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This paper studies a mechanism design problem for a single-server queue in which customers are served

in a first-come-first-serve (FCFS) manner. Customers are heterogeneous and have private information on

their valuations for immediate service and wait time sensitivity. Namely, impatient (patient, respectively)

customers are more (less, respectively) sensitive to waiting and value immediate service higher (lower, respec-

tively). The service provider designs a history-dependent menu such that each menu item consists of a price

and a release time for each type of arriving customer, aiming to maximize the long-run average revenue rate.

We demonstrate that the optimal menu depends on history only through the system completion time, and

includes four strategies: delaying patient customers, pooling all customers, screening customers (serving one

type and rejecting the other), and rejecting all customers. In particular, we show that it is optimal for the

provider to strategically delay the release time of a patient customer beyond the service completion time if

and only if the completion time is shorter than a threshold. The delay in the release time allows the provider

to charge a premium on the impatient customers and thus increase revenue. Interestingly, the delayed release

time is set to a fixed value, regardless of the exact completion time state, which makes the mechanism easy

to implement. Additionally, the decision to serve either the more patient or impatient customers under the

screening strategy hinges on an intuitive trade-off between a customer’s utility from joining the service and

the externality from a more congested system.
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1. Introduction

Price discrimination has been a commonly applied approach to increase revenue for firms facing a

diverse customer base. In practice, firms may also exercise operational levers, beyond setting prices,

to elevate their performance. Specifically, when managing a service system, the firm can strategi-

cally adjust waiting times to account for differences in customers’ patience levels. When wielded

adeptly, this operational lever has the potential to augment the efficacy of price discrimination,

further improving the firm’s financial performance.

In this paper, we explore a firm’s strategic use of delaying the release time of a completed job to

distinguish between customers with different levels of patience. To be precise, we define the release

time as the time duration between when a service request arrives and when a completed service

is released back to the customer. Before delving into our model, we first examine the rationale
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behind this operational lever to understand its potential benefits. When customers exhibit various

patience levels, the firm can tailor its pricing and release time strategies accordingly. Specifically,

the firm may opt to delay the release time of a completed product or service for a customer who self-

identifies as a patient type. This deliberate delay for patient customers enables the firm to impose

a higher price on impatient ones who prefer shorter wait through immediate release. Essentially,

the extended release time for patient customers serves as a screening device in addition to pricing.

Afeche (2013) and Afeche and Pavlin (2016) are some of the earliest works studying price dis-

crimination and strategic delay in queueing systems. They study queueing systems in a steady

state. Although the aforementioned intuition has been revealed in these papers, determining the

optimal prices and release times dynamically in environments where the firm faces limited pro-

cessing capacity and fluctuating workloads can be challenging. This paper explores this complexity

and examines how a firm should dynamically fine-tune these control parameters for customers with

private information on their patience levels in a queueing system.

The strategy of differentiating prices and release times is applicable in various make-to-order

customization manufacturing or service systems. For instance, automobile manufacturers offer cus-

tomization options in their online quotation systems. Depending on specific options, which may

include colors, equipment, and other features, customers sometimes need to wait for weeks or

months before product delivery. In settings such as these, the actual processing time often remains

undisclosed to customers, and firms may opt to charge an expedited fee for faster release while

strategically delaying the release time if the customer chooses a lower price option. Similarly, online

photo-editing services and more general professional services on gig platforms can offer tiered pric-

ing and release timing options to cater to customers with different patience levels. Ride-hailing

companies or delivery businesses can also apply similar pricing and delay strategies.

We focus on investigating a first-come-first-serve (FCFS) single-server system where customer

arrivals follow a Poisson process. Assume service times are deterministic for all requests. When a

new customer arrives, the firm can accurately assess the total time required to complete all pending

requests in the queue. We call this total time the completion time of the system. As we show in

the paper, the completion time serves as the system’s state for optimal control. The release time

cannot be sooner than the current system completion time plus the deterministic service time.

Strategic delay means releasing the request after this earliest possible release time.

Customers are heterogeneous regarding their immediate service valuation (perceived value of

the service with no delay) and their patience levels (cost per unit of time). In our base model,

we consider two types of customers: patient and impatient ones. Patient customers have a lower
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immediate service valuation and wait-time sensitivity, and both values are higher for impatient

customers. A customer’s overall utility is the immediate service valuation minus the wait-time

sensitivity times the release time. The firm is aware of the distribution of customer types in the

population but not the specific type of each arriving customer. Upon a new arrival, the firm presents

the customer a (history-dependent) menu of options, each specifying a price and release time, for

the customer to choose from. The objective of the firm is to maximize the long-run average revenue

rate by dynamically adjusting the menu of prices and release times.

We formulate this problem as a continuous-time control model and show that the optimal menu

depends on history only through the completion time. We characterize the optimal mechanism from

the resulting Hamilton-Jacob-Bellman equation. Depending on the system completion time, the

optimal mechanism demonstrates up to four strategies. When the completion time is sufficiently

short, the firm should delay the release time offered to a patient customer, and charge a premium

price to an impatient one. The optimal delayed release time is set to a fixed value, regardless of the

current completion time state. This simple structure allows for easy implementation of real-time

control. When the system becomes more congested (completion time becomes longer), the firm

may either pool customers into a single class and offer them the same price and release time, or

only serve one of the two types. Finally, when the completion time is sufficiently long, the firm

should reject all incoming customers.

We further extend our base model along two separate directions. First, we allow customer types

to be drawn from a continuous interval, instead of from a binary set. The structure of the optimal

mechanism for continuous-type customers echoes that of the base model. Specifically, strategic delay

is implemented for less patient customer types when the completion time is below a threshold, and

the optimal delayed release time remains a fixed value for all types and all completion time states.

The optimal menu contains at most two options at each point in time, which can be implemented

easily.

In the second extension, we allow the firm to decide the service time for each arriving customer.

Shorter service time costs the provider more. The problem can be decomposed into a sequence of

single-variable optimization problems, which is easy to solve. Strategic delay still occurs in the less

patient type when the completion time is low.

To quantify the value of strategic delay in the optimal policy, we compare it with a simpler

mechanism, which does not involve strategic delay, so that each request is released at its completion

time. By varying the arrival rate and type distribution, we observe that allowing strategic delay

generates an average of 11% improvements in the long-run revenue rate in the base-case model. The
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maximum improvement can be as high as 49%. For the continuous-type model and the endogenous

service time model, we observe consistent improvements, although not as prominent. These findings

underscore the potential benefits of using strategic delay as a dynamic control lever.

The rest of the paper is organized as follows: Section 2 provides a comprehensive literature review.

Section 3 introduces the base model with two customer types, and characterizes the structure of

the optimal policy. Section 4 studies two extensions: a continuous-type setting and an endogenous

service time setting, respectively. We present numerical results in Section 5. Finally, Section 6

concludes the paper. All proofs are presented in the online supplement.

2. Literature Review

This paper is related to a large body of literature on queueing control. Aligning with our research

question, we categorize related works into three pertinent areas. For a comprehensive overview of

the field, we direct the reader to Hassin and Haviv (2003), Keskinocak and Tayur (2004), and Zang

et al. (2024), the references therein.

Price/lead-time quotation in queueing systems

This stream of studies is focused on obtaining optimal or near-optimal pricing and lead-time quo-

tation decisions without considering information asymmetry issues. Duenyas (1995) investigated

a single-server queue with various customer classes, each having distinct preferences for lead-time

and price. Simulation results indicated that policies accounting for customer preferences yield sig-

nificantly greater improvements compared to those that do not. Extending this, Duenyas and Hopp

(1995) derived a closed-form expression for optimal lead-time quotation and established conditions

for processing jobs in the earliest due date order for a queueing system with infinite capacity. In

the context of managing multi-product make-to-order systems, Maglaras (2006) addressed dynamic

pricing control with sequencing decisions. The paper established the optimality of the cµ-rule using

a fluid model and showed that the optimal pricing decisions can be decoupled from sequencing

and solely depend on the total workload. Çelik and Maglaras (2008) examined a multiclass make-

to-order system in which the demand rate depends on a menu of prices and lead-times. They

derived near-optimal dynamic pricing, lead-time quotation, sequencing, and expediting policies

under diffusion approximation. Besbes and Maglaras (2009) expanded on this framework by con-

sidering stochastically varying market sizes. They developed an asymptotic analysis based on a

fluid model, which yields near-optimal policies. Kim and Randhawa (2018) assessed the value of

dynamic pricing to maximize revenues in queueing systems with price- and delay-sensitive cus-

tomers. They established the superiority of dynamic over static pricing schemes in large customer



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. XXXX-XXXX-XXXX 5

market size and capacity scenarios and demonstrated that using only two prices can capture the

most dynamic pricing benefits. The main difference between our paper and this stream of research

is that we explicitly address information asymmetry, i.e., customers have private information about

their preferences.

Mechanism design in queueing systems

This line of research investigates adverse selection or moral hazard issues caused by informa-

tion asymmetry between the service provider and customers. Typically, there are two modeling

approaches. One approach examines the mechanism through steady-state analysis, while the other

considers dynamic settings under approximation, for example, using fluid or heavy traffic models.

For the steady-state analysis, Mendelson and Whang (1990) developed a pricing mechanism assum-

ing customers’ private information on expected service times and delay costs. Ha (1998) extended

this by examining a single-server queue where customers can adjust service times by exerting

effort. Building on this, Ha (2001) introduced multiple customer classes with diverse demand and

cost structures and showed how a simple pricing mechanism can effectively manage the system in

a steady state. Van Mieghem and Van Mieghem (2000) explored service differentiation through

service grades and pricing, focusing on how these mechanisms influence customer choices under

different information scenarios. Afeche and Mendelson (2004) further investigated how a service

provider can utilize pricing and priority adjustment decisions to maximize either revenue or social

welfare. Although these studies all consider private information issues, their incentive compatibility

designs are generally based on the steady state of the system, instead of real-time information in

dynamic settings.

Regarding dynamic models, Plambeck (2004) examined how to manage two customer types using

a diffusion approximation to derive a near-optimal price/lead-time policy for a queueing system

in which customer arrival rates depend on both price and delay. Ata and Olsen (2013) explored

a queueing model where two types of customers compete for the same resource. The firm offers

incentive-compatible pricing and lead-time options, dynamically quoted at customer arrival without

prior knowledge of customer types. Using a heavy-traffic queueing regime, the paper establishes

asymptotically optimal policies that aim to maximize revenue. Akan et al. (2012) investigated

dynamic lead-time quotation to maximize social welfare using a fluid approximation model. Our

model distinguishes itself by considering real-time incentive compatibility control and deriving the

exact optimal policy, instead of using approximation. Furthermore, modeling deterministic service

time allows us to use the total completion time as the state variable, as opposed to using queue

length.
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Strategic delay in queueing systems

These papers are most relevant to our work. Afeche (2013) demonstrated the effectiveness of using a

price/lead-time menu to screen patient customers with extended release times so that the provider

can charge a high price for impatient customers in order to maximize revenue. Afeche and Pavlin

(2016) extended this by considering a continuous spectrum of customer types, showing that the

best strategy is to serve the extremes of the customer types, while pooling different types into the

same service option. Our paper differentiates from Afeche (2013) and Afeche and Pavlin (2016) in

several key ways. First, the steady-state analysis allows these studies to utilize an achievable region

method without a specified scheduling policy. We demonstrate that strategic delay still occurs in

the optimal dynamic control under the first-come-first-serve schedule. Second, their papers use a

steady-state design approach, which is proper in settings where the customers do not observe queue

length and the service provider is not able to dynamically adjust the pricing and delay decisions

depending on real-time congestion levels. In comparison, our dynamic control specifies when to

implement strategic delay, pooling, or screening based on the system completion time, which can

be applied when the technology allows real-time control.

3. Two-type Model

In this section, we first introduce the base model with two types of customers and then analyze

the optimal mechanism.

3.1. Model Formulation

We consider a firm managing a single-server, make-to-order system in which customers arrive

according to a Poisson process with a rate λ. The customers are served according to the first-come-

first-serve (FCFS) rule.1 Each customer takes a constant service time of B to complete. Customers

are heterogeneous and belong to either one of two types: impatient type h and patient type l. The

impatient (patient, respectively) customer has high (low, respectively) immediate service valuation

νh (νl, respectively) and high (low, respectively) wait-time sensitivity ch (cl, respectively). We

assume νl < νh and cl < ch. That is, impatient customers (type h) value the service higher. Denote

a binary set Θ := {h, l} to be the set of types. Each customer’s type is independent of others and is

private information known only to the customer. The firm only knows the proportion of impatient

(type-h) customers αh ∈ [0,1], and the proportion of patient (type-l) customers αl = 1−αh.

Whenever a customer arrives, the firm decides whether to admit the customer into the queue

and the corresponding price to charge. If a customer request is admitted, the firm also decides

1 Due to the strategic delay of release time, FCFS does not imply first-in-first-out (FIFO).
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when to release it back to the customer – either release it as soon as the service is completed, or

delay to a later time.

To this end, define w as the completion time of all these requests already in the system, or

“completion time” for simplicity. This value equals to the service time B times the number of

jobs in the queue plus the remaining service time for the one in service. The completion time

represents how much the request needs to wait in queue before its service can start. Denote r̄ as

a customer’s release time, which is the duration between when the customer request arrives and

when the fulfilled service is released back to the customer. Releasing the request as soon as the

service is completed corresponds to r̄ = w +B, while delaying the release to a later time means

r̄ > w+B. As explained earlier, holding the finished service requests potentially allows the firm to

better screen between the two customer types.

The waiting cost for a type-θ customer is defined as cθs(r̄) for θ ∈Θ, in which the function s :

[B,∞)→R+ is strictly increasing and taking non-negative values. For simplification of exposition,

we set s(r̄) = r̄. All our results can be generalized to other increasing s functions.

Denote q ∈ {0,1} to represent whether to admit the customer into the queue and p̄ the price for

receiving the service. Further introduce the following notations:

r := qr̄, and p := qp̄.

The expected utility of a type-θ customer is

u(θ, q, p, r) := q (νθ − cθr̄− p̄) = νθq− cθr− p, (1)

where the term νθq−cθr represents the utility of using the service, or service utility in short. Define

quantities

r∗ :=
νh − νl
ch − cl

and ν̄ =
chνl − clνh
ch − cl

. (2)

The service utilities for the l-type and h-type of customers both equal to ν̄ at release time r∗ when

q= 1, as shown in Figure 1.

We make the following assumptions.

Assumption 1. (1) r∗ ≥B;

(2)
ch
cl

≥ νh
νl
;

(3) νh − chB > 0; and

(4) αh ≥
cl
ch

.
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Figure 1 The illustration of νθ − cθr under Assumption 1.

The first two assumptions ensure that both w∗ := r∗ −B and ν̄ are non-negative. The assumption

νh− chB > 0 ensures that the service utility for the type-h customer is positive when the customer

does not need to wait. Together with the second assumption, it also implies that νl− clB > 0. The

last one αh ≥ cl/ch assumes that the proportion of the type-h customers is sufficiently high, which

allows strategic delay to occur in the optimal control. Figure 1 illustrates both types’ service utility

functions when Assumption 1 holds.

We use subscript t ∈ [0,∞) to represent the time epoch. Denote a counting process {Nt} to

represent the total number of arrivals up to time t. Together with each arrival’s type θt ∈Θ, they

generate a filtration {Ft}. In terms of the probability space, the arrival rate of the counting process

{Nt} is λ, and θt takes value θ with probability αθ for all θ ∈Θ and t≥ 0.

To screen between the two types of customers, the firm announces a menu (of two options)

for each arriving customer,
{(

qt(θ), pt(θ), rt(θ)
)}

θ∈Θ
, adapted to the filtration {Ft}. Following the

revelation principal (Myerson 1979), a direct mechanism requires that a type-h customer chooses(
qt(h), pt(h), rt(h)

)
, and a type-l customer chooses

(
qt(l), pt(l), r(l)t

)
, which translates to the fol-

lowing constraints,

u
(
θ, qt(θ), pt(θ), rt(θ)

)
≥ u

(
θ, qt(θ

′), pt(θ
′), rt(θ

′)
)
, ∀θ, θ′ ∈Θ, and (IC)

u
(
θ, qt(θ), pt(θ), rt(θ)

)
≥ 0, ∀θ ∈Θ. (IR)

The (IC) constraint guarantees that a type-θ customer has no incentive to mimic any other type-θ′

customer. The (IR) constraint further ensures that the customer receives a non-negative utility

and, therefore, is willing to participate. Moreover, the payment and the release time offered by the

firm must satisfy the following feasibility constraints:

qt(θ)∈ {0,1}, pt(θ)≥ 0, and rt(θ)≥ qt(θ)(wt +B), (FE)
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for any completion-time time w. Together with the definition (1), (IR) implies that when qt(θ) = 0,

we must have pt(θ) = 0 and rt(θ) = 0.2

Because the service time is deterministic, the completion time wt at time t is also adapted to

{Ft}, and follows

dwt =−1wt−>0dt+B · qt(θt) ·dNt. (3)

Here we use notation wt− := lims↑tws to represent the completion time right before a customer

arrival time t.

The firm’s objective is to maximize the long-run average revenue rate, defined as

g∗ := sup
{qt(θ),pt(θ),rt(θ)}θ∈Θ,t≥0∈Π

G ({qt(θ), pt(θ), rt(θ)}) ,

in which G ({qt(θ), pt(θ), rt(θ)}θ∈Θ,t≥0) := lim inf
T→∞

1

T
E
[∫ T

0

pt(θt)dNt

]
, (4)

and the set of admissible policies Π is defined by constraints (IC), (IR), and (FE).

3.2. Optimality Equations

We now provide the optimality equation for this problem. We first restrict the control policy to be

time-stationary given the completion-time state w, and later verify that the stationary policy is

indeed optimal among all possible control policies. Hence we drop the time epoch t in the subscript

of state wt and decision variables. We also use superscripts “l” and “h” to represent customer types

to simplify the notation. Following the standard heuristic derivation for continuous-time control

problems, we obtain the optimality equations below (see Appendix A for the details):

g+V ′(w) = λΦ(w) ∀w> 0, with boundary condition V ′(0) = 0, and V (0) = 0, (HJB)

in which Φ(w) is defined as the following integer linear optimization problem

Φ(w) := max
qθ,pθ,rθ

∑
θ∈Θ

αθ

{
pθ + qθ

[
V (w+B)−V (w)

]}
, (5)

s.t. νhq
h − chr

h − ph ≥ νhq
l − chr

l − pl, νhq
h − chr

h − ph ≥ 0,

νlq
l − clr

l − pl ≥ νlq
h − clr

h − ph, νlq
l − clr

l − pl ≥ 0,

rh ≥ qh(w+B), rl ≥ ql(w+B), ph ≥ 0, pl ≥ 0,

qh, ql ∈ {0,1}.

The next result establishes the connection between the aforementioned optimality equations and

the original optimization problem (4), following the result in Lin et al. (2024).

2 We can implement qt(θ) = 0 in the direct mechanism by setting a price p̄ to be sufficiently large in the menu so that
the customer chooses not to join the queue.
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Proposition 1. 1. There exists a unique value g and a non-increasing and concave function

V that solve (HJB), in which Φ is defined in (5).

2. Furthermore, g= g∗, in which g∗ is the optimal long-run average revenue rate defined in (4).

3. Finally, denote ({qθ(w), pθ(w), rθ(w)}θ∈Θ) to be an optimal solution of (5) for any w ≥ 0.

Define {q∗t (θ), p∗t (θ), r∗t (θ)}θ∈Θ,t≥0, such that q∗t (θ) := qθ(wt−), p
∗
t (θ) := pθ(wt−) and r∗t (θ) := rθ(wt−).

We have, g∗ = G ({q∗t (θ), p∗t (θ), r∗t (θ)}θ∈Θ,t≥0). That is, {q∗t (θ), p∗t (θ), r∗t (θ)}θ∈Θ,t≥0 is the optimal

control.

Proposition 1 shows that the optimal revenue rate g∗ in (4) can be obtained by solving the HJB

equation, and the stationary policy that depends on the wait time is indeed optimal among all

possible policies.

We now study the solution of (5) to understand the optimal pricing and strategic delay decisions.

To facilitate the subsequent discussion, we define

∆(w) := V (w+B)−V (w), (6)

which represents the externality to the system’s value function of accepting a customer into the

service. The monotonicity and concavity of function V implies that ∆(w) is non-positive and non-

increasing in w. Therefore, we can interpret −∆(w) as the (positive) loss of admitting a customer

into the system when the completion time is w.

Recall r∗ defined in Assumption (2) and the function u defined in (1). If the release time r < r∗,

we have u(h,1, p, r)> u(l,1, p, r) for any price p. That is, the impatient customer receives a higher

utility when the release time r is shorter than r∗. On the flip side, if r > r∗, we have u(h,1, p, r)<

u(l,1, p, r). As it turns out, the optimal solution to problem Φ(w) is closely related to the critical

release time level r∗. We define the following critical completion time,

w∗ := r∗ −B. (7)

To present the first main results, we also introduce the following three functions of the completion

time w,

ul(w) := νl − cl(w+B), (8)

uh(w) := νh − ch(w+B), and (9)

u2(w) := uh(w)+
αl

αh

(uh(w)−ul(w)) . (10)

Here, ul(w) and uh(w) are service utilities for the type-l and type-h customers, respectively, when

the completion time is w. The following technical lemma guarantees that various thresholds in the

main theorem that follows are well-defined.
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Lemma 1. Functions ul(w), uh(w) and u2(w) are decreasing in w. Furthermore, we have

ul(w
∗) = uh(w

∗) = u2(w
∗) =

chνl − clνh
ch − cl

, and (11)

uh(w)−ul(w) = (ch − cl)(w
∗ −w), (12)

which implies that

ul(w)>u2(w), ∀w>w∗. (13)

Define the quantity ν̄ := ul(w
∗) = uh(w

∗), which is the identical service utility for both types when

the completion time is w∗. The next theorem is the first main result of the paper.

Theorem 1. Suppose ν̄+∆(w∗)≥ 0. Define thresholds

w̄ps :=min{w ∈ [w∗,∞)| u2(w)+∆(w)≤ 0}, (14)

w̄l
sr :=min{w ∈ [w∗,∞)| ul(w)+∆(w)≤ 0}. (15)

We have w̄ps ≤ w̄l
sr, and the following cases for the optimal solution to Φ(w):

(1) for w ∈ [0,w∗),

qh = ql = 1, pl = νl − clr
∗, ph = pl + ch(w

∗ −w), rh =w+B, rl = r∗ >w+B, (16)

that is, the firm should admit both types and delay the release time of the type-l customer;

(2) for w ∈ [w∗, w̄ps),

qh = ql = 1, ph = pl = νh − ch(w+B) = uh(w), rh = rl =w+B, (17)

that is, the firm should admit both types without delay;

(3) for w ∈ [w̄ps, w̄
l
sr],

ql = 1, pl = νl − cl(w+B) = ul(w), rl =w+B, qh = ph = rh = 0, (18)

that is, the firm should admit only a type-l customer;

(4) for w> w̄sr,

qh = ql = ph = pl = rh = rl = 0, (19)

that is, the firm should reject both types.

Furthermore, we have u(h, qh, ph, rh) = u(l, ql, pl, rl) = 0 in general, except in Case (2), where

u(l, ql, pl, rl) = ul(w)−uh(w) = νl − νh +(ch − cl)(w+B)> 0.
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Figure 2 ν̄+∆(w∗)≥ 0.

In this example, λ= 0.03, B = 5, νh = 300, νl = 200, ch = 0.01, cl = 0.004, and α= 0.7, which implies that

w∗ = 1667, w̄l
ps = 2429, and w̄sr = 3988.

The condition ν̄ +∆(w∗) ≥ 0 in Theorem 1 indicates that the value generated from serving a

customer (ν̄) is higher than the loss of admitting a customer into the queue (−∆(w∗)) when the

completion time is w∗. This condition implies that when the completion time w > w∗, the firm

should still admit customers. Given that ∆(w) decreases in w, this condition further implies that

the firm should admit customers when w≤w∗. This interpretation is helpful when we explain each

of the cases below.

Figure 2 illustrates different cases of the completion time and the corresponding optimal decisions

described in the theorem. The threshold w̄ps separates the “pooling” region (Case (2)) with the

“screening” region (Case (3)). Similarly, the threshold w̄l
sr separates the “screening” region (Case

(3)) with the “rejection” region (Case (4)).

Case (1) indicates that when the completion time w is less than the threshold w̄ps = w∗, the

firm should delay the release of a type-l request to r∗ =w∗ +B, instead of immediately releasing

it after completion at w+B. The delay imposed on a type-l request reduces the incentive for a

type-h customer to mimic type-l, because a type-h customer has a higher wait time sensitivity.

The price and release time expressions in (16) imply that both types’ utilities are zero. That is, by

using the delay as a deterrence, the firm can charge a higher price to a type-h customer, effectively

mitigating potential information rent from both types.

Strategic delay occurs only in Case (1) when the completion time w is short (less than w∗), and

to type-l customers but never to type-h ones. Furthermore, the firm never strategically delays the

release when only serving one type (type-l, as in Case (3)). This makes intuitive sense. First of all,

the delay is used to screen between the two types of requests and, hence, should never occur when

the firm only serves one type of customer. Second, when the firm serves both types of customers,

the delay should be only used on type-l, which is less sensitive to long completion time. Third, a

delay occurs when the completion time w is short. This is because if the current completion time is

already longer than w∗, the impatient type’s service utility is so low (lower than the patient type’s,
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see Figure 1) that the firm has no room to extract premium by delaying the release of the patient

type.

Despite the aforementioned intuitive features of the result, it is interesting, and may not be

obvious ex-ante, that the release time is fixed at r∗, independent of the exact completion time

w, as long as it is shorter than w∗. This simple “delay-up-to” structure makes the delay easy to

implement in practice.

When the completion time w increases to the interval for Case (2), the waiting cost even without

delay is high enough such that adding the delay would reduce a type-l customer’s utility too much

to squeeze out a good revenue. This is why both types should be released immediately (r=w+ b).

In this case, the prices offered to them need to be the same (pooling) to prevent one type from

mimicking the other. Interestingly, the service provider can extract all surplus from type h while

leaving some rent u(l,1, pl, rl)> 0 to type l. This is because w>w∗, or, equivalently, r=w+B > r∗,

implying that the service utility of type-l customer is higher than that of the type-h customer,

following Figure 1.

This intuition also explains why the only type being admitted is type-l customers for Case (3) in

the screening region. We can also intuitively explain the expression for w̄ps, the boundary between

Cases (2) and (3). The difference in the value-to-go between serving both types (see (17)) and only

type l (see (18)) is

uh(w)+∆(w)−αl [ul(w)+∆(w)] = αh [u2(w)+∆(w)] ,

which decreases in w following Lemma 1 and Proposition 1. The switching point from positive to

negative is w̄ps defined in (14).

As w further increases, the revenue from admitting a type-l customer shifts from positive to

negative at w̄l
sr defined in (15), leading to the rejection of the type-l customer when w> w̄l

sr.

In the proof of Theorem 1 (as well as Theorem 2 that comes next), we solve the linear relaxation of

the mixed-integer linear program. The linear optimization solution satisfies the binary constraints

for qh and ql, hence optimal to the original formulation.

We next consider the other case when ν̄+∆(w∗)< 0.

Theorem 2. Suppose ν̄+∆(w∗)< 0. Define thresholds

w̄ds :=min{w ∈ [0,w∗) | ν̄+∆(w)≤ 0} , (20)

w̄h
sr :=min{w ∈ [w̄ds,w

∗) | uh(w)+∆(w)≤ 0} . (21)

(1) for w ∈ [0, w̄ds], the optimal solution to Φ(w) follows (16);
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Figure 3 ν̄+∆(w∗)< 0.

In this example, λ= 0.03, B = 15, νh = 400, νl = 100, ch = 0.01, cl = 0.002, and α= 0.5, which implies that

w̄ds = 2443, w̄h
sr = 2875, and w∗ = 3750.

(2) for w ∈ (w̄ds, w̄
h
sr], the optimal solution to Φ(w) is

qh = 1, ph = νh − ch(w+B), rh =w+B, ql = pl = rl = 0, (22)

(3) for w> w̄sr, the optimal solution to Φ(w) follows (19).

Furthermore, we have u(h, qh, ph, rh) = u(l, ql, pl, rl) = 0.

Finally, if ν̄+∆(w∗) = 0, we have w̄ps =wds = w̄l
sr = w̄h

sr =w∗.

Figure 3 depicts optimal release times described in Theorem 2. The threshold w̄ds separates the

“delay” region with the “screening” region, and the threshold w̄h
sr separates the “screening” region

with the “rejection” region.

Similar to Theorems 1, strategic delay only occurs when the completion time is shorter than a

threshold w̄ds in Theorems 2. However, unlike Theorem 1, when ν̄ +∆(w∗)< 0 the threshold w̄ds

is no longer at w∗, but smaller. In fact, if ν̄ +∆(0)< 0, the threshold w̄ds = 0 and strategic delay

does not happen regardless of how short the completion time is.

Comparing Theorems 1 and 2, it is interesting to see that the admitted types in the “screening

regions” differ between the two theorems. In fact, when ν̄+∆(w∗)< 0, the screening region occurs

when w<w∗. This is because under the condition ν̄+∆(w∗)< 0, the firm should not admit any type

of customer when the completion time w is at or above w∗. When w<w∗, the impatient customer

(type h) derives higher service utility than the patient type (νl − cl(w+B)< νh − ch(w+B)).

It is also interesting that the pooling region disappears in Theorem 2. This is because, as we

demonstrate in the proofs, Assumption 1(4) implies that when w < w∗, delaying type l always

outperforms pooling both types, regardless of ν̄ +∆(w∗) being positive or negative. Without a

pooling region, the firm extracts the entire surplus from both types, as indicated in Theorem 2.

Finally, if ν̄+∆(w∗) = 0, both the pooling and screening regions disappear from both figures. In

this case, the delay region is connected with the rejection region at w∗.
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4. Extensions

We present two extensions of the base model. In Section 4.1, we extend the two-type model into a

continuous-type setting. In Section 4.2, we allow the firm to decide on the service time, in addition

to admission, pricing, and release time decisions.

4.1. Continuous-Type Customers

In this model, customers still arrive according to a Poisson process with rate λ, each taking a

constant time B to complete. To generalize the two-type model while maintaining its tractability,

we keep the space of types in a single dimension. In particular, we use θ to represent a customer’s

type, corresponding to the release-time sensitivity. Each customer has its valuation ν, which has a

one-to-one correspondence with θ. Following Afeche and Pavlin (2016), we assume the relationship

is linear. That is, there exist values ν̄ > 0 and r∗ > 0 (with a slight abuse of notations) such that a

customer with sensitivity θ values the immediate service at

ν(θ) := ν̄+ r∗ · θ.

Assume that each customer’s type θ is drawn from a support Θ := [cl, ch] (with a slight abuse of

notation once again), and follows a common-prior distribution with a density function f(·) and a

cumulative function F (·). The two-type model discussed in the previous section can be perceived

as a special case of this model, with the a type-type distribution on θ and

ν̄ =
chνl − clνh
ch − cl

, and r∗ =
νh − νl
ch − cl

, (23)

so the definitions of ν̄ and r∗ is consistent with (11) and Assumption 1, respectively.

The utility of a type θ customer subject to the admission decision q, the pricing decision p, and

the release time decision r still follows (1), or,

u
(
θ, q, p, r

)
= ν(θ)q− θr− p= ν̄q+ θ

(
r∗q− r

)
− p. (24)

We can use the same expressions for the (IC) and (IR) constraints from the two-type case.

Similar to Proposition 1 for the base two-type model, we have

Proposition 2. There exists a unique value g and non-increasing and concave function V that

solves

g+V ′(w) = λΥ(w) ∀w> 0, with boundary condition V ′(0) = 0, and V (0) = 0, (HJBc)
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in which function Υ is defined as

Υ(w) := max
{q(θ),p(θ),r(θ)}θ∈Θ∈Π

∫
θ∈Θ

[p(θ)+ q(θ)∆(w)]f(θ)dθ. (25)

Here, the feasible set Π is defined by (FE) and the following constraints:

ν̄q(θ)+ θ [r∗q(θ)− r(θ)]− p(θ)≥ ν̄q(θ′)+ θ [r∗q(θ′)− r(θ′)]− p(θ′), ∀θ, θ′ ∈Θ, (26)

ν̄q(θ)+ θ [r∗q(θ)− r(θ)]− p(θ)≥ 0, ∀θ ∈Θ. (27)

Furthermore, g = g∗, in which g∗ is the optimal long-run average revenue rate defined in (4).

Finally, one can obtain the optimal control policy from the optimal solution of (25) in the sense

of Proposition 1.

To analyze (25), we proceed with several steps to simplify the expression. First, we follow Myerson

(1981) to simplify the (IC) constraint, such that the payment p(θ) is expressed with the other

decision variables. Next, we further reduce the optimization problem (25) by introducing two

thresholds č and ĉ as decision variables. The aforementioned simplification, together with properties

of the value function V (w), allows us to obtain the structure of the optimal control policy.

The next lemma follows standard techniques of Myerson (1981).

Lemma 2. Define

U(θ) := u(θ, q(θ), p(θ), r(θ)).

For any q(θ), p(θ), and r(θ) that satisfy (IC), U(θ) is a convex function of θ,

U ′(θ) = r∗q(θ)− r(θ), and (28)

r∗q(θ)− r(θ) is non-decreasing in θ. (29)

Conversely, for any q(θ) and r(θ) that satisfy (29), there exist a value ū and a particular θ̂ ∈ [cl, ch],

such that

p(θ) :=−ū+ ν̄q(θ)+ θ[r∗q(θ)− r(θ)]−
∫ θ

θ̂

[r∗q(x)− r(x)]dx, (30)

where q(θ), p(θ), and r(θ) satisfy (IC), and U(θ̂) = ū.

With Lemma 2, we can replace the constraint (IC) in (25) with (29), and replace p(θ) with (30) in

the objective function of (25). It is worth noting a key difference between the standard mechanism

design model of Myerson (1981) and our setting. Even though q(θ) and r(θ) are non-negative, the

derivative of the function U(θ), which is r∗q(θ)− r(θ), could be either positive or negative. Thus,
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unlike in standard mechanism design, our U function may not be monotone. Generally speaking,

the convex function U(θ) could be at its minimum (or, r∗q(θ)− r(θ) = 0) for an interval of θ values

within the support [cl, ch]. Consider č and ĉ to be the two ends of the interval, such that

cl ≤ č≤ ĉ≤ ch, (31)

r∗q(θ)− r(θ)< 0, ∀θ ∈ [cl, č), (32)

r∗q(θ)− r(θ) = 0, ∀θ ∈ [č, ĉ], (33)

r∗q(θ)− r(θ)> 0, ∀θ ∈ (ĉ, ch]. (34)

The interval (č, ĉ) in general depends on the system completion-time state w. The following result

converts the original optimization problem (25) into one without decision variables p(θ) but with

č and ĉ as decision variables. Note that, following (30), there needs to be another decision variable

ū. The next result implies that the optimal ū is in fact 0.

Lemma 3. The optimization problem in (25) is equivalent to the following formulation,

Υ(w) = max
q(θ),r(θ),č,ĉ∈Π′

∫ č

cl

{
q(θ) [ν̄+∆(w))]+ [r∗q(θ)− r(θ)]

[
θ+

F (θ)

f(θ)

]}
f(θ)dθ

+

∫ ĉ

č

q(θ) [ν̄+∆(w))]f(θ)dθ

+

∫ ch

ĉ

{
q(θ) [ν̄+∆(w))]+ [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]}
f(θ)dθ, (35)

in which the feasible region Π′ is defined by constraints (FE), (27), (29), (31), (32), (33), and (34).

The approach of finding an optimal solution to (35) is to first ignore the monotonicity constraint

(29), so that the maximization problem becomes separable in θ, following Myerson (1981). To guar-

antee the optimal solution of this relaxed problem satisfies (29), we make the following assumption,

which is the same as the one in Afeche and Pavlin (2016).3

Assumption 2. The distribution of θ has the following properties:

(1) θ− 1−F (θ)

f(θ)
is increasing in θ;

(2) θ+
F (θ)

f(θ)
is increasing in θ.

3 As stated in Afeche and Pavlin (2016), “[Assumption 2] holds for many common probability distributions, including
those with log-concave density function (see Bagnoli and Bergstrom 2005). Examples include the uniform, normal,
logistic, Laplace, and power function distributions, and the gamma and Weibull distributions with shape parameter
≥ 1.”
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Assumption 2(1) allows us to define

c̄ :=min

{
θ ∈Θ

∣∣∣∣ θ− 1−F (θ)

f(θ)
≥ 0

}
. (36)

If no θ satisfies the inequality condition in (36), we follow the convention and let c̄ be positive

infinity. Recall that w∗ := r∗−B. Similar to the results in the basic binary type model, the optimal

policy structure depends on whether the completion time w is higher or lower than w∗.

Remark 1. If the completion time w<w∗, then a release time r=w+B yields a service utility

ν(θ)−θr(θ) that is increasing in θ. The more patient a customer is, the less service utility there is.

This generalizes the two-type case in which the type-h customer has a higher service utility when

w <w∗. On the other hand, if w >w∗, the service utility ν(θ)− θr(θ) is decreasing in θ, which is

also consistent with the type-l customer having a higher service utility in the previous section.

Now we present the main result for the continuous-type model.

Theorem 3. (1) Suppose ν̄+∆(w∗)≥ 0.

i. When w≤w∗, the firm serves all types of customers and delays the release time to w∗+B =

r∗ when the customer types θ < c̄. That is, the optimal solution to (25) is

q∗(θ) = 1,∀θ ∈Θ, p∗(θ) =

{
ν̄, θ < c̄
ν̄+ c̄(w∗ −w), θ≥ c̄

, and r∗(θ) =

{
r∗, θ < c̄
w+B, θ≥ c̄

. (37)

ii. When w>w∗, the firm only serves a customer type θ satisfying θ≤ č(w) with r(θ) =w+B,

in which

č(w) :=max

{
max

{
θ ∈Θ

∣∣∣∣ ν̄+∆(w)+ [r∗ − (w+B)]

[
θ+

F (θ)

f(θ)

]
≥ 0

}
, cl

}
, (38)

is non-increasing in w. That is, the optimal solution to (25) is

∗ for θ < č(w), q∗(θ) = 1, r∗(θ) =w+B and p∗(θ) = ν̄+ č(w)(w∗ −w);

∗ for θ≥ č(w), on the other hand, q∗(θ) = r∗(θ) = p∗(θ) = 0.

(2) If ν̄+∆(w∗)< 0, on the other hand, define a completion time threshold wD, which satisfies

wD <w∗, as

wD :=max{max{w≥ 0 | ν̄+∆(w)≥ 0}, 0} . (39)

i. When w≤wD, the optimal solution to (25) follows (37).

ii. When w >wD, on the other hand, the firm only serves a customer if the completion time

w and type c satisfy c≥ ĉ(w) with no delay, in which ĉ(w) is defined as

ĉ(w) :=min

{
min

{
θ ∈Θ

∣∣∣∣ ν̄+∆(w)+ [r∗ − (w+B)]

[
θ− 1−F (θ)

f(θ)

]+

≥ 0

}
, ch

}
, (40)

which is non-decreasing in w. That is, the optimal solution to (25) is
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∗ for θ > ĉ(w), q∗(θ) = 1, r∗(θ) =w+B and p∗(θ) = ν̄+ ĉ(w)(w∗ −w);

∗ for θ≤ ĉ(w), on the other hand, q∗(θ) = r∗(θ) = p∗(θ) = 0.

The proof of the theorem is presented in Appendix B. The idea is to first establish the optimal

solution of (35), and then use (30) to obtain the optimal payment p∗ from the optimal admission

decisions q∗ and r∗. In the process of obtaining the optimal solution of (35), we solve a linear

relaxation of the binary constraint (FE). Assumption (2) guarantees that optimal q∗ is indeed

binary.

Although the optimization problem (35) has two decision threshold variables č and ĉ, Theorem

3 demonstrates that for any given w, the optimal solution only involves one of them. The optimal

č in (35) corresponds to č(w) defined in (38) for Case (1) in the theorem. In this case, the optimal

ĉ= ch. Similarly, the optimal ĉ in Case (2) corresponds to ĉ(w) from (40). The optimal č in this

case is cl.

Here we explain Theorem 3 and connect it with the intuition obtained from Theorems 1 and 2 for

the binary-type model. First consider ν+∆(w∗)≥ 0 and w≤w∗. In this case, it is optimal to admit

all customer types (q(θ) = 1 for all θ ∈ Θ), but strategic delay the release type to r∗(θ) = r∗ for

customer whose delay sensitivity is below c̄. More delay-sensitive customers (θ > c̄) are guaranteed

immediate release (r∗(θ) = w + B) but need to pay more (p∗(θ) = ν̄ + c̄(w∗ − w) > ν̄). This is

similar to the result from Theorem 1, in which the type l corresponds to θ≤ c̄ here. If the system

is more congested (w > w∗), the firm only serves customer types that are less sensitive to delay

(θ≤ č(w)) without delaying the release time (r∗(θ) =w+B). These types again correspond to type

l in Theorem 1.

Now consider the second case, with ν̄+∆(w)< 0. In this case, the firm should admit all customer

types only if w≤wD <w∗. Once again, a strategic delay occurs to less delay-sensitive types, similar

to Theorem 2, if we interpret type l there as θ ≤ c̄ here. If the completion time w is above the

threshold wD, then the firm should only admit customers whose delay-sensitivity is higher than

ĉ(w), once again similar to Theorem 2.

It is instructive to illustrate the results in Theorem 3 in Figures 4a and 4b. The two figures

represent two cases with ν̄+∆(w∗)> 0 and ν̄+∆(w∗)< 0, respectively. As we can see, the strategic

delay region is marked by the shaded rectangle in the lower-left corner of both figures. The intuition

is the same as for the two-type cases: the firm only strategically delays the release time of patient

customers (low θ) when the completion time w is low. This is similar to the difference between

Figures 2 and 3. In particular, ν̄ corresponds to νh−chr
∗ = νl−clr

∗ in the two type case, according

to (23).
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(a) ν̄ = 500, d= 300, and w∗ = 260

                                                                                 
           

           

           

           

           

           

           

           

           

           

           

(b) ν̄ = 300, d= 500, and w∗ = 460

Figure 4 In both examples, λ= 0.01, B = 40, s(w) =w and c∼Uni[cl = 1, ch = 3], which implies that c̄= 1.5.

An interesting comparison between the two figures is that the separator function č(w) of Figure

4a is decreasing in w, while ĉ(w) of Figure 4b is increasing. In fact, Figure 4a confirms Theorem 3

that function č(w) is strictly decreasing when w>w∗. In comparison, ĉ(w) in Figure 4a is strictly

increasing when w < w∗. Following Remark 1, when the completion time is long (w > w∗), more

patient customers derive higher net utilities. This explains why less patient customers (higher θ)

are rejected for a given w in Figure 4a. Similarly, when w<w∗, more patient customers derive less

net utilities than impatient customers. That is why more patient (lower θ) customers are rejected

for a given w in Figure 4b.

4.2. Endogenous Service Times

In this subsection, we extend the base two-type model to allow the firm to decide the service time

for each type of customer. We shall demonstrate that the delay strategy for the type-l customer

persists in the optimal policy.

The model setup remains unchanged unless otherwise specified. For each type θ ∈ Θ = {h, l}
customer arriving at time t, the firm decides the processing time bt(θ) ∈ [0,∞), in addition to

decisions qt(θ), pt(θ) and rt(θ) described in Section 3. The corresponding processing cost k (bt(θ))

is convex and decreasing in the processing time bt(θ) because it is costly for the firm to shorten

the service time. The base case model is a special case of this one, with

k(b) =

{
∞, b <B,
0, b≥B.

The corresponding optimal profit rate is defined as

g∗ := sup
{qt(θ),pt(θ),rt(θ),bt(θ)}θ∈{h,l},t≥0∈Πb

lim inf
T→∞

1

T
E
[∫ T

0

(pt(θt)− k(bt(θt)))dNt

]
, (41)
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in which the set of admissible policies Πb is defined by constraints (IC), (IR), and (FE), except

we revise rt(θ) ≥ qt(θ)(wt + B) to rt(θ) ≥ qt(θ)(wt + b(θ)). The corresponding completion time

dynamics changes from (3) to

dwt =−1wt−>0dt+ bt(θt) · qt(θt)dNt. (42)

We have the following result on the optimality conditions, similar to Propositions 1 and 2.

Proposition 3. There exists a unique value g and a non-increasing and concave function V

that solve

g+V ′(w) = λΨ(w) ∀w> 0, with boundary condition V ′(0) = 0, and V (0) = 0, (HJBb)

in which function Ψ is defined as

Ψ(w) := max
qθ,rθ,pθ,bθ

∑
θ∈Θ

αθ

{
pθ + qθ

[
V (w+ bθ)−V (w)− k(bθ)

]}
, (43)

s.t. νhq
h − chr

h − ph ≥ νhq
l − chr

l − pl, νhq
h − chr

h − ph ≥ 0,

νlq
l − clr

l − pl ≥ νlq
h − clr

h − ph, νlq
l − clr

l − pl ≥ 0,

rh ≥ qh(w+ bh), rl ≥ ql(w+ bl), ph ≥ 0, pl ≥ 0,

bh, bl ≥ 0, qh, ql ∈ {0,1}.

Furthermore, g= g∗, in which g∗ is the optimal long-run average profit rate defined in (41). Finally,

the optimal decisions from (43) yields the optimal control policy in the sense of Proposition 1.

The maximization problem defined in (43) is a mixed-integer nonlinear optimization problem

with eight decision variables. The following result shows that it can be decomposed into a collection

of single-variable concave maximization problems. This decomposition makes the problem much

easier to solve than the original one.

Proposition 4. For w≤ r∗, we have

Ψ(w) =max{Q1(w),Q2(w),Q3(w),Q4(w),0}, (44)

in which

Q1(w) :=νl +(αhch)(r
∗ −w)− clr

∗ −V (w)+αhmax
bh≥0

V (w+ bh)− k(bh)− chb
h (45)

+αl max
bl∈[0,r∗−w]

V (w+ bl)− k(bl)
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Q2(w) :=νh − chw−V (w)+max
bh≥0

(αlcl − ch)b
h +αh

(
V (w+ bh)− k(bh))

)
(46)

+αl max
bl≥r∗−w

V (w+ bl)− k(bl)− clb
l,

Q3(w) :=αh(νh − chw−V (w))+αh max
bh∈[0,r∗−w]

V (w+ bh)− k(bh)− chb
h, (47)

Q4(w) :=αl (νl − clw−V (w))+αl max
bl≥r∗−w

V (w+ bl)− k(bl)− clb
l. (48)

For w> r∗, on the other hand, we have

Ψ(w) =max{Q′
2(w),Q

′
4(w),0}, (49)

in which

Q′
2(w) :=νh − chw−V (w)+max

bh≥0
(αlcl − ch)b

h +αh

(
V (w+ bh)− k(bh))

)
(50)

+αlmax
bl≥0

V (w+ bl)− k(bl)− clb
l,

Q′
4(w) :=αl(νl − clw−V (w))+αlmax

bl≥0
V (w+ bl)− k(bl)− clb

l. (51)

Furthermore, the optimal release time rθ in (43) is w+ bθ for all cases except when Ψ(w) =Q1(w),

in which case the optimal rl = r∗.

The derivation of Proposition 4 is to consider different strategies established by setting qθ ∈ {0,1}

for θ ∈ {l, h} under different completion time states. When w < r∗, the firm needs to consider five

strategies: admitting both types with delay, admitting both types without delay, admitting type-h

only, admitting type-l, and rejecting both types, represented in (44) by Q1(w), Q2(w), Q3(w),

Q4(w) and 0, respectively. Specifically, given w < r∗, the strategy of only serving type-l in Q4(w)

is feasible when the release time rl = w + bl is greater than r∗ where type-l has a higher service

utility. On the other hand, when w> r∗, the feasible strategies are admitting both types, admitting

type-l only and rejecting all customers, represented by Q
′
2(w), Q

′
4(w), and 0, respectively, in (49).

(There are no corresponding Q
′
1(w) and Q

′
3(3) when w > r∗ because there is no feasible service

time.) Depending on the completion time, the firm can identify the optimal decision by solving

these six optimization problems involving only single-dimensional concave maximization.

Unlike the two-type model in Section 3, there is no condition to ensure that the optimal decision

involves strategic delay in Q1(w). Thus, strategic delay may or may not happen. Nevertheless, we

find that the delay strategy does occur in our numerical study.

Figure 5 demonstrates one example in which the optimal control involves strategic delay. As

shown in Figure 5(a), when w increases, the optimal strategy involves first delaying the type-l

customer (Q1(w)), followed by no delay while serving both types (Q2(w)), screening the type-h
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(a) Illustration of the release time policy.

650 700 750 800 850

Completion time

0

2

4

6

8

10

12

14

16

18

S
e
rv

ic
e
 T

im
e

(b) Close-up view of the completion time region between 650 and 850.

Figure 5 In this example, λ= 0.005, νh = 1000, νl = 750, ch = 0.48, cl = 0.16, αh = 0.7, αl = 0.3, r∗ = 781.25, and

k(b) = 600
b2

.

customer (Q
′
4(w)), and finally rejecting all customers when w becomes too large. The vertical axis

shows the corresponding optimal service times. Note that the optimal service times values bh and

bl are different in the case of Ψ(w) =Q2(w). Therefore, we do not call this region “pooling.” The

two dotted vertical lines separate the different regions.
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The left vertical dotted line in Figure 5(a) represents the completion time at w= 770.25 where

the delay strategy ends (and no-delay starts). This threshold is close to r∗, and the service time

above this threshold sharply decreases. In order to better understand this region, Figure 5(b) zooms

in around this completion time interval. The separation between the delay and no-delay regions is

still marked by the dotted vertical line at w = 770.25. It is worth mentioning that Ψ(w) =Q1(w)

when the completion time w is to the left of the (new) dashed line at w= 776.26, which is to the

right of the dotted line. Whenever Q1 dominates (Ψ(w) = Q1(w)), the optimal release time for

the type-l customer is always set to r∗ = 781.25. In the delay region (left of the dotted line), the

constraint bl ≤ r∗ −w is not binding. This constraint becomes binding in between of the dotted

and the dashed lines. In this region, the optimal solution no longer involves strategic delay, and

bl keeps decreasing with increasing w because bl = r∗ − w. When w moves to the right of the

vertical dashed line, problem Q1(w) yields its dominance to Q2(w) (Ψ(w) =Q2(w)). In this case,

the optimal release time rl is set to w+ bl, staying in the no-delay region. Finally, r∗ is further to

the right of the vertical line, as marked in the figure.

5. Numerical Study

We examine the benefits of implementing strategic delay by comparing our optimal control with

the best control without allowing delay.

5.1. Two-type Model

This section assesses the effectiveness of implementing strategic delay in the base two-type model.

We compare performances of the optimal policies presented in Theorems 1 and 2 with the perfor-

mance of the optimal policy with no-delay, which offers all customers the shortest release time. This

corresponds to solving (HJB) while replacing the constraints rh ≥ qh(w+B) and rl ≥ ql(w+B)

with

rh = qh(w+B) and rl = ql(w+B), respectively. (52)

Denote gn to represent the corresponding long-run average revenue rate without strategic delay.

We present the relative improvement
g∗ − gn

gn
× 100% of allowing strategic delay throughout the

numerical studies in this section.

We set the following parameter values for the customer’s utility: νh = 200 and νl = 100 for the

immediate service valuations and ch = 0.03 and cl = 0.01 for the release-time sensitivities. The

deterministic service time is set as B = 20. We conduct the numerical study using a test bed of 969

instances, varying the ratio αh and the arrival rate λ. Specifically, we consider a range of αh from

0.4 to 0.9 with an increment of 0.01, and a range of λ from 0.01 to 0.1 with an increment of 0.005.
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Figure 6 Revenue Comparison When Varying αh and λ

All of these instances satisfy αhch > cl, and strategic delay will occur. Across all instances, the

long-run revenue rate generated from the optimal policy is 7.16, while that of the no-delay policy

is 6.45. This represents an 11% increase in the long-run average revenue achieved by implementing

the delay strategy, with the most significant improvement being 49.73%.

Figure 6 also illustrates that the benefit of the delay strategy over the no-delay strategy decreases

in the arrival rate λ. The intuition is that as the arrival rate λ increases, the firm becomes more

congested and w often exceeds w∗. In this case, it is less likely for the firm to exercise the delay

strategy frequently, making both policies behave similarly.

5.2. Continuous-Type Model

This section presents a numerical study to assess the benefit of implementing strategic delay in the

continuous-type model. Similar to the previous subsection, we still use the no-delay (always release

immediately) heuristic policy as the benchmark policy for comparison with the optimal policy.

In this study, we set the customer’s utility parameter as ν̄ = 50, r∗ = 5000, which are consistent

with the corresponding values in in Section 5.1. Also consistent with the previous section, we

set the deterministic service time as B = 20. The completion time sensitivity θ follows a uniform

distribution U(a, b) with a mean of (a+ b)/2 = (ch + cl)/2 = 0.02. We vary the width b− a of the

support of the uniform distribution, considering values from 0.01,0.011,0.012, . . . ,0.03 where the

variance of the distribution is (b−a)2

12
. The variation in the support of uniform distribution allows

us to capture the sparsity of customers’ patience levels. We conduct a test bed consisting of 399

instances, where the support of the distribution ranges from [0.015,0.025] to [0.005,0.035] with an

increment and decrement of 0.005 for the endpoints. The arrival rate λ ranges from 0.01 to 0.1

with an increment of 0.005.
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(a) Varying Distribution Variance and λ (b) Varying αh and λ

Figure 7 Revenue comparison between the optimal policy and no-delay policy: (a) The continuous-type model

and (b) the endogenous service time model.

On average, the long-run revenue rate generated by the optimal policy is 4.98, while that of the

no-delay policy is 4.85. The maximum improvement in revenue percentage is 19.76%. The impact

of varying arrival rates on the improvement percentage is consistent with the findings observed

in the two-type customer model. Specifically, revenue improvement is most significant when the

arrival rate is relatively low, indicating that strategic delay is more beneficial to the firm when the

system is less congested.

Figure 7a illustrates that revenue improvement is more pronounced when θ is more variable.

This is because when θ is more variable, the firm faces more extreme types of customers, and it

is more likely the firm can exercise the delay strategy to yield higher revenue. This effect is more

significant when the arrival rate is low, because the system more likely to be in a low completion

time state when it is optimal to strategically delay the release.

5.3. Endogenous Service Time Model

We examine the benefit of implementing strategic delay when the firm can decide on the service

time. Similar to the previous subsections, we compare the optimal cost with the no-delay policy,

which sets the release time as the completion time plus the determined service time. For this study,

we let the customer’s utility parameters be νh = 200, νl = 100, ch = 0.03, cl = 0.01, and the service

cost function is k(b) = 800/b2 for b≥ 0. We consider a range of αh from 0.4 to 0.9 with an increment

of 0.01, and a range of λ from 0.01 to 0.1 with an increment of 0.01, resulting in a test bed of

510 instances. Across all instances, the long-run revenue rate generated from the optimal policy

is 7.72, while that of the no-delay policy is 7.05. This represents a 9.5% increase in the long-run

average profit achieved by implementing strategic delay, with the most significant improvement

being 24.50%.
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Figure 7b illustrates that the profit increase is substantial when the arrival rate is low, and the

proportion αh is around 0.5. The findings of varying λ illustrated in Figure 7b echo those in Figures

6. That is, the benefit of implementing strategic delay is not monotonic and significant only when

αh is moderately high. It is worth noting that improvements in Figure 7b from high αh is higher

than those in Figure 6. This increment comes from the flexibility of service times.

The effect of varying λ illustrated in Figure 7b differs from what we observe in Figure 6. When

the service times are decision variables, the benefit of implementing strategic delay is less sensitive

to the arrival rate, compared to the base two-type case. This is because under both policies, the

firm can utilize the flexibility of service times to manage different arrival rates, which reduces the

impact of the difference in arrival rates. Furthermore, when the arrival rate is high, which means

the strategic delay rarely occurs as discussed in Figure 6, the firm can use flexible service times to

reduce congestion, which boosts the benefit of strategic delay. This is why strategic delay performs

relatively well even when the arrival rate is high.

6. Concluding Remarks

This paper studies a dynamic price/release-time mechanism for a firm facing customers who do

not know the completion time of the requested service. The firm offers a menu of price and release-

time options for each incoming customer, whose immediate service valuations and sensitivity to

release time are their private information. Assuming a deterministic service time, we depart from

the conventional dynamic queueing control models in two aspects. First, instead of using queue

length, we use the completion time as the state variable in our continuous-time optimal control

model. Second, we allow the firm to strategically delay the release time as an operational lever to

screen customers.

Our analysis indicates that the firm should strategically delay the release time for patient cus-

tomers when the completion time falls below a certain threshold. Furthermore, the delayed release

time is a constant regardless of the completion time state, as long as it is below the threshold.

There are several potential extensions of our model for future research. First, our model assumes

a first-come-first-serve (FCFS) system. It is natural to extend the control policy to allow schedul-

ing/sequencing of tasks. Such an extension, however, appears to be quite complex and requires

additional assumptions. For example, whether or not to allow preemption leads to different models

and analyses. Moreover, altering the customer sequence would lead to a more complex state space

representation, rendering the model potentially intractable. We believe that the control strategy

studied in this paper, although not considering more complex sequencing decisions, is easy to com-

pute and implement, and hence provides practical value. Second, we assume that the utility of an
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outside option is utility 0. In reality, outside options may be heterogeneous and customers’ private

information. Although incorporating additional private information is valuable, mechanism design

with higher dimensional private information, even in static settings, is quite challenging and often

intractable. Good approximation algorithms may be necessary to tackle these problems. Third,

while we focus on a single-server environment, extending the analysis to multi-server systems offers

an intriguing direction for future investigation. Finally, it is worth going beyond the assumption

that customers do not know the exact completion time, and exploring customers’ psychological

responses when offered delayed release times. A deeper understanding of human emotions and

behaviors when facing intentional delay may provide important guidance on the design of such

policies.
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Appendix A: Proofs in Section 3

Heuristic Derivation of (HJB)

Given a sufficiently small time duration δ > 0, we can write the discrete-time Bellman equation as:

gδ+V (w) = (1−λδ)V (w− δ)+λΦ̂(w), ∀w> δ (53)

and

gδ+V (0) = (1−λδ)V (0)+λΦ̂(0). (54)

The function Φ̂(w) is defined as the following integer linear optimization problem

Φ̂(w) := max
qθ,rθ,pθ

∑
θ∈Θ

αθ

{
pθ + qθV (w+B− δ)+ (1− qθ)V (w− δ)

}
, (55)

s.t. νhq
h − chr

h − ph ≥ νhq
l − chr

l − pl, νhq
h − chr

h − ph ≥ 0,

νlq
l − clr

l − pl ≥ νlq
h − clr

h − ph, νlq
l − clr

l − pl ≥ 0,

rh ≥ qh(w+B), rl ≥ ql(w+B), ph ≥ 0, pl ≥ 0,

qh, ql ∈ {0,1}.

By rearranging terms and divided by δ in (53) and (54), we have

g+
V (w)−V (w− δ)

δ
= λΦ̄(w), ∀w> δ and (56)

g= λΦ̄(0), (57)

where

Φ̄(w) := max
qθ,rθ,pθ

∑
θ∈Θ

αθ

{
pθ + qθ

[
V (w+B− δ)−V (w− δ)

]}
, (58)

s.t. νhq
h − chr

h − ph ≥ νhq
l − chr

l − pl, νhq
h − chr

h − ph ≥ 0,

νlq
l − clr

l − pl ≥ νlq
h − clr

h − ph, νlq
l − clr

l − pl ≥ 0,

rh ≥ qh(w+B), rl ≥ ql(w+B), ph ≥ 0, pl ≥ 0,

qh, ql ∈ {0,1}.

Therefore, by taking the limit δ→ 0 for , we heuristically derive (HJB). Specifically, the equation (57) implies

V ′(0) = 0 as the boundary condition.

Proposition 1

The proof of Proposition 1 follows immediately from Theorem 1 in Lin et al. (2024), which shows properties

and the optimality for a general wait-time based queueing model. That is, Proposition 1 is established by

verifying the model setting satisfying Assumption 1 (i)-(v) in Lin et al. (2024). To make the proof self-

contained, we present Assumption 1 in Lin et al. (2024) as the following Assumption 3:

Assumption 3.
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(i) The lead-time w+ τ(θ, a⃗,w) is non-decreasing in w for any given θ and a⃗.

(ii) The feasible set A(w) satisfies A(w′)⊆A(w) for w′ >w.

(iii) For any w≥ 0, there exist a control a⃗0 ∈A(w) such that ρ(θ, a⃗0) = 0 for all θ ∈Θ.

(iv) The reward R(θ, a⃗,w) is non-increasing in w, upper-bounded by a value B, and continuous in w.

Moreover, there exists w̄ <∞ such that R(θ, a⃗,w)≤ 0, for all w≥ w̄, θ ∈Θ, and a⃗∈A(w).

(v) There exists a control a⃗+ ∈A(0) and a type θ̂ ∈Θ such that

ρ(θ̂, a⃗+)> 0, τ(θ̂, a⃗+,0)> 0, and R(θ̂, a⃗+,0)> 0. (59)

We define the control a⃗ := {q(θ), p(θ), r(θ)}θ∈{h,l}, the admission probability ρ(θ, a⃗) = q(θ), the service time

τ(θ, a⃗,w) =B, and the reward

R(θ, a⃗,w) :=

 p(θ)/q(θ), if q(θ) = 1,

0, if q(θ) = 0.

First, the lead time w+τ(θ, a⃗,w) =w+B increases in w, which satisfies Assumption 3(i). Second, the feasible

set A(w) consists of (IC), (IR) and (FE). Only (FE) involves w in the constraint r≥w+B. It is clear that

Assumption 3(ii) is thus satisfied.

To show that Assumption 3(iii) holds, consider control a⃗0 with q(θ) = p(θ) = r(θ) = 0 for all θ ∈ Θ and

w≥ 0. Such a control a⃗0 satisfies (IC), (IR) and (FE), and ρ(θ, a⃗0) = q(θ) = 0 for all θ ∈Θ.

Next, consider Assumption 3(iv). The reward function R(θ, a⃗,w) is independent of w, so the monotonicity

of the function is satisfied. Furthermore, the R(θ, a⃗,w) is upper bounded by νh for all w from (IR). Finally,

define

w̄ :=
νl
cl
.

Following (FE) and (IR), the only admissible control is to set p(θ) = q(θ) = 0, when w≥ w̄. This implies that

the R(θ, a⃗,w) function is non-positive when w≥ w̄.

Finally, define a control a⃗+ := {q(h), r(h), p(h), q(l), r(l), p(l)} such that

q(h) = 1, r(h) =B, p(h) = νh − chB, q(l) = p(l) = r(l) = 0.

This control a⃗+ satisfies (IC), (IR) and (FE) for w = 0 from Assumption 1. Assumption 3(v) is satisfied.

Q.E.D.

Lemma 1

We have

d

dw
ul(w) =−cl < 0,

d

dw
uh(w) =−ch < 0,

d

dw
u2(w) =−ch +

αl

αh

(−ch + cl)< 0,

because ch > cl > 0 and αl = 1−αh < 1. Furthermore, (11), (12) and (13) directly follow the definitions of r∗

in Assumption 1, (7), and (8)-(10).
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Theorem 1

We first show the existence of thresholds w̄ps and w̄l
sr. Because ∆(w) decreases in w and limw↑∞∆(w) =−∞,

u2(w) increases in w and limw↑∞ u2(w) =∞, and ∆(w∗)≥ ul(w
∗) = 1

αh
u∗
2(w) (Lemma 1), there must exists

a unique w̄ps ≥ w∗ such that ∆(w̄ps) =
1
αh

u2(w̄ps). The same logic implies that there must exists a unique

w̄l
sr ≥ w∗ such that ∆(w̄l

sr) = ul(w̄
l
sr). Finally, w̄

l
sr ≥ w̄ps follows from the fact that 1

αh
u2(w) ≤ ul(w) for

w≥w∗.

The dual of linear optimization Φ(w) defined in (5) is

min
λθ≤0,µθ≤0,ξθ≤0,δθ≥0

δh + δl (60)

s.t. −λh +λl −µh ≥ αh (61)

λh −λl −µl ≥ αl (62)

νh(λh +µh)− νlλl −w+Bξh + δh ≥ αh∆(w) (63)

− νhλh + νl(λl +µl)−w+Bξl + δl ≥ αl∆(w) (64)

− ch(λh +µh)+ clλl + ξh = 0 (65)

chλh − cl(λl +µl)+ ξl = 0 (66)

We analyze the dual problem above and suppose ∆(w∗) ≥ ul(w
∗) = uh(w

∗). Moreover, we separate the

analysis into three cases with thresholds w∗, w̄ps, and w̄l
sr.

Case 1. We consider the wait time w≤w∗ and solve the dual problem. From the definition of w∗ and the

concavity of V (w) in Proposition 1, we have

∆(w)−uh(w
∗) =∆(w)+ νh − chr

∗ =∆(w)+ νl − clr
∗ =∆(w)−ul(w

∗)≥ 0, ∀w≤w∗. (67)

Primal feasible solution (16) yields a primal objective value

αh[νh − ch(w+B)] +αl

[
clνh − chνl
cl − ch

]
+∆(w). (68)

It can be verified that the following solution is dual feasible and yields a dual objective value equal to (68),

λl = ξl = 0, λh = αl

cl
cl − ch

, µl = αl

ch
cl − ch

, ξh =−chαh, µh = αl

cl
ch − cl

−αh,

δh = αh [∆(w)+ νh − ch(w+B)] = αh [∆(w)−uh(w)] , δl = αl

[
∆(w)+

clνh − chνl
cl − ch

]
.

In particular, µh ≤ 0 follows from Assumption 1. When w≤w∗, we have δh ≥ 0 from

∆(w)−uh(w)≥∆(w)−uh(w
∗)≥ 0,

provided by (67), the concavity of V (w), and Lemma 1.

Similarly, δl ≥ 0 follows from (67), the concavity of V (w), and Lemma 1 that

∆(w)+
clνh − chνl
cl − ch

=∆(w)+
clνh

cl − ch
− chνl

cl − ch
+

chνh
cl − ch

− chνh
cl − ch

=∆(w)+ νh −
chνl − chνh
cl − ch

=∆(w)+ νh − ch
νl − νh
cl − ch

=∆(w)+ νh − chr
∗ =∆(w)−uh(w

∗)≥∆(w∗)−uh(w
∗)≥ 0.



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. XXXX-XXXX-XXXX 33

Case 2. (Serving both without delay) We consider w ∈ [w∗, w̄ps], in which w̄ps is defined as

νh − ch(w̄ps +B)+∆(w̄ps)−αl [νl − cl(w̄ps +B)+∆(w̄ps)] = 0, (69)

Which is equivalent to

∆(w̄ps) =
1

αh

u2(w̄ps).

Together with Lemma 1, we have

∆(w)−ul(w) = νl − cl(w+B)+∆(w)≥∆(w)−uh(w) = νh − ch(w+B)+∆(w)≥ 0, ∀w ∈ [w∗, w̄ps] (70)

We notice that

νh − chs(w
∗ +B)+∆(w∗)−αl [νl − cls(w

∗ +B)+∆(w∗)]

= αh [νh − ch(w
∗ +B)+∆(w∗)] = αh[∆(w∗)−uh(w

∗)]≥ 0.

from the assumption ∆(w∗)− uh(w
∗) ≥ 0. Moreover, from the concavity of V (·) and the monotonicity of

u2(w) in Lemma 1, we have

u2(w)+αh∆(w)≥ 0, ∀w ∈ [w∗, w̄ps]. (71)

We then propose a primal feasible solution (17) as

qh = ql = 1, ph = pl = νh − chw+B, rh = rl =w+B;

yields a primal objective value

νh − ch(w+B)+∆(w). (72)

It can be verified that the following solution is dual-feasible and yields a dual objective value equal to (72),

λh = µl = 0, λl =−αl, µh =−1, ξh = αlcl − ch, ξl =−αlcl,

δh = νh − ch(w+B)+∆(w)−αl [νl − cl(w+B)+∆(w)] ,

δl = αl [νl − cl(w+B)+∆(w)] .

In particular, the feasibility of dual variable δh ≥ 0 follows from (71), and δl ≥ 0 follows from (70).

Case 3. (Only serving type l) We solve the dual problem when w ∈ (w̄ps, w̄
l
sr). The threshold w̄l

sr is defined

as,

νl − cl(w̄
l
sr +B)+∆(w̄l

sr) = 0,

which is equivalent to ∆(w̄l
sr) = ul(w̄

l
sr). We have the primal feasible solution (18) as

qh = 0, ql = 1, ph = 0, pl = νl − cl(w+B), rh = 0, rl = s(w+B).

This yields the primal objective value

αl [νl − cl(w+B)+∆(w)] . (73)

It can be verified that the following solution is dual-feasible when w ∈ (w̄ps, w̄
l
sr) and yields a dual objective

value equal to (73),

λh = µl = 0, λl =−αl, µh =−1, ξh = αlcl − ch, ξl =−αlcl,

δh = 0, δl = αl [νl − cl(w+B)+∆(w)] .



Authors’ names blinded for peer review
34 Article submitted to Management Science; manuscript no. XXXX-XXXX-XXXX

Theorem 2

We first show the existence of thresholds w̄ds and w̄h
sr. Because ∆(w) decreases in w and limw↑∞∆(w) =−∞,

uh(w) increases in w and limw↑∞ u2(w) =∞, and ∆(w∗) ≥ uh(w
∗) as the assumption for this proposition,

there must exist a unique w̄ds ≤w∗ such that ∆(w̄dp) = uh(ēfp). The same logic implies that there must exists

a unique w̄h
sr ≤w∗ such that ∆(w̄h

sr) = ul(w̄
h
sr). Finally, w̄

h
sr ≥ w̄dp follows from facts that uh(w

∗)≥ uh(w) for

w≤w∗ and that ∆(w) is decreasing.

The dual of linear optimization Φ(w) defined in (5) is

min
λθ≤0,µθ≤0,ξθ≤0,δθ≥0

δh + δl (74)

s.t. −λh +λl −µh ≥ αh (75)

λh −λl −µl ≥ αl (76)

νh(λh +µh)− νlλl − s(w+B)ξh + δh ≥ αh∆(w) (77)

− νhλh + νl(λl +µl)− s(w+B)ξl + δl ≥ αl∆(w) (78)

− ch(λh +µh)+ clλl + ξh = 0 (79)

chλh − cl(λl +µl)+ ξl = 0 (80)

Now we solve the dual problem above and suppose ∆(w∗)+νh−chs(r
∗) =∆(w∗)−uh(w

∗) =∆(w∗)−ul(w
∗)<

0. We separate the analysis in two cases with thresholds w̄dp and w̄h
sr.

Case 1. We consider the interval w ∈ [0, w̄dp] and we have w̄dp <w∗, in which w̄dp is defined as

∆(w̄dp)−uh(w̄dp) = 0.

From the definition of w̄dp and the concavity of V (w), we have

∆(w)−uh(w
∗) =∆(w)−ul(w

∗)≥ 0, ∀w≤ w̄dp. (81)

Primal feasible solution (16) yields a primal objective value

αh[νh − ch(w+B)] +αl

[
clνh − chνl
cl − ch

]
+∆(w). (82)

It can be verified that the following solution is dual-feasible and yields a dual objective value equal to (82),

λl = ξl = 0, λh = αl

cl
cl − ch

, µl = αl

ch
cl − ch

, ξh =−chαh, µh = αl

cl
ch − cl

−αh,

δh = αh [∆(w)+ νh − (w+B)ch] , δl = αl

[
∆(w)+

clνh − chνl
cl − ch

]
.

In particular, µh ≤ 0 follows from Assumption 1. Given condition ∆(w∗)− uh(w
∗) ≥ 0, we have (81) and

Lemma 1, which imply δh ≥ 0 for all w≤ w̄dp.

Moreover, δl ≥ 0 follows from (81) that

∆(w)+
clνh − chνl
cl − ch

=∆(w)+
clνh

cl − ch
− chνl

cl − ch
+

chνh
cl − ch

− chνh
cl − ch

=∆(w)+ νh −
chνl − chνh
cl − ch

=∆(w)+ νh − ch
νl − νh
cl − ch

=∆(w)+ νh − ch(w
∗ +B) =∆−uh(w

∗)≥ 0.
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Case 2. We consider the case when w ∈ (w̄dp, w̄
h
sr] in which w̄h

sr is defined as,

νh − ch(w̄
h
sr +B)+∆(w̄h

sr) = 0,

which is equivalent to

uh(w̄
h
sr) =∆(w̄h

sr).

We have the primal feasible solution (22) as

qh = 1, ql = 0, ph = νh − ch(w+B), pl = 0, rh =w+B, rl = 0;

yields a primal objective value

αh [νh − ch(w+B)+∆(w)] . (83)

It can be verified that the following solution is dual-feasible and yields a dual objective value equal to (83),

λl = ξl = 0, λh = αl

cl
cl − ch

, µl = αl

ch
cl − ch

, ξh =−chαh, µh = αl

cl
ch − cl

−αh,

δh = αh [∆(w)+ νh − (w+B)ch] , δl = 0.

The term δh is non-negative only when w≤ w̄h
sr as the optimal solution when w ∈ (w̄dp, w̄

h
sr].

Appendix B: Proofs in Section 4

Proposition 2

Similar to Proposition 1, the proof is to verify Assumption 3 with the continuous type setting in Section

(4.1).

We define the control a⃗ := {q(θ), p(θ), r(θ)}θ∈Θ=[cl,ch], the admission probability ρ(θ, a⃗) = q(θ), the service

time τ(θ, a⃗,w) =B, and the reward

R(θ, a⃗,w) :=

 p(θ)/q(θ), if q(θ) = 1,

0, if q(θ) = 0.

First, the lead time w+ τ(θ, a⃗,w) = w+B is increasing in w, which satisfies Assumption 3(i). Second, the

feasible set A(w) consists of (26), (27) and (FE), among which only (FE) involves w, in r≥ q(w+B). That

is, when q= 1 and w increases, the feasible choices of r becomes less, which stasifies Assumption 3(ii).

Assumption 3(iii) holds from a feasible control a⃗0 such that q(θ) = p(θ) = 0 and r(θ) = 0 for all θ ∈Θ and

w≥ 0. One can verify that this control satisfies (26), (27) and (FE), and ρ(θ, a⃗0) = q(θ) = 0.

Next, we verify Assumption 3(iv). The reward function R(θ, a⃗,w) is independent of w, so the monotonicity

of the function is satisfied. The R(θ, a⃗,w) is upper bounded by ν̄+ r∗ch for all w from (27). Also, define

w̄ :=
ν̄+ r∗cl

cl
−B.

Following (FE) and (27), the only feasible control is to set p(θ) = q(θ) = 0 for all θ ∈Θ, when w ≥ w̄ which

implying that the R(θ, a⃗,w) function is non-positive.

Finally, define a control a⃗+ := {q(θ), r(θ), p(θ)}θ∈Θ such that

q(θ) = 1, r(θ) =B, p(θ) = ν̄+ ch(r
∗ −B), θ= ch

and

q(θ) = p(θ) = r(θ) = 0, ∀θ ̸= ch.

The control satisfies (26), (27) and (FE) for w= 0 from Assumption 1. This verifies Assumption 3(v).
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Lemma 2

Constraint (IC) implies

U(θ) = ν̄q(θ)+ θ[r∗q(θ)− r(θ)]− p(θ) =max
θ′

ν̄q(θ′)+ θ[r∗q(θ′)− r(θ′)]− p(θ′),

which is the maximum of a collection of linear functions in θ, and hence is convex. Furthermore, the Envelop

Theorem implies that (28) holds. Finally, convexity of U(θ) implies that U ′(θ) is non-decreasing, or (29).

For any functions q(θ) and r(θ) that satisfies (29) and p(θ) as defined in (30), we have

U(θ) = ν̄q(θ)+ θ[r∗q(θ)− r(θ)]− p(θ) = ū+

∫ θ

θ̂

[r∗q(x)− r(x)]dx,

which implies U(θ̂) = ū, and

u(θ, q(θ′), p(θ′), r(θ′)) = ū+(θ− θ′)[r∗q(θ′)− r(θ′)] +

∫ θ′

θ̂

[r∗q(x)− r(x)]dx,

which implies that

U(θ)−u(θ, q(θ′), p(θ′), r(θ′)) =

∫ θ

θ′
{[r∗q(x)− r(x)]− [r∗q(θ′)− r(θ′)]}dx≥ 0,

where the last inequality holds because r∗q(θ)− r(θ) is non-decreasing in θ, which implies (IC).

Lemma 3

If we let θ̂ in Lemma 2 to be either č or ĉ, then (27) constraint in (25) implies that ū = U(č) = U(ĉ) ≥ 0.

From (25), ū≥ 0, and Lemma 2, we have

Υ(w) = max
q(θ),p(θ),r(θ):Π

∫
θ∈Θ

[p(θ)+ q(θ)∆(w)]f(θ)dθ

= max
q(θ),p(θ),r(θ):Π

∫ č

cl

[p(θ)+ q(θ)∆(w)]f(θ)dθ

+

∫ ĉ

č

[p(θ)+ q(θ)∆(w)]f(θ)dθ+

∫ ch

ĉ

[p(θ)+ q(θ)∆(w)]f(θ)dθ

= max
q(θ),r(θ),ū≥0,č,ĉ:Π′

−ū

+

∫ č

cl

{
ν̄q(θ)+ θ[r∗q(θ)− r(θ)] +

∫ č

θ

[r∗q(x)− r(x)]dx+∆(w)q(θ)

}
f(θ)dθ

+

∫ ĉ

č

[
q(θ)(ν̄+∆(w))

]
f(θ)dθ

+

∫ ch

ĉ

{
ν̄q(θ)+ θ(r∗q(θ)− r(θ)−

∫ θ

ĉ

[r∗q(x)− r(x)]dx+∆(w)q(θ)

}
f(θ)dθ

= max
q(θ),r(θ),č,ĉ:Π′

∫ č

cl

{
(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ+

F (θ)

f(θ)

]}
f(θ)dθ

+

∫ ĉ

č

[
q(θ)(ν̄+∆(w))

]
f(θ)dθ+

∫ ch

ĉ

{
(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]}
f(θ)dθ.

The third equality follows from Lemma 2. The last equality follows from (31), (32), (33), and (34) and −ū= 0

in the maximization.
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Theorem 3

To prove Theorem 3, we first analyze (35) as the following proposition.

Proposition 5. The optimal solution
(
q∗(θ), p∗(θ), r∗(θ), č∗, ĉ∗

)
that solves Υ(w) in (35) satisfy:

(1) if w>w∗, č∗ = č(w), and ĉ∗ = ch, in which č(w) is defined in (38);

— for θ≤ č(w), q∗(θ) = 1, r∗(θ) =w+B, and p∗(θ) = ν̄+ č(w)(w∗ −w);

— for θ > č(w), on the other hand, q∗(θ) = r∗(θ) = p∗(θ) = 0;

(2) if w≤w∗ and ν̄+∆(w)≥ 0, q∗(θ) = 1, ∀θ ∈Θ and č∗ = ĉ∗ = c̄;

— for θ < c̄, r∗(θ) = r∗, and p∗(θ) = ν̄;

— for θ≥ c̄, on the other hand, r∗(θ) = r+B, and p∗(θ) = ν̄+ c̄(w∗ −w);

(3) if w≤w∗ and ν̄+∆(w)< 0, č= cl and ĉ∗ = ĉ(w) in which ĉ(w) is defined in (40);

— for θ≥ ĉ(w), q∗(θ) = 1, r∗(θ) =w+B, and p∗(θ) = ν̄+ ĉ(w)(w∗ −w);

— for θ < ĉ(w), on the other hand, q∗(θ) = r∗(θ) = p∗(θ) = 0.

Proof of Proposition 5 We analyze the equation (35) by separating three situations:

1. The case when w>w∗

2. The case when w≤w∗ and ν̄+∆(w)≥ 0

3. The case when w≤w∗ and ν̄+∆(w)< 0

Case 1 When w>w∗, (34) cannot be satisfied together with (FE), which implies that ĉ= ch. Furthermore,

(FE) together with (33) can only be satisfied with q(θ) = r(θ) = 0 for all θ ∈ [č, ĉ]. Therefore, (35) is reduced

to

Υ(w) = max
q(θ),r(θ),č∈[cl,ch]:(FE),(29),(32)

∫ č

cl

{
(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ+

F (θ)

f(θ)

]}
f(θ)dθ. (84)

By ignoring the constraint (29) for the moment, we solve r(θ) = q(θ)(w +B), because θ + F (θ)/f(θ) > 0.

Therefore, (84) becomes

max
q(θ)∈[0,1],č∈[cl,ch]

∫ č

cl

q(θ)

{
ν̄+∆(w)+ [r∗ − (w+B)]

[
θ+

F (θ)

f(θ)

]}
f(θ)dθ. (85)

For any given č, the optimal q(θ) takes value 0 or 1 depending on the sign of the term

H(w,θ) := ν̄+∆(w)+ (w∗ −w)

[
θ+

F (θ)

f(θ)

]
. (86)

That is, the optimal solution to (85) for a given č is

q(θ) =

{
1 if H(w,θ)≥ 0
0 if H(w,θ)< 0

. (87)

Because θ+ F (θ)

f(θ)
increases in θ following Assumption 2, (87) implies that we can define a threshold

č(w) :=max
{
max

{
θ ∈ [cl, č]

∣∣∣H(w,θ)≥ 0
}
, cl

}
, ∀w>w∗, (88)

and have

q(θ) =

{
1 ∀θ≤ č(w)
0 ∀θ > č(w)

, and r(θ) =

{
w+B ∀θ≤ č(w)
0 ∀θ > č(w)

. (89)
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It is easy to verify that the optimal q and r for (85) given č also satisfies (29) and (32). Therefore, they are

the optimal solution to (84) for a given č. Finally, the integrant in (84),{
(ν̄+∆(w))q(θ)+ [dq(θ)− r(θ)]

[
θ+

F (θ)

f(θ)

]}
= (ν̄+∆(w))− (w−w∗)

[
θ+

F (θ)

f(θ)

]
≥ 0

and is decreasing in θ for θ≤ č(w), which implies that the optimal č must be č(w). As a result, we have

Υ(w) =

∫ č(w)

cl

{
ν̄+∆(w)+ (w∗ −w)

[
θ+

F (θ)

f(θ)

]}
f(θ)dθ, ∀w>w∗.

Case 2 We analyze (35) when w≤w∗ and ν̄+∆(w)≥ 0. Now we ignore the constraint (29) for a moment

to solve (35). The first integral in (35) has the integrand

(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ+

F (θ)

f(θ

]
.

Given ν̄+∆(w)≥ 0 and

[q(θ)d− r(θ)]

[
θ+

F (θ)

f(θ

]
≤ 0

from (32), we have

q(θ) = 1, r(θ) = r∗, ∀θ ∈ [cl, č], (90)

in (35) for this case. Therefore, the first two integrals in (35) can be combined and thus (35) without (29)

becomes

Υ(w) = max
q(θ),r(θ),ĉ∈[cl,ch]:(FE),(33),(34)

∫ ĉ

cl

{(ν̄+∆(w))q(θ)}f(θ)dθ

+

∫ ch

ĉ

{
(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]}
f(θ)dθ, (91)

Furthermore, from (33), ν̄+∆(w)≥ 0, and (90), we have

q(θ) = 1, r(θ) =w∗ +B = r∗, ∀θ ∈ [cl, ĉ].

Hence, we can further write (91) as

max
q(θ),r(θ),ĉ∈[cl,ch]:(FE),(34)

∫ ĉ

cl

{(ν̄+∆(w))}f(θ)dθ

+

∫ ch

ĉ

{
(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]}
f(θ)dθ

= max
q(θ),r(θ),ĉ∈[cl,ch]:(FE),(34)

∫ ĉ

cl

{(ν̄+∆(w))}f(θ)dθ

+

∫ max{ĉ,c̄}

ĉ

{
(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]}
f(θ)dθ

+

∫ ch

max{ĉ,c̄}

{
(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]}
f(θ)dθ, (92)

in which c̄ is defined in (36). Following (34) and (36), we have

[r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]
< 0,∀θ < c̄, and [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]
≥ 0,∀θ > c̄
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which implies that the optimal ĉ in (92) must be c̄ to make the second integral empty. Furthermore, the

optimal decisions for the right-hand-side of (92) are q(θ) = 1 and r(θ) = w +B for the interval θ ∈ [ĉ, ch],

because of the constraint (FE), ν̄ +∆(w)> 0, and
[
θ− 1−F (θ)

f(θ)

]
≥ 0. It can be easily verified that the above

solution satisfies (29) ignored at the beginning and, therefore, is indeed optimal to (91). We summarize the

optimal solution to (92) as follows

q(θ) =

{
1 , ∀ θ≤ c̄,
1 , ∀ θ > c̄,

, and r(θ) =

{
r∗ ,∀θ≤ c̄,
w+B ,∀θ > c̄,

where ĉ= c̄ and č= cl, and the solution satisfies (29) as the optimal solution to (91). Therefore, we have

Υ(w) =

∫ c̄

cl

{(ν̄+∆(w))}f(θ)dθ+
∫ ch

c̄

{
(ν̄+∆(w))+ (w∗ −w)

[
θ− 1−F (θ)

f(θ)

]
f(θ)

}
dθ,

when w≤w∗ and ν̄+∆(w)≥ 0.

Case 3 Now consider (35) when w≤w∗ and ν̄+∆(w)< 0. From (32), we have č= cl, because the integrant

is negative in the interval [cl, č). The optimal q(θ) = 0 for all θ ∈ [cl, ĉ] in (35), because ν̄ + ∆(w) < 0.

Therefore, the equation (35) becomes

Υ(w) = max
q(θ),r(θ),ĉ∈[cl,ch]:(FE),(29),(34)

∫ ch

ĉ

{
(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]}
f(θ)dθ, (93)

Following the definition of c̄ in (36), we have

(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]
≤ 0,∀θ≤ c̄,

which further implies that the optimal ĉ≥ c̄.

Now we ignore constraint (29). Given ĉ≥ c̄, we have θ− (1−F (θ))/f(θ)≥ 0 for θ ∈ [ĉ, ch]. Together with

constraint (FE), we solve r(θ) = q(θ)(w+B) for all θ ∈ [ĉ, ch]. Therefore, we rewrite (93) as

max
q(θ)∈[0,1]ĉ∈[c̄,ch]

∫ ch

ĉ

q(θ)

{
(ν̄+∆(w))+ (w∗ −w)

[
θ− 1−F (θ)

f(θ)

]}
f(θ)dθ, (94)

Define

G(w,θ) := ν̄+∆(w)+ (w∗ −w)

[
θ− 1−F (θ)

f(θ)

]
.

The optimal solution to (94) for a given ĉ is

q(θ) =

{
1 if G(w,θ)≥ 0
0 if G(w,θ)< 0.

(95)

Because θ− 1−F (θ)

f(θ)
increases in θ following Assumption 2, (95) implies that we can define a threshold

ĉ(w) :=min
{
min

{
θ ∈ [c̄, ch]

∣∣∣G(w,θ)≥ 0
}
, ch

}
, ∀w≤w∗, ν̄+∆(w)< 0, (96)

and have

q(θ) =

{
1 ∀θ≥ ĉ(w)
0 ∀θ < ĉ(w)

, and r(θ) =

{
w+B ∀θ≥ ĉ(w)
0 ∀θ < ĉ(w)

. (97)

It is easy to verify that q and r in (97) also satisfy (29). Therefore, they are the optimal solution to (93) for

a given ĉ. Finally, the integrant in (93),{
(ν̄+∆(w))q(θ)+ [r∗q(θ)− r(θ)]

[
θ− 1−F (θ)

f(θ)

]}
= (ν̄+∆(w))+ (w∗ −w)

[
θ− 1−F (θ)

f(θ)

]
≥ 0

and is increasing in θ for θ≥ ĉ(w), which implies that the optimal ĉ must be ĉ(w). As a result, we have

Υ(w) =

∫ ch

ĉ(w)

{
ν̄+∆(w)+ [r∗ − (w+B)]

[
θ− 1−F (θ)

f(θ)

]}
f(θ)dθ, ∀w≤w∗, ν̄+∆(w)< 0. Q.E.D.
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Complete the Proof of Theorem 3: First consider ν̄+∆(w∗)≥ 0. In this case we have

ν̄+∆(w)≥ 0,∀w ∈ [0,w∗],

from the concavity of V (w) in Proposition 2. Case (1)i. then follows Proposition 5’s case (2). Case (1)ii.

follows from Proposition 5’s case (1). Moreover, č(w) is non-increasing in w because of the monotonicity of

∆(w), also following the concavity of V (w) in Proposition 2.

Now consider ν̄+∆(w∗)< 0, which implies that wD <w∗ again due to the monotonicity of ∆(w) (following

concavity of V (w) in Proposition 2). When w ≤ wD, we have ν̄ + ∆(w) ≥ 0, and case (2)i. follows from

Proposition 5’s case (2). For w ∈ (wD,w
∗], we have ν̄ +∆(w) < 0. Case (2)ii. then follows Proposition 5’s

case (3). When w>w∗, the optimal policy follows Proposition 5’s case (1), in which č(w) = cl.

Moreover, concavity of V (w) in Proposition 2 implies that the threshold ĉ(w) is non-decreasing in w due

to the decreasing ∆(w).

Proposition 3

Similar to the verifications in Proposition 1 and Proposition 2, the proof of Proposition 3 is established by

verifying Assumption 3 given the setting in Section 4.2.

We define the control a⃗ := {qθ, rθ, pθ}θ∈{h,l}, the admission probability ρ(θ, a⃗) = qθ, the service time

τ(θ, a⃗,w) = bθ, and the reward

R(θ, a⃗,w) :=

 pθ/qθ − k(bθ), if qθ = 1,

0, if qθ = 0.

First, the lead time w+ τ(θ, a⃗,w) = w+ bθ increases in w given any bθ. Thus, Assumption 3(i) is satisfied.

the feasible set A(w) is specified as the constraints in (43). In (43), only rθ ≥ qθ(w + bθ) involves w. It is

clear that Assumption 3(ii) holds.

Assumption 3(iii) holds as defining a control

a⃗0 := {qθ, pθ, rθ, bθ}θ∈{h,l},

where qθ = pθ = rθ = bθ = 0 for all θ ∈Θ= {h, l} and w ≥ 0. This control a⃗0 indeed satisfies the constraints

in (43), and ρ(θ, a⃗0) = qθ = 0.

Next, consider Assumption 3(iv). The reward functionR(θ, a⃗,w) is independent of w. Similar to Proposition

1, the R(θ, a⃗,w) is upper bounded by νh for all w from (43), and we define

w̄ :=
νl
cl
.

Following (43), the only admissible control is to set pθ = qθ = rθ = bθ = 0 for all θ ∈ {h, l} when w≥ w̄. This

implies that the R(θ, a⃗,w) function is non-positive when w≥ w̄.

Finally, define a control a⃗+ := {qh, rh, ph, bh, ql, rl, pl, bl} such that

qh = 1, rh = bh =B, ph = νh − chB,

and

ql = pl = rl = bl = 0.

Given w = 0, the control satisfies the constraints in (43) when w = 0 from Assumption (1). This verifies

Assumption 3(v).
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Proposition 4

We separate the analysis of (43) into three cases: (qh, ql) = (1,1), (qh, ql) = (1,0), and (qh, ql) = (0,1).

Case 1: qh = ql = 1 Given qh = ql = 1, the problem (43) can be decomposed into a bi-level optimization

problem. The second layer problem is fixing bθ in Φs(w) and solves the resulting linear optimization problem

with variables qθ, pθ, and rθ. Then, the first layer problem only solves bθ as solving the original Φ(s)(w) by

utilizing results from the second layer problem. Moreover, the first layer problem can be solved efficiently

since two decisions bh and bl are separable.

That is, we consider

max
bh,bl

αh(V (w+ bh)−V (w)− k(bh))+αl(V (w+ bl)−V (w)− k(bl))+J(bh, bl,w) (98)

s.t. bh ≥ 0

bl ≥ 0,

where J(bh, bl,w) is derived from the problem:

J(bh, bl,w) := max
ph,rh,pl,rl

αhp
h +αlp

l

s.t. ph + chr
h ≤ pl + chr

l,

pl + clr
l ≤ ph + clr

h,

ph + chr
h ≤ νh,

pl + clr
l ≤ νl,

w+ bθ − rθ ≤ 0, θ ∈ {h, l},

pθ ≥ 0, θ ∈ {h, l}.

We denote J(bh, bl,w) as the primal problem:

max
ph≥0,rh,pl≥0,rl

αhp
h +αlp

l

s.t.


−1 1 ch −ch
0 1 ch 0
1 −1 −cl cl
1 0 0 cl
0 0 −1 0
0 0 0 −1


pl

ph

rh

rl

≤


0
νh
0
νl

−(w+ bh)
−(w+ bl)

 .

We then obtain an equivalent dual problem

min
λ≥0

λ2νh +λ4νl −λ5(w+ bh)−λ6(w+ bl)

s.t.

−1 0 1 1 0 0
1 1 −1 0 0 0
ch ch −cl 0 −1 0
−ch 0 cl cl 0 −1



λ1

λ2

λ3

λ4

λ5

λ6

=

αh

αl

0
0

 .
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In the dual problem, we first focus on constraints:

−λ1 +λ3 +λ4 = αl (99)

λ1 +λ2 −λ3 =−αh (100)

chλ1 + chλ2 − clλ3 −λ5 = 0 (101)

−chλ1 + clλ3 + clλ4 −λ6 = 0 (102)

We now solve J(bh, bl,w) when w+ bl ≤ r∗. We propose a feasible solution to the primal problem:

ph = νl − clr
∗ − ch((w+ bh)− r∗), pl = νl − clr

∗,

rh =w+ bh, rl = r∗,

and the corresponding objective value is

νl − clr
∗ −αhch((w+ bh)− r∗). (103)

For the dual problem, we have a feasible solution:

λ1 =
αlcl

ch − cl
, λ2 =

αhch − cl
ch − cl

, λ3 = 0,

λ4 =
αlch
ch − cl

, λ5 = αhch, λ6 = 0,

which yields the objective value

αhch − cl
ch − cl

νh +
αlch
ch − cl

νl −αhch(w+ bh). (104)

The feasibility of dual solution requires αh ≥ cl
ch

and is satisfied by the assumption on αh. We then rewrite

(104):

αhch − cl
ch − cl

νh +
αlch
ch − cl

νl −αhch(w+ bh)

=
1

ch − cl
(chαhνh − clνh + chαlνl)− chαh(w+ bh)

=
1

ch − cl
(chαhνh − clνh + chνl − chαhνl)− chαh(w+ bh)

=
chνl − clνh
ch − cl

−αhch

(
(w+ bh)− νh − νl

ch − cl

)
=

chνl
ch − cl

− clνh
ch − cl

− clνl
ch − cl

+
clνl

ch − cl
−αhch

(
(w+ bh)− r∗

)
=
(ch − cl)νl
ch − cl

− cl
νh − νl
ch − cl

−αhch
(
(w+ bh)− r∗

)
=νl − clr

∗ −αhch((w+ bh)− r∗).

As a result, the objective value (103) of primal problem is equal to the objective value (104), so the proposed

feasible solution is optimal when w+ bl ≤ r∗.

Next, we define

w̄h :=
νh
ch

,
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and we solve J(bh, bl,w) when w + bl > r∗ and w + bh ≤ w̄h. We propose a feasible solution to the primal

problem:

ph = νh − ch(w+ bh), pl = νh − ch(w+ bh)− cl((w+ bl)− (w+ bh)),

rh =w+ bh, rl =w+ bl,

and the objective value is

νh − ch(w+ bh)−αlcl((w+ bl)− (w+ bh)). (105)

For the dual problem, we have a feasible solution:

λ1 = 0, λ2 = 1, λ3 = αl,

λ4 = 0, λ5 = ch −αlcl, λ6 = αlcl,

which yields the objective value

λ2νh +λ4νl −λ5(w+ bh)−λ6(w+ bl)

=νh − (ch −αlcl)(w+ bh)−αlcl(w+ bl)

=νh − ch(w+ bh)−αlcl((w+ bl)− (w+ bh)). (106)

As a result, the objective value (105) of primal problem is equal to the objective value (106), so the proposed

feasible solution is optimal when w+ bh < w̄h and w+ bl > r∗.

For w< w̄h, we characterize the function J(bh, bl,w):

J(bh, bl,w) =

{
νl − cls(r

∗)−αhch((w+ bh)− r∗), if w+ bl ≤ r∗,

νh − chs(w+ bh)−αlcl((w+ bl)− (w+ bh)), if w+ bl > r∗.
(107)

The value of J(bh, bl,w) changes based on whether w+ bl exceeds r∗ or not. We then consider the problem

(98) to be

max{Q1(w),Q2(w)}, (108)

where Q1(w) is defined as

Q1(w) :=max
bh,bl

νl − clr
∗ +αh

(
V (w+ bh)−V (w)− k(bh)− ch((w+ bh)− r∗)

)
+αl(V (w+ bl)−V (w)− k(bl))

s.t. bh ≥ 0,

bl ≥ 0,

bl ≤ r∗ −w,

and Q2(w) is defined as

Q2(w) :=max
bh,bl

νh − ch(w+ bh)+αh

(
V (w+ bh)−V (w)− k(bh))

)
+αl

(
V (w+ bl)−V (w)− k(bl)− cl((w+ bl)− (w+ bh))

)
s.t. bh ≥ 0,

bl ≥ r∗ −w,

Both objectives in Q1(w) and Q2(w) are concave in bh and bl.
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Case 2: qh = 1 and ql = 0 Now we derive the case for qh = 1 and ql = 0, the optimization problem (43)

becomes

max
ph,rh,bh

αh

(
ph − k(bh)+Vs(w+ bh)−Vs(w)

)
(109)

s.t. νh − chr
h − ph ≥ 0 (110)

0≥ νl − clr
h − ph (111)

νhq
h − chr

h − ph ≤ 0 (112)

rh ≥w+ bh, ph ≥ 0,

bh ∈ [0,∞].

Constraints (110) and (111) can be combined as

νh − chr
h ≥ νl − clr

h,

which the constraint

rh ≤ νh − νl
ch − cl

= r∗. (113)

Therefore, the problem (109) is only feasible when rh ≤w∗ Moreover, ph and rh are linear in (109) and we

thus have ph = νh − chr
h from (110) and rh =w+ bh. As a result, (109) becomes

Q3(w) :=max
bh

αh

(
νh − ch(w+ bh)− k(bh)+Vs(w+ bh)−Vs(w)

)
bh ≤w∗ −w,

bh ≥ 0.

This becomes a single variable optimization where the objective is concave in bh due to the convexity of

k(bh) and the concavity of V (w).

Case 3: qh = 0 and ql = 1 Lastly, we derive the case for qh = 0 and ql = 1, the optimization problem (43)

becomes

Φs(w) := max
pl,rl,bl

αl

(
pl − k(bl)+Vs(w+ bl)−Vs(w)

)
(114)

s.t. 0≥ νh − chr
l − pl (115)

νl − clr
l − pl ≥ 0 (116)

νlq
l − clr

l − pl ≤ 0 (117)

rl ≥ ql(w+ bl), pl ≥ 0,

bl ∈ [0,∞].

Constraints (115) and (116) can be combined as

νh − chr
l ≤ νl − clr

l,
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which the constraint

rl ≥ νh − νl
ch − cl

= r∗. (118)

Therefore, the problem (114) is only feasible when rl ≥ w∗ Moreover, pl and rl are linear in (114) and we

thus have pl = νl − clr
l from (116) and rl =w+ bl. As a result, (114) is equivalent to

Q4(w) :=max
bl

αl

(
νl − cl(w+ bl)− k(bl)+Vs(w+ bl)−Vs(w)

)
bl ≥w∗ −w.

This becomes a single variable optimisation where the objective is concave in bl due to the convexity of k(bh)

and the concavity of V (w).

As a result, we show that

max
bθ≥0

{Φ(bh, bl,w)}=max{max{Q1(w),Q2(w)},Q3(w),Q4(w),0}. (119)

Due to the feasible region on the state w, we then separate (119) based on w and simplify as (44)-(51) which

completes the proof.
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