�2

� V2
rwpθqpθq� ρ{r � pV 1

rwpθqpθq� 1qθ1�r{ρr{ρ � pr{ρ� 1qθr{ρ�2

� V2
rwpθqpθq� pV 1

rwpθqpθq� 1q � pr{ρ� 1q{θ

¡ 0,

where the last inequality follows from (EC.72). This implies that Ψpw,θq ¡ 0 for w P pθ, θ� ϵq with

some ϵ¡ 0. According to Lemma EC.2(i), Ψpw,θq is continuous in w. Besides, we have

Ψp rwpθq, θq � V 1
rwpθqp rwpθqq� p1�Cpθqr{ρ � rwpθqr{ρ�1q ��

�
1�Cpθqr{ρ � rwpθqr{ρ�1

�
  0

and Ψpθ, θq � 0. Hence, θ̄pθq � inftw¡ θ |Ψpw,θq ¤ 0u � inf
 
w¡ θ | V 1

rwpθqpwq ¤ 1�Cpθqr{ρ �wr{ρ�1
(

is well defined and satisfies θ̄pθq   rwpθq.
(ii) This follows immediately by noting that Ψpw,θq is decreasing in θ on r0, θ0q and is continuous

in w and θ.

(iii) According to (EC.73), we have BΨ
Bw
pθ0, θ0q � 0, which implies that Ψp�, θ0q attains its local

maximum at θ0. Hence, we have limθÒθ0 θ̄pθq � θ0 by using θ̄pθq ¥ θ. �

Finally, in Step 4, we find an appropriate ϑ to satisfy (44), and define pc, ŵ, ϑ̄q as

pCpϑq, rwpϑq, θ̄pϑqq. To this end, we define function

ψpθq :� V
rwpθqpθ̄pθqq�

�
v� θ̄pθq�Cpθq

�
θ̄pθq

�r{ρ �
. (EC.75)

In order to satisfy (44), we hope to identify the value ϑ such that ψpϑq �K, whose existence is

guaranteed by the following result.

Lemma EC.7. Function ψpθq is continuous and decreasing in θ on p0, θ0q, and satisfies

lim
θÒθ0

ψpθq � 0, and lim
θÓ0

ψpθq ¡K.

Consequently, there exists a unique number ϑ P p0, θ0q such that ψpϑq �K.

Proof. Note that

ψpθq �

» θ̄pθq

θ

rV 1
rwpθqpyq� p1�Cpθqr{ρ � yr{ρ�1qsdy�

» θ̄pθq

θ

Ψpy, θqdy.
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Fix any θ1   θ2 in p0, θ0q. We have

ψpθ1q �

» θ̄pθ1q

θ1
Ψpy, θ1qdy¡

» θ̄pθ2q

θ2
Ψpy, θ1qdy¡

» θ̄pθ2q

θ2
Ψpy, θ2qdy�ψpθ2q,

where the first inequality follows from Ψpy, θ1q ¡ 0 for y P
�
θ1, θ2

�
Y
�
θ̄pθ2q, θ̄pθ1q

�
, and the second

inequality uses the fact that Ψpy, θq is decreasing in θ on p0, θ0q. Hence, ψpθq is decreasing in θ on

p0, θ0q. The continuity of ψpθq follows from Lemma EC.2(i) and (ii).

Since limθÒθ0 θ̄pθq � θ0, we have limθÒθ0 ψpθq � 0. Note that rwp0q � pw and C2p rw,0q � 0 for anyrw P r0, w̄q. Hence, we have limθÓ0Cpθq � 0 and thus limθÓ0 θ̄pθq � inftw¡ 0 | V 1
pwpwq � 1u. This yields

lim
θÓ0

ψpθq �

» 8

0

pV 1
pwpyq� 1q�dy¡

» θ̄K

0

pV 1
pwpyq� 1qdy

� V
pwpθ̄

Kq� v� θ̄K �K �pmK � 1qθ̄K ¡K,

where the first inequality follows from the facts that V 1
pwpθ̄

Kq � mK ¡ 1 and that V 1
pw is non-

increasing, and the last inequality holds due to mK ¡ 1. Consequently, it follows from the

continuity of ψp�q that there exists a unique ϑ P p0, θ0q such that ψpϑq �K. �

According to these results, the quadruple pŵ, c, ϑ, ϑ̄q defined by ŵ� rwpϑq, c�Cpϑq and ϑ̄� θ̄pϑq

satisfies (42)–(45). Besides, it follows from θ̄pθq   rwpθq for θ P r0, θ0q that ϑ̄   ŵ, which further

implies ŵ � rwpϑq   rwp0q � pw by noting that rwpθq is decreasing in θ on r0, θ0q. To complete the

proof, we need to show that ϑ̄¡ qwpŵq. If it fails to hold, then we have V 1
ŵpϑq � V 1

ŵpϑ̄q � V 1
ŵp qwpŵqq.

On the other side, it follows from c¡ 0 and ϑ  ϑ̄ that V1
cpϑq ¡ V1

cpϑ̄q. This contradicts (43) and

(45).

EC.3.9.2. Condition 2 and K   K. Since most arguments are exactly the same as

those as in the previous case, we only provide a sketch here. To start, we observe that qθ :�

pV̄�vqpρ�r�µq�pρ�rqw̄

µpρ{r�1q
P p0, θKq satisfies mp

qθq � ρ�r
ρ�r�µ

by (EC.67). Moreover, we have

V̄ � v� w̄�C1pqθq � w̄r{ρ�1 ¡K (EC.76)

since ψ1pqθq ¡ψ1pθKq � 0.

Note that under Condition 2, qwp rwq � 0 by Lemma 2(i). Hence, we will use V
rw instead of V

rw

in the proof. Next, we will show the desired result by the following four lemmas, which parallel

Lemmas EC.4–EC.7 in Section EC.3.9.1.

Lemma EC.8. For any θ P pqθ, w̄q, there exists unique values rwpθq P pθ, w̄q and Cpθq, in place of

w̃ and c, such that (42)–(43) are satisfied at ϑ� θ.
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Proof. We will use functions C1p rw,θq and C2p rw,θq defined as in the proof of Lemma EC.4 to

obtain the desired result. In the proof of Lemma EC.4, we have established that C1p rw,θq Ñ �8

and C2p rw,θqÑ8 as rw Ò w̄ and thus

lim
rwÒw̄

C1p rw,θq   lim
rwÒw̄

C2p rw,θq (EC.77)

for any θ P p0, w̄q. Now, we claim that (EC.77) still holds under Condition 2 and K  K for any

θ P pqθ, w̄q. In fact, it follows from Lemma EC.2(vi) that

lim
rwÒw̄

C1p rw,θq � �
V̄ �

ρ� r

ρ� r�µ
w̄� v�

µ

ρ� r�µ
θ
	
θ�r{ρ and

lim
rwÒw̄

C2p rw,θq � ρ

r

µ

ρ� r�µ
� θ1�r{ρ.

It is clear that

lim
rwÒw̄C1p rw,θq

lim
rwÒw̄C2p rw,θq � V̄ � ρ�r

ρ�r�µ
w̄� v� µ

ρ�r�µ
θ

ρ
r

µ
ρ�r�µ

θ

is decreasing in θ and takes value 1 at qθ. Hence, (EC.77) holds for any θ P pqθ, w̄q. The remaining

argument is exactly the same as that for Lemma EC.4 and thus omitted. Moreover, we have the

following byproduct:

rwpqθq :� lim
θÓqθ

rwpθq � w̄ and Cpqθq � ρµ

rpρ� r�µq
pqθq1�r{ρ, (EC.78)

which will be used in the subsequent analysis. �

Lemma EC.9. Value θ0 :� inftθ P pqθ, w̄q | rw1pθ0q ¥ 0u is well defined. We have rwpθq is strictly

decreasing in θ, and Cpθq is strictly increasing in θ on pqθ, θ0q with rw1pθ0q � 0. Moreover, Cpθq ¡ 0

for any θ P pqθ, θ0q.
Proof. We only point out the differences between this proof and that of Lemma EC.5. First,

we show rw1pqθq   0 instead of rw1p0q   0. This holds by noting that h2p rwpqθq,qθq � lim
rwÒw̄ h2p rw,qθq �

pρ� r�pρ� rq � pρ� rq{pρ� r�µqq{r  0. Second, we use the result limθÒw̄ rwpθq � limθÓqθ rwpθq � w̄

instead of limθÒw̄ rwpθq � w̄ ¡ pw � rwp0q to establish the existence of θ0. Finally, we use V 1
rwpqθq

pqθq �
lim

rwÒw̄ V
1
rwp
qθq � pρ� rq{pρ� r� µq ¡ 1 to characterize the monotonicity of Cp�q near qθ, instead of

using V 1
pwp0q ¡ 1 to characterize the monotonicity of Cp�q near 0. �

Lemma EC.10. For any θ P pqθ, θ0q, the threshold θ̄pθq

θ̄pθq :� inf
 
w¡ θ | V 1

rwpθqpwq ¤ 1�Cpθqr{ρ �wr{ρ�1
(

is well defined. As a function of θ, threshold θ̄pθq is decreasing in θ on r0, θ0q, satisfying

limθÒθ0 θ̄pθq � θ0 and limθÓqθ θ̄pθq � w̄.



ec40 e-companion to Cao, Sun, and Tian: Punish Underperformance with Suspension

Proof. The proof is the same as that for Lemma EC.6, with the range of θ changed from p0, θ0q

to pqθ, θ0q. One exception is that we need to show limθÓqθ θ̄pθq � w̄. To show this, we first note that

for any w P pqθ, w̄q, we have

lim
θÓqθ

Ψpw,θq � lim
rwÒw̄

!
V 1
rwpwq� 1�Cpqθq � r{ρ �wr{ρ�1

)
�

ρ� r

ρ� r�µ
� 1�

ρµ

rpρ� r�µq
pqθq1�r{ρ � r{ρ �wr{ρ�1

�
µ

ρ� r�µ

�
1�

�wqθ �r{ρ�1
�
¡ 0,

where the first equality follows from (EC.78) and Lemma EC.2(ii), and the second equality follows

from Lemma EC.2(vi). This inequality, together with θ̄pθq   rwpθq, yields that limθÓqθ θ̄pθq � w̄. �

Lemma EC.11. Function ψpθq, as defined in (EC.75), is continuous and decreasing in θ on

pqθ, θ0q, and satisfies

lim
θÒθ0

ψpθq � 0 and lim
θÓ0

ψpθq ¡K.

Consequently, there exists a unique value ϑ P pqθ, θ0q such that ψpϑq �K.

Proof. The proof is exactly the same as that for Lemma EC.7, with the range of θ changed

from p0, θ0q to pqθ, θ0q, except that we will show limθÓθ0 ψpθq ¡K rather than limθÓ0ψpθq ¡K. In

fact, we have

lim
θÓθ0

ψpθq � lim
rwÒw̄

V
rwpw̄q� rv� w̄�Cpqθq pw̄qr{ρs � V̄ � v� w̄�Cpqθq pw̄qr{ρ ¡K,

where the second equality uses Lemma EC.2(vi), and the inequality follows from (EC.76). �

Now we are ready to complete the proof of Proposition 6 under Condition 2 and K  K. Accord-

ing to Lemmas EC.8–EC.11, pŵ, c, ϑ, ϑ̄q defined by ŵ � rwpϑq, c � Cpϑq and ϑ̄ � θ̄pϑq satisfies

(42)–(45). Besides, it follows from θ̄pθq   rwpθq for θ P rqθ, θ0q that ϑ̄  ŵ, which implies ŵ� rwpϑq  rwpθ0q � w̄ by using that rwpθq is decreasing in θ on rqθ, θ0q.
EC.3.10. Proof of Proposition 7

We only consider the case in which Condition 1 and K   K̄1 hold, because the proof is the same

for the case in which Condition 2 and K  K hold.

First, we prove (48). Similar to the proof of Proposition 2, we apply Lemma 1 and Proposi-

tion EC.3 by verifying that (EC.47)–(EC.51) all hold.

Equality (EC.47) holds by noting that (i) ℓt � b1νt�µ; (ii) for any t¡ 0, Wt� P rϑ, ŵs if Et� � I

and pAIVIqpwq � 0 if w P rϑ, ŵs; and (iii) for any t¡ 0, Wt� P p0, ϑ̄s if Et� � 0 and pA∅V∅qpwq � 0 if

w P p0, ϑ̄s.
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Equality (EC.48) holds by noting that ∆Lt ¡ 0 only if Et� � 1 and Wt �HtdNt �Hq
t dQt ¡ ŵ,

as well as that VIpwq � VIpŵq for any w¥ ŵ.

Equality (EC.49) holds by noting that for any t¥ 0, (i) Et � 1�Et� � 1 only if Wt� P rϑ̄, ŵs and

VIpwq�V∅pwq �K if w P rϑ̄, ŵs; and (ii) Et � 1� Et� � 0 only if Wt� P p0, ϑs and V∅pwq�VIpwq � 0

if w P p0, ϑs.

Note that qt ¡ 0 only if qwpŵq ¡ 0, Wt� � qwpŵq and Et� � I. Hence, if qt ¡ 0, then we have

Hq
t �

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�p qwpŵq�ϑqV 1
ŵp qwpŵqq�Vŵpϑq�Vŵp qwpŵqq � 0,

where the last equality follows from Lemma 2(ii). Hence, (EC.50) holds.

Finally, (EC.51) holds by noting that (i) ifW0� ¤ ŵ, then ErϕpW0,E0�qs�ϕpW0�,E0�q�E∆L0 �

ϕpW0�,E0�q � ϕpW0�,E0�q � 0; and (ii) if W0� ¡ ŵ, then ErϕpW0,E0�qs � ϕpW0�,E0�q �E∆L0 �

ϕpŵ,E0�q�ϕpW0�,E0�q� pW0�� ŵq � 0.

Next, we show that functions VIpwq and V∅pwq as defined in (46) satisfy the optimality condition

(20)–(22). First, (22) holds by noting that VIp0q � V∅p0q � v. To verify (20) and (21), we consider

the following three cases separately: w P r0, ϑq, w P rϑ, ŵq, and w P rŵ,8q. We will study the case

of w P rϑ, ŵq before w P r0, ϑq.

Case 1: w P rϑ, ŵq. First, we prove that

pAIVIqpwq ¥ 0 on rϑ, ŵq. (EC.79)

Obviously, we have pAIVIqpwq � 0 for w P r qwpŵq, ŵq. It remains to show that (EC.79) holds for

w P rϑ, qwpŵqq if ϑ  qwpŵq   ŵ. For w P rϑ, qwpŵqq, function Vŵ is linear and thus we have

pAIVIqpwq � pµ� rqVŵpwq�µVŵpw�βq� ρpw̄�wqV 1
ŵp qwpŵqq� pµR� cq� pρ� rqw

�: gIpwq.

Note that

g1Ipwq � pµ� rqV 1
ŵp qwpŵqq�µV 1

ŵpw�βq� ρV 1
ŵp qwpŵqq� ρ� r

� pρ� rq
�
1�V 1

ŵp qwpŵqq��µ�V 1
ŵp qwpŵqq�V 1

ŵpw�βq
�

¤ pρ� rq
�
1�V 1

ŵp qwpŵqq��µ�V 1
ŵp qwpŵqq�V 1

ŵp qwpŵq�βq�� 0,

where the inequality uses the concavity of Vŵ and the last equality uses

0� ρpw̄� qwpŵqqV2
ŵp qwpŵqq � pρ� rq

�
V 1
ŵp qwpŵqq� 1

�
�µ

�
V 1
ŵp qwpŵq�βq�V 1

ŵp qwpŵqq�.
Consequently, gIpwq ¥ 0 for all w P rϑ, qwpŵqq, which yields (EC.79). Note that pA∅V∅qpwq � 0 if

w P rϑ, ϑ̄s. Hence, (20) holds by the following result, whose proof is relegated to Section EC.3.11.
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Lemma EC.12. Under the conditions stated in Proposition 7, we have pA∅V∅qpwq ¥ 0 for w P

rϑ̄, ŵq.

If w P rϑ̄, ŵq, then VIpwq � V∅pwq �K ¡ 0. To establish (21), we need to show that 0¤ VIpwq �

V∅pwq ¤K if w P rϑ, ϑ̄s.

Let Φpwq :� VIpwq�V∅pwq and χpwq :� V 1
ŵpwq� 1� c � r{ρ �wr{ρ�1. Obviously, we have Φpϑq � 0

and χpϑq � χpϑ̄q � 0. It follows from the proof of Lemma EC.6(i) that Φ1pwq � χpwq ¡ 0 for any

w P pϑ, ϑ̄q. Hence, for any w P rϑ, ϑ̄q, we have Φpwq ¥Φpϑq � 0 and Φpwq ¤Φpϑ̄q �K.

Case 2: w P r0, ϑq. We claim that:

Lemma EC.13. Under the conditions stated in Proposition 7, we have pAIVIqpwq ¥ 0 for w P

r0, ϑq.

Its proof is rather involved, which is relegated to Section EC.3.12. Obviously, we have pA∅V∅qpwq � 0

on r0, ϑq. Hence, (20) holds. Inequality (21) also holds by noting that VIpwq � V∅pwq in this case.

Case 3: w P rŵ,8q. Using the boundary condition Vŵpŵq � pµR� c�pρ� rqŵq{r, we have

pAIVIqpwq � rVŵpŵq� pµR� cq� pρ� rqw� pρ� rqpw� ŵq ¥ 0,

and

pA∅V∅qpwq � rpVŵpŵq�Kq� pρ� rqw�Rµ

� µR� c�pρ� rqŵ�pρ� rqw�Rµ� rK

�R∆µ� c�pρ� rqpw� ŵq� rK ¥ 0,

where the last inequality follows as K   V̄ ppwq � v � pµR� c� pρ� rqpwq{r�Rµ{r   pR∆µ� cq{r.

Hence, (20) holds. Inequality (21) also holds since VIpwq�V∅pwq �K.

EC.3.11. Proof of Lemma EC.12

For w P rϑ̄, ŵq, it holds that V∅pwq � Vŵpwq�K. Define ϖ0 :� inftw¡ 0 | V 1
pwpwq � 1u, which is well

defined by noting that V 1
pwp0q ¡ 1 and V 1

pwppwq � 0. For any w P rϖ0, ŵs, let

pA∅V∅qpwq � rpVŵpwq�Kq� ρwV 1
ŵpwq� pρ� rqw�µR�: g∅pwq.

It follows from Lemma 2(iii) and ŵ  pw that V 1
ŵpwq   V 1

pwpwq and Vŵpwq ¡ V
pwpwq for w P r0, ŵs.

Hence, for w P rϖ0, ŵs, we have

g1∅pwq � rV 1
ŵpwq� ρV 1

ŵpwq� ρwV2
ŵpwq� ρ� r� pρ� rq

�
1�V 1

ŵpwq
�
� ρwV2

ŵpwq ¥ 0,
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where the last inequality follows from the fact that V 1
ŵpwq ¤ V 1

pwpwq ¤ 1 for w¥ϖ0 and the concavity

of Vŵ. In addition, we have

g∅pϖ0q ¡ rpVŵpϖ0q�Kq� ρϖ0�pρ� rqϖ0�µR

¡ rpv�ϖ0�K �Kq� ρϖ0�pρ� rqϖ0�µR� 0,

where the first inequality uses V 1
ŵpϖ0q   V 1

pwpϖ0q � 1, and the second inequality follows from the

fact that Vŵpϖ0q ¡ V
pwpϖ0q ¡ v�ϖ0�K (the last inequality holds because of mK ¡ 1). As a result,

we have pA∅V∅qpwq ¥ 0 for all w P rϖ0, ŵs.

Next, we prove that pA∅V∅qpwq ¥ 0 for w P rϑ̄,ϖ0q by a contradictory argument.

Suppose, to the contradictory, that there exists a number ϖ P pϑ̄,ϖ0q such that pA∅V∅qpϖq   0.

Then, we have pA∅V∅qpϖq � rpVŵpϖq�Kq� ρϖ �V 1
ŵpϖq� pρ� rqϖ�µR  0, and thus

V 1
ŵpϖq ¡

pρ� rqϖ� r
�
Vŵpϖq�K � v

�
ρϖ

. (EC.80)

It follows from (EC.74) that limθÓ0 θ̄pθq � inftw ¡ 0 | V 1
pwpwq � 1u �ϖ0. Note that ϖ ¡ ϑ̄� θ̄pϑq

and ϖ  ϖ0. Hence, it follows from Lemma EC.6 that there exists a number θ1 P p0, ϑq such that

θ̄pθ1q �ϖ. Using Lemmas EC.5 and EC.7, we have rwpθ1q ¡ rwpϑq � ŵ, Cpθ1q  Cpϑq � c, and

ψpθ1q � V
rwpθ1qpϖq�

�
v�ϖ�Cpθ1qϖr{ρ

�
¡ψpϑq �K. (EC.81)

Moreover, according to 2(iii), we have

Vŵpϖq ¡ V
rwpθ1qpϖq and V 1

ŵpϖq   V 1
rwpθ1qpϖq. (EC.82)

Consequently,

V 1
ŵpϖq ¡

pρ� rqϖ� r
�
V
pwpθ1qpϖq�K � v

�
ρϖ

¡
pρ� rqϖ� r �

�
pv�ϖ�Cpθ1qϖr{ρq� v

�
ρϖ

� 1� r{ρ �Cpθ1qϖr{ρ�1 � V 1
rwpθ1qpϖq,

where the first inequality uses (EC.80) and (EC.82), the second inequality uses (EC.81), and the

last equality follows from ϖ � θ̄pθ1q and the definition of θ̄p�q. This reaches a contradiction with

(EC.82).
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EC.3.12. Proof of Lemma EC.13

The proof of Lemma EC.13 is probably the most complex proof in the paper. As mentioned in

the paragraph below Proposition 7, the key step is to establish Lemma EC.16 below, which states

that either AIVI’s first-order derivative is negative, or its second-order derivative is positive on

p0, ϑq. This crucial result is obtained by studying a total of four cases, which are summarized as

Lemmas EC.17–EC.20.

Following from VIpwq � v�w� cwr{ρ for w P r0, ϑs and

pAIf �A∅fqpwq � µpfpwq� fpw�βqq� ρw̄f 1pwq� pR∆µ� cq,

we define

gIpwq :� pAIVIqpwq � µpVIpwq�VIpw�βqq� ρw̄V
1
I pwq� pR∆µ� cq

� µ
�
v�w� cwr{ρ�VIpw�βq

�
� ρw̄p1� cr{ρ �wr{ρ�1q� pR∆µ� cq

for w¡ 0.

Using the same argument as that in Lemma EC.2(i) and by the definition of V
rw as stated in

Lemma 2(ii), we can obtain the following result. Its proof is omitted for brevity.

Lemma EC.14. For any rw P p0, w̄q, we have V
rw P C1pR�q X C2pR�zt rwuq X C3pR�zt rw, rw �

β, qwp rwquqXC4pR�zt rw, rw�β, rw� 2β, qwp rwquq.
By the definition of VI as in (46) and the smooth-pasting condition at ϑ, VI is differentiable at ϑ,

but may not be twice differentiable at ϑ. Therefore, VI PC
1pR��qXC

2pR��ztŵ, ϑuq, which implies

that gI P C
1pR��q XC2pR��ztŵ� β,ϑ� βuq. (Here, we use R�� to denote the set of all positive

numbers.) Besides, it holds that

g1Ipwq � µ
�
1� cr{ρ �wr{ρ�1�V 1

I pw�βq
�
� ρw̄ � cr{ρ � pr{ρ� 1qwr{ρ�2 and (EC.83)

g2I pwq � cr{ρ � pr{ρ� 1qwr{ρ�3rµw� ρw̄pr{ρ� 2qs�µV 2
I pw�βq. (EC.84)

Here, g2I may not exist at ŵ� β and ϑ� β. In this case, we follow the convention to use g2I to

represent the left-second-order derivative of the function g2I at such a point. Similarly, we also use

V3
rw pwq and V4

rw pwq to represent the left-third-order derivative and the left-fourth-order derivative

of the function V
rw at w (if needed) in the subsequent analysis.

Lemma EC.13 is equivalent to gIpwq ¥ 0 for w P p0, ϑs. From (EC.79) at ϑ, we have gIpϑq ¥ 0.

Moreover, the following holds.

Lemma EC.15. We have g1Ipϑq   0.
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Proof. First, we consider the case that ϑ¤ qwpŵq. Evaluating (EC.54) at qwpŵq (with ŵ replacingrw) yields
pµ� rqV 1

ŵp qwpŵqq�µV 1
ŵp qwpŵq�βq� ρpw̄� qwpŵqqV 2

ŵp qwpŵqq� ρV 1
ŵp qwpŵqq� ρ� r� 0.

Clearly, V 2
ŵp qwpŵqq � 0. Since ϑ¤ qwpŵq, we have V 1

ŵp qwpŵqq � V 1
ŵpϑq � V1

cpϑq � 1� cr{ρ � ϑr{ρ�1,

which, together with the above expression, implies that

V 1
I pϑ�βq � V 1

ŵpϑ�βq ¥ V 1
ŵp qwpŵq�βq � V 1

ŵp qwpŵq�βq
�
�
pµ� r� ρqp1� cr{ρ �ϑr{ρ�1q� ρ� r

�
{µ.

In the above, the first inequality follows from the convexity of Vŵ and the fact that ϑ ¤ qwpŵq.
Substituting the above inequality into (EC.83) at ϑ yields

g1Ipϑq ¤ pρ� rqcr{ρ �ϑr{ρ�1� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2 � pρ� rqcr{ρ �ϑr{ρ�2pϑ� w̄q   0.

Next, we consider the case that ϑ¡ qwpŵq. Evaluating (EC.54) at ϑ gives

pµ� rqV 1
ŵpϑq�µV

1
ŵpϑ�βq� ρpw̄�ϑqV

2
ŵpϑq� ρV

1
ŵpϑq� ρ� r� 0.

Note that V 1
ŵpϑq � 1� cr{ρ �ϑr{ρ�1 and V 1

I pϑ�βq � V 1
ŵpϑ�βq. Hence, we have

g1Ipϑq � µ
�
1� cr{ρ �ϑr{ρ�1�V 1

I pϑ�βq
�
� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2

� pρ� rqcr{ρ �ϑr{ρ�1� ρpw̄�ϑqV 2
ŵpϑq� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2

  pρ� rqcr{ρ �ϑr{ρ�1�
pw̄�ϑqpρ� rqp1�V 1

ŵpϑqq

ϑ
� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2

� pρ� rqcr{ρ �ϑr{ρ�1�
pw̄�ϑqpρ� rqcr{ρ �ϑr{ρ�1

ϑ
� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2

� 0,

where the inequality follows from (EC.72) at ϑ and ŵ� rwpϑq. �

Next, we show the following crucial result.

Lemma EC.16. For any w P p0, ϑq, we have either g1Ipwq ¤ 0 or g2I pwq ¥ 0.

The above result, combining with Lemma EC.15, yields that g1Ipwq ¤ 0 for any w P p0, ϑs,

which immediately concludes the result stated in Lemma EC.13. In fact, if it fails to hold, w: :�

suptw P p0, ϑq | g1Ipwq ¡ 0u is well defined, which further implies that g2I pw
:q   0. This contradicts

Lemma EC.16.

Lemma EC.16 follows immediately from Lemmas EC.17–EC.20 below.
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Lemma EC.17. For any w P r0, ϑ̄�βs, we have g1Ipwq   0.

Lemma EC.18. For any w P pϑ̄�β,ϑq such that V3
ŵpw�βq ¤ 0, we have g2I pwq ¡ 0.

Lemma EC.19. For any w P
�
0, p2� r{ρqβ^ϑ

�
, we have g2I pwq ¥ 0.

Lemma EC.20. For any w P rp1� r{ρqβ,ϑq such that V3
ŵpw�βq ¡ 0, we have g1Ipwq ¤ 0.

In the proofs of Lemmas EC.18 and EC.20, we also need the following technical result.

Lemma EC.21. For any rw P r0, w̄q, the following results hold:

piq If 2ρ  r�µ, then there exists a number ς P r qwp rwq, rwq, such that V3
rw ¡ 0 on pς, rwq and V3

rw   0

on p qwp rwq, ςs;
piiq Otherwise, V3

rw ¤ 0 on p qwp rwq, rwq.
The remaining part of this subsection is devoted to the proofs of Lemmas EC.17–EC.21. To

proceed, we need some preliminary results of Vc. Using the explicit expression of Vc in (24), we

obtain that Vc is strictly concave on R��, i.e., V
2
c   0 on R��,

V3
c pwq � cr{ρ � pr{ρ� 1qpr{ρ� 2qwr{ρ�3 ¡ 0 and (EC.85)

V4
c pwq � cr{ρ � pr{ρ� 1qpr{ρ� 2qpr{ρ� 3qwr{ρ�4   0 (EC.86)

for all w PR��. Hence, V1
c is strictly convex and V2

c is strictly concave, which further implies that

�
V1

cpwq�V1
cpw�βq

�
�βV2

c pwq   0 and (EC.87)�
V2

c pwq�V2
c pw�βq

�
�βV3

c pwq ¡ 0 (EC.88)

for any w PR��.

Proof of Lemma EC.17. Using VIpwq �Vcpwq for w P r0, ϑs, we have

g1Ipwq � µ
�
V 1
I pwq�V

1
I pw�βq

�
�µβV2

c pwq ¤ µ
�
V1

cpwq�V1
cpw�βq

�
�µβV2

c pwq   0,

where the first inequality uses V 1
I pw � βq ¥ V1

cpw � βq because of w � β ¤ ϑ̄ and (EC.74) with

ϑ̄� θ̄pϑq, and the second inequality follows from (EC.87). �

Proof of Lemma EC.18. Define ϕpwq :� V 1
ŵpwq � V1

cpwq. Since ϑ̄ � inftw ¡ ϑ | ϕpwq � 0u and

ϕ ¡ 0 over pϑ, ϑ̄q, we have ϕ1pϑ̄q ¤ 0. It follows from V3
ŵpw � βq ¤ 0 and Lemma EC.21 with rw

replaced by ŵ that V3
ŵ   0 on p qwpŵq,w�βq.
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For any w P pϑ̄�β,ϑq, we have

g2I pwq � µ
�
V2

c pwq�V
2
I pw�βq

�
�µβV3

c pwq

� µ
�
V2

c pwq�V2
ŵpw�βq

�
�µβV3

c pwq

� µ
�
pV2

c pwq�V2
c pw�βqq�βV

3
c pwq

�
�µ

�
V2

c pw�βq�V2
ŵpw�βq

�
¡ µ

�
V2

c pw�βq�V2
ŵpw�βq

�
� µ

�
V2

c pϑ̄q�V2
ŵpϑ̄q

�
�µ

» w�β

ϑ̄

�
V3

c pyq�V3
ŵpyq

�
dy

¡ 0,

where the first inequality uses (EC.88), and the last inequality follows from V2
c pϑ̄q � V2

ŵpϑ̄q �

�ϕ1pϑ̄q ¥ 0, w�β ¡ ϑ̄, V3
c ¡ 0 (see (EC.85)) and V3

ŵ   0 on p qwpŵq,w�βq. �

Proof of Lemma EC.19. According to (EC.84), we have

g2I pwq � cr{ρ � pr{ρ� 1qwr{ρ�3µrw�βpr{ρ� 2qs�µV 2
I pw�βq

¥�µV 2
I pw�βq ¥ 0,

where the first inequality follows from w ¤ p2 � r{ρqβ and the last inequality follows from the

concavity of VI. �

Proof of Lemma EC.20. Suppose, to the contradictory, that there exists a w: P rp1� r{ρqβ,ϑq

such that V3
ŵpw

:� βq ¡ 0 and g1Ipw
:q ¡ 0. According to Lemma EC.15, there must exist a number

w; P pw:, ϑq such that

g1Ipw
;q � 0 and g2I pw

;q ¤ 0. (EC.89)

First, we claim that w;�β   ŵ. Otherwise, we have V 1
I pw

;�βq � V 1
ŵpw

;�βq � 0 and thus

g1Ipw
;q � µ� cr{ρ � pw;qr{ρ�2µ

�
w;�βp1� r{ρq

�
¡ µ¡ 0,

where the first inequality holds as w; ¡w: ¥ p1� r{ρqβ, leading to a contradiction.

Hence, by Lemma EC.21, we have V3
ŵpw

; � βq ¡ 0. Furthermore, evaluating (EC.54) at w; � β

(with ŵ replacing rw) gives
pµ� rqV 1

ŵpw
;�βq�µV 1

ŵpw
;� 2βq� ρpw̄�w;�βqV2

ŵpw
;�βq� ρV 1

ŵpw
;�βq� ρ� r� 0.

Since V3
ŵpw

; � βq ¡ 0, we have V3
ŵ ¡ 0 on rw; � β, ŵq by Lemma EC.21. That is, V 1

ŵ is strictly

convex on rw;�β, ŵq, which, together with the concavity of Vŵ, yields that

V 1
ŵpw

;� 2βq�V 1
ŵpw

;�βq � V 1
ŵ

�
pw;� 2βq^ ŵ

�
�V 1

ŵpw
;�βq

¡
�
β^pŵ�w;�βq

�
�V2

ŵpw
;�βq ¥ βV2

ŵpw
;�βq.
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Therefore, we have

ρpw̄�w;�βqV2
ŵpw

;�βq � pρ� rq
�
V 1
ŵpw

;�βq� 1
�
�µ

�
V 1
ŵpw

;� 2βq�V 1
ŵpw

;�βq
�

¡ pρ� rq
�
V 1
ŵpw

;�βq� 1
�
�µβV2

ŵpw
;�βq,

which, along with ρw̄� µβ, can be rewritten as

pρ� rq
�
1�V 1

ŵpw
;�βq

�
¡ ρpw;�βqV2

ŵpw
;�βq. (EC.90)

Since g1Ipw
;q � 0, using (EC.83) we have

1�V 1
ŵpw

;�βq ��cr{ρ � pw;qr{ρ�2
�
w;�p1� r{ρqβ

�
. (EC.91)

Evaluating (EC.84) at w; yields

g2I pw
;q{µ� cr{ρ � pr{ρ� 1qpw;qr{ρ�3rw;�βpr{ρ� 2qs�V2

ŵpw
;�βq

�
pρ� rqp1�V 1

ŵpw
;�βqq

w;�p1� r{ρqβ
�
w;�βpr{ρ� 2q

ρw;
�V2

ŵpw
;�βq

¡

�
ρpw;�βqrw;�βpr{ρ� 2qs

pw;�p1� r{ρqβq � ρw;
� 1

�
V2
ŵpw

;�βq

��
p2ρ� rqβ2

pw;�p1� r{ρqβq � ρw;
V2
ŵpw

;�βq ¡ 0,

where the second equality follows from (EC.91), and the first inequality follows from (EC.90) and

uses the fact that w; ¡w: ¥ p1� r{ρqβ. This reaches a contradiction with (EC.89). �

Proof of Lemma EC.21. According to (EC.52) and the definition of V
rw, we have

V3
rw pwq ��

pρ� rqp2ρ� r�µq

ρ2
pw̄� rwq ρ�r�µ

ρ pw̄�wq
�3ρ�r�µ

ρ �: ζpwq (EC.92)

for w P
�
p rw�βq�_ qwp rwq, rw�.

In the case of p rw � βq� ¤ qwp rwq, then the result stated in the lemma holds, with ς � qwp rwq if

2ρ  r�µ. Below, we consider the case of p rw�βq� ¡ qwp rwq, or equivalently, rw�β ¡ qwp rwq.
Besides, for w P p qwp rwq, rwq, we have

ρpw̄�wqV3
rw pwq � µ

�
V2
rwpw�βq�V2

rwpwq
�
�p2ρ� rqV2

rwpwq, (EC.93)

and thus

ρpw̄�wqV4
rw pwq � µ

�
V3
rw pw�βq�V3

rw pwq
�
�p3ρ� rqV3

rw pwq. (EC.94)

By Lemma EC.14, V3
rw may not exist at rw � β. In fact, by (EC.92), we have V3

rw pp rw � βq�q �

ζp rw � βq. Evaluating (EC.93) at p rw � βq� (to be precise, we consider an increasing sequence of
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twnunPN near rw�β which tends to rw�β from below, evaluate (EC.93) at these wn’s and then let

nÑ8), we obtain

ρpw̄� rw�βqV3
rw p rw�βq � µ

�
V2
rwp rw�q�V2

rwp rw�βq��p2ρ� rqV2
rwp rw�βq.

In the above, as mentioned earlier, we adopt the convention to use V3
rw p rw� βq to denote the left-

third-order derivative of function V
rw at rw�β.

In a similar vein, evaluating (EC.93) at p rw�βq� yields

ρpw̄� rw�βqV3
rw

�
p rw�βq� �

� µ
�
V2
rwp rw�q�V2

rwp rw�βq��p2ρ� rqV2
rwp rw�βq.

Combining the above two equations and using V2
rwp rw�q� 0, we have

V3
rw p rw�βq � V3

rw

�
p rw�βq� �

�
µV2

rwp rw�q
ρpw̄� rw�βq

� ζp rw�βq� pρ� rqµ

ρ2pw̄� rw�βqpw̄� rwq   ζp rw�βq. (EC.95)

We break the proof of the lemma into two cases.

(i) Suppose that 2ρ   r � µ, in which case (EC.92) implies that V3
rw ¡ 0 on p rw � β, rwq. From

(EC.95), V3
rw p rw�βq may not be larger than 0, and thus we consider the following two cases.

Case 1: V3
rw p rw�βq ¡ 0. Let w1 :� suptw P p qwp rwq, rw�βq | V3

rw pwq ¤ 0u. If the set is empty, we have

V3
rw ¡ 0 on p qwp rwq, rwq. Therefore, the result stated in (i) is obtained by letting ς � qwp rwq.
If the above set is nonempty, then qwp rwq   w1   rw� β. Since V

rw P C
3pp qwp rwq, rw� βqq, we have

V3
rw exists on p qwp rwq, rw�βq. In addition, V3

rw pw1q � 0 and V3
rw ¡ 0 on pw1, rwq. Now, we prove that

V3
rw   0 on p qwp rwq,w1q. (EC.96)

Evaluating (EC.94) at w1 and using V3
rw pw1q � 0, we obtain ρpw̄�w1qV4

rw pw1q � µV3
rw pw1�βq ¡ 0

(here if w1 � rw� 2β, the left derivatives are used), which implies that V3
rw   0 on pw1 � ϵ,w1q for

some ϵ¡ 0.

If (EC.96) fails to hold, then w2 :� suptw P p qwp rwq,w1q | V3
rw pwq ¥ 0u is well defined and w2 P

p qwp rwq,w1q. Hence, we have V3
rw pw2q � 0 and V4

rw pw2�q   0. Evaluating (EC.94) at w2� yields

ρpw̄ � w2qV4
rw pw2�q � µV3

rw ppw2�βq�q, implying that V3
rw ppw2�βq�q   0. If w2 � rw � 2β, then

V3
rw ppw2�βq�q � ζp rw�βq ¡ 0, a contradiction. Otherwise, V3

rw exists at w2�β, and thus V3
rw pw2�

βq   0. By the definition of w1, we have w2 � β   w1. Hence, V3
rw   0 on pw2,w2 � βs and thus

V2
rwpw2�βq   V2

rwpw2q. Evaluating (EC.93) at w2, together with V3
rw pw2q � 0, yields

µV2
rwpw2�βq � pµ� r� 2ρqV2

rwpw2q   µV2
rwpw2q,
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which gives V2
rwpw2q ¡ 0. This makes a contradiction with the concavity of V

rw. Hence, (EC.96)

holds, indicating that the result stated in (i) is obtained by letting ς �w1.

Case 2: V3
rw p rw�βq ¤ 0. We show that

V3
rw   0 on p qwp rwq, rw�βq. (EC.97)

If V3
rw p rw � βq � 0, then by evaluating (EC.94) at p rw � βq� and using V3

rw p rwq � ζp rwq ¡ 0, we

obtain that V4
rw p rw � βq ¡ 0. (Again, the left derivatives are used.) Hence, we have V3

rw   0 on

p rw � β � ϵ, rw � βq for some ϵ ¡ 0. If, on the other side, V3
rw p rw � βq   0, then the assertion that

V3
rw   0 on p rw�β� ϵ, rw�βq for some ϵ¡ 0 still holds by Lemma EC.14.

If (EC.97) fails to hold, then w3 :� suptw P r qwp rwq, rw�βq | V3
rw pwq ¥ 0u is well defined, satisfying

w3 P r qwp rwq, rw � βq. Moreover, we have V3
rw pw3q � 0 and V4

rw pw3�q   0. With exactly the same

argument as that in the previous case for treating w2, a contradiction can be reached. Therefore,

(EC.97) holds. The result stated in (i) is obtained by using (EC.92) and letting ς � rw�β.
(ii) Next, we turn to study the case that 2ρ¥ r� µ. In this case, (EC.92) implies that V3

rw ¤ 0

over p rw� β, rwq. Hence, we must have V3
rw p rw� βq   0 in view of (EC.95). Therefore, the argument

for the second case above is valid, which leads us to the desired result. �

EC.4. Proofs of the Results in Sections 5
EC.4.1. Proof of Proposition 8

We only consider the case in which both Condition 1 and K   K̄1 hold, since the case in which both

Condition 2 and K  K hold can be treated similarly. It follows from Lemma EC.7 that ψpϑq �K

with ψ being decreasing on p0, θ0q. Therefore, ϑ is decreasing in K. Recalling ϑ̄� θ̄pϑq and using

Lemma EC.6(ii), we obtain that ϑ̄� θ̄pϑq is increasing in K.

For the last assertion, we first note that under Condition 1 and K̄1 ¡ 0, limθÒθ0 ψpθq � 0 by

Lemma EC.7, which implies limKÓ0 ϑ� θ0. Then, using Lemma EC.6(iii), we obtain limKÓ0 ϑ̄� θ0.

Under Condition 2 and K ¡ 0, we also have limKÓ0 ϑ� θ0 � limKÓ0 ϑ̄, by a similar argument and

Lemmas EC.9 and EC.11. Hence, the desired result holds with θ0 � θ0.

EC.4.2. Proof of Theorem 6

First, we consider the case in which Condition 1 and K̄1 ¡ 0 hold. It follows from Proposition 8

that limKÓ0 ϑ� limKÓ0 ϑ̄� θ0. Recall from the proof of Proposition 6 that ŵ� rwpϑq and c�Cpϑq.

Hence, we have limKÓ0 ŵ � limKÓ0 rwpϑq � rwpθ0q and limKÓ0 c � limKÓ0Cpϑq � Cpθ0q. The result

(50) is obtained by setting θ0 � θ0, ŵ0 � rwpθ0q, and c0 � Cpθ0q. Moreover, Vŵ and Vc converge

uniformly to Vŵ0
and Vc0 , respectively, as K approaches 0. Consequently, both value functions as

defined in (46) converge to Vθ0 uniformly as K approaches 0. Using Proposition 7 and sending K
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to zero, we conclude that functions VI � V∅ �Vθ0 satisfy the optimality conditions (20)–(22) for

K � 0.

The argument for the case in which Condition 2 and K ¡ 0 hold is exactly the same, and thus

is omitted.
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E-Companion for “Punish Underperformance with
Suspension — Optimal Dynamic Contracts in the Presence of
Switching Cost”

In this e-companion, we present some further discussions in Section EC.1, and provide all the

proofs that are omitted from the main paper in Sections EC.2–EC.4.

EC.1. Further Discussions

This section contains four parts. Section EC.1.1 gives a heuristic derivation of the optimality

condition (20)–(22) for the optimal value functions VI and V∅, which appears in Section 3.2. Sec-

tion EC.1.2 demonstrates how to compute the optimal contract parameters. Furthermore, we con-

sider a special case of equal time discount in Section EC.1.3 and investigate the effect of arrival

rate under fixed revenue rate in Section EC.1.4.

EC.1.1. A Heuristic Derivation of the Optimality Condition (20)–(22)

In this section, we provide a heuristic derivation of the optimality condition for the principal’s

utility functions and of the main features of the optimal contract, whose main idea follows from

Section 4.1 in Biais et al. (2010). However, our arguments are not exactly the same, due to the

presence of switching and randomization. Let FIpwq and F∅pwq be the principal’s optimal utility

function that yields an agent’s utility w when the initial state is I and ∅, respectively.
For any t¥ 0, let us first characterize the evolution of the principal’s utility function FEt�pWt�q.

Since the principal discounts the future utility flow at rate r, his expected flow rate of utility at

time t is rFEt�pWt�q. This must be equal to the sum of expected cash flow, the (possible) switching

cost, and the expected rate of change in his continuation utility over pt�dt, ts. Hence, we have

rFEt�pWt�qdt� rν̄tR�pc� bq1Et�Isdt�dLt�Et�r�κpEt�,Etq�dFEtpWtqs, (EC.1)

where Et�r�s :�Er�|Ft�s.

Following the discussions in Section 3.2, we assume that for any ε P tI,∅u, Fεp�q is concave and

differentiable on R�. The actual value function might not be differentiable on the entire domain

R�, which is an issue frequently arising in the optimal control literature, and often addressed by the

viscosity solution approach. Since this section is devoted to a heuristic derivation of the optimality

equation for the optimal utility function Fε, we assume that Fε is smooth enough temporarily.

Recall that dLt � ℓtdt�∆Lt. Note that under any admissible IC contract, 1νt�µ � 1Et�∅ and

1νt�µ � 1Et�I. Using (PK) and regarding Fεpwq as a function of pw,εq, we apply calculus of point

processes to the process pW,Eq to obtain

dFEtpWtq �
�
ρWt�� b1Et�I�Htν̄t� qtH

q
t � ℓt

�
F 1

Et�pWt�qdt
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�
�
FEt�pWt��∆Ltq�FEt�pWt�q

�
�
�
FEt�pWt��Htq�FEt�pWt�q

�
dNt

�
�
FEt�pWt��H

q
t q�FEt�pWt�q

�
dQt�

�
FEtpWtq�FEt�pWtq

�
.

Plugging the above formula into (EC.1) and using Et�dNt � ν̄tdt as well as Et�dQt � qtdt, we

have

rFEt�pWt�qdt�
�
Rν̄t�pc� bq1Et�I� ℓt�

�
ρWt�� b1Et�I�Htν̄t� qtH

q
t � ℓt

�
F 1

Et�pWt�q

�
�
FEt�pWt��Htq�FEt�pWt�q

�
ν̄t�

�
FEt�pWt��H

q
t q�FEt�pWt�q

�
qt

�
dt

�∆Lt�FEt�pWt��∆Ltq�FEt�pWt�q�Et�

�
�κpEt�,Etq�FEtpWtq�FEt�pWtq

�
. (EC.2)

Here, ℓt, ∆Lt, Ht, H
q
t , qt, and Et are all control variables. Besides, the contract might be ter-

minated at time t by paying off the promised utility to the agent instantaneously. Hence, we have

FEtpWtq ¥ v�Wt. That is, Fεpwq ¥ v�w for any w PR� and ε P tI,∅u.
We first optimize the constant-order terms on the right-hand side in (EC.2). Considering that

the optimized constant-order terms should be zero, we have

max
∆Lt¥0

 
�∆Lt�FEt�pWt��∆Ltq�FEt�pWt�q

(
� 0, and (EC.3)

max
EtPtI,∅u

 
�κpEt�,Etq�FEtpWtq�FEt�pWtq

(
� 0. (EC.4)

Equation (EC.3) yields that F 1
εpwq ¥ �1 for any w P R� and ε P tI,∅u. Let pwε � inftw ¥ 0 |

F 1
εpwq ��1u. The concavity of Fεp�q implies that at any time instant t, it is optimal for the principal

to pay ∆Lt �maxtWt�� pwEt� ,0u instantaneously to the agent.

Equation (EC.4) yields that FIpwq ¥ F∅pwq and F∅pwq ¥ FIpwq �K for any w P R�. Besides,

Et � Et� only if �κpEt�,Ec
t�q�FEc

t�
pWtq�FEt�pWtq � 0, where εc is I if ε� ∅ and is ∅ if ε� I.

Next, we consider the controls such that ∆Lt � 0 and Et � Et�. If we plug these values into

(EC.2), the symbol “=” should be replaced by “¤” due to the suboptimality of these controls.

Comparing the dt-order terms on both sides of the resulting inequality yields

rFEt�pWt�q ¥max
!
Rν̄t�pc� bq1Et�I� ℓt�

�
ρWt�� b1Et�I�Htν̄t�H

q
t qt� ℓt

�
F 1

Et�pWt�q

�
�
FEt�pWt��Htq�FEt�pWt�q

�
ν̄t�

�
FEt�pWt��H

q
t q�FEt�pWt�q

�
qt

)
, (EC.5)

where the maximization is taken over the set of controls pℓt,Ht,H
q
t , qtq that satisfies ℓt ¥ b1Et�I,

the IR constraint (5), and the IC constraint (IC).

Inequality (EC.5) can be written as two inequalities, for working and suspension states. If Et� � I,

by omitting the time index, (EC.5) becomes

rFIpwq ¥Rµ�pc� bq� pρw� bqF 1
I pwq

�max
!
� ℓ�pℓ�µh� qhqqF 1

I pwq�µpFIpw�hq�FIpwqq� pFIpw�h
qq�FIpwqqq

)
, (EC.6)
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where the maximization is taken over the set of pℓ,h,hq, qq that satisfies

ℓ¥ b, h¥ β, hq ¤w, q¥ 0. (EC.7)

If Et� � ∅, then (EC.5) becomes

rF∅pwq ¥Rµ� ρwF 1
∅pwq�max

!
� ℓ�pℓ�µh� qhqqF 1

∅pwq�µ
�
F∅pw�hq�F∅pwq

�
�
�
F∅pw�h

qq�F∅pwq
�
q
)
, (EC.8)

where the maximization is taken over the set of pℓ,h,hq, qq that satisfies

ℓ¥ 0, h¥�w, hq ¤w, q¥ 0. (EC.9)

Recall that VIpwq � FIpwq�w and V∅pwq � F∅pwq�w. Then, based on the above discussions, we

have the following basic properties of VI and V∅:

1. VIpwq ¥ v and V∅pwq ¥ v for any w PR�.

2. V 1
I pwq ¥ 0 and V 1

∅pwq ¥ 0 for any w P R� (this follows from the fact that F 1
I pwq ¥ �1 and

F 1
∅pwq ¥�1).

3. Both VI and V∅ are concave on R�.

4. VI (resp. V∅) will take constant value on r pwI,8q (resp. r pw∅,8q).

5. VIpwq ¥ V∅pwq and V∅pwq ¥ VIpwq�K for any w PR�.

We proceed to analyze (EC.6), which can be rewritten as follows in terms of VI:

rVIpwq ¥Rµ� c�pρ� rqw�pρw� bqV 1
I pwq�max

!
� ℓV 1

I pwq�
�
VIpw�hq�VIpwq�hV

1
I pwq

�
µ

�
�
VIpw�h

qq�VIpwq�h
qV 1

I pwq
�
q
)
, (EC.10)

where the maximization is taken over the constraints (EC.7).

Optimizing the right-hand side of (EC.10) with respect to ℓ, we have ℓ� � argmaxℓ¥bt�ℓV
1
I pwqu �

b if w P r0, pwIq, where we use the fact that V 1
I pwq ¡ 0 for w P r0, pwIq.

Optimizing the right-hand side of (EC.10) with respect to h, we have h� � argmaxh¥βtVIpw�

hq�V 1
I pwqhu � β, by noting that VIpw�hq�V

1
I pwqh is decreasing in h on r0,8q, since V 1

I pw�hq�

V 1
I pwq ¤ 0 for any h¥ 0 due to the concavity of VI.

Note that maxhq¤wtVIpw�h
qq�VIpwq�h

qV 1
I pwqu � 0. Hence, (EC.10) reduces to

rVIpwq ¥Rµ� c�pρ� rqw� ρpw̄�wqV 1
I pwq�µpVIpw�βq�VIpwqq, (EC.11)

for w PR�, which can be rewritten as pAIVIqpwq ¥ 0 by using the operator AI defined in (18).
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We next analyze (EC.8), which can be rewritten as follows in terms of V∅:

rV∅pwq ¥Rµ�pρ� rqw� ρwV 1
∅pwq�max

!
� ℓV 1

∅pwq�µ
�
V∅pw�hq�V∅pwq�hV

1
∅pwq

�
�
�
V∅pw�h

qq�V∅pwq�h
qV 1

∅pwq
�
q
)
, (EC.12)

where the maximization is taken over the constraint set (EC.9).

Optimizing the right-hand side of (EC.12) with respect to ℓ, we have ℓ� � argmaxℓ¥0t�ℓV
1
∅pwqu �

0 if w P r0, pw∅q. Optimizing the right-hand side of (EC.12) with respect to h, we have h� �

argmaxh¥�wt�V
1
∅pwqh � V∅pw � hqu � 0, by noting that �V 1

∅pwqh � V∅pw � hq is increasing in

h for h   0 and decreasing in h for h ¡ 0 due to the concavity of V∅. Additionally, we have

maxhq¤wtV∅pw�h
qq�V∅pwq�h

qV 1
∅pwqu � 0. Consequently, (EC.12) can further reduce to

rV∅pwq ¥Rµ�pρ� rqw� ρwV 1
∅pwq, (EC.13)

which can be rewritten as pA∅V∅qpwq ¥ 0.

Summarizing the above discussions yields the optimality condition (20)–(22).

EC.1.2. Computing Contract Parameters

For K � 0, we have the following results. Since these results have been established in the second

part of the proof of Proposition 8, we omit its proof.

Proposition EC.1. piq Under Condition 1 and K̄1 ¡ 0, we have θ0 � θ0, where θ0 and θ0 are

defined in Proposition 8 and Lemma EC.5, respectively. Correspondingly, we have ŵ0 � rwpθ0q
and c0 �Cpθ0q, in which functions rwp�q and Cp�q are defined in Lemma EC.4.

piiq Under Condition 2 and K ¡ 0, define a lower bound

qθ :� pV̄ � vqpρ� r�µq� pρ� rqw̄

µpρ{r� 1q
.

Similar to Lemmas EC.4 and EC.5, for any θ P pqθ, w̄q, there exist unique values rwpθq P pθ, w̄q
and Cpθq, such that if we set ŵ� rwpθq, c�Cpθq, and ϑ� θ, the value-matching and smooth-

pasting conditions (42) and (43) are satisfied. Furthermore, value θ0 :� inftθ P pqθ, w̄q | rw1pθq ¥

0u is well defined, and we have θ0 � θ0, ŵ0 � rwpθ0q, and c0 �Cpθ0q.

For any θ P p0, w̄q, function hp rw,θq, as defined in (EC.71), is decreasing in rw with hp rwpθq, θq � 0.

Hence, rwpθq can be efficiently found by a binary search procedure, starting from lower bound θ

and upper bound w̄. Consequently, Cpθq can also be immediately computed as C1p rwpθq, θq, with
C1p rw,θq defined in (EC.70). Therefore, following Proposition EC.1, in order to determine the

optimal contract parameters for K � 0 under Condition 3, we only need to find θ0. Based on the

definition of θ0 (see part (ii) of Proposition EC.1), this value can be determined by a line search to
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check at which point rwpθq is no longer increasing, starting from 0 under Condition 1 and K̄1 ¡ 0,

or from qθ under Condition 2 and K ¡ 0.

Computation of the optimal contract parameters for K ¡ 0 is more complex. We only demon-

strate how to compute the control-band parameters pc, ŵ, ϑ̄, ϑq under Condition 1 and K   K̄1

or under Condition 2 and K  K, as the optimal contract in other cases takes a simpler form.

Take the case under Condition 1 and K   K̄1 for illustration. Note that for any θ P p0, θ0q, the

value θ̄pθq can be determined by (EC.74) using a line search procedure. Hence, function ψpθq, as

defined in (EC.75), can be readily computed for each θ P p0, θ0q. Since, by Lemma EC.7, function

ψpθq is decreasing in θ with ψpϑq �K, the quantity ϑ can be efficiently found by a binary search

procedure, starting from lower bound 0 and upper bound θ0. The three other parameters, c, ŵ,

and ϑ̄, are thus immediately computed as Cpϑq, rwpϑq, and θ̄pϑq. For the case under Condition 2

and K  K, the only difference is that the initial lower bound for the binary search is qθ.
The above procedure can be summarized by the following four subroutines.

Subroutine 1.Given θ P p0, w̄q, compute w̃pθq: Binary search on rθ, w̃s to determine w̃pθq accord-

ing to hpw̃pθq, θq � 0 where function hp rw,θq is defined in (EC.71).

Subroutine 2. Given θ P p0, w̄q, compute Cpθq: Following Subroutine 1, we obtain w̃pθq. Then,

Cpθq �C1pw̃pθq, θq with C1p rw,θq defined in (EC.70).

Subroutine 3. Given θ P p0, θ0q, compute θ̄pθq: Following Subroutines 1 and 2, we obtain w̃pθq

and Cpθq. Then, we calculate θ̄pθq by (EC.74) using a line search procedure.

Subroutine 4. Given θ P p0, θ0q, compute ψpθq: Following Subroutines 1-3, we obtain w̃pθq,

Cpθq, and θ̄pθq. Then, we compute ψpθq, as defined in (EC.75).

With the above four steps, the optimal control-band parameters can be computed by Algorithm 1

below.

Algorithm 1 Compute pc, ŵ, ϑ̄, ϑq.

1: Line search to determine θ0 according to w̃1pθq � 0, in which function w̃pθq is computed accord-

ing to Subroutine 1.

2: Binary search to determine ϑ according to ψpϑq � K, where ψpϑq can be computed using

Subroutine 4.

3: Following Subroutines 1-3, we obtain ŵ� w̃pϑq, c�Cpϑq, and ϑ� θ̄pϑq, respectively.

EC.1.3. Equal Discount Rate

In the study of dynamic contracts without the switching option, Sun and Tian (2018) claimed,

without a formal proof, that under equal discount rates, it is optimal for the principal to always
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induce the agent to work before contract termination. In our context with switching, this claim

corresponds to never switching the agent to suspension and then working again. Here, we provide

a formal proof that validates this claim for any K ¥ 0.

When the two players’ discount rates are the same, that is, r� ρ, various expressions in the main

body of the paper become simpler. For example, the value V̄ defined in (10) becomes

V̄e :�
µR� c

r
, (EC.14)

and the differential equation (25), which plays an essential role in deciding the optimal value

functions, becomes

pµ� rqVepwq�µVeppw�βq^ w̄q� rpw̄�wqV
1
e pwq� pµR� cq � 0. (EC.15)

According to Lemma 3 of Sun and Tian (2018), differential equation (EC.15) with boundary

condition Vep0q � v has a unique solution Ve on r0, w̄s, which is increasing and strictly concave, with

Vepwq � V̄e for all w¥ w̄. Theorem 1 still holds, in which the operators AI and A∅ are simplified to

pAIfqpwq � pµ� rqfpwq�µfpw�βq� rpw̄�wqf 1pwq� pµR� cq, and

pA∅fqpwq � rfpwq� rwf 1pwq�Rµ,

respectively, for differentiable function f .

Furthermore, when r� ρ, effectively Condition 1 holds. In particular, we will show that the value

function for state I is Ve defined above. Furthermore, the upper threshold V̄ ppwq� v in Proposition

2 becomes

K̄e :� V̄e� v. (EC.16)

In order to define the lower threshold for the switching cost, we need to define the value function for

state ∅. Note that when r� ρ, function V
pw becomes Ve, with pw being w̄ and qwppwq being 0. Hence,

following Lemma 4, if K   K̄e, there exist K-dependent values θ̄K P r0, w̄s and mK P r0, V 1
e p0qs such

that

Vepθ̄
Kq �mK θ̄K �K � v, and V 1

e pθ̄
Kq �mK .

Then, similar to (30), we define the following societal value function for the suspension state:

V∅pwq �

"
mKw� v, w P

�
0, θ̄K

�
,

Vepwq�K, w P
�
θ̄K , w̄

�
.

(EC.17)

Figure EC.1 depicts the value functions. It is clear that V∅ is linear over the interval r0, θ̄Ks.

Furthermore, VIpwq and V∅pwq are “parallel” with a difference of K for w¥ θ̄K .

The following theorem summarizes the optimality results.



e-companion to Cao, Sun, and Tian: Punish Underperformance with Suspension ec7

Figure EC.1 Illustration of Optimal Societal Value Functions with Equal Discount Rates

I

Notes. In this figure, r � 0.5, ρ� 0.5, c� b� 0.2, R� 2, ∆µ� 0.7, K � 1.5, and µ� 2. Hence, θ̄K � 0.51, w̄ � 1.14,

V̄e � 7.6, and v� 5.2.

Theorem EC.1. Consider r� ρ. For any w¥ 0, we have

UpΓ,∅q � v.

If K ¥ K̄e, functions VI � Ve and V∅ � v satisfy (20)–(22).

If K   K̄e, on the other hand, functions VI � Ve and V∅ as defined in (EC.17) satisfy (20)–(22).

Furthermore, if V 1
e pθ̄

Kq ¡ 1, for any w¥ θ̄K, we have

UpΓ�pw; 0,0, w̄, w̄qq � V∅pwq�w.

Proof. Using a similar argument as that in the proof of Proposition 2, we can show that (i)

UpΓ,∅q � v, and (ii) under the condition that K   K̄e andm
K ¡ 1, U

�
Γ�pw; 0,0, w̄, w̄q

�
� V∅pwq�w

for any w¥ θ̄K with V∅ as defined in (EC.17).

Next, we show that under condition K ¥ K̄e, functions VI � Ve and V∅ � v satisfy (20)–(22). By

the definition of Ve, it is clear that AIVI � 0. Moreover, pA∅V∅qpwq � rv � µR � 0 for any w ¥ 0.

Hence, (20) holds.

Note that Ve is increasing on r0, w̄s (see Lemma 3 of Sun and Tian 2018). Hence, for any w¥ 0,

we have VIpwq�V∅pwq ¥ Vep0q� v� 0 and VIpwq�V∅pwq ¤ V̄e� v� K̄e ¤K. Therefore, (21) holds.

Finally, it is evident that (22) holds.
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It remains to show that under condition K   K̄e, functions VI � Ve and V∅ as defined in (EC.17)

satisfy (20)–(22). Obviously, AIVI � 0. Moreover, we have

pA∅V∅qpwq � rV∅pwq� rwV
1
∅pwq�µR� rw

�
V∅pwq�V∅p0q

w
�V 1

∅pwq



¥ 0,

where the equality follows from V∅p0q � v, and the inequality follows from the concavity of V∅.

Hence, (20) holds.

If w¥ θ̄K , then VIpwq�V∅pwq �K. If w P r0, θ̄Ks, then V 1
I pwq�V

1
∅pwq � V 1

e pwq�V
1
e pθ̄

Kq ¥ 0 due

to the concavity of Ve, which implies that VIpwq � V∅pwq ¥ VIp0q � V∅p0q � 0 and VIpwq � V∅pwq ¤

VIpθ̄
Kq�V∅pθ̄

Kq �K. Hence, (21) holds. It is straightforward to see that (22) holds. �

Therefore, in the equal discount case, contract Γ�pw�
e ; 0,0, w̄, w̄q is optimal ifK   K̄e andm

K ¡ 1,

in which w�
e P r0, w̄s is the unique maximizer of function Ve such that w�

e ¡ θ̄K . Otherwise, it is

optimal for the principal not to hire the agent at all. Note that because the threshold θ in contract

Γ�pw; 0,0, w̄, w̄q is zero, the principal does not direct the agent to stop working until the promised

utility has reached 0. At this point, the promised utility cannot become positive again, and the

contract is terminated. Therefore, in all these cases, it is never optimal for the principal to direct

the agent to stop working and restart later.

EC.1.4. Effect of Arrival Rate Under Fixed Revenue Rate

In this section, we investigate the effect of arrival uncertainty on the optimal contract. In particular,

we fix the revenue rates per unit of time (Rµ and Rµ), the cost rates (c and b), and the switching

cost (K), and see how the optimal contract changes with the revenue R. In particular, when R

approaches zero, the arrival rate effectively approaches infinity, and the system behaves more like

a deterministic one. In this case, mitigating uncertainty effectively removes the rent that the agent

is able to obtain. The system should become efficient. On the flip side, if R approaches infinity, the

system is extremely uncertain.

For this purpose, we fix A :� R∆µ and B :� Rµ and let them be fixed input parameters. In

this setup, we can write all results as well as relevant quantities appeared in the paper in terms

of A and B, with µ and ∆µ replaced as µ�B{R and ∆µ�A{R, respectively. It is easy to check

that quantities v, w̄, V̄ p�q, and V̄ are all independent of R. Hence, the results in Theorem 2 still

hold. Moreover, we have the following result, which explores two extreme cases, the case of extreme

uncertainty (i.e., R Ò 8) and that of no uncertainty (i.e., R Ó 0). Note that the first-best societal

utility, by considering whether or not to hire the agent, is

V FB :� v�

�
R∆µ� c

r
�K

��
.
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Proposition EC.2. Fix model parameters A, B, c, b, and K.

piq As R Ò 8, it is optimal for the principal to not hire the agent if K ¡ V̄ � v� w̄, and to hire

the agent and offer contract Γ̄ (paying β � bR{A to each arrival) otherwise.

piiq As R Ó 0, it is optimal for the principal not to hire the agent if K ¥ pA � cq{r. If K  

pA� cq{r, on the other hand, the principal will hire the agent and implement the contract

Γ�R
�
w�R

0 ; ϑR, pϑR_ qwpŵRqq, ϑ̄R, ŵR
�
as defined in (47) and Theorem 5, in which the super-

script R highlights the parameters’ dependence on R. Furthermore, we have

lim
RÓ0

w�R
0 � lim

RÓ0
ϑR � lim

RÓ0
qwpŵRq � lim

RÓ0
ϑ̄R � lim

RÓ0
ŵR � 0, (EC.18)

and

lim
RÓ0

UR
�
Γ�R

�
w�R

0 ; ϑR, pϑR_ qwpŵRqq, ϑ̄R, ŵR
�	

�
A�B� c

r
�K � V FB. (EC.19)

In either case, the optimal contract yields the first-best societal utility asymptotically.

Proof. First, we show part (i). Note that R¥ R̂ if and only if

R¥
pA�BqrpA� cqAρ� bpρ� rqpA�Bqs

ρpρ� rqpA2� cA� bA� bBq
�: R̆.

Hence, Condition 2 holds as R Ò8. Consequently, we have limRÒ8 K̄ � limRÒ8 K̄2 � V̄ � v� w̄ and

limRÒ8K � 0 by (34). The result stated in part (i) follows immediately from Theorem 2.

Next, we prove part (ii). Fix any contract Γ P C. Define σ :� inftt¥ 0 | Et � Iu, which will take

value 8 if the principal does not hire the agent under contract Γ. We have

UpΓq ¤Eν̄pΓq

�» 8

0

e�rt
�
RdNt� c1Et�Idt

�
�

¸
0¤t¤8

e�rtκpEt�,Etq

�

�Eν̄pΓq

�» 8

0

e�rt
�
Rpµ1Et�I�µ1Et�∅q� c1Et�I

	
dt�

¸
0¤t¤8

e�rtκpEt�,Etq

�

¤Eν̄pΓq

�» σ

0

e�rtRµdt�

» 8

σ

e�rtpRµ� cqdt� e�rσK

�
�
Rµ

r
�Eν̄pΓq re�rσs

�
R∆µ� c

r
�K



�
Rµ

r
�

�
R∆µ� c

r
�K


�

,

where the first inequality follows by plugging (LL) into (6), and the second inequality follows from

Assumption 1. Therefore, if K ¥ pR∆µ � cq{r � pA � cq{r, then we have UpΓq ¤ Rµ{r � UpΓq,

which demonstrates that it is optimal for the principal not to hire the agent. (We point out this

result does not depend on the value of R.)
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If K   pA� cq{r, then we have

UpΓq ¤ V̄ p0q�K � pRµ� cq{r�K � pA�B� cq{r�K. (EC.20)

Denote the set of positive R’s that satisfy Condition 1 as R. Clearly, R PR when it is sufficiently

small. For any R PR, Lemma 3 holds, which demonstrates that pwR is well defined.

To show the second assertion in part (ii), we need the following limiting result:

lim
RÓ0

pwR � 0, (EC.21)

which will be proved later using a contradictory argument. This result further implies that

limRÓ0 K̄
R
1 � V̄ p0q � v � pA� cq{r. In fact, note that the line w � v � K̄R

1 (as a function of w) is

above the curve VR
pwRpwq for any R PR. Hence, we have K̄R

1 ¥ VR
pwRppwRq� pwR�v� V̄ ppwRq� pwR�v.

In addition, we have K̄R
1 ¤ V̄ ppwRq � v. Sending R to zero and using (EC.21), we obtain that

limRÓ0 K̄
R
1 � pA� cq{r. Consequently, Condition 3 holds as R Ó 0 if K   pA� cq{r, which demon-

strates that the contract Γ�R
�
w�R

0 ; ϑR, pϑR_ qwpŵRqq, ϑ̄R, ŵR
�
as defined in (47) and Theorem

5 is well defined, establishing the second assertion in part (ii).

The limiting result (EC.18) follows immediately by noting that ŵR   pwR from Proposition 6 and

using (EC.21). Applying Proposition 7 and Theorem 5, we obtain that

UR
�
Γ̂Rpw�R

0 q
	
� VR

ŵRpw
�R
0 q�w�R

0 �K �max
w¥0

 
VR
ŵRpwq�w

(
�K

¥ VR
ŵRpŵ

Rq� ŵR�K � V̄ pŵRq� ŵR�K,

which further implies that

lim inf
RÓ0

UR
�
Γ̂Rpw�R

0 q
	
¥ lim

RÓ0

 
V̄ pŵRq� ŵR

(
�K � V̄ p0q�K

by (EC.21). This, combining with (EC.20), establishes (EC.19).

It remains to show (EC.21). Note that pwR P r0, w̄q for any R PR. Hence, tpwRuRPR is a bounded

sequence. If limRÓ0 pwR � 0 fails to hold, according to the Bolzano–Weierstrass theorem, there

exists a sequence tRnunPN with Rn PR and limnÑ8Rn � 0, and a number w; P p0, w̄s, such that

limnÑ8 pwRn �w;. Then, we show that

lim
nÑ8

V Rn

pwRn
pwq ��8 (EC.22)

for any w P r0,w;q. Suppose, to the contradictory, that (EC.22) fails to hold for some w: P r0,w;q.

Then, we have a subsequence tRn1un1PN with limnÑ8Rn1 � 0 such that limn1Ñ8 V
Rn1

pw
R
n1
pw:q exists and

is finite. Recall from Lemma 2 that V R
pwRp�q is continuous and increasing. Using a diagonalization
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argument, we can show that there exists a further subsequence tRn2u � tRn1un1PN and a finite-valued

continuous function vp�q defined on rw:,w;s such that

lim
n1Ñ8

V
Rn2

pw
R
n2
pwq � vpwq (EC.23)

for any w P rw:,w;s. (First, we establish the weakly convergence of these functions at all ratio-

nal numbers on rw:,w;s; then we use these functions’ continuity and monotonicity to show the

weakly convergence on the entire interval rw:,w;s.) Moreover, vp�q is nondecreasing on rw:,w;s,

with vpw;q � V̄ pw;q.

Rewriting (25) in terms of A, B with µ and β replaced, we obtain

ρ pw̄�wq pV R
pwRq

1pwq� rV R
pwRpwq� pA�B� cq� pρ� rqw�

A�B

R

�
V R
pwR

��
w�

bR

A

�
^ pwR

	
�V R

pwRpwq

�
,

or equivalently,

ρ
d

dw

�
pw̄�wqV R

pwRpwq
�

�
A�B

R

�
V R
pwR

��
w�

bR

A

�
^ pwR

	
�V R

pwRpwq

�
�pρ� rqV R

pwRpwq� pA�B� cq� pρ� rqw.

Integrating the above equation from w to pwR yields

ρ
�
pw̄� pwRqV R

pwRppwRq� pw̄�wqV R
pwRpwq

�
�

»
pwR

w

"
A�B

R

�
V R
pwR

��
u�

bR

A

�
^ pwR

	
�V R

pwRpuq

�
�pρ� rqV R

pwRpuq� pA�B� cq� pρ� rqu

*
du.

(EC.24)

Note that»
pwR

w

�
V R
pwR

��
u�

bR

A

�
^ pwR



�V R

pwRpuq

�
du�

#³
pwR

w
pV R

pwRppwRq�V R
pwRpuqqdu, w P ppwR� bR

A
, pwRs,

bR
A
V R
pwRppwRq�

³w� bR
A

w
V R
pwRpuqdu, w P r0, pwR� bR

A
s.

Now consider Equation (EC.24) for the subsequence tRn2u and for any w P rw:,w;q. As w P

r0, pwR� bR
A
s for sufficiently small R, by L’Hopital’s rule and (EC.23), we have

lim
n2Ñ8

³
pw
R
n2

w

�
V

Rn2

pw
R
n2

��
u� bR

A

�
^ pwRn2

�
�V

Rn2

pw
R
n2
puq

�
du

Rn2
�
b

A
V̄ pw;q�

b

A
vpwq.

Therefore, letting n2Ñ8 in (EC.24) and applying (EC.23), we obtain

ρ
�
pw̄�w;qV̄ pw;q� pw̄�wqvpwq

�
�
bpA�Bq

A
pV̄ pw;q� vpwqq�

» w;

w

r�pρ� rqvpuq� pA�B� cq� pρ� rqusdu.
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Therefore, v is differentiable, and thus the above equality can be written as

ρwv1pwq � rvpwq� pA�B� cq� pρ� rqw,

by noting that w̄� bpA�Bq{pρAq.

Using the boundary condition vpw;q � V̄ pw;q, we have

vpwq � V̄ pw;q�w�w;�
ρ

r
w;

�
1�

� w
w;

	r{ρ
�

for w P rw:,w;s,

which is decreasing on rw:,w;s, reaching a contradiction with the fact that vp�q is nondecreasing

on rw:,w;s. Hence, (EC.22) holds.

Furthermore, we have limnÑ8 VRn

pwRn
p0q � �8 by noting that V

rw ¤ V
rw for any rw P p0, w̄q. This

contradicts VR
pwRp0q � v. The proof of (EC.21) is complete. �

As R approaches infinity, the arrival stream is extremely uncertain, and thus it is hard for

the principal to distinguish whether the agent exerts effort or not. Hence, it is expected that the

promised utility plays little role in the incentive and thus payment should be made completely

based on whether an arrival occurs or not. Part (i) of Proposition EC.2 validates this intuition.

Part (ii) of Proposition EC.2 states the result for another extreme case. As R approaches zero,

there is essentially no arrival uncertainty. In the absence of information asymmetry (in term of the

agent’s effort rate), the system’s first best can be achieved. In fact, the first-best societal utility is

V FB, which indeed is asymptotically achieved under the proposed contract.

EC.2. Proofs of the Results in Sections 2 and 3
EC.2.1. Proof of Proposition 1

The proof of part (i) is exactly the same as that of Proposition 1 in Cao et al. (2022), in which

random termination instead of random switching may take place. The proof of part (ii) is similar to

that of Lemma 6 in Sun and Tian (2018). To keep this paper self-contained, we provide a complete

proof here.

(i) Define the agent’s total expected discounted utility conditional on Ft as

utpΓ, νq :�Eν,q

�» 8

0

e�ρs
�
dLs� b1νs�µds

� ����Ft

�
�

» t

0

e�ρs
�
dLs� b1µs�µds

�
� e�ρtWtpΓ, νq. (EC.25)

In what follows, we omit pΓ, νq from all relevant quantities for the sake of easing notation. Given

an effect process ν, we use IN
rt1,t2s

to denote the set of arrival time epochs during rt1, t2s. Moreover,

we denote IN
t :� IN

r0,ts and IN :� IN
r0,8q. Similarly, we use IQ

rt1,t2s
to denote the set of randomized
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switching time epochs during rt1, t2s under the switching intensity process tqtut¥0. Moreover, we

denote IQ
t :� IQ

r0,ts and IQ :� IQ
r0,8q.

At any time instant ζ�, Wζ� can jump to WN
ζ triggered by an arrival at time ζ, or jump to

WQ
ζ triggered by a randomized switching, or jump to WL

ζ triggered by an instantaneous payment.

(Here, the agent’s promised utility will not jump caused by a deterministic switching.) Therefore,

we can decompose Wζ (for ζ ¡ t) into its discrete part

¸
t¤ξ¤ζ

�
pWN

ξ �Wξ�q1ξPIN
rt,ζs

�pWQ
ξ �Wξ�q1ξPIQ

rt,ζs
�pWL

ξ �Wξ�q1ξPIL
rt,ζs

�
and its absolutely continuous part

W c
ζ :�Wζ �

¸
t¤ξ¤ζ

�
pWN

ξ �Wξ�q1ξPIN
rt,ζs

�pWQ
ξ �Wξ�q1ξPIQ

rt,ζs
�pWL

ξ �Wξ�q1ξPIL
rt,ζs

�
,

where we use IL
rt,ζs to denote the set of time epochs in rt, ζs such that a positive instantaneous

payment occurs. Hence, we have ξ P IL
rt,ζs if ∆Lξ ¡ 0 and ξ P rt, ζs.

According to the definition of admissible contract, we know that both WN
t and WQ

t is Ft-

predictable. However, WL
t can also depend on dNt and dQt, that is, W

L
t is Ft-adaptive.

Fix any t1 ¡ t. By calculus of point process, we have

e�ρt1Wt1 � e
�ρtWt �

» t1

t

e�ρζ
�
� ρWζdζ �dW c

ζ

�
�

¸
ζPpt,t1s

e�ρζ

�
pWN

ζ �Wζ�q1ζPIN
pt,t1s

�pWQ
ζ �Wζ�q1ζPIQ

pt,t1s

�pWL
ζ �Wζ�q1ζPIL

pt,t1s

�
.

(EC.26)

Note that the process tutut¥0 is an F-martingale. Hence, for any time points t1 ¡ t, we have

ut �Etrut1s, where we recall that Etr�s �Er�|Fts. Consequently, we have

0�Etrut1s�ut

�Etre
�ρt1Wt1 � e

�ρtWts�Et

�» t1

t�

e�ρζ
�
dLζ � b1νζ�µdζ

��

�Et

�» t1

t

e�ρζ
�
� ρWζdζ �dW c

ζ

��

�Et

$&% ¸
ζPpt,t1s

e�ρζ

�
pWN

ζ �Wζ�q1ζPIN
pt,t1s

�pWQ
ζ �Wζ�q1ζPIQ

pt,t1s

�pWL
ζ �Wζ�q1ζPIL

pt,t1s

�,.-
�Et

�» t1

t�

e�ρζ
�
dLs� b1νζ�µdζ

��

�Et

#» t1

t

e�ρζ
!�
� ρWζ �pWN

ζ �Wζ�qνζ �pWQ
ζ �Wζ�qqζ

�
dζ �dW c

ζ

)
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�
¸

ζPpt,t1s

e�ρζ
�
pWL

ζ �Wζ�q1ζPIL
pt,t1s

�+
�Et

�» t1

t�

e�ρζpdLζ � b1νζ�µdζq

�
,

where the second equality follows from (EC.25), and the third from (EC.26). The fourth equality

follows from the facts that tQtut¥0 is a counting process with intensity qt, and that Nt is a counting

process with intensity νt, as well as Lemma L3 in Chapter II of Brémaud (1981), noting that

Et

» t1

t

e�ρζ |pWN
ζ �Wζ�qνζ |dζ ¤ W̄µ

» t1

t

e�ρζdζ  8, and (EC.27)

Et

» t1

t

e�ρζ |pWQ
ζ �Wζ�qqζ |dζ ¤ W̄Et

» 8

t

e�ρζqζdζ ¤ W̄Et

» τ

t

e�rζqζdζ  8, (EC.28)

in view of (WU), ρ¡ r, and (1).

Recall that dLt � ℓtdt�∆Lt. For any t  t1   τ , the above equality can be stated as

Et

#» t1

t

e�ρζ
�
� ρWζ �pWN

ζ �Wζ�qνζ �pWQ
ζ �Wζ�qqζ � b1νζ�µ� ℓζ

�
dζ �dW c

ζ

+
�Et

¸
ζPpt,t1s

e�ρζ
�
pWL

ζ �Wζ�q1∆Lζ¡0�∆Lζ

�
� 0. (EC.29)

Consider any time t. Letting t1 Ó t in (EC.29) yields

EtrpW
L
t �Wt�q1∆Lt¡0�∆Lts � 0, (EC.30)

which further implies

dW c
t �

�
ρWt��pWN

t �Wt�qνt�pWQ
t �Wt�qqt� b1νt�µ� ℓt

�
dt, t¥ 0. (EC.31)

Let Ht :�WN
t �Wt� and Hq

t :��WQ
t �Wt�. Then, both Ht and H

q
t are Ft-predictable. Besides,

since WL
t is Ft-adaptive, (EC.30) in fact is equivalent to

pWL
t �Wt�q1∆Lt¡0�∆Lt � 0. (EC.32)

We also have

dWt � dW c
t �pWN

t �Wt�qdNt�pWQ
t �Wt�qdQt�pWL

t �Wt�q1∆Lt¡0. (EC.33)

Combining (EC.31)–(EC.33), we obtain (PK).

Relationship (5) follows immediately by noting WN
t ¥ 0 and WQ

t ¥ 0 for all t¥ 0.

(ii) Let rutpΓ, ν
1, νq denote the agent’s total expected discounted utility conditional on Ft under

contract Γ, when he follows effort process ν 1 � tν 1tut¥0 before time t and then effort process ν after

time t:

rutpΓ, ν
1, νq �

» t

0

e�ρs
�
dLs� b1ν1s�µds

�
� e�ρtWtpΓ, νq. (EC.34)
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Here, ru0�pΓ, ν
1, νq can be interpreted in a similar vein as that for W0�pΓ, νq. In fact, we haveru0�pΓ, ν

1, νq �W0�pΓ, νq � upΓ, νq. In what follows, we write ν̄ instead of ν̄pΓq to ease notation. By

the above definition, we have

rutpΓ, ν, ν̄q � utpΓ, ν̄q�

» t

0

e�ρsbp1ν̄s�µ� 1νs�µqds. (EC.35)

Besides, by (PK) and (EC.25), we obtain that

dutpΓ, νq � e�ρt
�
dLt� b1µt�µdt

�
� e�ρt

�
dWtpΓ, νq� ρWtpΓ, µqdt

�
� e�ρt

�
HtpΓ, νqpdNt� νtdtq�H

q
t pΓ, νqpdQt� qtdtq

�
. (EC.36)

Therefore, for any time points t  t1, we have (below, we add superscript ν in some expectation

operators, to indicate that the related random variables are induced by the effort process ν)

Etrrut1pΓ, ν, ν̄qs� rutpΓ, ν, ν̄q �Etrut1pΓ, ν̄qs�utpΓ, ν̄q�Eν
t

�» t1

t

e�ρsbp1ν̄s�µ� 1νs�µqds

�

�Eν
t

�» t1

t�

e�ρs
�
HspΓ, ν̄qpdNs� ν̄tdsq�H

q
s pΓ, ν̄qpdQs� qsdtq� bp1ν̄s�µ� 1νs�µqds

��

�Eν
t

�» t1

t

e�ρs
�
HspΓ, ν̄qpνs� ν̄sq� bp1ν̄s�µ� 1νs�µq

	
ds

�
, (EC.37)

where the first equality follows from (EC.35) and the second equality follows from (EC.36). The last

equalities uses the fact that conditional on Ft and under effort process ν, tNsusPpt,t1s and tQsusPpt,t1s

are counting processes with intensities νs and qs respectively, which follows by applying Lemma

L3 in Chapter II of Brémaud (1981) with the aid of (EC.27) and (EC.28).

Since both ν and ν̄ are admissible, we have νt � ν̄t � µ whenever Et � ∅. Hence, we have

HspΓ, ν̄qpνs� ν̄sq� bp1ν̄s�µ� 1νs�µq ��pHspΓ, ν̄q�βq∆µ1Es�I,νs�µ (EC.38)

for any s ¥ 0. Therefore, if (IC) holds, then we have Etrrut1pΓ, ν, ν̄qs ¤ rutpΓ, ν, ν̄q by (EC.37) and

(EC.38), which implies that trutpΓ, ν, ν̄qut¥0 is an F-supermatingale. By (IR) and (WU), we can

add ru8pΓ, ν, ν̄q :� ³8
0
e�ρs

�
dLs� b1νs�µds

�
as the last element of this supermartingale. Therefore,

upΓ, ν̄q � ru0�pΓ, ν, ν̄q ¥Erru8pΓ, ν, ν̄qs � upΓ, νq,

implying the incentive compatibility of ν̄ under contract Γ.

If (IC) fails to hold, then we consider an effort process ν such that νt � µ if and only if HtpΓ, ν̄q ¥

β and Et � I. Clearly, ν is admissible, and the expression in (EC.38) becomes �pHspΓ, ν̄q �

βq∆µ1Es�I,HspΓ,ν̄q β, which is always non-negative and positive on a set of positive measure. Thus,

by (EC.37), there exists a time t ¡ 0 such that E0�rrutpΓ, ν, ν̄qs ¡ ru0�pΓ, ν, ν̄q � upΓ, ν̄q. Define

another effort process ν 1 which follows ν until time t and then switches to ν̄, which is also admissi-

ble. Moreover, we have upΓ, ν 1q � E0�rrutpΓ, ν, ν̄qs, which indicates upΓ, ν 1q ¡ upΓ, ν̄q, contradicting

(3). The proof is complete.
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EC.2.2. Proof of Lemma 1

If we can show that (PK) holds under contract Γ�pw0;θ, qw, θ̄, pwq, then (17) follows immediately from

(2) and (4) with t� 0. In fact, (PK) holds by setting Ht � β1Et��I and H
q
t � p qw� θq1Wt�� qw,Et��I.

EC.2.3. Proof of Theorem 1

Fix any contract Γ P C. The agent’s promised utility follows a processW with its dynamics described

by (PK) with νt � µ for Et � I and νt � µ for Et � ∅.
Recall that dLt � ℓtdt�∆Lt. Write ϕpw,εq � Vεpwq �w for any w PR� and ε P tI,∅u. Applying

the change-of-variable formula (see, for example, Theorem 70 of Chapter IV in Protter 2003, pp.

214) for processes of locally bounded variation to the process pW,Eq and using (PK), we have

e�rTϕpWT ,ET q � ϕpW0�,E0�q�

» T

0�

e�rt
�
pρWt�� b1νt�µ�Htνt� qtH

q
t � ℓtq �Dt�

� rVEt�pWt�q
�
dt�

¸
0¤t¤T

e�rt∆ϕpWt,Etq

for any T ¥ 0, where Dt� is the left derivative of ϕpw,Et�q with respect to w at Wt�, that is,

Dt� � V 1
Et�pWt�q � 1, by recalling that we use f 1pwq to represent the left derivative of f at w for

any absolutely continuous function defined on R�. Besides, we have

∆ϕpWt,Etq � ϕpWt,Etq�ϕpWt,Et�q

�ϕpWt��HtdNt�H
q
t dQt�∆Lt,Et�q�ϕpWt��HtdNt�H

q
t dQt,Et�q

�ϕpWt��HtdNt�H
q
t dQt,Et�q�ϕpWt�,Et�q for t¡ 0,

and

∆ϕpW0,E0q � ϕpW0,E0q�ϕpW0,E0�q�ϕpW0,E0�q�ϕpW0�,E0�q

by noting that dN0 � dQ0 � 0 with probability 1.

Define MN � tMN
t ut¥0 and MQ � tMQ

t ut¥0 by

MN
t �Nt�

» t

0

νsds and MQ
t �Qt�

» t

0

qsds.

Note that¸
0 t¤T

�
ϕpWt��HtdNt�H

q
t dQt,Et�q�ϕpWt�,Et�q

�
�

» T

0�

e�rt
!
rϕpWt��Ht,Et�q�ϕpWt�,Et�qsdNt�rϕpWt��H

q
t ,Et�q�ϕpWt�,Et�qsdQt

)
�

» T

0�

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
dMN

t �

» T

0�

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
νtdt

�

» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
dMQ

t �

» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
qtdt,
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where the first equality uses the fact that tt P r0, T s | dNt � dQt � 1u has a Lebesgue measure 0

with probability 1. Summarizing the above formulas, we obtain

e�rTϕpWT ,ET q � ϕpW0�,E0�q�

» T

0�

e�rtrϕpWt��Ht,Et�q�ϕpWt�,Et�qsdM
N
t �

�

» T

0�

e�rtrϕpWt��H
q
t ,Et�q�ϕpWt�,Et�qsdM

Q
t �A1�A2�A3�A4�A5,

(EC.39)

where

A1 :�

» T

0�

e�rt
!
pρWt�� b1νt�µ�Htνt� ℓt�q �

�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q

� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

)
dt,

A2 :�
¸

0 t¤T

e�rt
�
ϕ
�
Wt��HtdNt�H

q
t dQt�∆Lt,Et�

�
�ϕ

�
Wt��HtdNt�H

q
t dQt,Et�

��
,

A3 :�
¸

0¤t¤T

e�rtrϕpWt,Etq�ϕpWt,Et�qs,

A4 :�

» T

0�

e�rtqt

!
Hq

t

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

)
dt,

A5 :� ϕpW0,E0�q�ϕpW0�,E0�q.

Below we treat each term separately.

Consider first A1. If Et� � I, then νt� � µ and ϕpWt�,Et�q � VIpWt�q �Wt�. Since the contract

Γ is incentive compatible, we have Ht ¥ β by Proposition 1(ii). Consequently, we have

pρWt�� b1νt�µ�Htνt� ℓtq �
�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

� pρWt�� b�Htµ� ℓtq �
�
V 1
I pWt�q� 1

�
� r � pVIpWt�q�Wt�q� rVIpWt��Htq�VIpWt�q�Hts �µ

� ρWt� �
�
V 1
I pWt�q� 1

�
� r � pVIpWt�q�Wtq� pℓt� bq �

�
V 1
I pWt�q� 1

�
�
�
VIpWt��Htq�VIpWt�q�V

1
I pWt�qHt

�
�µ

¤ ρWt� � pV
1
I pWt�q� 1q� r � pVIpWt�q�Wt�q� ℓt� b�rVIpWt��βq�VIpWt�q�V

1
I pWt�qβs �µ

��
�
pµ� rqVIpWt�q�µVIpWt��βq� ρpw̄�Wt�qV

1
I pWt�q� pµR� cq� pρ� rqWt�

�
� ℓt�rRµ�pc� bqs

��pAIVIqpWt�q� ℓt�rRµ�pc� bqs

¤ ℓt�rRµ�pc� bqs.

Here, the first inequality follows from (i) VIpWt�q ¥ 0 (this follows from the fact that VI is nonde-

creasing) and (ii) Ht ¥ β, and β � argmaxh¥βtVIpw� hq � VIpwq � V
1
I pwq � hu due to the concavity

of VI, and the last inequality follows from (20).
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If Et� � ∅, then νt� � µ. It follows from (5) that Ht ¥�Wt�. Therefore, we have

pρWt�� b1νt�µ�Htνt� ℓtq �
�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

�pρWt��Htµ� ℓtq �
�
V 1
∅pWt�q� 1

�
� r � pV∅pWt�q�Wt�q�

�
V∅pWt��Htq�V∅pWt�q�Ht

�
�µ

�ρWt� �
�
V 1
∅pWt�q� 1

�
� r � pV∅pWt�q�Wt�q� ℓt �

�
V 1
∅pWt�q� 1

�
�
�
V∅pWt��Htq�V∅pWt�q�V

1
∅pWt�qHt

�
�µ

¤ρWt� �
�
V 1
∅pWt�q� 1

�
� r � pV∅pWt�q�Wt�q� ℓt

��
�
rV∅pWt�q� ρWt� �V

1
∅pWt�q� pρ� rqWt��Rµ

�
� ℓt�Rµ

��pA∅V∅qpWt�q� ℓt�Rµ

¤ℓt�Rµ,

where the first inequality follows from (i) V 1
∅pWt�q ¥ 0 (this follows from the fact that V∅ is non-

decreasing) and (ii) Ht ¥�Wt�, and 0� argmaxh¥�wtV∅pw� hq � V∅pwq � V 1
∅pwq � hu due to the

concavity of V∅, and the last inequality follows from (20).

Combining the above two cases yields

pρWt�� b1νt�µ�Htνt� ℓtq �
�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

¤ ℓt�rRνt�pc� bq1νt�µs (EC.40)

for any t¡ 0.

Consider next A2. We have

ϕpWt��HtdNt�H
q
t dQt�∆Lt,Et�q�ϕpWt��HtdNt�H

q
t dQt,Et�q

� VEt�pWt��HtdNt�H
q
t dQt�∆Ltq�VEt�pWt��H

q
t dQt�HtdNtq�∆Lt

¤∆Lt, @t¡ 0, (EC.41)

where the inequality follows from the facts that ∆Lt ¥ 0 and that Vε is nondecreasing for any

ε P tI,∅u.

Consider now A3. By considering four possible value combinations of pEt�,Etq and using (21),

we have

ϕpWt,Etq�ϕpWt,Et�q � VEtpWtq�VEt�pWtq ¤ κpEt�,Etq. (EC.42)

Consider next A4. We have

Hq
t

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�Hq
t V

1
Et�pWt�q�VEt�pWt��H

q
t q�VEt�pWt�q ¤ 0,
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where the inequality follows from the concavity of Vε for any ε P tI,∅u. This, together with qt ¥ 0,

yields

A4 �

» T

0�

e�rtqt

!
Hq

t

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

)
dt¤ 0. (EC.43)

Consider finally A5. It follows from (2) and (4) with t� 0 that ErW0�∆L0s �W0�. Therefore,

we have

ErϕpW0,E0�qs�ϕpW0�,E0�q �ErVE0�pW0qs�VE0�pW0�q�
�
ErW0�s�W0�

�
¤ VE0�

�
ErW0s

�
�VE0�pW0�q�Er∆L0s ¤Er∆L0s, (EC.44)

where the first inequality follows from the concavity of Vε for any ε P tI,∅u and the Jensen’s

inequality, and the second inequality follows from the facts that Vε is nondecreasing and that

W0� �ErW0�L0s ¥ErW0s.

Combining (EC.39)–(EC.43), we have

e�rTϕpWT ,ET q ¤ϕpW0�,E0�q�

» T

0�

e�rtrϕpWt��Ht,Et�q�ϕpWt�,Et�qsdM
N
t

�

» T

0�

e�rtrϕpWt��H
q
t ,Et�q�ϕpWt�,Et�qsdM

Q
t

�

» T

0�

e�rtrℓt�pRνt�pc� bq1νt�µqsdt�
¸

0 t¤T

e�rt∆Lt

�
¸

0¤t¤T

e�rtκpEt�,Etq�ϕpW0,E0�q�ϕpW0�,E0�q

for any T ¡ 0, which can be displayed as

ϕpW0�,E0�q ¥e
�rTϕpWT ,Etq�

» T

0

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
dMN

t

�

» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
dMQ

t

�

» T

0�

e�rt
�
RdNt�dLt�pc� bq1Et�Idt

�
�

¸
0¤t¤T

e�rtκpEt�,Etq

�ϕpW0�,E0�q�ϕpW0,E0�q.

Taking expectation in the above inequality yields

ϕpW0�,E0�q ¥Ere�rTϕpWT ,ET qs�E
�» T

0�

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
dMN

t

�
�E

�» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
dMQ

t

�
�E

�» T

0�
e�rt

�
RdNt�dLt�pc� bq1Et�Idt

�
�

¸
0¤t¤T

e�rtκpEt�,Etq

�
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�ϕpW0�,E0�q�EϕpW0,E0�q

¥Ere�rTϕpWT ,ET qs�E
�» T

0�

e�rt
�
ϕpWt��Ht,Et�q�ϕpWt�,Et�q

�
dMN

t

�
�E

�» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�
dMQ

t

�
�E

�» T

0

e�rt
�
RdNt�dLt�pc� bq1Et�Idt

�
�

¸
0¤t¤T

e�rtκpEt�,Etq

�
(EC.45)

for any T ¡ 0, where the last inequality follows from (EC.44).

We claim that it suffices to consider the case that

E
�» 8

0�

e�rt|Ht|νtdt

�
 8. (EC.46)

Otherwise, we have E
�³8

0�
e�rt|Ht|νtdt

�
� 8. It follows from (PK) and (WU) that dLt ¥ pHt �

W̄ q�dNt for t¡ 0. Hence, we have

E
�» 8

0

e�rtdLt

�
¥E

�» 8

0�

e�rtpHt� W̄ q�dNt

�
�E

�» τ

0�

e�rtpHt� W̄ q�νtdt

�
¥E

�» 8

0�

e�rtp|Ht| � W̄ qνtdt

�
¥E

�» 8

0�

e�rt|Ht|νtdt

�
�
W̄µ

r
�8,

where the first equality follows from Equation (2.3) in Chapter II of Brémaud (1981), the second

inequality follows from Ht ¥ �Wt� ¥ �Rµ{r in view of (5) and (WU), and the third inequality

follows from νt ¤ µ. Then, we have

UpΓq ¤Eν̄pΓq

�» 8

0

e�rt
�
RdNt�dLt

��
¤
Rµ

r
�Eν̄pΓq

�» 8

0

e�rtdLt

�
��8,

and thus the desired result follows immediately.

Given (EC.46), we have

E
�» 8

0�

e�rt|ϕpWt��Ht,Et�q�ϕpWt�,Et�q|νt

�
dt

¤ max
w¡0,εPtI,∅u

t|V 1
ε pwq� 1|u �E

�» 8

0�

e�rt|Ht|νtdt

�
 8,

where maxw¡0,εPtI,∅ut|V
1
ε pwq� 1|u  8 follows from the concavity of Vε and the fact that V 1

ε ¥ 0. It

follows from Lemma L3, Chapter II in Brémaud (1981) that �M � t�Mtut¥0, defined by

�Mt :�

» t

0�

e�rsrϕpWs��Hs,Es�q�ϕpWs�,Es�qsdM
N
s ,

is an F-martingale. Hence, Er�MT s �Er�M0s � 0, that is,

E
�» T

0�

e�rtrϕpWt��Ht,Et�q�ϕpWt�,Et�qsdM
N
t

�
� 0.
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Similarly, using (1), we can show that

E
�» T

0�

e�rt
�
ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

	
dMQ

t

�
� 0.

It follows from (22) and the fact that both VI and V∅ are nondecreasing that ϕpw,εq ¥ v � w

for any ε P tI,∅u. Letting T Ñ8 in (EC.45) and using (WU), we have ϕpW0�,∅q ¥ UpΓq with

W0� � upΓ, ν̄pΓqq. Hence, the desired result is obtained.

A byproduct of the proof of Theorem 1 is the following result. In the remaining of this e-

companion, whenever we need to prove that certain contract achieves the upper bound, we will

use this result together with Lemma 1.

Proposition EC.3. Suppose that the conditions stated in Theorem 1 hold. Furthermore, sup-

pose that there exists a contract Γ� P C such that the corresponding agent’s promised utility Wt

satisfies

pρWt�� b1νt�µ�Htνt� ℓtq
�
V 1
Et�pWt�q� 1

�
� rϕpWt�,Et�q� rϕpWt��Ht,Et�q�ϕpWt�,Et�qsνt

� ℓt�rRνt�pc� bq1νt�µs, (EC.47)

ϕpWt��HtdNt�H
q
t dQt�∆Lt,Et�q�ϕpWt��HtdNt�H

q
t dQt,Et�q �∆Lt, (EC.48)

ϕpWt,Etq�ϕpWt,Et�q � κpEt�,Etq, (EC.49)

qt

!
Hq

t

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

)
� 0, (EC.50)

for any t¡ 0 and

ErϕpW0,E0�qs�ϕpW0�,E0�q �Er∆L0s. (EC.51)

Then, for any value w P r0,8q such that upΓ�, ν̄pΓ�qq �w, we have

UpΓ�q � V∅pwq�w.

Proof. Equalities (EC.47)–(EC.51) demonstrate that all the inequalities in the proof of

Theorem 1, (EC.40)–(EC.44), hold with equalities under contract Γ�. The desired result can be

shown by going through the proof of Theorem 1, with all inequalities replaced by equalities. �

EC.2.4. Proof of Theorem 2

In view of Theorems 3–5, it remains to show that K̄pRq is increasing in R and KpRq is decreasing

in R on pc{∆µ, R̄q.

First, under Condition 2, we have K̄ � K̄2 � V̄ � v � w̄ �
∆µ �R� c�µβ

r
, which is clearly

increasing in R.
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Second, under Condition 1, we have K̄ � K̄1. By the definition of K̄1, we only need to show

that mK is decreasing in R, since mK is decreasing in K by Lemma 4. Observe that mK has the

following characterization:

mK �max
x¡0

"
V
pwpxq� v�K

x

*
.

Hence, it suffices to show that V
pwpxq� v is decreasing in R for any x¡ 0. Note that for any x¡ 0,

we have V
pwpxq� v�

³x
0
V 1
pwpyqdy. Hence, the desired result is obtained if we can show that V 1

pwpyq is

decreasing in R for any y¥ 0, which is exactly Lemma EC.1(iii) below.

Lemma EC.1. Let R vary and other model parameters µ, µ, c, b, and K be fixed.

piq Both V 1
rwpwq and V 1

rwpwq do not depend on R for any w¥ 0.

piiq pw is decreasing in R.

piiiq V 1
pwpwq is decreasing in R for any w¥ 0.

Proof. (i) Note that V 1
rw satisfies (EC.54) on r0, rws, with the boundary condition that V 1

rwpwq � 0

for all w¥ rw. As (EC.54) does not involve parameter R, its unique solution V 1
rw is also independent

of R, which also implies the independence of V 2p rwq on R. Therefore, qwp rwq is also independent of

R, by Lemma 2(i), which in turn concludes the independence of V 1
rw on R by Lemma 2(ii).

(ii) This part can be shown using a similar line as that in the proof of Proposition 1 in Cao et al.

(2022). Specifically, we define ψpR, rwq :� V
rwp0;Rq� v, where we write V

rwp�;Rq instead of V
rwp�q to

highlight the dependence on R. (Note that we adopt a different notation from those in Section

EC.1.4 as the parameter settings are different.) Then, we have

ψpR, rwq � V
rwp rw;Rq� »

rw

0

V 1
rwpyqdy� v�

∆µpR�βq� pρ� rq rw
r

�

»
rw

0

V 1
rwpyqdy,

which is linear and increasing in R for any rw P r0, w̄s, where have we used part (i) in this lemma.

Hence, the desired result is obtained by noting that ψpR, pwq � 0.

(iii) This result follows immediately from parts (i) and (ii), combining with the monotonicity of

V 1
rwpyq in rw (see Lemma 2(iii)). �

It remains to show that K is non-increasing in R. This can be obtained by taking the first-order

derivative of K with respect to R in (33), investigating its sign and noting from Assumption 1 that

R¡ c{∆µ.

EC.3. Proofs of the Results in Section 4
EC.3.1. Proof of Lemma 2

This result follows almost the same logic as that for the proof of Lemmas 2 and 3 in Cao et al.

(2022) and uses Lemma EC.2 below. However, there are minor differences as both β and w̄ in Cao
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et al. (2022) take different values from ours. Hence, to make this paper self-contained, we provide

a complete proof here.

We first present Lemma EC.2 below because it will be frequently used in the subsequent analysis.

Lemma EC.2. For any rw P r0, w̄q, there exists a unique function V
rw in C1pr0, rwsq that solves the

differential equation (25) on r0, rws with boundary condition (26). We further extend the domain

of V
rw to R� by letting V

rwpwq � V
rwp rwq for all w ¡ rw. Then, function V

rwpwq has the following

properties.

piq V
rwp�q PC

1pR�qXC
2pR�zt rwuqXC3pR�zt rw, rw�βuq.

piiq For any given w¥ 0, define function vp rwq :� V
rwpwq. We have vp�q PC1pr0, w̄qq.

piiiq Function V
rwpwq is increasing in w on r0, rws.

pivq For any rw1 and rw2 such that 0  rw1   rw2   w̄, we have V
rw1
pwq ¡ V

rw2
pwq and V 1

rw1
pwq   V 1

rw2
pwq

for w P r0, rw1q.

pvq If ρ¤ r� µ, then for any w P r0, w̄q, V
rwpwq approaches negative infinity as rw approaches w̄

from below.

pviq If ρ¡ r�µ, then for any w P r0, w̄s, we have

lim
rwÒw̄

V
rwpwq � V̄ �

ρ� r

ρ� r�µ
pw̄�wq,

where V̄ is defined in (10). Furthermore, V̄ �
ρ� r

ρ� r�µ
w̄¥ v is equivalent to R¥ R̂.

Proof. Step 1 in the proof of Proposition 4 in Sun and Tian (2018) has already shown the

existence and uniqueness of a function satisfying (25) with boundary condition (26). Here, we

adopt their idea with argument slightly modified. First, we observe that (25) reduces to an ordinal

differential equation (ODE) on the interval rp rw� βq�, rws, as V
rwpw� βq � V̄ p rwq for all w P rp rw�

βq�, rws. Therefore, this problem can be “backwardly” treated as an initial value problem, which

satisfies the conditions stated in Cauchy–Lipschitz theorem and thus admits a unique continuously

differential solution on rp rw�βq�, rws. In fact, we have

V
rwpwq �

$'&'%
V̄ p rwq� ρ� r

r�µ� ρ
p rw�wq� b

rw

�
pw̄�wq

r�µ
ρ �pw̄� rwq r�µ

ρ
�
, ρ� r�µ

V̄ p rwq� ρ� r

ρ
p rw�wq� pρ� rqpw̄�wq

ρ
ln
� w̄�w
w̄� rw	

, ρ� r�µ
(EC.52)

for w P rp rw�βq�, rws, where
b
rw :�

r� ρ

r�µ� ρ
�

ρ

r�µ
pw̄� rwq ρ�r�µ

ρ . (EC.53)

In general, for any k P N, given that the values of Vw̃ on w P rp rw � kβq�, rws all determined,

(25) is an ODE on the interval rp rw�pk� 1qβq�, p rw� kβq�s, whose unique solution can be shown
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by verifying the conditions in Cauchy–Lipschitz Theorem. By induction on k, we can extend the

solution to (25) to the entire interval r0, rws, as desired.
Next, we show that such a function V

rw possesses properties (i)–(vi).

(i) It follows from (25) and the boundary condition at rw that V
rwp�q PC

1pR�q. Taking derivative

in (25) with respect to w and noting that V
rwpwq � V̄ p rwq for all w¥ rw, we have

pµ� rqV 1
rwpwq�µV

1
rwpw�βq� ρpw̄�wqV

2
rwpwq� ρV

1
rwpwq� ρ� r� 0 (EC.54)

for w P r0, rwq, which implies that V
rwp�q PC

2pr0, rwqq. Moreover, V 2
rwp rw�q��pρ� rq{

�
ρpw̄� rwq�  0.

Also, by the definition of V
rw on p rw,8q, we have V 2

rwpwq � 0 for w ¡ rw and thus V 2
rwp rw�q � 0.

Therefore, V
rwp�q PC

2pR�zt rwuq.
Similarly, taking derivative in (EC.54) with respect to w yields

ρpw̄�wqV 3
rw pwq � µ

�
V 2
rwpw�βq�V

2
rwpwq

�
�p2ρ� rqV 2

rwpwq, (EC.55)

for w P r0, rwq. Note that V 2
rw does not exist only at rw, which demonstrates that V 3

rw does not exist

at rw and rw�β (if it is nonnegative). That is, V
rwp�q PC

3pR�zt rw, rw�βuq.
(ii) Fix any w¥ 0. If rw¤w, then vp rwq � V

rwpwq � V̄ p rwq, which implies that vp�q PC1pr0,w^ w̄qq.

Hence, the desired property is obtained if w¥ w̄.

Now suppose that w  w̄ and rw P pw, w̄q. By the above discussion, we have vp�q PC1pr0,wsq. For

any w1 P rw, rws, it follows from (25) that

ρV 1
rwpw

1q ��
pµ� rqV

rwpw
1q

w̄�w1
�
µV

rw

�
pw1�βq^ rw�
w̄�w1

�
pµR� cq� pρ� rqw1

w̄�w1
.

Integrating the above equation with respect to w1 from w to rw yields

ρ
�
V
rwp rwq�V rwpwq

�
��pµ� rq

»
rw

w

V
rwpw

1q

w̄�w1
dw1�µ

»
rw

w

V
rw

�
pw1�βq^ rw�
w̄�w1

dw1

�

»
rw

w

pµR� cq� pρ� rqw1

w̄�w1
dw1.

First, using the above equality, we can obtain that vp rwq � V
rwpwq is continuous in rw on rw, w̄q.

Then, again using this equality, we conclude that V
rwpwq is continuously differentiable in rw on

rw, w̄q, which, combining with vp�q PC1pr0,wsq, yields that vp�q PC1
�
r0, w̄q

�
.

(iii) We show this result by a contradictory argument. Suppose that wp :� suptw PR� | V
1
rwpwq  

0u exists. Recall from the proof for part (ii) of this lemma that V 2
rwp rw�q   0. Hence, we have

wp P r0, rwq, V 1
rwpw

pq � 0, and V 1
rw ¡ 0 on pwp, rwq. Evaluating (25) at wp gives

rV
rwpw

pq � µR� c�pρ� rqwp�µ
�
V
rw

�
pwp�βq^ rw��V

rwpw
pq
�

¡ µR� c�pρ� rqwp ¡ rV
rwp rwq,
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where the first inequality uses V 1
rw ¡ 0 on pwp, rwq. This reaches a contradiction with V

rwpw
pq   V

rwp rwq.
(iv) We first show the second claim. Suppose it fails to hold. Since V 1

rw1
p rw1q � 0 and V 1

rw2
p rw1q ¡

0, the quantity w: :� suptw P r0, rw1q | V
1
rw1
pwq ¥ V 1

rw2
pwqu is well defined, and satisfies V 1

rw1
pw:q �

V 1
rw2
pw:q by part (ii) of this lemma. Evaluating (25) at w: for both rw1 and rw2, we obtain

µpV
rw1
pw:�βq�V

rw2
pw:�βqq � pr�µqpV

rw1
pw:q�V

rw2
pw:qq.

Hence, we have

V
rw1
pw:�βq�V

rw2
pw:�βq � V

rw1
pw:q�V

rw2
pw:q�

» β

0

�
V 1
rw1
pw:� yq�V 1

rw2
pw:� yq

�
dy

  V
rw1
pw:q�V

rw2
pw:q �

µ

r�µ

�
V
rw1
pw:�βq�V

rw2
pw:�βq

�
,

which indicates that both V
rw1
pw:� βq � V

rw2
pw:� βq and V

rw1
pw:q � V

rw2
pw:q are negative. By the

definition of w:, we have V 1
rw1
  V 1

rw2
on pw:, rw1s, which implies that

V
rw1
pw:q�V

rw2
pw:q � V

rw1
p rw1q�V rw2

p rw1q�

»
rw1

w:

�
V 1
rw1
pyq�V 1

rw2
pyq

�
dy

¡ V
rw1
p rw1q�V rw2

p rw1q ¡ V̄ p rw1q� V̄ p rw2q ¡ 0. (EC.56)

This contradiction indicates the correctness of the second claim. The first claim follows by

replacing w: by any w P r0, rw1q in (EC.56).

(v) For any w P rpw̄� βq�, w̄q, we have w P rp rw� βq�, rws when rw is close to w̄ from below and

thus (EC.52) is valid. Letting rw Ò w̄ in (EC.52), we obtain that lim
rwÒw̄ V rwpwq ��8.

If w P r0, rw̄� βq�, w̄qq, then using the fact that V
rw is nondecreasing on R�, we obtain V

rwpwq ¤

V
rw

�
pw̄ � βq�

�
, which yields that limsup

rwÒw̄ V rwpwq ¤ lim
rwÒw̄ V rw

�
pw̄ � βq�

�
� �8, concluding the

desired result.

(vi) Note that ρ¡ r�µ implies w̄  β. Hence, (EC.52) is valid for all w P r0, rws. Therefore, the
first claim follows by letting rw Ò w̄ in (EC.52) and using lim

rwÒw̄ b rw � 0. The second claim is trivial

by the definition of R̂. �

We proceed to prove Lemma 2 as follows.

Proof of Lemma 2. (i) From (EC.52), we have

V 2
rwpwq ��

ρ� r

ρ
pw̄� rwq ρ�r�µ

ρ pw̄�wq
�2ρ�r�µ

ρ   0

for any w P rp rw�βq�, rwq. (The above expression also holds if µ� r� ρ.) Hence, the desired result

holds with qwp rwq � 0 if rw¤ β.

Now consider the case that rw ¡ β. In this case, we have w̄ ¡ β, which gives ρ   µ. Define

wc :� inftw P r0, rwq | V 2
rwpwq ¥ 0u. If the set is empty, we set wc � 0. By Lemma EC.2(i), we have

V 2
rw   0 on pwc, rwq. Hence, the desired result holds with qwp rwq � 0 if wc � 0.
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Next, we suppose that wc ¡ 0. Since V
rw is strictly concave on r rw� β, rwq, we have wc   rw� β.

According to Lemma EC.2(i), we have V 2
rwpw

cq � 0 and V 2
rw   0 on pwc, rwq.

It follows from (EC.54) at wc that

µ
�
V 1
rwpw

c�βq�V 1
rwpw

cq
�
� pρ� rq

�
1�V 1

rwpw
cq
�
,

which implies

V 1
rwpw

c�βq �
pµ� ρ� rqV 1

rwpw
cq� pρ� rq

µ
. (EC.57)

Moreover, since V 1
rw decreases over pwc, rwq, we have V 1

rwpw
c�βq   V 1

rwpw
cq, which yields

V 1
rwpw

cq ¡ 1, (EC.58)

in view of (EC.57) and ρ  µ. Evaluating (25) at wc gives

rV
rwpw

cq � µR� c�pρ� rqwc� ρpw̄�wcqV 1
rwpw

cq�µ
�
V
rwpw

c�βq�V
rwpw

cq
�

¡ µR� c�pρ� rqwc� ρpw̄�wcqV 1
rwpw

cq�µβV 1
rwpw

c�βq

� µR� c�pρ� rqpwc�βq�
�
ρpwc�βq� rβ

�
V 1
rwpw

cq, (EC.59)

where the inequality follows from the strict concavity of V
rw on pwc,wc� βq, and the last equality

uses (EC.57) and ρw̄� µβ.

Below we distinguish two cases.

Case 1: ρpwc�βq� rβ ¥ 0. It follows from (EC.58) and (EC.59) that

rV
rwpw

cq ¡ µR� c�pρ� rqpwc�βq� ρpwc�βq� rβ

� µR� c� rwc

¡ µR� c¡ rV
rwp rwq,

which contradicts Lemma EC.2(iii).

Case 2: ρpwc�βq� rβ   0. In this case, we have

0 wc  
pρ� rqβ

ρ
. (EC.60)

Below, we will show that

V 2
rw ¡ 0 on r0,wcq. (EC.61)

Evaluating (EC.55) at wc and using V 2
rwpw

cq � 0, we obtain

ρpw̄�wcqV 3
rw pw

cq � µV 2
rwpw

c�βq   0,
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which implies that V 2
rw ¡ 0 on pwc � ϵ,wcq for some ϵ ¡ 0. If (EC.61) fails to hold, then wd :�

suptw P r0,wcq | V 2
rwpwq ¤ 0u is well defined, satisfying wd P r0,wcq. Moreover, we have V 2

rwpw
dq � 0

and V 3
rw pw

dq ¥ 0. (Note that wc   rw�β, indicating that V 3
rw pw

dq exists by Lemma EC.2(i).) Hence,

evaluating (EC.55) at wd gives ρpw̄�wdqV 3
rw pw

dq � µV 2
rwpw

d � βq ¥ 0. By the definition of wc, we

have wd�β ¤wc. Consequently, it follows from (EC.60) that wd ¤wc�β   0, which is impossible.

Therefore, (EC.61) holds. Letting qwp rwq �wc, we obtain the proof of the first claim in part (i). The

second claim in part (ii) follows immediately by (EC.60).

(ii) This claim holds trivially by the first claim in part (i) and Lemma EC.2(iii).

(iii) To ease notation, we write qwp rw1q and qwp rw2q as qw1 and qw2 respectively. First, we show the

second claim, that is, V 1
rw1
pwq   V 1

rw2
pwq for any w P r0, rw1s, by considering the following two cases.

Case 1: qw1 ¤ qw2. In this case, we have

V 1
rw1
pwq � V 1

rw1
pwq   V 1

rw2
pwq � V 1

rw2
pwq (EC.62)

for any w P r qw2, rw1s, where the two equalities follows from the definition of function V
rw and qw1 ¤ qw2,

and the inequality follows from Lemma EC.2(iv). If w P r0, qw2s, then we can derive the desired

inequality as follows:

V 1
rw1
pwq ¤ V 1

rw1
p qw1q � V 1

rw1
p qw1q   V 1

rw2
p qw1q   V 1

rw2
p qw2q � V 1

rw2
p qw1q � V 1

rw2
pwq.

Here, the first inequality uses the definition and the concavity of V
rw1
, the second inequality uses

Lemma EC.2(iv), and the last inequality uses Lemma 2(i).

Case 2: qw1 ¡ qw2. In this case, we have

V 1
rw1
pwq � V 1

rw1
pw_ qw1q   V 1

rw2
pw_ qw1q ¤ V 1

rw2
pw_ qw2q � V 1

rw2
pwq (EC.63)

for all w P r0, rw1s, where the first inequality uses Lemma EC.2(iv) and the second inequality uses

the concavity of V
rw2

and the fact that w_ qw1 ¥w_ qw2.

The first claim can be readily obtained using the second claim. In fact, for any w P r0, rw1s, we

have

V
rw1
pwq�V

rw2
pwq � V

rw1
p rw1q�V

rw2
p rw1q�

»
rw1

w

�
V 1
rw1
pyq�V 1

rw2
pyq

�
dy

¡ V
rw1
p rw1q�V

rw2
p rw1q ¡ V̄ p rw1q� V̄ p rw2q ¡ 0,

where the second inequality uses part (ii) of this lemma. �
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EC.3.2. Proof of Lemma 3

It follows from Lemma 2(iii) that V
rwp0q is decreasing in rw on p0, w̄q. By Lemma EC.2(v) and

(vi), we have that lim
rwÒw̄ V

rwp0q is either �8 or V̄ � ρ�r
ρ�r�µ

w̄, which is less than v according to

Condition 1. Moreover, lim
rwÓ0 V rwp0q � V̄ p0q ¡ v by Assumption 1. Therefore, the first claim is

obtained by Lemma EC.2(ii).

For the second claim, we observe that by the proof of Lemma 2(i), if qwp rwq ¡ 0, it must be equal

to wc, in which case (EC.58) holds. This immediately concludes the result by the definition of V
rw.

EC.3.3. Proof of Proposition 2

Clearly, following the definition of Γ as in (16), UpΓq � v trivially holds. Hence, it remains to show

that functions VIpwq � V
pwpwq and V∅pwq � v satisfy the optimality condition (20)–(22).

First, we show that pAIVIqpwq ¥ 0 for any w P R�. If w P r qwppwq, pwq, by the definition of V
pw, we

have pAIVIqpwq � 0. If w P rpw,8q, then we have

pAIVIqpwq � pµ� rqV
pwppwq�µVpwppwq� pµR� cq� pρ� rqw

� pρ� rqpw� pwq ¥ 0.

If w P r0, qwppwqq (if we discuss this case, it is implicitly assumed that qwppwq ¡ 0), then we have

V
pwpwq � v�V 1

pwp qwppwqqw. Consequently,
pAIVIqpwq � pµ� rq

�
v�V 1

pwp qwppwqqw��µVpwpw�βq� ρpw̄�wqV 1
pwp qwppwqq� pµR� cq� pρ� rqw.

Let the last expression be gIpwq. Obviously, gIp qwppwqq � 0. Moreover, for w P r0, qwppwqq, we have

g1Ipwq � pµ� rqV 1
pwp qwppwqq�µV 1

pwpw�βq� ρV 1
pwp qwppwqq� ρ� r

� pρ� rq
�
1�V 1

pwp qwppwqq��µ�V 1
pwp qwppwqq�V 1

pwpw�βq
�

¤ pρ� rq
�
1�V 1

pwp qwppwqq��µ�V 1
pwp qwppwqq�V 1

pwp qwppwq�βq�� 0,

where the inequality follows from the concavity of V
pw, and the last equality uses the facts that

ρpw̄� qwppwqqV2
pwp qwppwqq � pρ�rq

�
V 1
pwp qwppwqq�1

�
�µ

�
V 1
pwp qwppwq�βq�V 1

pwp qwppwqq� by (EC.54) and that

V2
pwp qwppwqq � 0. Consequently, gIpwq ¥ 0 for all w P r0, qwppwqq.
Therefore, we have pAIVIqpwq ¥ 0 for any w PR�. Obviously, we have pA∅V∅qpwq � pρ� rqw¥ 0.

Hence, (20) holds.

It follows from the facts that VIpwq ¥ VIp0q � v � V∅pwq and that V∅pwq � v ¥ V̄ ppwq � K �

V
pwppwq�K ¥ VIpwq�K (due to K ¥ V̄ ppwq� v) that both (21) and (22) hold.
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EC.3.4. Proof of Lemma 4

Define

gpw,Kq :� V
pwpwq�V 1

pwpwqw� v�K. (EC.64)

Then, we have

gp qwppwq,Kq ��K   0, (EC.65)

where the equality uses the linearity of V
pw on r0, qwppwqs. In addition,

gppw,Kq � V
pwppwq� v�K ¡ 0,

where the equality follows from V 1
pwppwq � 0 and the inequality follows from the condition that

K   V̄ ppwq� v. Furthermore, we have

Bgpw,Kq

Bw
��V2

pwpwqw¡ 0 for w P p qwppwq, pwq,
where the inequality follows from the fact that V

pw is strictly concave on p qwppwq, pwq. Since gpw,Kq
is continuous in w (recalling that V

pw is continuously differentiable), for any K ¡ 0, there exists

a unique θ̄K P p qwppwq, pwq such that gpθ̄K ,Kq � 0. Hence, (29) holds if we define mK :� V 1
pwpθ̄

Kq.

Furthermore, by the implicit function theorem, we have

dθ̄K

dK
��

Bgpw,Kq

BK
Bgpw,Kq

Bw

�
1

Bgpw,Kq

Bw

¡ 0,

which implies that θ̄K is increasing in K. Since V 1
pwpwq is decreasing in w, we have mK � V 1

pwpθ̄
Kq is

decreasing in K. Finally, the limiting result limKÓ0 θ̄
K � qwppwq is implied by (EC.65).

EC.3.5. Proof of Proposition 3

Obviously, (22) holds since VIp0q � V∅p0q � v. Note that it has been shown in the proof of Propo-

sition 2 that pAIVIqpwq ¥ 0 for any w PR�. Hence, it remains to establish the second part of (20),

as well as (21), by considering the following three cases.

Case 1: w P r0, θ̄Kq. In this case, we have pA∅V∅qpwq � pρ� rqp1�mKqw ¥ 0, where we have

used the fact that mK ¤ 1, which follows from Lemma 4, the definition of K̄1 as in (K1), and the

condition that K ¥ K̄1. Besides, we have

V∅pwq �
�
1�

w

θ̄K

	
v�

w

θ̄K
� pV

pwpθ̄
Kq�Kq

¤
�
1�

w

θ̄K

	
V
pwp0q�

w

θ̄K
�V

pwpθ̄
Kq ¤ V

pwpwq � VIpwq,
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where the second inequality follows from the concavity of V
pw. Finally, we have

V∅pwq�VIpwq�K �mKw� v�K �V
pwpwq

� V
pwpθ̄

Kq�mK � pθ̄K �wq�V
pwpwq �

» θ̄K

w

�
V 1
pwpyq�m

K
�
dy¡ 0,

where the second equality follows from the first equality in (29), and the inequality follows from

the concavity of V
pw and mK � V 1

pwpθ̄
Kq.

Case 2: w P rθ̄K , pwq. First, we show that pA∅V∅qpwq ¥ 0 in this case. Note that V∅pwq � V
pwpwq�K

for w P rθ̄K , pwq. Hence, pA∅V∅qpwq ¥ 0 is equivalent to

f1pwq :� rpV
pwpwq�Kq� ρwV 1

pwpwq� pρ� rqw�Rµ¥ 0.

For w P r qwppwq, pws, it holds that pAIVpwqpwq � 0. That is,

f2pwq :� pµ� rqV
pwpwq�µVpwpw�βq� ρpw̄�wqV 1

pwpwq� pµR� cq� pρ� rqw� 0. (EC.66)

Recall that θ̄K P p qwppwq, pwq. Hence, it suffices to show that

f3pwq :� f2pwq� f1pwq � µ
�
V
pwpwq�V

pwpw�βq
�
� ρw̄V 1

pwpwq� rK �pR∆µ� cq   0

for w P rθ̄K , pwq.
It follows from (29) that f1pθ̄

Kq � pρ� rqθ̄Kp1�mKq ¡ 0. Hence, f3pθ̄
Kq   0. Hence, it is enough

to show that f 13pwq ¤ 0, or equivalently, µpV 1
pwpwq�V 1

pwpw�βqq� ρw̄V2
pwpwq ¤ 0, for w P rθ̄K , pwq.

Taking derivative with respect to w in (EC.66) yields

pµ� rqV 1
pwpwq�µV 1

pwpw�βq� ρpw̄�wqV2
pwpwq� ρV 1

pwpwq� ρ� r� 0

for w P r qwppwq, pws. Hence, for w P rθ̄K , pwq, we have

µ
�
V 1
pwpwq�V 1

pwpw�βq
�
� ρw̄V2

pwpwq � pρ� rqpV 1
pwpwq� 1q� ρwV2

pwpwq ¤ 0,

where the inequality follows from the fact that V 1
pwpθ̄

Kq �mK ¤ 1 and the concavity of V
pw. Hence,

we have pA∅V∅qpwq ¥ 0 for w P rθ̄K , pwq. Note that V∅pwq � VIpwq �K � 0. Therefore, (21) trivially

holds.

Case 3: w P rpw,8q. It is straightforward to see that pA∅V∅qpwq � rpV
pwppwq�Kq�pρ�rqw�Rµ¡

rv�Rµ� 0 and V∅pwq�VIpwq�K � 0.
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EC.3.6. Proof of Proposition 4

First, we show that under Condition 2 and K ¡ V̄ � v, functions VIpwq as defined in (31) and

V∅pwq � v satisfy the optimality condition (20)–(22). Note that the first inequality in Condition 2

implies w̄  β. If w P r0, w̄s, then we have

pAIVIqpwq � pµ� rqVIpwq�µVIpw�βq� ρpw̄�wqV
1
I pwq� pµR� cq� pρ� rqw

� pµ� rq
�
v�

V̄ � v

w̄
w
	
�µV̄ � ρpw̄�wq

V̄ � v

w̄
�pµR� cq� pρ� rqw

� pw̄�wq

�
V̄ � v

w̄
pρ� r�µq� pρ� rq

�
¥ 0.

Here, it is worth pointing out that although at w̄, VI is not differentiable, its left derivative exists

and is pV̄ � vq{w̄.

If w P pw̄,8q, then

pAIVIqpwq � pµ� rqV̄ �µV̄ �pµR� cq� pρ� rqw� pρ� rqpw� w̄q ¡ 0.

Combining the above two cases yields pAIVIqpwq ¥ 0 for any w P R�. Besides, for any w P R�,

pA∅V∅qpwq � pρ� rqw¥ 0. Hence, (20) holds.

It is straightforward to see that VIpwq�V∅pwq ¥ 0, and V∅pwq � v ¥ V̄ �K ¥ VIpwq�K. Hence,

(21) holds. Obviously, VIp0q � V∅p0q � v, implying (22).

Second, we show that under Condition 2 and K̄2   K ¤ V̄ � v, functions VIpwq and V∅pwq

as defined in (31) and (32), respectively, satisfy (20)–(22). According to the proof for the case

under Condition 2 and K ¡ V̄ � v, we have pAIVIqpwq ¥ 0 for any w P R�. Below, we show that

pA∅V∅qpwq ¥ 0 for all w PR�.

If w P r0, w̄s, then

pA∅V∅qpwq � rV∅pwq� ρwV
1
∅pwq� pρ� rqw�Rµ� pρ� rq

�
1�

V̄ � v�K

w̄

	
w¥ 0.

Here, we mention that although at w̄, V∅ is not differentiable, its left derivative exists and is

pV̄ � v�Kq{w̄.

If w P pw̄,8q, then we have

pA∅V∅qpwq � rV∅pwq� ρwV
1
∅pwq� pρ� rqw�Rµ

� rpV̄ �Kq� pρ� rqw�Rµ¡ rpV̄ �K � vq ¡ 0.

Therefore, (20) holds. Note that VIpwq�V∅pwq �K for w P rw̄,8q and VIpwq�V∅pwq �K{w̄ �w

for w P r0, w̄q. Hence, (21) holds. Besides, VIp0q � V∅p0q � v and thus (22) holds.
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EC.3.7. Proof of Lemma 5

The results stated in Lemma 5 hold in fact for any K P p0, K̄2q. Below, we will show this slightly

generalized version.

For any θ P r0, w̄s, it is straightforward to verify that functions

C1pθq :�
V̄ � v� w̄

r{ρ � θr{ρ�1rpρ{r� 1qθ� w̄s
and mpθq :�

pρ{r� 1qθ� V̄ � v

pρ{r� 1qθ� w̄
(EC.67)

satisfy (36) and (37), with θ replacing θK , C
1pθq replacing cK , and mpθq replacing mK . Moreover,

it follows from Condition 2 and K P p0, K̄2q that C
1pθq ¡ 0. Note that the denominator of C1pθq

is decreasing in θ, as its derivative with respect to θ is always negative when θ P p0, w̄q. Therefore,

C1pθq is increasing in θ on r0, w̄s. That mpθq is strictly decreasing in θ on r0, w̄s is straightforward.

We have the following result, which is stated as a lemma for the ease of reference. Its proof is

elementary and thus omitted.

Lemma EC.3. Under Condition 2 and K P p0, K̄2q, function ψ1pθq, defined by

ψ1pθq � V̄ � v� w̄�C1pθq � pw̄qr{ρ,

is continuous and decreasing in θ on r0, w̄s. Moreover, ψ1pw̄q � 0 and ψ1p0q � V̄ � v � w̄ ¡ K.

Consequently, there exists a unique number θK P p0, w̄q such that ψ1pθKq �K. Furthermore, θK is

decreasing in K with limKÓ0 θK � w̄.

Lemma EC.3 immediately implies that the triple pθK , cK ,mKq with cK �C1pθKq, mK �mpθKq

satisfies (36)–(38), which also states the monotonicity of θK in K. The monotonicity of cK and mK

in K follows from that of C1pθq and mpθq in θ.

Finally, we show that under Condition 2, K ¥K if and only if (35) holds. First, according to

the monotonicity of mK in K, (35) is equivalent to

K ¥ qK2, in which qK2 :� inf

"
K P p0,K2s

���� mK ¥
ρ� r

ρ� r�µ

*
. (EC.68)

Next, it follows from (EC.67) and limKÓ0 θK � w̄ that

lim
KÓ0

cK �
V̄ � v� w̄

w̄�r{ρ
and lim

KÓ0
mK � 1�

rpV̄ � v� w̄q

ρw̄
�
R∆µ� c

µβ
.

It is straightforward to verify that limKÓ0mK ¥ pρ� rq{pρ� r� µq if and only if R¥ R̄, where

R̄ is defined in (34). Hence, by the definition of qK2 and the monotonicity of mK in K, it is clear

that qK2 � 0 if and only if R¥ R̄.

If R  R̄, we have m
|K2
� pρ� rq{pρ� r�µq. Evaluating (EC.67) at θ� θ

|K2
gives

θ
|K2
�
V̄ � v�pρ� rq{pρ� r�µqw̄

µ{pρ� r�µq � pρ{r� 1q
and c

|K2
�

µ

ρ� r�µ

ρ

r
θ
|K2

1�r{ρ.
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Substituting these values into (38) with K � qK2, we obtain the following closed-form expression ofqK2:

qK2 � V̄ � v� w̄�
µ

ρ� r�µ

ρ

r

�
V̄ � v�pρ� rq{pρ� r�µq � w̄

µ{pρ� r�µq � pρ{r� 1q

�1�r{ρ

w̄r{ρ. (EC.69)

The proof is complete by verifying that K � qK2.

EC.3.8. Proof of Proposition 5

By the definition of contract Γ̄, it is clear that UpΓ̄q � V̄ � w̄�K � V∅pw̄q � w̄. Hence, it remains

to show that under Condition 2 and K P rK,K̄2q, functions VIpwq and V∅pwq as defined in (40) and

(39), respectively, satisfy the optimality condition (20)–(22).

Obviously, (22) holds as VIp0q � V∅p0q � v. We proceed to verify that VIpwq and V∅pwq satisfy

(20) and (21).

We show that pAIVIqpwq ¥ 0 for all w PR� by considering the following cases.

Case 1: w P rθK , w̄s. We have

pAIVIqpwq � pµ� rqpV̄ �mK � pw� w̄qq�µV̄ � ρpw̄�wq �mK �pµR� cq� pρ� rqw

� pw̄�wqrmK � pρ� r�µq� pρ� rqs ¥ 0.

Here, we mention that although at w̄, VI is not differentiable, its left derivative exists and is mK .

Case 2: w P r0, θKq. In this case, we have

pAIVIqpwq � pµ� rqVIpwq�µVIpw�βq� ρpw̄�wqV
1
I pwq� pµR� cq� pρ� rqw

� µVIpwq�µVIpw�βq� ρw̄V
1
I pwq�∆µ �R� c

� µ
�
v�w� cKw

r{ρ
�
�µV̄ �µβ

�
1� cKw

r{ρ�1r{ρ
�
�∆µ �R� c�: gIpwq,

where the second equality follows from A∅VI � 0 on r0, θKq, and the third equality follows from

β ¡ µβ{ρ� w̄ due to Condition 2.

Since VI is continuously differentiable on r0, w̄q, pAIVIqpwq is also continuous in w on r0, w̄q,

which implies that gIpθKq ¥ 0. Hence, it suffices to show that gIpwq is decreasing in w. Using

g1Ipwq � µ�µr{ρ � cKw
r{ρ�2

�
w�pr� ρq{ρ �β

�
, we have

g1IpθKq � µ�µr{ρ � cK � pθKq
r{ρ�2

�
θK �pr� ρq{ρ �β

�
� µ�µ �

mK � 1

θK
�
�
θK �pr� ρq{ρ �β

�
  µ�µ

�
ρ� r

ρ� r�µ
� 1


�
1�

pr� ρq �β

ρθK



  µ�µ

µ

ρ� r�µ

�
1�

pr� ρq �β

ρw̄



� 0,
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where the second equality follows from (37), the first inequality follows from (35) and the fact

that θK �pr� ρq{ρ � β   w̄�pr� ρq{ρ � β � pµ� r� ρq{ρ � β   0, and the last equality follows from

w̄� µβ{ρ. Besides, we have

g2I pwq � r{ρpr{ρ� 1q � cKw
r{ρ�3rµw� ρw̄pr{ρ� 2qs

¥ r{ρpr{ρ� 1q � cKw
r{ρ�3rµw̄� ρw̄pr{ρ� 2qs

� r{ρpr{ρ� 1q � cKw
r{ρ�3pµ� r� 2ρqw̄¡ 0,

where the last inequality follows from ρ¡ r�µ. Therefore, g1Ipwq   0 for w P r0, θKs.

Case 3: w P pw̄,8q. We have

pAIVIqpwq � pµ� rqV̄ �µV̄ �pµR� cq� pρ� rqw� pρ� rqpw� w̄q ¡ 0.

Combining the above three cases yields pAIVIqpwq ¥ 0 for any w PR�.

Next, we establish pA∅V∅qpwq ¥ 0 for all w PR�. Obviously, we have pA∅V∅qpwq � 0 for w P r0, w̄s.

(Again, although V∅ is not differentiable at w̄, its left derivative exists.) If w P pw̄,8q, then

pA∅V∅qpwq � rpV̄ �Kq� pρ� rqw�Rµ¡ rpV̄ �Kq�Rµ� rpV̄ �K � vq ¡ 0,

proving (20).

Below we establish (21). If w P r0, θKs, we have VIpwq � V∅pwq � 0, and if w P rw̄,8q, we have

VIpwq�V∅pwq �K. If w P pθK , w̄q, we have

V 1
I pwq�V

1
∅pwq �mK �V 1

∅pwq ¥mK �V 1
∅pθKq � 0,

which implies that VI� V∅ is increasing on rθK , w̄s. Consequently, we have 0¤ VIpwq � V∅pwq ¤K

for w P pθK , w̄q.

EC.3.9. Proof of Proposition 6

The proof of Proposition 6 is rather intricate, which takes a total of four key steps. These steps

illustrate how to identify thresholds ϑ̄ and ϑ in computation. Furthermore, these steps help us

establish θ0 in Proposition EC.1. As Condition 3 contains two cases, we consider these cases

separately below.

EC.3.9.1. Condition 1 and K   K̄1. In Step 1, fixing any θ, we identify bound ŵ and slope

c as functions of θ to satisfy (42) and (43).

Lemma EC.4. For any θ P p0, w̄q, there exist unique values rwpθq P pθ, w̄q and Cpθq, in place of

ŵ and c, respectively, such that value-matching and smooth-pasting conditions (42) and (43) are

satisfied at ϑ� θ.
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Proof. For any rw P rθ, w̄q, define

C1p rw,θq � pV
rwpθq� v� θqθ

�r{ρ and C2p rw,θq � ρ{r � pV 1
rwpθq� 1qθ1�r{ρ. (EC.70)

It follows from Lemma 2(iii) that C1p rw,θq is decreasing in rw and C2p rw,θq is increasing in rw on

rθ, w̄q. Note that

C1pθ, θq � pVθpθq� v� θqθ
�r{ρ

�

�
µR� c�pρ� rqθ

r
� v� θ



� θ�r{ρ ¡�

ρ

r
θ1�r{ρ �C2pθ, θq,

where the second and the third equalities follow from the boundary conditions at θ (see

Lemma EC.2), and the inequality follows from Assumption 1. Besides, Lemma EC.2(v) demon-

strates that C1p rw,θq Ñ �8 and C2p rw,θq Ñ 8 as rw Ò w̄. In view of Lemma EC.2(i), both

C1p rw,θq and C2p rw,θq are continuous in rw. Hence, there exists a unique rwpθq P pθ, w̄q such that

C1p rwpθq, θq � C2p rwpθq, θq. Let Cpθq :� C1p rwpθq, θq. Then, rwpθq and Cpθq satisfy (42)–(43), as

desired. �

Step 2 determines an interval to further identify θ.

Lemma EC.5. Value θ0 :� inftθ P p0, w̄q | rw1pθq ¥ 0u is well defined. Furthermore, we have thatrwpθq is decreasing and Cpθq is increasing for θ P p0, θ0q, with rw1pθ0q � 0. Moreover, Cpθq ¡ 0 for

any θ P p0, θ0q.

Proof. Define

hp rw,θq :� V
rwpθq� v� θ� ρ{r � pV 1

rwpθq� 1qθ. (EC.71)

By Lemma 2(iii), hp rw,θq is decreasing in rw. Besides, hp rwpθq, θq � 0. Note that hp rw,θq is continu-
ously differentiable in rw and θ by Lemma EC.2(i) and (ii). Hence, rwpθq is continuously differentiable

in θ.

Since hp rw,0q � V
rwp0q � v, we have rwp0q � pw ¡ 0. Besides, it follows from rwpθq P pθ, w̄q that

limθÒw̄ rwpθq � w̄¡ pw.
Write h1p rw,θq � Bhp rw,θq{B rw and h2p rw,θq � Bhp rw,θq{Bθ. Then, we have h1p rw,θq   0,

h2p rw,θq � ρ� r�pρ� rqV 1
rwpθq� ρθV2

rwpθq

r
, and rw1pθq ��

h2p rwpθq, θq
h1p rwpθq, θq .

It follows from K  K1 and Lemma 4 that mK � V 1
pwpθ̄

Kq ¡ 1, which implies that V 1
pwp0q ¡ 1 by

the concavity of V
pw. Therefore, we have h2p rwp0q,0q � pρ� r� pρ� rqV 1

pwp0qq{r   0, which in turn

gives rw1p0q   0. Therefore, rwpθq is strictly decreasing in θ when θ is near 0.
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It follows from limθÒw̄ rwpθq � w̄ ¡ pw � rwp0q and the continuity of rw1pθq in θ that value θ0 :�

inftθ P p0, w̄q | rw1pθq ¥ 0u is well defined, satisfying rw1pθq   0 for any θ P r0, θ0q and rw1pθ0q � 0.

Consequently, we have

ρ� r�pρ� rqV 1
rwpwqpwq� ρwV2

rwpwqpwq   0 for any w P r0, θ0q, and (EC.72)

ρ� r�pρ� rqV 1
rwpθ0qpθ

0q� ρθ0V2
rwpθ0qpθ

0q � 0. (EC.73)

Note that rwpθq is decreasing in θ on r0, θ0q. We claim that Cpθq is increasing in θ on r0, θ0q. In

fact, for any θ P p0, θ0q, we have

C 1pθq �C 1
1p rwpθq, θq � d

dθ

��
V
rwpθqpθq� v� θ

�
θ�r{ρ

�
�
�
V 1
rwpθqpθq� rw1pθq �

BV
rwpθqpθq

B rwpθq � 1
	
θ�r{ρ�

r

ρ

�
V
rwpθqpθq� v� θ

�
θ�r{ρ�1

� rw1pθq �
BV

rwpθqpθq

B rwpθq ¡ 0,

where the last equality follows from C1p rwpθq, θq � C2p rwpθq, θq, and the inequality follows fromrw1pθq   0 and BV
rwpwq{B rw  0 due to Lemma 2(iii).

Note that V 1
pwp0q ¡ 1. Hence, by the continuity of rwpθq in θ and Lemma EC.2(i) and (ii), there

exists a number ϵ¡ 0 such that V 1
rwpθqpθq ¡ 1 for any θ P p0, ϵq. Consequently, Cpθq �C2p rwpθq, θq ¡ 0

for any θ P p0, ϵq, which implies that Cpθq ¡ 0 for any θ P p0, θ0q by noting that Cpθq is strictly

increasing in θ on r0, θ0q. �

Next, in Step 3, we define the upper threshold θ̄ as a function of θ, such that smooth pasting

condition (45) is satisfied.

Lemma EC.6. We have:

piq for any θ P p0, θ0q, the threshold

θ̄pθq :� inf
 
w¡ θ | V 1

rwpθqpwq ¤ 1�Cpθqr{ρ �wr{ρ�1
(

(EC.74)

is well defined;

piiq as a function of θ, threshold θ̄pθq is decreasing and continuous in θ on r0, θ0q; and

piiiq limθÒθ0 θ̄pθq � θ0.

Proof. (i) Define Ψpw,θq � V 1
rwpθqpwq � 1� Cpθqr{ρ � wr{ρ�1. It follows from Lemma EC.5 and

Lemma 2(iii) that Ψpw,θq is decreasing in θ on p0, θ0q. Therefore, for any w P p0, θq, we have
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Ψpw,θq  Ψpw,wq � 0, which implies that θ� inftw¥ 0 |Ψpw,θq � 0u as Ψpθ, θq � 0. Moreover, we

have

BΨ

Bw
pθ, θq � V2

rwpθqpθq�Cpθqr{ρ � pr{ρ� 1qθr{ρ�2

� V2
rwpθqpθq�C2p rwpθq, θqr{ρ � pr{ρ� 1qθr{ρ�2

� V2
rwpθqpθq� ρ{r � pV 1

rwpθqpθq� 1qθ1�r{ρr{ρ � pr{ρ� 1qθr{ρ�2

� V2
rwpθqpθq� pV 1

rwpθqpθq� 1q � pr{ρ� 1q{θ

¡ 0,

where the last inequality follows from (EC.72). This implies that Ψpw,θq ¡ 0 for w P pθ, θ� ϵq with

some ϵ¡ 0. According to Lemma EC.2(i), Ψpw,θq is continuous in w. Besides, we have

Ψp rwpθq, θq � V 1
rwpθqp rwpθqq� p1�Cpθqr{ρ � rwpθqr{ρ�1q ��

�
1�Cpθqr{ρ � rwpθqr{ρ�1

�
  0

and Ψpθ, θq � 0. Hence, θ̄pθq � inftw¡ θ |Ψpw,θq ¤ 0u � inf
 
w¡ θ | V 1

rwpθqpwq ¤ 1�Cpθqr{ρ �wr{ρ�1
(

is well defined and satisfies θ̄pθq   rwpθq.
(ii) This follows immediately by noting that Ψpw,θq is decreasing in θ on r0, θ0q and is continuous

in w and θ.

(iii) According to (EC.73), we have BΨ
Bw
pθ0, θ0q � 0, which implies that Ψp�, θ0q attains its local

maximum at θ0. Hence, we have limθÒθ0 θ̄pθq � θ0 by using θ̄pθq ¥ θ. �

Finally, in Step 4, we find an appropriate ϑ to satisfy (44), and define pc, ŵ, ϑ̄q as

pCpϑq, rwpϑq, θ̄pϑqq. To this end, we define function

ψpθq :� V
rwpθqpθ̄pθqq�

�
v� θ̄pθq�Cpθq

�
θ̄pθq

�r{ρ �
. (EC.75)

In order to satisfy (44), we hope to identify the value ϑ such that ψpϑq �K, whose existence is

guaranteed by the following result.

Lemma EC.7. Function ψpθq is continuous and decreasing in θ on p0, θ0q, and satisfies

lim
θÒθ0

ψpθq � 0, and lim
θÓ0

ψpθq ¡K.

Consequently, there exists a unique number ϑ P p0, θ0q such that ψpϑq �K.

Proof. Note that

ψpθq �

» θ̄pθq

θ

rV 1
rwpθqpyq� p1�Cpθqr{ρ � yr{ρ�1qsdy�

» θ̄pθq

θ

Ψpy, θqdy.
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Fix any θ1   θ2 in p0, θ0q. We have

ψpθ1q �

» θ̄pθ1q

θ1
Ψpy, θ1qdy¡

» θ̄pθ2q

θ2
Ψpy, θ1qdy¡

» θ̄pθ2q

θ2
Ψpy, θ2qdy�ψpθ2q,

where the first inequality follows from Ψpy, θ1q ¡ 0 for y P
�
θ1, θ2

�
Y
�
θ̄pθ2q, θ̄pθ1q

�
, and the second

inequality uses the fact that Ψpy, θq is decreasing in θ on p0, θ0q. Hence, ψpθq is decreasing in θ on

p0, θ0q. The continuity of ψpθq follows from Lemma EC.2(i) and (ii).

Since limθÒθ0 θ̄pθq � θ0, we have limθÒθ0 ψpθq � 0. Note that rwp0q � pw and C2p rw,0q � 0 for anyrw P r0, w̄q. Hence, we have limθÓ0Cpθq � 0 and thus limθÓ0 θ̄pθq � inftw¡ 0 | V 1
pwpwq � 1u. This yields

lim
θÓ0

ψpθq �

» 8

0

pV 1
pwpyq� 1q�dy¡

» θ̄K

0

pV 1
pwpyq� 1qdy

� V
pwpθ̄

Kq� v� θ̄K �K �pmK � 1qθ̄K ¡K,

where the first inequality follows from the facts that V 1
pwpθ̄

Kq � mK ¡ 1 and that V 1
pw is non-

increasing, and the last inequality holds due to mK ¡ 1. Consequently, it follows from the

continuity of ψp�q that there exists a unique ϑ P p0, θ0q such that ψpϑq �K. �

According to these results, the quadruple pŵ, c, ϑ, ϑ̄q defined by ŵ� rwpϑq, c�Cpϑq and ϑ̄� θ̄pϑq

satisfies (42)–(45). Besides, it follows from θ̄pθq   rwpθq for θ P r0, θ0q that ϑ̄   ŵ, which further

implies ŵ � rwpϑq   rwp0q � pw by noting that rwpθq is decreasing in θ on r0, θ0q. To complete the

proof, we need to show that ϑ̄¡ qwpŵq. If it fails to hold, then we have V 1
ŵpϑq � V 1

ŵpϑ̄q � V 1
ŵp qwpŵqq.

On the other side, it follows from c¡ 0 and ϑ  ϑ̄ that V1
cpϑq ¡ V1

cpϑ̄q. This contradicts (43) and

(45).

EC.3.9.2. Condition 2 and K   K. Since most arguments are exactly the same as

those as in the previous case, we only provide a sketch here. To start, we observe that qθ :�

pV̄�vqpρ�r�µq�pρ�rqw̄

µpρ{r�1q
P p0, θKq satisfies mp

qθq � ρ�r
ρ�r�µ

by (EC.67). Moreover, we have

V̄ � v� w̄�C1pqθq � w̄r{ρ�1 ¡K (EC.76)

since ψ1pqθq ¡ψ1pθKq � 0.

Note that under Condition 2, qwp rwq � 0 by Lemma 2(i). Hence, we will use V
rw instead of V

rw

in the proof. Next, we will show the desired result by the following four lemmas, which parallel

Lemmas EC.4–EC.7 in Section EC.3.9.1.

Lemma EC.8. For any θ P pqθ, w̄q, there exists unique values rwpθq P pθ, w̄q and Cpθq, in place of

w̃ and c, such that (42)–(43) are satisfied at ϑ� θ.
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Proof. We will use functions C1p rw,θq and C2p rw,θq defined as in the proof of Lemma EC.4 to

obtain the desired result. In the proof of Lemma EC.4, we have established that C1p rw,θq Ñ �8

and C2p rw,θqÑ8 as rw Ò w̄ and thus

lim
rwÒw̄

C1p rw,θq   lim
rwÒw̄

C2p rw,θq (EC.77)

for any θ P p0, w̄q. Now, we claim that (EC.77) still holds under Condition 2 and K  K for any

θ P pqθ, w̄q. In fact, it follows from Lemma EC.2(vi) that

lim
rwÒw̄

C1p rw,θq � �
V̄ �

ρ� r

ρ� r�µ
w̄� v�

µ

ρ� r�µ
θ
	
θ�r{ρ and

lim
rwÒw̄

C2p rw,θq � ρ

r

µ

ρ� r�µ
� θ1�r{ρ.

It is clear that

lim
rwÒw̄C1p rw,θq

lim
rwÒw̄C2p rw,θq � V̄ � ρ�r

ρ�r�µ
w̄� v� µ

ρ�r�µ
θ

ρ
r

µ
ρ�r�µ

θ

is decreasing in θ and takes value 1 at qθ. Hence, (EC.77) holds for any θ P pqθ, w̄q. The remaining

argument is exactly the same as that for Lemma EC.4 and thus omitted. Moreover, we have the

following byproduct:

rwpqθq :� lim
θÓqθ

rwpθq � w̄ and Cpqθq � ρµ

rpρ� r�µq
pqθq1�r{ρ, (EC.78)

which will be used in the subsequent analysis. �

Lemma EC.9. Value θ0 :� inftθ P pqθ, w̄q | rw1pθ0q ¥ 0u is well defined. We have rwpθq is strictly

decreasing in θ, and Cpθq is strictly increasing in θ on pqθ, θ0q with rw1pθ0q � 0. Moreover, Cpθq ¡ 0

for any θ P pqθ, θ0q.
Proof. We only point out the differences between this proof and that of Lemma EC.5. First,

we show rw1pqθq   0 instead of rw1p0q   0. This holds by noting that h2p rwpqθq,qθq � lim
rwÒw̄ h2p rw,qθq �

pρ� r�pρ� rq � pρ� rq{pρ� r�µqq{r  0. Second, we use the result limθÒw̄ rwpθq � limθÓqθ rwpθq � w̄

instead of limθÒw̄ rwpθq � w̄ ¡ pw � rwp0q to establish the existence of θ0. Finally, we use V 1
rwpqθq

pqθq �
lim

rwÒw̄ V
1
rwp
qθq � pρ� rq{pρ� r� µq ¡ 1 to characterize the monotonicity of Cp�q near qθ, instead of

using V 1
pwp0q ¡ 1 to characterize the monotonicity of Cp�q near 0. �

Lemma EC.10. For any θ P pqθ, θ0q, the threshold θ̄pθq

θ̄pθq :� inf
 
w¡ θ | V 1

rwpθqpwq ¤ 1�Cpθqr{ρ �wr{ρ�1
(

is well defined. As a function of θ, threshold θ̄pθq is decreasing in θ on r0, θ0q, satisfying

limθÒθ0 θ̄pθq � θ0 and limθÓqθ θ̄pθq � w̄.
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Proof. The proof is the same as that for Lemma EC.6, with the range of θ changed from p0, θ0q

to pqθ, θ0q. One exception is that we need to show limθÓqθ θ̄pθq � w̄. To show this, we first note that

for any w P pqθ, w̄q, we have

lim
θÓqθ

Ψpw,θq � lim
rwÒw̄

!
V 1
rwpwq� 1�Cpqθq � r{ρ �wr{ρ�1

)
�

ρ� r

ρ� r�µ
� 1�

ρµ

rpρ� r�µq
pqθq1�r{ρ � r{ρ �wr{ρ�1

�
µ

ρ� r�µ

�
1�

�wqθ �r{ρ�1
�
¡ 0,

where the first equality follows from (EC.78) and Lemma EC.2(ii), and the second equality follows

from Lemma EC.2(vi). This inequality, together with θ̄pθq   rwpθq, yields that limθÓqθ θ̄pθq � w̄. �

Lemma EC.11. Function ψpθq, as defined in (EC.75), is continuous and decreasing in θ on

pqθ, θ0q, and satisfies

lim
θÒθ0

ψpθq � 0 and lim
θÓ0

ψpθq ¡K.

Consequently, there exists a unique value ϑ P pqθ, θ0q such that ψpϑq �K.

Proof. The proof is exactly the same as that for Lemma EC.7, with the range of θ changed

from p0, θ0q to pqθ, θ0q, except that we will show limθÓθ0 ψpθq ¡K rather than limθÓ0ψpθq ¡K. In

fact, we have

lim
θÓθ0

ψpθq � lim
rwÒw̄

V
rwpw̄q� rv� w̄�Cpqθq pw̄qr{ρs � V̄ � v� w̄�Cpqθq pw̄qr{ρ ¡K,

where the second equality uses Lemma EC.2(vi), and the inequality follows from (EC.76). �

Now we are ready to complete the proof of Proposition 6 under Condition 2 and K  K. Accord-

ing to Lemmas EC.8–EC.11, pŵ, c, ϑ, ϑ̄q defined by ŵ � rwpϑq, c � Cpϑq and ϑ̄ � θ̄pϑq satisfies

(42)–(45). Besides, it follows from θ̄pθq   rwpθq for θ P rqθ, θ0q that ϑ̄  ŵ, which implies ŵ� rwpϑq  rwpθ0q � w̄ by using that rwpθq is decreasing in θ on rqθ, θ0q.
EC.3.10. Proof of Proposition 7

We only consider the case in which Condition 1 and K   K̄1 hold, because the proof is the same

for the case in which Condition 2 and K  K hold.

First, we prove (48). Similar to the proof of Proposition 2, we apply Lemma 1 and Proposi-

tion EC.3 by verifying that (EC.47)–(EC.51) all hold.

Equality (EC.47) holds by noting that (i) ℓt � b1νt�µ; (ii) for any t¡ 0, Wt� P rϑ, ŵs if Et� � I

and pAIVIqpwq � 0 if w P rϑ, ŵs; and (iii) for any t¡ 0, Wt� P p0, ϑ̄s if Et� � 0 and pA∅V∅qpwq � 0 if

w P p0, ϑ̄s.
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Equality (EC.48) holds by noting that ∆Lt ¡ 0 only if Et� � 1 and Wt �HtdNt �Hq
t dQt ¡ ŵ,

as well as that VIpwq � VIpŵq for any w¥ ŵ.

Equality (EC.49) holds by noting that for any t¥ 0, (i) Et � 1�Et� � 1 only if Wt� P rϑ̄, ŵs and

VIpwq�V∅pwq �K if w P rϑ̄, ŵs; and (ii) Et � 1� Et� � 0 only if Wt� P p0, ϑs and V∅pwq�VIpwq � 0

if w P p0, ϑs.

Note that qt ¡ 0 only if qwpŵq ¡ 0, Wt� � qwpŵq and Et� � I. Hence, if qt ¡ 0, then we have

Hq
t �

�
V 1
Et�pWt�q� 1

�
�ϕpWt��H

q
t ,Et�q�ϕpWt�,Et�q

�p qwpŵq�ϑqV 1
ŵp qwpŵqq�Vŵpϑq�Vŵp qwpŵqq � 0,

where the last equality follows from Lemma 2(ii). Hence, (EC.50) holds.

Finally, (EC.51) holds by noting that (i) ifW0� ¤ ŵ, then ErϕpW0,E0�qs�ϕpW0�,E0�q�E∆L0 �

ϕpW0�,E0�q � ϕpW0�,E0�q � 0; and (ii) if W0� ¡ ŵ, then ErϕpW0,E0�qs � ϕpW0�,E0�q �E∆L0 �

ϕpŵ,E0�q�ϕpW0�,E0�q� pW0�� ŵq � 0.

Next, we show that functions VIpwq and V∅pwq as defined in (46) satisfy the optimality condition

(20)–(22). First, (22) holds by noting that VIp0q � V∅p0q � v. To verify (20) and (21), we consider

the following three cases separately: w P r0, ϑq, w P rϑ, ŵq, and w P rŵ,8q. We will study the case

of w P rϑ, ŵq before w P r0, ϑq.

Case 1: w P rϑ, ŵq. First, we prove that

pAIVIqpwq ¥ 0 on rϑ, ŵq. (EC.79)

Obviously, we have pAIVIqpwq � 0 for w P r qwpŵq, ŵq. It remains to show that (EC.79) holds for

w P rϑ, qwpŵqq if ϑ  qwpŵq   ŵ. For w P rϑ, qwpŵqq, function Vŵ is linear and thus we have

pAIVIqpwq � pµ� rqVŵpwq�µVŵpw�βq� ρpw̄�wqV 1
ŵp qwpŵqq� pµR� cq� pρ� rqw

�: gIpwq.

Note that

g1Ipwq � pµ� rqV 1
ŵp qwpŵqq�µV 1

ŵpw�βq� ρV 1
ŵp qwpŵqq� ρ� r

� pρ� rq
�
1�V 1

ŵp qwpŵqq��µ�V 1
ŵp qwpŵqq�V 1

ŵpw�βq
�

¤ pρ� rq
�
1�V 1

ŵp qwpŵqq��µ�V 1
ŵp qwpŵqq�V 1

ŵp qwpŵq�βq�� 0,

where the inequality uses the concavity of Vŵ and the last equality uses

0� ρpw̄� qwpŵqqV2
ŵp qwpŵqq � pρ� rq

�
V 1
ŵp qwpŵqq� 1

�
�µ

�
V 1
ŵp qwpŵq�βq�V 1

ŵp qwpŵqq�.
Consequently, gIpwq ¥ 0 for all w P rϑ, qwpŵqq, which yields (EC.79). Note that pA∅V∅qpwq � 0 if

w P rϑ, ϑ̄s. Hence, (20) holds by the following result, whose proof is relegated to Section EC.3.11.
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Lemma EC.12. Under the conditions stated in Proposition 7, we have pA∅V∅qpwq ¥ 0 for w P

rϑ̄, ŵq.

If w P rϑ̄, ŵq, then VIpwq � V∅pwq �K ¡ 0. To establish (21), we need to show that 0¤ VIpwq �

V∅pwq ¤K if w P rϑ, ϑ̄s.

Let Φpwq :� VIpwq�V∅pwq and χpwq :� V 1
ŵpwq� 1� c � r{ρ �wr{ρ�1. Obviously, we have Φpϑq � 0

and χpϑq � χpϑ̄q � 0. It follows from the proof of Lemma EC.6(i) that Φ1pwq � χpwq ¡ 0 for any

w P pϑ, ϑ̄q. Hence, for any w P rϑ, ϑ̄q, we have Φpwq ¥Φpϑq � 0 and Φpwq ¤Φpϑ̄q �K.

Case 2: w P r0, ϑq. We claim that:

Lemma EC.13. Under the conditions stated in Proposition 7, we have pAIVIqpwq ¥ 0 for w P

r0, ϑq.

Its proof is rather involved, which is relegated to Section EC.3.12. Obviously, we have pA∅V∅qpwq � 0

on r0, ϑq. Hence, (20) holds. Inequality (21) also holds by noting that VIpwq � V∅pwq in this case.

Case 3: w P rŵ,8q. Using the boundary condition Vŵpŵq � pµR� c�pρ� rqŵq{r, we have

pAIVIqpwq � rVŵpŵq� pµR� cq� pρ� rqw� pρ� rqpw� ŵq ¥ 0,

and

pA∅V∅qpwq � rpVŵpŵq�Kq� pρ� rqw�Rµ

� µR� c�pρ� rqŵ�pρ� rqw�Rµ� rK

�R∆µ� c�pρ� rqpw� ŵq� rK ¥ 0,

where the last inequality follows as K   V̄ ppwq � v � pµR� c� pρ� rqpwq{r�Rµ{r   pR∆µ� cq{r.

Hence, (20) holds. Inequality (21) also holds since VIpwq�V∅pwq �K.

EC.3.11. Proof of Lemma EC.12

For w P rϑ̄, ŵq, it holds that V∅pwq � Vŵpwq�K. Define ϖ0 :� inftw¡ 0 | V 1
pwpwq � 1u, which is well

defined by noting that V 1
pwp0q ¡ 1 and V 1

pwppwq � 0. For any w P rϖ0, ŵs, let

pA∅V∅qpwq � rpVŵpwq�Kq� ρwV 1
ŵpwq� pρ� rqw�µR�: g∅pwq.

It follows from Lemma 2(iii) and ŵ  pw that V 1
ŵpwq   V 1

pwpwq and Vŵpwq ¡ V
pwpwq for w P r0, ŵs.

Hence, for w P rϖ0, ŵs, we have

g1∅pwq � rV 1
ŵpwq� ρV 1

ŵpwq� ρwV2
ŵpwq� ρ� r� pρ� rq

�
1�V 1

ŵpwq
�
� ρwV2

ŵpwq ¥ 0,
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where the last inequality follows from the fact that V 1
ŵpwq ¤ V 1

pwpwq ¤ 1 for w¥ϖ0 and the concavity

of Vŵ. In addition, we have

g∅pϖ0q ¡ rpVŵpϖ0q�Kq� ρϖ0�pρ� rqϖ0�µR

¡ rpv�ϖ0�K �Kq� ρϖ0�pρ� rqϖ0�µR� 0,

where the first inequality uses V 1
ŵpϖ0q   V 1

pwpϖ0q � 1, and the second inequality follows from the

fact that Vŵpϖ0q ¡ V
pwpϖ0q ¡ v�ϖ0�K (the last inequality holds because of mK ¡ 1). As a result,

we have pA∅V∅qpwq ¥ 0 for all w P rϖ0, ŵs.

Next, we prove that pA∅V∅qpwq ¥ 0 for w P rϑ̄,ϖ0q by a contradictory argument.

Suppose, to the contradictory, that there exists a number ϖ P pϑ̄,ϖ0q such that pA∅V∅qpϖq   0.

Then, we have pA∅V∅qpϖq � rpVŵpϖq�Kq� ρϖ �V 1
ŵpϖq� pρ� rqϖ�µR  0, and thus

V 1
ŵpϖq ¡

pρ� rqϖ� r
�
Vŵpϖq�K � v

�
ρϖ

. (EC.80)

It follows from (EC.74) that limθÓ0 θ̄pθq � inftw ¡ 0 | V 1
pwpwq � 1u �ϖ0. Note that ϖ ¡ ϑ̄� θ̄pϑq

and ϖ  ϖ0. Hence, it follows from Lemma EC.6 that there exists a number θ1 P p0, ϑq such that

θ̄pθ1q �ϖ. Using Lemmas EC.5 and EC.7, we have rwpθ1q ¡ rwpϑq � ŵ, Cpθ1q  Cpϑq � c, and

ψpθ1q � V
rwpθ1qpϖq�

�
v�ϖ�Cpθ1qϖr{ρ

�
¡ψpϑq �K. (EC.81)

Moreover, according to 2(iii), we have

Vŵpϖq ¡ V
rwpθ1qpϖq and V 1

ŵpϖq   V 1
rwpθ1qpϖq. (EC.82)

Consequently,

V 1
ŵpϖq ¡

pρ� rqϖ� r
�
V
pwpθ1qpϖq�K � v

�
ρϖ

¡
pρ� rqϖ� r �

�
pv�ϖ�Cpθ1qϖr{ρq� v

�
ρϖ

� 1� r{ρ �Cpθ1qϖr{ρ�1 � V 1
rwpθ1qpϖq,

where the first inequality uses (EC.80) and (EC.82), the second inequality uses (EC.81), and the

last equality follows from ϖ � θ̄pθ1q and the definition of θ̄p�q. This reaches a contradiction with

(EC.82).
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EC.3.12. Proof of Lemma EC.13

The proof of Lemma EC.13 is probably the most complex proof in the paper. As mentioned in

the paragraph below Proposition 7, the key step is to establish Lemma EC.16 below, which states

that either AIVI’s first-order derivative is negative, or its second-order derivative is positive on

p0, ϑq. This crucial result is obtained by studying a total of four cases, which are summarized as

Lemmas EC.17–EC.20.

Following from VIpwq � v�w� cwr{ρ for w P r0, ϑs and

pAIf �A∅fqpwq � µpfpwq� fpw�βqq� ρw̄f 1pwq� pR∆µ� cq,

we define

gIpwq :� pAIVIqpwq � µpVIpwq�VIpw�βqq� ρw̄V
1
I pwq� pR∆µ� cq

� µ
�
v�w� cwr{ρ�VIpw�βq

�
� ρw̄p1� cr{ρ �wr{ρ�1q� pR∆µ� cq

for w¡ 0.

Using the same argument as that in Lemma EC.2(i) and by the definition of V
rw as stated in

Lemma 2(ii), we can obtain the following result. Its proof is omitted for brevity.

Lemma EC.14. For any rw P p0, w̄q, we have V
rw P C1pR�q X C2pR�zt rwuq X C3pR�zt rw, rw �

β, qwp rwquqXC4pR�zt rw, rw�β, rw� 2β, qwp rwquq.
By the definition of VI as in (46) and the smooth-pasting condition at ϑ, VI is differentiable at ϑ,

but may not be twice differentiable at ϑ. Therefore, VI PC
1pR��qXC

2pR��ztŵ, ϑuq, which implies

that gI P C
1pR��q XC2pR��ztŵ� β,ϑ� βuq. (Here, we use R�� to denote the set of all positive

numbers.) Besides, it holds that

g1Ipwq � µ
�
1� cr{ρ �wr{ρ�1�V 1

I pw�βq
�
� ρw̄ � cr{ρ � pr{ρ� 1qwr{ρ�2 and (EC.83)

g2I pwq � cr{ρ � pr{ρ� 1qwr{ρ�3rµw� ρw̄pr{ρ� 2qs�µV 2
I pw�βq. (EC.84)

Here, g2I may not exist at ŵ� β and ϑ� β. In this case, we follow the convention to use g2I to

represent the left-second-order derivative of the function g2I at such a point. Similarly, we also use

V3
rw pwq and V4

rw pwq to represent the left-third-order derivative and the left-fourth-order derivative

of the function V
rw at w (if needed) in the subsequent analysis.

Lemma EC.13 is equivalent to gIpwq ¥ 0 for w P p0, ϑs. From (EC.79) at ϑ, we have gIpϑq ¥ 0.

Moreover, the following holds.

Lemma EC.15. We have g1Ipϑq   0.
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Proof. First, we consider the case that ϑ¤ qwpŵq. Evaluating (EC.54) at qwpŵq (with ŵ replacingrw) yields
pµ� rqV 1

ŵp qwpŵqq�µV 1
ŵp qwpŵq�βq� ρpw̄� qwpŵqqV 2

ŵp qwpŵqq� ρV 1
ŵp qwpŵqq� ρ� r� 0.

Clearly, V 2
ŵp qwpŵqq � 0. Since ϑ¤ qwpŵq, we have V 1

ŵp qwpŵqq � V 1
ŵpϑq � V1

cpϑq � 1� cr{ρ � ϑr{ρ�1,

which, together with the above expression, implies that

V 1
I pϑ�βq � V 1

ŵpϑ�βq ¥ V 1
ŵp qwpŵq�βq � V 1

ŵp qwpŵq�βq
�
�
pµ� r� ρqp1� cr{ρ �ϑr{ρ�1q� ρ� r

�
{µ.

In the above, the first inequality follows from the convexity of Vŵ and the fact that ϑ ¤ qwpŵq.
Substituting the above inequality into (EC.83) at ϑ yields

g1Ipϑq ¤ pρ� rqcr{ρ �ϑr{ρ�1� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2 � pρ� rqcr{ρ �ϑr{ρ�2pϑ� w̄q   0.

Next, we consider the case that ϑ¡ qwpŵq. Evaluating (EC.54) at ϑ gives

pµ� rqV 1
ŵpϑq�µV

1
ŵpϑ�βq� ρpw̄�ϑqV

2
ŵpϑq� ρV

1
ŵpϑq� ρ� r� 0.

Note that V 1
ŵpϑq � 1� cr{ρ �ϑr{ρ�1 and V 1

I pϑ�βq � V 1
ŵpϑ�βq. Hence, we have

g1Ipϑq � µ
�
1� cr{ρ �ϑr{ρ�1�V 1

I pϑ�βq
�
� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2

� pρ� rqcr{ρ �ϑr{ρ�1� ρpw̄�ϑqV 2
ŵpϑq� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2

  pρ� rqcr{ρ �ϑr{ρ�1�
pw̄�ϑqpρ� rqp1�V 1

ŵpϑqq

ϑ
� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2

� pρ� rqcr{ρ �ϑr{ρ�1�
pw̄�ϑqpρ� rqcr{ρ �ϑr{ρ�1

ϑ
� ρw̄ � cr{ρ � pr{ρ� 1qϑr{ρ�2

� 0,

where the inequality follows from (EC.72) at ϑ and ŵ� rwpϑq. �

Next, we show the following crucial result.

Lemma EC.16. For any w P p0, ϑq, we have either g1Ipwq ¤ 0 or g2I pwq ¥ 0.

The above result, combining with Lemma EC.15, yields that g1Ipwq ¤ 0 for any w P p0, ϑs,

which immediately concludes the result stated in Lemma EC.13. In fact, if it fails to hold, w: :�

suptw P p0, ϑq | g1Ipwq ¡ 0u is well defined, which further implies that g2I pw
:q   0. This contradicts

Lemma EC.16.

Lemma EC.16 follows immediately from Lemmas EC.17–EC.20 below.
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Lemma EC.17. For any w P r0, ϑ̄�βs, we have g1Ipwq   0.

Lemma EC.18. For any w P pϑ̄�β,ϑq such that V3
ŵpw�βq ¤ 0, we have g2I pwq ¡ 0.

Lemma EC.19. For any w P
�
0, p2� r{ρqβ^ϑ

�
, we have g2I pwq ¥ 0.

Lemma EC.20. For any w P rp1� r{ρqβ,ϑq such that V3
ŵpw�βq ¡ 0, we have g1Ipwq ¤ 0.

In the proofs of Lemmas EC.18 and EC.20, we also need the following technical result.

Lemma EC.21. For any rw P r0, w̄q, the following results hold:

piq If 2ρ  r�µ, then there exists a number ς P r qwp rwq, rwq, such that V3
rw ¡ 0 on pς, rwq and V3

rw   0

on p qwp rwq, ςs;
piiq Otherwise, V3

rw ¤ 0 on p qwp rwq, rwq.
The remaining part of this subsection is devoted to the proofs of Lemmas EC.17–EC.21. To

proceed, we need some preliminary results of Vc. Using the explicit expression of Vc in (24), we

obtain that Vc is strictly concave on R��, i.e., V
2
c   0 on R��,

V3
c pwq � cr{ρ � pr{ρ� 1qpr{ρ� 2qwr{ρ�3 ¡ 0 and (EC.85)

V4
c pwq � cr{ρ � pr{ρ� 1qpr{ρ� 2qpr{ρ� 3qwr{ρ�4   0 (EC.86)

for all w PR��. Hence, V1
c is strictly convex and V2

c is strictly concave, which further implies that

�
V1

cpwq�V1
cpw�βq

�
�βV2

c pwq   0 and (EC.87)�
V2

c pwq�V2
c pw�βq

�
�βV3

c pwq ¡ 0 (EC.88)

for any w PR��.

Proof of Lemma EC.17. Using VIpwq �Vcpwq for w P r0, ϑs, we have

g1Ipwq � µ
�
V 1
I pwq�V

1
I pw�βq

�
�µβV2

c pwq ¤ µ
�
V1

cpwq�V1
cpw�βq

�
�µβV2

c pwq   0,

where the first inequality uses V 1
I pw � βq ¥ V1

cpw � βq because of w � β ¤ ϑ̄ and (EC.74) with

ϑ̄� θ̄pϑq, and the second inequality follows from (EC.87). �

Proof of Lemma EC.18. Define ϕpwq :� V 1
ŵpwq � V1

cpwq. Since ϑ̄ � inftw ¡ ϑ | ϕpwq � 0u and

ϕ ¡ 0 over pϑ, ϑ̄q, we have ϕ1pϑ̄q ¤ 0. It follows from V3
ŵpw � βq ¤ 0 and Lemma EC.21 with rw

replaced by ŵ that V3
ŵ   0 on p qwpŵq,w�βq.
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For any w P pϑ̄�β,ϑq, we have

g2I pwq � µ
�
V2

c pwq�V
2
I pw�βq

�
�µβV3

c pwq

� µ
�
V2

c pwq�V2
ŵpw�βq

�
�µβV3

c pwq

� µ
�
pV2

c pwq�V2
c pw�βqq�βV

3
c pwq

�
�µ

�
V2

c pw�βq�V2
ŵpw�βq

�
¡ µ

�
V2

c pw�βq�V2
ŵpw�βq

�
� µ

�
V2

c pϑ̄q�V2
ŵpϑ̄q

�
�µ

» w�β

ϑ̄

�
V3

c pyq�V3
ŵpyq

�
dy

¡ 0,

where the first inequality uses (EC.88), and the last inequality follows from V2
c pϑ̄q � V2

ŵpϑ̄q �

�ϕ1pϑ̄q ¥ 0, w�β ¡ ϑ̄, V3
c ¡ 0 (see (EC.85)) and V3

ŵ   0 on p qwpŵq,w�βq. �

Proof of Lemma EC.19. According to (EC.84), we have

g2I pwq � cr{ρ � pr{ρ� 1qwr{ρ�3µrw�βpr{ρ� 2qs�µV 2
I pw�βq

¥�µV 2
I pw�βq ¥ 0,

where the first inequality follows from w ¤ p2 � r{ρqβ and the last inequality follows from the

concavity of VI. �

Proof of Lemma EC.20. Suppose, to the contradictory, that there exists a w: P rp1� r{ρqβ,ϑq

such that V3
ŵpw

:� βq ¡ 0 and g1Ipw
:q ¡ 0. According to Lemma EC.15, there must exist a number

w; P pw:, ϑq such that

g1Ipw
;q � 0 and g2I pw

;q ¤ 0. (EC.89)

First, we claim that w;�β   ŵ. Otherwise, we have V 1
I pw

;�βq � V 1
ŵpw

;�βq � 0 and thus

g1Ipw
;q � µ� cr{ρ � pw;qr{ρ�2µ

�
w;�βp1� r{ρq

�
¡ µ¡ 0,

where the first inequality holds as w; ¡w: ¥ p1� r{ρqβ, leading to a contradiction.

Hence, by Lemma EC.21, we have V3
ŵpw

; � βq ¡ 0. Furthermore, evaluating (EC.54) at w; � β

(with ŵ replacing rw) gives
pµ� rqV 1

ŵpw
;�βq�µV 1

ŵpw
;� 2βq� ρpw̄�w;�βqV2

ŵpw
;�βq� ρV 1

ŵpw
;�βq� ρ� r� 0.

Since V3
ŵpw

; � βq ¡ 0, we have V3
ŵ ¡ 0 on rw; � β, ŵq by Lemma EC.21. That is, V 1

ŵ is strictly

convex on rw;�β, ŵq, which, together with the concavity of Vŵ, yields that

V 1
ŵpw

;� 2βq�V 1
ŵpw

;�βq � V 1
ŵ

�
pw;� 2βq^ ŵ

�
�V 1

ŵpw
;�βq

¡
�
β^pŵ�w;�βq

�
�V2

ŵpw
;�βq ¥ βV2

ŵpw
;�βq.
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Therefore, we have

ρpw̄�w;�βqV2
ŵpw

;�βq � pρ� rq
�
V 1
ŵpw

;�βq� 1
�
�µ

�
V 1
ŵpw

;� 2βq�V 1
ŵpw

;�βq
�

¡ pρ� rq
�
V 1
ŵpw

;�βq� 1
�
�µβV2

ŵpw
;�βq,

which, along with ρw̄� µβ, can be rewritten as

pρ� rq
�
1�V 1

ŵpw
;�βq

�
¡ ρpw;�βqV2

ŵpw
;�βq. (EC.90)

Since g1Ipw
;q � 0, using (EC.83) we have

1�V 1
ŵpw

;�βq ��cr{ρ � pw;qr{ρ�2
�
w;�p1� r{ρqβ

�
. (EC.91)

Evaluating (EC.84) at w; yields

g2I pw
;q{µ� cr{ρ � pr{ρ� 1qpw;qr{ρ�3rw;�βpr{ρ� 2qs�V2

ŵpw
;�βq

�
pρ� rqp1�V 1

ŵpw
;�βqq

w;�p1� r{ρqβ
�
w;�βpr{ρ� 2q

ρw;
�V2

ŵpw
;�βq

¡

�
ρpw;�βqrw;�βpr{ρ� 2qs

pw;�p1� r{ρqβq � ρw;
� 1

�
V2
ŵpw

;�βq

��
p2ρ� rqβ2

pw;�p1� r{ρqβq � ρw;
V2
ŵpw

;�βq ¡ 0,

where the second equality follows from (EC.91), and the first inequality follows from (EC.90) and

uses the fact that w; ¡w: ¥ p1� r{ρqβ. This reaches a contradiction with (EC.89). �

Proof of Lemma EC.21. According to (EC.52) and the definition of V
rw, we have

V3
rw pwq ��

pρ� rqp2ρ� r�µq

ρ2
pw̄� rwq ρ�r�µ

ρ pw̄�wq
�3ρ�r�µ

ρ �: ζpwq (EC.92)

for w P
�
p rw�βq�_ qwp rwq, rw�.

In the case of p rw � βq� ¤ qwp rwq, then the result stated in the lemma holds, with ς � qwp rwq if

2ρ  r�µ. Below, we consider the case of p rw�βq� ¡ qwp rwq, or equivalently, rw�β ¡ qwp rwq.
Besides, for w P p qwp rwq, rwq, we have

ρpw̄�wqV3
rw pwq � µ

�
V2
rwpw�βq�V2

rwpwq
�
�p2ρ� rqV2

rwpwq, (EC.93)

and thus

ρpw̄�wqV4
rw pwq � µ

�
V3
rw pw�βq�V3

rw pwq
�
�p3ρ� rqV3

rw pwq. (EC.94)

By Lemma EC.14, V3
rw may not exist at rw � β. In fact, by (EC.92), we have V3

rw pp rw � βq�q �

ζp rw � βq. Evaluating (EC.93) at p rw � βq� (to be precise, we consider an increasing sequence of
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twnunPN near rw�β which tends to rw�β from below, evaluate (EC.93) at these wn’s and then let

nÑ8), we obtain

ρpw̄� rw�βqV3
rw p rw�βq � µ

�
V2
rwp rw�q�V2

rwp rw�βq��p2ρ� rqV2
rwp rw�βq.

In the above, as mentioned earlier, we adopt the convention to use V3
rw p rw� βq to denote the left-

third-order derivative of function V
rw at rw�β.

In a similar vein, evaluating (EC.93) at p rw�βq� yields

ρpw̄� rw�βqV3
rw

�
p rw�βq� �

� µ
�
V2
rwp rw�q�V2

rwp rw�βq��p2ρ� rqV2
rwp rw�βq.

Combining the above two equations and using V2
rwp rw�q� 0, we have

V3
rw p rw�βq � V3

rw

�
p rw�βq� �

�
µV2

rwp rw�q
ρpw̄� rw�βq

� ζp rw�βq� pρ� rqµ

ρ2pw̄� rw�βqpw̄� rwq   ζp rw�βq. (EC.95)

We break the proof of the lemma into two cases.

(i) Suppose that 2ρ   r � µ, in which case (EC.92) implies that V3
rw ¡ 0 on p rw � β, rwq. From

(EC.95), V3
rw p rw�βq may not be larger than 0, and thus we consider the following two cases.

Case 1: V3
rw p rw�βq ¡ 0. Let w1 :� suptw P p qwp rwq, rw�βq | V3

rw pwq ¤ 0u. If the set is empty, we have

V3
rw ¡ 0 on p qwp rwq, rwq. Therefore, the result stated in (i) is obtained by letting ς � qwp rwq.
If the above set is nonempty, then qwp rwq   w1   rw� β. Since V

rw P C
3pp qwp rwq, rw� βqq, we have

V3
rw exists on p qwp rwq, rw�βq. In addition, V3

rw pw1q � 0 and V3
rw ¡ 0 on pw1, rwq. Now, we prove that

V3
rw   0 on p qwp rwq,w1q. (EC.96)

Evaluating (EC.94) at w1 and using V3
rw pw1q � 0, we obtain ρpw̄�w1qV4

rw pw1q � µV3
rw pw1�βq ¡ 0

(here if w1 � rw� 2β, the left derivatives are used), which implies that V3
rw   0 on pw1 � ϵ,w1q for

some ϵ¡ 0.

If (EC.96) fails to hold, then w2 :� suptw P p qwp rwq,w1q | V3
rw pwq ¥ 0u is well defined and w2 P

p qwp rwq,w1q. Hence, we have V3
rw pw2q � 0 and V4

rw pw2�q   0. Evaluating (EC.94) at w2� yields

ρpw̄ � w2qV4
rw pw2�q � µV3

rw ppw2�βq�q, implying that V3
rw ppw2�βq�q   0. If w2 � rw � 2β, then

V3
rw ppw2�βq�q � ζp rw�βq ¡ 0, a contradiction. Otherwise, V3

rw exists at w2�β, and thus V3
rw pw2�

βq   0. By the definition of w1, we have w2 � β   w1. Hence, V3
rw   0 on pw2,w2 � βs and thus

V2
rwpw2�βq   V2

rwpw2q. Evaluating (EC.93) at w2, together with V3
rw pw2q � 0, yields

µV2
rwpw2�βq � pµ� r� 2ρqV2

rwpw2q   µV2
rwpw2q,
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which gives V2
rwpw2q ¡ 0. This makes a contradiction with the concavity of V

rw. Hence, (EC.96)

holds, indicating that the result stated in (i) is obtained by letting ς �w1.

Case 2: V3
rw p rw�βq ¤ 0. We show that

V3
rw   0 on p qwp rwq, rw�βq. (EC.97)

If V3
rw p rw � βq � 0, then by evaluating (EC.94) at p rw � βq� and using V3

rw p rwq � ζp rwq ¡ 0, we

obtain that V4
rw p rw � βq ¡ 0. (Again, the left derivatives are used.) Hence, we have V3

rw   0 on

p rw � β � ϵ, rw � βq for some ϵ ¡ 0. If, on the other side, V3
rw p rw � βq   0, then the assertion that

V3
rw   0 on p rw�β� ϵ, rw�βq for some ϵ¡ 0 still holds by Lemma EC.14.

If (EC.97) fails to hold, then w3 :� suptw P r qwp rwq, rw�βq | V3
rw pwq ¥ 0u is well defined, satisfying

w3 P r qwp rwq, rw � βq. Moreover, we have V3
rw pw3q � 0 and V4

rw pw3�q   0. With exactly the same

argument as that in the previous case for treating w2, a contradiction can be reached. Therefore,

(EC.97) holds. The result stated in (i) is obtained by using (EC.92) and letting ς � rw�β.
(ii) Next, we turn to study the case that 2ρ¥ r� µ. In this case, (EC.92) implies that V3

rw ¤ 0

over p rw� β, rwq. Hence, we must have V3
rw p rw� βq   0 in view of (EC.95). Therefore, the argument

for the second case above is valid, which leads us to the desired result. �

EC.4. Proofs of the Results in Sections 5
EC.4.1. Proof of Proposition 8

We only consider the case in which both Condition 1 and K   K̄1 hold, since the case in which both

Condition 2 and K  K hold can be treated similarly. It follows from Lemma EC.7 that ψpϑq �K

with ψ being decreasing on p0, θ0q. Therefore, ϑ is decreasing in K. Recalling ϑ̄� θ̄pϑq and using

Lemma EC.6(ii), we obtain that ϑ̄� θ̄pϑq is increasing in K.

For the last assertion, we first note that under Condition 1 and K̄1 ¡ 0, limθÒθ0 ψpθq � 0 by

Lemma EC.7, which implies limKÓ0 ϑ� θ0. Then, using Lemma EC.6(iii), we obtain limKÓ0 ϑ̄� θ0.

Under Condition 2 and K ¡ 0, we also have limKÓ0 ϑ� θ0 � limKÓ0 ϑ̄, by a similar argument and

Lemmas EC.9 and EC.11. Hence, the desired result holds with θ0 � θ0.

EC.4.2. Proof of Theorem 6

First, we consider the case in which Condition 1 and K̄1 ¡ 0 hold. It follows from Proposition 8

that limKÓ0 ϑ� limKÓ0 ϑ̄� θ0. Recall from the proof of Proposition 6 that ŵ� rwpϑq and c�Cpϑq.

Hence, we have limKÓ0 ŵ � limKÓ0 rwpϑq � rwpθ0q and limKÓ0 c � limKÓ0Cpϑq � Cpθ0q. The result

(50) is obtained by setting θ0 � θ0, ŵ0 � rwpθ0q, and c0 � Cpθ0q. Moreover, Vŵ and Vc converge

uniformly to Vŵ0
and Vc0 , respectively, as K approaches 0. Consequently, both value functions as

defined in (46) converge to Vθ0 uniformly as K approaches 0. Using Proposition 7 and sending K



e-companion to Cao, Sun, and Tian: Punish Underperformance with Suspension ec51

to zero, we conclude that functions VI � V∅ �Vθ0 satisfy the optimality conditions (20)–(22) for

K � 0.

The argument for the case in which Condition 2 and K ¡ 0 hold is exactly the same, and thus

is omitted.
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