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This paper studies a dynamic principal-agent setting in which the principal needs to dynamically schedule

an agent to work or rest. When the agent is motivated to work, the arrival rate of a Poisson process increases,

which increases the principal’s payoff. Resting, on the other hand, serves as a threat to the agent by delaying

future payments. A key feature of our setting is a switching cost whenever the agent stops resting and starts

working. We formulate the problem as an optimal control model with switching, and fully characterize the

optimal control policies under different parameter settings. Our analysis shows that when the switching cost

is not too high, the optimal contract demonstrates a generalized control-band structure, and may involve

randomly switching the agent to rest. The length of each resting episode, on the other hand, is fixed. Overall,

the optimal contract is easy to describe, compute, and implement.
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1. Introduction

Designing dynamic contracts to manage incentives is an important and challenging problem. It

often involves carefully scheduling “carrots and sticks” over time. In an environment where out-

come is stochastically determined by an agent’s unobservable effort, it is intuitive that rewards

(“carrots”), often in the form of monetary payments, follow good performances. If the agent is

cash-constrained or has limited liability, however, the principal cannot charge money from the agent

for bad performances. Therefore, it may not be obvious how to design penalties (“sticks”) when

performance is bad and leverage them to achieve better contracts. Due to analytical challenges,

many dynamic contract design models restrict the focus on contracts that induce agents to always

exert effort (see, for example Demarzo and Sannikov 2006, Sannikov 2008, Biais et al. 2010, Myer-

son 2015, Sun and Tian 2018). In these situations, the principal with commitment power can use

potential contract termination as a form of penalty. That is, the principal can terminate the agent,

which stops all future payment opportunities, if the outcome has been bad for a long enough period
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of time. The threat of termination helps the principal to induce effort while saving costly rewards.

However, termination itself may also be quite costly to the principal, especially in situations where

a replacement agent is hard to find. In this paper, we focus on an alternative approach to penalize

bad outcomes: asking the agent to take some rest. Note that contract termination is essentially

asking the agent to rest forever and never work again, and therefore is a special case of our setting.

In case it is unclear why the principal can use rest as a punishment, here is the intuition. In

order to motivate a rational agent to exert effort, which is a private action, the principal needs to

pay rent, either in the form of an immediate payment or as a promise to be delivered later. During

the period when the agent is directed to rest, on the other hand, the agent loses the rent income.

Therefore, the lost income when outcome is bad can be used as a threat, which helps ensure that

the agent is willing to exert effort whenever asked to. It is worth noting that asking the agent

to rest also means that the principal cannot enjoy good outcome brought by the agent’s effort.

However, compared with losing the agent forever due to termination, it is often less costly for the

principal to endure a short period of time without the agent’s effort. Even though the intuition

may be clear at this point why we may use resting to punish underperformance, deciding how to

schedule resting episodes in a dynamic environment remains challenging. Therefore, we study the

optimal scheduling of payments and resting episodes in a basic dynamic contract design model.

Consider a continuous time optimal contract design problem, in which a principal tries to incen-

tivize an agent to increase the arrival rate of a Poisson process. We may think of the principal

as a firm, the agent as a sales representative, and each arrival as a customer. Alternatively, the

agent may be the research branch of a firm, and arrivals innovation breakthroughs. Whenever the

agent exerts effort, the instantaneous arrival rate increases. However, the effort is costly to the

agent and un-observable to the principal. Therefore, frequent arrivals are associated with good

performances, and no arrival for a long period of time is bad. In this dynamic setting, when the two

players’ discount rates are the same, it is optimal for the principal, who has commitment power,

to never ask the agent to rest before potential contract termination. Sun and Tian (2018) provide

the corresponding optimal solution. If the principal is more patient than the agent, on the other

hand, asking the agent to rest from time to time may be beneficial.

It is instructive to consider the intuition behind it. If the principal has to motivate the agent

to continuously exert effort, contract termination serves as a threat, which helps to reduce overall

payments to motivate effort. In particular, when an arrival does not occur for too long a period

of time, the principal has to deliver the threat, despite knowing that the agent has been working

hard. Termination is also undesirable to the principal, who will no longer has access to the higher

arrival rate. If, instead, the principal can direct the agent to rest, the resting period delays future

payments. Payment delay is particularly painful to an agent who is less patient than the principal,
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and therefore serves as a threat. Although the principal also has to bear a short-term loss due

to the lower arrival rate during the resting period, such a short-term loss may still be preferable

to permanently losing the agent. Therefore, in this paper, we study optimal contract design that

involves scheduling resting episodes as well as payments and contract termination.

Despite the intuitive appeal, contract design with switching between working and resting is

generally hard, which explains why many dynamic contract design models do not directly consider

resting the agent. A standard approach is to first focus on the class of contracts that only motivate

agent to always work, so that the contract design problem can be formulated as a continuous-time

optimal control model. After obtaining the optimal contract in this restrictive class, the authors

provide a sufficient condition on model parameters under which the optimal contract indeed falls

into this restricted class (see, for example Demarzo and Sannikov 2006, Biais et al. 2010).

Zhu (2013) and Grochulski and Zhang (2019) study continuous time optimal contracts allowing

shirking. They focus on settings where uncertain outcomes follow a Brownian motion, instead of

a jump process as in our paper. Their optimal contract structures involve controls that constantly

switch between working and shirking (a “sticky process”). Although these are nice mathematical

results, from a managerial point of view, such a control/contract is not practical, because constantly

switching between working and shirking must be quite costly in real life. Therefore, we include a

fixed cost whenever the principal switches the agent from resting to working. When this switching

cost approaches zero, we show that the switching frequency according to our optimal solution

also approaches infinity. Therefore, including this switching cost is necessary for the model to be

practically relevant, not only in the Browian motion settings, but also in our Poisson arrival setting.

Overall speaking, our analysis reveals that optimal contract structures demonstrate three possi-

bilities depending on model parameters, as illustrated in the three regions of Figure 6 later in the

paper. First, if the switching cost is higher than a threshold, it is optimal to never switch the agent

from resting to working. In this case, it is simply too costly for the principal to hire the agent to

start the work. The second possibility is when the revenue from each arrival is high enough. In this

case it is optimal to motivate the agent to always work and not rest. This is also intuitive, because

the high revenue per arrival means that principal does not want to let the agent rest and forfeit

the higher arrival rate. The third possibility is when neither the switching cost nor the revenue is

too high. In this case, the optimal contract demonstrates intricate and rich structures that we will

explain next.

In order to explain the optimal contract structures, we describe the optimal contract in the

context of the state space of the optimal control model. It is well known, following the dynamic

contracting and repeated games literature, that the agent’s total future utility, also called the

promised utility, is a state variable (see, for example, Spear and Srivastava 1987, Abreu et al. 1990).
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The optimal policy of many control systems with a fixed cost demonstrates a “control-band” policy

structure. For example, the optimal stochastic inventory control policy with a fixed ordering cost

has an ps,Sq-policy structure (Zipkin 2000). Not surprisingly, our optimal contract also involves

two thresholds of the promised utility, a lower θ and a higher θ̄. However, compared with the

inventory system, in which the state variable (inventory position) always moves in cycles between

the two thresholds s and S, the dynamics of our state variable is more complex. In particular, the

promised utility does not always move between θ and θ̄.

A total of four parameters determines the optimal contract structure. Besides the aforementioned

thresholds θ and θ̄, we also need to identify an upper bound pw and a lower bound qw for the

promised utility. If the agent has been working, the effort should continue as long as the promised

utility is above the lower threshold θ. While working, the promised utility takes an upward jump

upon each arrival, and continuously decreases between arrivals. An upward jump may bring the

promised utility to be above θ̄, or even higher, to the upper bound pw, which triggers payment.

Therefore, frequent arrivals induce upward jumps resulting in rewards (payments). On the flip side,

if an arrival does not occur for too long a period of time (bad performance) despite the agent’s

effort, the promised utility decreases to the lower threshold θ. At this point, the principal switches

off effort and directs the agent to rest for a fixed period of time. At the end of the resting period,

the agent’s promised utility is reset to the upper threshold θ̄, when effort is switched on again.

Overall, Figure 1 in the paper illustrates the general structure of the promised utility dynamics.

The figure also involves a lower bound qw. If qwą θ, when the promised utility decreases to qw while

the agent is working, it stays there for an exponentially distributed random time until dropping

to the lower threshold θ, unless an arrival triggers an upward jump before the end of the random

time period. Regardless of whether qw is strictly higher or equal to θ, the time it takes for the

promised utility to increase from θ to θ̄ is fixed. That is, the length of each resting episode is the

same. In Sections 4 and 5, we provide complete descriptions on all the contract parameters θ, θ̄, pw

and qw given any set of model parameters. Furthermore, Appendix A.2 explains how to compute

the optimal contract parameters.

If we decrease the switching cost to zero, generally speaking, the gap between thresholds θ

and θ̄ diminishes to zero, which implies that the frequency of switching between working and

resting increases to infinity. As we have argued earlier, such a control policy is impractical, which

further explains the necessity of introducing the positive switching cost in the model. Although a

zero switching cost excludes practical contracts, the corresponding optimal value function yields

an upper bound on the potential benefit of using resting as a punishment to bad performances.

Numerical examples reported in Section 6 shows that this benefit can be non-trivial.
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Dynamic moral hazard problem has been a subject of recent management science studies. In par-

ticular, Zorc et al. (2019) study a delegated search problem in a discrete-time dynamic environment.

A key distinction of that paper is that the agent is risk-averse and can borrow from a bank to pay

the principal. In comparison, we assume that the risk-neutral agent is cash-constrained and there-

fore payment only goes from the principal to the agent. Chen et al. (2020) studies “limited-term”

non-monetary rewards contracts in order to induce agents’ effort over the long-run. The model

contains an adverse-selection component, and is focused on designing near-optimal “limited-term”

stationary policies.

Recent decision analysis literature also includes studies of continuous-time games. The stream

of papers Kwon et al. (2016), Kwon (2019), and Georgiadis et al. (2020) study continuous-time

stochastic games of stopping-time decisions which are based on Brownian motion uncertainties.

Continuous-time games studied in Zorc and Tsetlin (2020) and Hu and Tang (2021) do not include

Brownian motion uncertainties, but consider richer decision spaces for the players. Unlike our

paper, these game-theoretic papers do not focus on dynamic moral hazard issues.

Methodological break-throughs for continuous-time moral hazard problems start from Demarzo

and Sannikov (2006) in the finance/economics literature. Earlier studies often use Brownian motion

processes to model the underlying dynamics (see, for example, Demarzo and Sannikov 2006, San-

nikov 2008, Cvitanić et al. 2016). To our knowledge, Biais et al. (2010) is the first to model under-

lying uncertainties as a jump process to capture “large risks.” Myerson (2015) studies a similar

model in a political economy setting with agent replacement.

Compared with contracts for Brownian motion based uncertainties, the optimal contract struc-

ture for jump processes is much easier to describe and implement. This is because the promised

utility often takes discrete jumps at arrivals, and otherwise changes deterministically. (In contrast,

under Brownian motion uncertainties, the promised utility evolves stochastically all the time.) This

simplicity in the optimal contract structure makes the model appealing from a practical and man-

agerial perspective. Sun and Tian (2018) and Cao et al. (2021) study optimal contracts that induce

effort from an agent to increase the unobservable arrival rate of a point process. In particular, Cao

et al. (2021) correctly identify the optimal contract within the restrictive class of contracts that

motivate continued effort before termination when the two players discount rates are different.

Tian et al. (2021) further extend the model to a two-state setting, where the agent exerts effort to

either maintain or repair a machine, depending on which state the machine is in.

Also focusing on a point process, but to decrease the arrival rate, Chen et al. (2020) study opti-

mal schedules to monitor (as well as pay) the agent. The end of that paper points out a connection

between monitoring and shirking. That is, with a proper transformation, monitoring episodes in
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their optimal schedule correspond to shirking episodes in a corresponding model (without mon-

itoring) that allows shirking. We believe that our results also speak to optimal contracts with

monitoring for the case of increasing the arrival rate. In comparison, the optimal contracts in our

paper demonstrate very different structures compared with those in Chen et al. (2020). We also

need to model a fixed cost to be practical, as mentioned earlier. Tackling our problem requires dif-

ferent analysis, for example, variational-inequality-based optimality condition, which do not arise

in Chen et al. (2020). Also trying to decrease the arrival rate of a Poisson process in a bank mon-

itoring setting, Hernandez Santibanez et al. (2020) extend Pages (2013) and Pages and Possamai

(2014), and study a model that involves both adverse selection and moral hazard while allowing

shirking.

Another relevant literature is stochastic optimal control in the presence of switching cost, but not

about contract design (see, for example, Brekke and Oksendal 1994, Duckworth and Zervos 2001,

Vath and Pham 2007, Vath et al. 2008). Our work has two main differences with this literature.

First, we consider a jump process, while the aforementioned papers are all based on diffusion

processes. Second, the strategic interactions between the two players make our design and analysis

more challenging than standard single-decision-maker control problems.

The remaining of the paper are organized as follows. We first introduce the model and a general

description of the optimal contract in Section 2. Then in Section 3 we present the optimality

conditions based on variational inequalities. Sections 4 and 5 contain the main results of the paper,

which are the optimal contract structures under different model parameters. Next, in Section 6 we

let the switching cost approach zero, which allows us to quantify the potential benefit of considering

the resting option. We conclude the paper in Section 7. Further discussions, as well as proofs for

all the results, are presented in the online appendices.

2. Model

Consider a continuous time principal-agent model. The principal faces a Poisson process of arrivals,

each of which brings a revenue R to the principal. Without the agent’s work, the base arrival rate is

µ. The agent is able to bring the arrival rate up to µą µ if exerting effort,1 which costs the agent b

per unit of time. (For simplicity, we consider binary effort levels, consistent with Biais et al. 2010).

Following standard assumptions, the agent has limited liability and is cash-constrained. Therefore,

the principal needs to pay the agent the cost b whenever directing the agent to work. If the agent is

directed to work but does not exert effort, the agent effectively receives a shirking benefit b. Effort

is not observable to the principal, who needs to design a contract to motivate the agent’s effort.

Whenever directing the agent to work, the principal needs to provide the corresponding work

environment, such as offering office spaces, research labs, production equipment, or supporting
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personnel. There is a fixed cost K ą 0 for the principal to set up the environment when the agent

switches from resting to working. Think about this as the fixed cost related to restarting the lease

for office spaces, reopening the lab, resetting production equipments, or recruiting personnel. (We

will briefly discuss the case when stop working also incurs a cost in Appendix A.4.) Directing the

agent to work may also involve additional costs to the principal, such as rents, maintenance fees,

or personnel salaries. We denote c to represent the principal’s total cost rate whenever directing

the agent to work, including the payment for the agent’s effort cost, that is, cě b. Let Et P tI,∅u

denote the working/resting state at time tě 0. In particular, state I (“on”) represents the agent

is working, while state ∅ (“off”) means that the agent is resting. We use notation E0´ P tI,∅u to

represent the initial state before the dynamic contract starts. It is natural to assume that E0´ “ ∅.

That is, at time zero, if the principal decides to hire the agent to start working, the fixed switching

cost needs to be paid. We include E0´ “ I for completeness of the analysis.

We define ∆µ“ µ´µ, and make the following assumption.

Assumption 1. R∆µą c.

This is a standard assumption (see, for example, Equation (2) in Sun and Tian 2018), which ensures

that exerting effort is socially optimal when the state is I.

Both the principal and the agent are risk neutral and discount future cash flows. Discount rates

are r and ρ for the principal and the agent, respectively, such that 0ă rď ρ. That is, the principal

is at least as patient as the agent. This paper is mostly focused on the case of r ă ρ. (In Section

A.3 we provide a rigorous proof for the claim in Sun and Tian (2018) that when r“ ρ it is optimal

to motivate continued effort.)

Denote right-continuous point processesN :“ tNtutě0 and S :“ tStutě0 to record the total number

of arrivals and switchings, respectively, from time 0 to t. Define a filtration F “ tFtutě0 to capture

all relevant public information up to any time t, such that Ft “ σpE0´;Ns, Ss : 0ď sď tq. We need to

include state switching information in the filtration because we allow randomization in its control.

For completeness, we also define F0´ “ σpE0´q.

The principal has the commitment power to issue a long term dynamic contract Γ, consisting of

a tuple pL,D, qq, defined as the following.

1. L “ tLtutě0 is an F-adapted process that tracks the principal’s cumulative payment to the

agent from time 0 to time t. In particular, at any time t, the payment can be an instantaneous

payment ∆Lt, or a flow with rate `t, such that dLt “∆Lt` `tdt.
2 We assume that the agent

is cash-constrained and has limited liability, that is, ∆Lt ě 0 and `t ě 0 for all tě 0.

2. D “ tDtutě0 is an F-adapted counting process which records the total number of switchings

between “working” and “resting” up to time t. That is, these switchings are “deterministic”
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with respect to Ft. In order to have a rich enough class of control policies such that optimal

values are attainable, we also need to allow random switchings as well, which comes next.

3. q“ tqtutě0 is an F-predictable switching intensity process, such that the probability of switch-

ing during a short time interval rt, t` δs is qtδ` opδq. Let Q“ tQtutě0 be the corresponding

counting process that records the cumulative number of all the random switchings up to time

t. Therefore, the total number of switchings by time t is St “Dt `Qt, which, together with

the initial state E0´, identifies the state at any time tě 0. In order to establish our optimality

results, we need the following technical condition on the switching intensity:

E
„
ż 8

0

qte
´rtdt



ă8. (1)

With these notations, we can more rigorously define the F-adapted state process E :“ tEtutě0,

such that Et ‰ Et´ if and only if dSt “ 1. Furthermore, state switchings may also include the possible

termination of contract, which is the last time that the principal changes the state from working

(I) to resting (∅), either deterministically or randomly.

Due to limited liability, we need the following constraints for our contracts Γ, which states that

effort cost b needs to be reimbursed in real time,

`t ě b1Et“I, @tě 0. (LL)

Further denote a right continuous process ν “ tνtutě0 to represent the agent’s effort level over

time. In particular, νt “ µ and νt “ µ represent that the agent is working and resting at time t,

respectively. Under a general contract, the agent may not follow the effort process directed by the

principal. In fact, it is easy to make sure that the agent follows the direction to rest, by setting

`t “ 0 when νt “ µ. In this case, the agent cannot afford to work when directed not to. Therefore,

any effort process ν that is admissible to contract Γ must satisfy νt “ µ whenever Et “ ∅.

2.1. The Agent’s Utility and Incentive-Compatible Contracts

Given a dynamic contract Γ“ pL,D, qq and an effort process ν starting from state E0´, the expected

discounted utility of the agent is

upΓ, ν,E0´q “ Eν,q
„
ż 8

0

e´ρtpdLt´ b1νt“µdtq

ˇ

ˇ

ˇ

ˇ

E0´



, (2)

in which Eν,q represents expectation taken with respect to the switching intensity process q in Γ,

and arrival rates induced by the effort process ν. For simplicity of notations, when there is no

ambiguity, we omit this superscript.
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A designed contract needs to induce the agent to follow directions on when to work and rest.

Formally, define a “complying effort process” ν̄pΓq “ tν̄tutě0 for contract Γ, such that ν̄t “ µ if

Et “ I, and ν̄t “ µ if Et “ ∅, at any time t. A contract Γ is said to be incentive compatible (IC) if

upΓ, ν̄pΓq,E0´q ě upΓ, ν,E0´q for any effort process ν admissible to Γ and initial state E0´. (3)

That is, under IC contracts, the agent has the incentive to exert effort whenever directed to do so.

Further define the agent’s continuation utility at any time t P r0,8qYt0´u conditional on Ft as3

WtpΓ, νq “E
„
ż 8

t`

e´ρps´tqpdLs´ b1νs“µdsq

ˇ

ˇ

ˇ

ˇ

Ft


. (4)

Therefore, Wt

`

Γ, ν̄pΓq
˘

is the agent’s continuation utility at time t following the principal’s direc-

tions, which is often referred to as the promised utility (see, for example, Biais et al. 2010). It is

convenient to introduce the notation Wt´pΓ, νq “ limsÒtWspΓ, νq to represent the left-hand limit of

the process W pΓ, νq “ tWtpΓ, νqutě0 at t ą 0. That is, WtpΓ, νq is the agent’ continuation utility

after observing either an arrival or a random switching that occurs at time t, while Wt´pΓ, νq is the

continuation utility evaluated before obtaining this knowledge. Following these definitions, given

the initial state E0´, the F0´-measurable W0´pΓ, νq takes the value upΓ, ν,E0´q.

Following standard contract theory assumptions, the agent is not required to stay in the contract.

Hence, assuming the agent’s outside option is normalized to value 0, we impose the following

participation (also called the individual rationality, IR) constraint

WtpΓ, νq ě 0, @t P r0,8qYt0´u. (IR)

Furthermore, we assume that for any contract Γ under our consideration, the agent’s promised

utility Wt is upper bounded. That is, there exists a large enough W̄ such that

WtpΓ, νq ď W̄ ă8, @t P r0,8qYt0´u. (WU)

This constraint essentially captures the reality that the principal cannot keep delaying payments

while pushing the agent’s promised utility to infinity. The specific choice of the upper bound W̄ is

not important, as long as it is high enough such that constraint (WU) is not binding at optimality.

Technically, we need this constraint to establish that a process related to WtpΓ, νq is a martingale,

in the proof of Theorem 1 that comes later in the paper.

The following proposition provides the evolution of the agent’s continuation utility process

WtpΓ, νq, which is often called the promise keeping (PK) condition in the dynamic contract liter-

ature (see, for example, Equation (B.8) of Sun and Tian 2018). The proposition also contains an

equivalent recursive representation of incentive compatibility, following Biais et al. (2010).
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Proposition 1. piq For any contract Γ and agent’s effort process ν, there exists F-predictable

processes HpΓ, νq and HqpΓ, νq such that4

dWtpΓ, νq “rρWt´pΓ, νq` b1νt“µ´HtpΓ, νqνt` qtH
q
t pΓ, νqsdt

´dLt`HtpΓ, νqdNt´H
q
t pΓ, vqdQt, tą 0. (PK)

Furthermore, (IR) implies that

HtpΓ, νq ě´Wt´pΓ, νq and Hq
t pΓ, νq ďWt´pΓ, νq, @tą 0. (5)

piiq Define β :“ b{∆µ. Contract Γ being incentive compatible is equivalent to

Ht

`

Γ, ν̄pΓq
˘

ě β if and only if Et “ I. (IC)

For notational convenience, we omit pΓ, νq from processes Wt, Ht and Hq
t when ν is the complying

effort process ν̄pΓq. Part (i) of Proposition 1 specifies the dynamics of the agent’s promised utility

over time. In particular, Ht, if positive, is the magnitude of an upward jump at time t if there is an

arrival at that time. If it is negative then the jump is downward. In contrast, Hq
t , if positive, is the

magnitude of a downward jump at time t if there is a random switching. Condition (5) ensures that

Wt remains nonnegative after all these jumps. The reason why we set Ht to capture upward jumps

is because increasing the promised utility with an upward jump after an arrival serves as a reward

to induce effort. Although we allow Ht to be negative, later we show that it is always nonnegative

under the optimal contract. In comparison, a random switching to resting (or termination) is a

punishment, which is associated with a downward jump of promised utility with magnitude Hq
t .

Finally, the (IC) condition is only required for state I, because in state ∅ the principal can induce

compliance by simply setting payment to zero.

Denote C to represent the set of contracts that satisfy (LL), and yield a promised utility process

tWtutPr0,8qYt0´u that satisfies (PK), (IC), (IR), and (WU). Our contract design problem maximizes

the principal’s utility over the set C of contracts. Therefore, we introduce the principal’s utility

next.

2.2. Principal’s Utility

The principal’s utility under any contract Γ P C is

UpΓ,E0´q “ Eν̄pΓq
«

ż 8

0

e´rt rRdNt´dLt´pc´ bq1Et“Idts´
ÿ

0ďtď8

e´rtκpEt´,Etq

ˇ

ˇ

ˇ

ˇ

ˇ

E0´

ff

,

where we introduce notation κpEt´,Etq to represent the switching cost when the principal changes

the working/resting state from Et´ to Et, such that κp∅, Iq “K, and κpI,∅q “ κp∅,∅q “ κpI, Iq “ 0.
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Within the integral, the term RdNt represents the revenue from arrivals; dLt is the payment cost,

which satisfies (LL); and pc ´ bq1Et“I captures the cost rate of directing the agent to work, in

addition to reimbursing the effort cost b already included in the payment term dLt.

Our optimal contract design problem can be succinctly formulated as the following optimization,

ZpE0´q :“max
ΓPC

UpΓ,E0´q. (6)

If the agent is ever terminated, the principal’s total expected utility after the termination is

v :“
µR

r
, (7)

which is also the base-line total expected revenue that the principal collects without hiring the

agent.

As an example of feasible contracts in C, we first consider a special contract Γ̄, which directs the

agent always to work, and pays the agent β for each arrival. It is clear that contract Γ̄ satisfies all

the aforementioned constraints for C. Under such a contract, the agent’s promised utility Wt stays

as a constant,

w̄ :“
βµ

ρ
. (8)

Furthermore, it is easy to verify that the principal’s utility under contract Γ̄ starting from state

E0´ “ I is

UpΓ̄, Iq “
Rµ´ c´βµ

r
.

We define the corresponding societal utility between the principal and agent as

V̄ :“UpΓ̄, Iq` w̄“
Rµ´ c´pρ´ rqw̄

r
. (9)

More generally, we define

V̄ pwq :“
Rµ´ c´pρ´ rqw

r
, (10)

such that V̄ pw̄q “ V̄ . Later in the paper we show that contract Γ̄ is optimal when the revenue

per arrival R is high enough. The value w̄ and function V̄ pwq are also useful in characterizing the

optimal contracts and value functions.

2.3. An Overview of General Optimal Contract Structures

We now define a general class of dynamic contracts, which involves a control-band structure and

potential randomization. In the rest of the paper, we show that under different model parameters,

the optimal contract takes various special cases of this general class of contracts. Specifically, we

have the following definition.
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Definition 1. For any w0, θ, qw, θ̄, pw P r0, w̄s, such that θ ď qw ď θ̄ ď pw, and any state ε0 P tI,∅u,

define contract Γ˚pw0, ε0;θ, qw, θ̄, pwq “ pL˚,D˚, q˚q as follows.

piq The dynamics of the agent’s promised utility Wt follows W0 “w0^ pw, and

dWt “
 

´ρ pw̄´Wt´qdt1Wt´Pp qw, pws´p qw´ θqdQt`rp pw´Wt´q^βsdNt

(

1Et´“I

` ρWt´dt1Et´“∅, (11)

in which we use notation a^ b to represent minta, bu for any a, b PR, and the point process

tQtutě0 represents the number of random switchings, following intensity

q˚t “
ρpw̄´ qwq

qw´ θ
1Wt´“ qw, if qwą θ. (12)

piiq The payment to the agent follows dL˚0 “ pw0´ pwq` and, for tą 0,

dL˚t “ rpWt´`β´ pwq`dNt` bdts1Et´“I. (13)

piiiq The “determinisitc” switching D˚ follows dD˚0 “ 1 (switching) if and only if E0´ ‰ ε0, and,

for tą 0,

dD˚t “ 1
Wt´“θ̄ and Et´“∅` 1

Wt´“θ and Et´“I
. (14)

Following Definition 1, all the components L˚, D˚, and q˚ of the contract Γ˚, as well as the

promised utility process tWtutě0, are completely determined by parameters pw0, ε0, θ, qw, θ̄, pwq. In

particular, (11) indicates that the promised utility generally decreases with a slope ρpw̄ ´Wt´q

when Wt´ P p qw, pws and the agent is directed to work, except when there is an arrival (dNt “ 1),

which triggers an upward jump of magnitude p pw´Wt´q^β. This implies that the promised utility

is never above pw. When the promised utility decreases to qw, it stays at that level until either an

arrival (dNt “ 1) or a random switching of state (dQt “ 1) occurs. According to (12), the random

switching only occurs if qw ą θ and when the promised utility is at qw. When random switching

happens, (11) further indicates that the promised utility takes a downward jump from qw to θ.

Furthermore, the last term of (11) indicates that when the agent is directed to rest, the promised

utility keeps increasing at rate ρWt´ regardless of whether there are arrivals. The increasing rate

corresponds to accrued interests if we consider the promised utility as a bank account balance.

According to (13), payment only occurs when the agent is directed to work. Besides reimbursing

the effort cost (bdt), the principal only pays the agent when an arrival occurs and the current

promised utility is within β below pw. The instantaneous payment, Wt´ ` β ´ pw, plus the corre-

sponding upward jump in (11), pw´Wt´, is exactly β.

Finally, (14) implies that the principal directs the agent to stop working when the promised

utility decreases to θ, and start working again when the promised utility increases to θ̄. Therefore,
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Figure 1 A sample trajectory for the agent’s promised utility according to Γ˚pw0, ε0;θ, qw, θ̄, pwq with ρ“ 0.5,

r“ 0.2, R“ 2, µ“ 2, ∆µ“ 1.2, c“ b“ 0.3 where we set w0 “ 0.5, ε0 “ I, θ“ 0.1, qw“ 0.2, θ̄“ 0.32, and ŵ“ 0.65.

The dotted line depicts the payment.

if θ“ qw, there is no random switching, and the switching policy is similar to the traditional “control

band policy” between the two thresholds θ and θ̄.

Figure 1 depicts the dynamics of the promised utility following a general contract of Definition 1.

As we can see, the agent is working at time 0, and the promised utility starts at w0 and gradually

decreases until the first arrival at time t1. At this point in time, an upward jump of β would take

the promised utility above pw. Therefore, the promised utility instead jumps to pw, and the principal

pays the agent Wt1´ ` β ´ pw (depicted by the dotted line at t1). No further arrival occurs until

time t2, when the promised utility reaches qw. From this point on, the promised utility stays the

same at qw, while a random switching occurs with rate q˚ “ ρpw̄ ´ qwq{ qw. At time t3, there is an

arrival before a random switching occurs, which causes the promised utility to jump up by β. The

promised utility decreases to qw again at t4 and the random switching occurs at time t5, which

brings the promised utilty to θ. At this point the agent is directed to rest, until the promised utility

increases to θ̄ at t6. There may be arrivals between t5 and t6 if µ ą 0, but these arrivals do not

affect the dynamics of the contract. At time t6, the principal (deterministically) switches the agent

to working again. Time epoch t7 sees another arrival, which triggers the promised utility to jump

up by β.

Remark 1. Note that directing the agent to rest serves as a type of punishment. Before the

promised utility decreases to the threshold θ, any arrival brings an upward jump in the promised

utility, which makes the agent closer to getting paid, if not already being paid. However, as soon

as the agent is directed to rest, it takes a fixed period of time with length pln θ̄´ lnθq{ρ for work

to resume. Because the effort cost is reimbused, from the agent’s point of view, the only difference
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between working and resting is that working brings potential rent payment, while resting delays

future rent payments for a period of time. Therefore, resting serves as a threat to the agent, who

is less patient than the principal (ρ ą r). If the lower threshold θ is 0, the length of the resting

time period becomes infinity. That is, directing the agent to rest is equivalent to terminating the

contract. ˝

Following Definition 1, if pw “ w̄, upon reaching w̄, the promised utility does not decrease any

more, and the agent is paid β for each future arrival. (Figure 1, on the other hand, depicts the case

that pwă w̄, and qwą θą 0.) Therefore, after reaching w̄ the contract becomes the aforementioned

Γ̄. In fact, contract Γ̄ can be expressed as a special case of Γ˚pw0, ε0;θ, qw, θ̄, pwq, such that

Γ̄“ Γ˚pw̄, I; 0,0, w̄, w̄q. (15)

That is, w0 “ θ̄“ pw“ w̄, and θ“ qw“ 0.

If θ“ qwą 0, there is no randomized switching, and contract Γ˚pw0, ε0;θ, qw, θ̄, pwq demonstrates a

“control band” structure, where the promised utility is moving between θ and θ̄, unless an arrival

triggers an upward jump to carry the promised utility to pθ̄, pws. In this case the agent is never

terminated, as long as w0 ą 0.

If θ “ 0, then following contract Γ˚pw0, ε0; 0, qw, θ̄, pwq, whenever the state switches to ∅, the

promised utility must have hit θ“ 0. At this point the contract is terminated.

Another special case is not to hire the agent from the beginning, or,

Γ :“ Γ˚p0,∅;θ, qw, θ̄, pwq. (16)

In this case, the agent’s promised utility starts at w0 “ 0, and never climbs to be positive according

to (11). Therefore, the specific values of θ, qw, θ̄, and pw do not matter.

Later in the paper we see that contracts Γ̄, Γ, and other special cases of the general contract

structure Γ˚pw0, ε0;θ, qw, θ̄, pwq could be optimal under different model parameter settings.

Before we close this section, we have the following result which implies that if the contract Γ˚

starts the continuation utility at w0, then it delivers the agent a total utility w0.

Lemma 1. For any ε0 P tI,∅u, E0´ P tI,∅u, and θ, qw, θ̄, pw such that 0 ď θ ď qw ď θ̄ ď pw ď w̄, we

have

u
`

Γ˚pw0, ε0;θ, qw, θ̄, pwq, ν̄,E0´

˘

“w0, @w0 ě 0. (17)

In order to specify the optimal contract, we need to identify the initial promised utility w0.
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3. Optimality Conditions

In this section, we first provide an optimality condition, in the form of quasi-variational inequalities,

and show that any function that satisfies these conditions must yield an upper bound of the optimal

value ZpE0´q defined in (6). In the next two sections we provide dynamic contracts that achieve

these upper bounds, which implies that they are optimal.

We claim that the optimal value function is concave, although it may not be differentiable.

Therefore, denote CA to be the set of all continuous concave functions defined on R`. It is worth

noting that any continuous concave function is differentiable except on a countable set of points. If

a function f PCA is not differentiable at point wě 0, we abuse notation and use f 1pwq to represent

its left-derivative at w. Define operators AI and A∅ that map a function f PCA to functions AIf

and A∅f , respectively, such that for all wě 0,

pAIfqpwq :“ pµ` rqfpwq´µfpw`βq` ρpw̄´wqf 1pwq´ pµR´ cq` pρ´ rqw, and (18)

pA∅fqpwq :“ rfpwq´ ρwf 1pwq` pρ´ rqw´Rµ. (19)

Equipped with these notations, we are ready to present the following Verification Theorem.

Theorem 1. Suppose there exists a pair of nondecreasing functions VI and V∅ in CA, such that

pAIVIqpwq ě 0, pA∅V∅qpwq ě 0, (20)

0ď VIpwq´V∅pwq ďK, and (21)

VIp0q ě v, V∅p0q ě v, (22)

for any w P R`. Then, for any contract Γ P C, value w P r0,8q and initial state E0´ P tI,∅u, such

that upΓ, ν̄pΓq,E0´q “w, we have

UpΓ,E0´q ď VE0´
pwq´w.

Therefore, we have

max
wPr0,8q

 

VE0´
pwq´w

(

ěZpE0´q.

Theorem 1 indicates that VIpwq ´w and V∅pwq ´w are upper bounds for the principal’s utility

under any contract in C that yields an agent’s utility w when the initial state is I and ∅, respectively.

Therefore, we can interpret functions VIpwq and V∅pwq as societal value functions that contain both

the principal and the agent’s utilities, as long as they are attainable according to certain contracts.

The quasi-variational inequality based optimality condition (20)–(22) may not appear intuitive.

Therefore, in Appendix A.1, we provide a heuristic derivation, which reveals how we obtain these

conditions. In a nutshell, the condition (20) describes the shape of the value functions; the condition
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(21) reflects that switching from resting to working costs K; and the condition (22) captures the

intuition that without the agent (the agent’s promised utility w “ 0), the societal value is v as

defined in (7).

If both functions VI and V∅ are differentiable on R`, then this result is a classic verification

theorem, which is extensively used in the optimal control literature. In fact, a typical method of

obtaining an optimal control policy, which is called the “guess-and-verify” approach, consists of

two main steps. In the first step, we guess a function and use the verification theorem to establish

that this function is an upper bound of the optimal value function. In the second step, we propose

a control policy that yields an objective value reaching this upper bound, which implies that the

proposed control policy is optimal. It is worth mentioning that the control space in our dynamic

contract problem includes potentially randomized control, which is rich enough to achieve the

corresponding upper bound.

In order to identify optimal value functions, it is worth considering functions that satisfy condi-

tions (20) and (22) with equality. First consider the resting state ∅. A value function V that satisfies

V p0q “ v and the ordinary differential equation pA∅V qpwq “ 0 must have the following form

Vcpwq “ v`w` cw
r{ρ, (23)

for some constant c. Later in the paper we show that the resting state’s value function indeed takes

this form under certain model parameter settings and for certain w values.

Next, we consider the working state I. In particular, consider a generic function V
rw that is

differentiable on r0, rws for some rw ď w̄, takes a constant value for w ě rw, and satisfies (20) with

pAIV qpwq “ 0. That is, V
rw satisfies the following differential equation,

pµ` rqV
rwpwq´µV rw

`

pw`βq^ rw
˘

` ρpw̄´wqV 1
rwpwq´ pµR´ cq` pρ´ rqw“ 0, (24)

with boundary condition,

V
rwpwq “ V̄ p rwq, @wě rw, (25)

in which V̄ p¨q is defined in (10). Lemma 6 in Appendix B.2 establishes the existence and uniqueness

of function V
rwpwq, and summarizes its key properties.

We also desire the boundary condition V
rwp0q “ v. Figure 2(a) demonstrates an example in which

we can find a rw value such that this boundary condition holds. As we can see, if we increase rw to

take three different values, w̃1, w̃2, and w̃3, the entire function decreases as rw increases, consistent

with Lemma 6. This implies that at w“ 0, we have Vw̃1
p0q ą Vw̃2

p0q ą Vw̃3
p0q. In particular, we can

identify a particular rw “ w̃2 such that Vw̃2
p0q “ v. Following Lemma 6, this situation corresponds

to model parameters that satisfy the following condition.
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(a) Value functions under Condition 1 (b) Value functions under Condition 2

Figure 2 (a): Value functions with r“ 0.2, ρ“ 0.5, c“ 0.2, R“ 2, ∆µ“ 0.7, and µ“ 2. In this case, w̄“ 1.14

and we let w̃1 “ 0.6, w̃2 “ 0.9, and w̃3 “ 1. (b): Value functions with r“ 0.2, ρ“ 1.2, c“ b“ 1, R“ 5, ∆µ“ 0.8,

and µ“ 0.9. In this case, w̄“ 0.94, and we let w̃1 “ 0.6, w̃2 “ 0.85, and w̃3 “ w̄.

Condition 1.

µě ρ´ r or Ră R̂ :“

„

c

b
`
pρ´ rqpρ´µqµ

∆µpρ´ r´µqρ



β.

However, in general we may not be able to find a value rwď w̄ to satisfy the boundary condition

V
rwp0q “ v. Figure 2(b), for example, depicts another model parameter setting such that as we

increase rw to approach w̄, the corresponding limiting value Vw̄p0q is always higher than v. In this

case we cannot use (24)–(25) to determine the optimal value function. This situation corresponds

to model parameters that follow the next condition, opposite to Condition 1.5

Condition 2.

µă ρ´ r and Rě R̂.

Generally speaking, the solution V
rw that satisfies (24) with boundary condition (25) may not be

concave. Therefore, we may need to construct a concave value function according to the following

result.

Lemma 2. For any rw P p0, w̄q, consider the function V
rw that uniquely solves (24)–(25).

piq There exists a rw-dependent threshold qwp rwq P r0, rwq, such that V 2
rwpwq ă 0 over w P p qwp rwq, rwq

and V 2
rwpwq ą 0 over w P r0, qwp rwqq. Moreover, we have qwp rwq ď p1´ r{ρqβ.
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piiq Define function

V
rwpwq :“

"

V
rwp qwp rwqq`V

1
rwp qwp rwqq ¨ pw´ qwp rwqq, w P r0, qwp rwqq,

V
rwpw^ rwq, w P r qwp rwq,8q.

Function V
rwpwq is increasing and concave in w on r0,8q.

piiiq Fixing any rw1 and rw2 with 0ă rw1 ă rw2 ă w̄, we have

V
rw1
pwq ą V

rw2
pwq, and V 1

rw1
pwq ă V 1

rw2
pwq,@w P r0, rw1q.

Therefore, if function V
rw is not concave, we construct a concave function V

rw by attaching a linear

piece on
“

0, qwp rwq
˘

to the concave part of function V
rwpwq for w ě qwp rwq. This function is closely

related to the optimal value function when the state is I, as we show in the next two sections.

In the next section, we first study optimal contract structures under Condition 1, and leave the

situation when Condition 2 holds to the following section.

4. Optimal Contract under Condition 1

It is intuitive that the optimal contract structure depends on the switching cost K. For example,

if K is very high, the principal may not want to ever switch the agent from resting to working. On

the contrary, if K is very small, the principal may not mind frequently switching the state between

working and resting. Therefore, in this section, we start with high K values in Subsection 4.1, and

continue with medium and low K values in Subsections 4.2 and 4.3, respectively.

In this section, the optimal value function for state I relies on the following result.

Lemma 3. Under Condition 1, there exists a unique pw in r0, w̄q such that V
pwp0q “ v, in which

the concave function V
pw is defined in Lemma 2 with pw replacing rw. Furthermore, if qwppwq ą 0, then

V 1
pwp0q “ V 1

pwp qwppwqq ą 1.

Lemma 3 allows us to uniquely identify an upper bound pw and a function V
pw, which is independent

of the switching cost K, along with a lower bound qwppwq, also defined in Lemma 2. If qwppwq ą 0, the

value function V
pw is linear over w P r0, qwppwqq, which is associated with randomized control. The

slope of function V
pw on this linear piece is larger than 1, which implies that if the societal value

function is V
pw, the principal’s utility function V

pwpwq ´w has a positive maximizer. Overall, the

function V
pw is concave.

4.1. High Switching Cost K

We consider high switching cost to be the case such that whenever the state is ∅, the principal

would rather terminate the contract than switching the state to I. In other words, whenever in

state I, the principal directs the agent to work until the agent’s promised utility reaches 0, at which

point the contract is terminated.
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The condition for high switching cost K is,

K ě K̄1, in which K̄1 :“ max
wPr0,w̄s

V
pwpwq´ v“ V̄ ppwq´ v, (H1)

in which the upper bound pw is defined according to Lemma 3 and function V̄ pwq is defined in

(10). The next result implies the optimality of contract Γ˚pw, I; 0, qwppwq, pw, pwq in state I, in which

the lower bound qwppwq is also defined in Lemma 3. Following Definition 1, this contract means that

in state I, the agent is asked to rest only when the promised utility decreases to 0, which implies

contract termination.

Proposition 2. Under Conditions 1 and (H1), we have

U
´

Γ˚pw, I; 0, qwppwq, pw, pwq, I
¯

“ V
pwpwq´w, @w P r0, pws, and (26)

U
´

Γ,∅
¯

“ v. (27)

in which contract Γ is defined in (16).

Furthermore, functions VIpwq “ V
pwpwq and V∅pwq “ v satisfy the optimality condition (20)–(22).

Following (26), for any contract Γ P C that yields a promised utility w for the initial state I, we

have

U
´

Γ˚pw, I; 0, qwppwq, pw, pwq, I
¯

“ V
pwpwq´wěUpΓ, Iq

where the inequality follows Theorem 1 and Lemma 1. That is, the principal’s utility under contract

Γ˚pw, I; 0, qwppwq, pw, pwq is the highest possible that delivers utility w to the agent starting from state

I. Similarly, (27) implies that the optimality of contract Γ defined in (16) is optimal for state ∅,

because

UpΓ,∅q ď v´wď v“U
´

Γ,∅
¯

.

Therefore, we have the following result on the optimal contract.

Theorem 2. Under Conditions 1 and (H1), when the initial state is E0´ “ I, it is optimal to

implement contract Γ˚pw˚0 , I; 0, qwppwq, pw, pwq, in which w˚0 P r0, pws is a maximizer of function V
pwpwq´

w; when the initial state is E0´ “ ∅, contract Γ is optimal.

Remark 2. According to Theorem 2, the principal should not hire the agent to start working

(E0´ “ ∅). Furthermore, if the principal is forced to deliver a utility w ą 0 to the agent, then it is

optimal to immediately pay off dL0 “w without hiring the agent. It is clear that the corresponding

principal’s utility under such a contract is v´w. If we consider the setting in which the agent has

been working in the very beginning (E0´ “ I), the principal should keep the agent working until

contract termination, because whenever the agent rests, it is not worth switching on the work due

to the high cost. ˝
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4.2. Medium Switching Cost K

Even if the switching cost K is lower than K̄1, it may still be high enough for the agent to never

start working from resting. Following (H1), when K ă K̄1 there must exist value w such that

V
pwpwq ą v `K. Given that function V

pw is concave and continuously differentiable, this further

implies the following result.

Lemma 4. Under Condition 1 and K ă K̄1, there exists K-dependent values θ̄K P r qwppwq, pws and

mK P r0,V 1
pwp0qs such that

V
pwpθ̄

Kq “mK θ̄K `K ` v, and V 1
pwpθ̄

Kq “mK . (28)

Furthermore, we have θ̄K is increasing in K, mK is decreasing in K, and limKÓ0 θ̄
K “ qwppwq.

With the help of mK , we can define the interval for “medium level” switching cost K as

K1 ďK ă K̄1, in which K1 :“ inf
 

K P
`

0, K̄1

‰

| mK ă 1
(

. (M1)

Geometrically, Lemma 4 implies that the line mKw ` v is tangent to the curve V
pwpwq ´K at

w“ θ̄K . Therefore, we define the following societal value function for the resting state,

V∅pwq “

"

mKw` v, w P
“

0, θ̄K
‰

,
V

pwpwq´K, w P
“

θ̄K , pw
‰

,
(29)

which is clearly concave, and linear on
“

0, θ̄K
‰

with slope mK . Function V∅pwq is shown as the

dashed curve in Figure 3. Because the slope mK is less than or equal to 1 under condition (M1), the

corresponding principal’s utility function, V∅pwq´w, is monotonically non-increasing. Note that if

K1 ą 0, then mK1 “ 1.

Similar to Proposition 2, we have the following result.

Proposition 3. Under Conditions 1 and (M1), Equations (26) and (27) still hold. Further-

more, functions VIpwq “ V
pwpwq and V∅pwq as defined in (29) satisfy the optimality condition (20)–

(22).

Therefore, the only difference between Propositions 2 and 3 is the value function for state ∅. The

optimal contract structure is the same under (H1) and (M1). Figure 3 shows an example of the

societal value functions. It is clear that V∅pwq is linear over the interval
“

0, θ̄K
‰

. Furthermore,

functions VIpwq and V∅pwq are “parallel” with a difference of K for w ě θ̄K . At time t, if the

promised utility Wt ą θ̄
K , and state Et “ ∅, it is optimal to switch the agent to work, which explains

the difference K between the value functions. Finally, as mentioned earlier, under condition (M1),

the slope of the function V∅ is always less than 1, which implies that the slope of the principal’s
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I

Figure 3 Value functions with r“ 0.2, ρ“ 0.5, c“ b“ 0.2, R“ 2, ∆µ“ 0.7, K “ 4, and µ“ 2. In this case,

w̄“ 1.14, V
pwppwq “ 17.67 and v“ 13.

utility function V∅pwq ´w is always negative. Therefore, the optimal contract for the initial state

∅ is to set the promised utility at 0, or, not to hire the agent.

For completeness, we present the following theorem, which states that the same contracts that

are optimal for high switching cost are also optimal under medium switching cost.

Theorem 3. Under Conditions 1 and (M1), contracts Γ˚pw˚0 , I; 0, qwppwq, pw, pwq and Γ are optimal

if the initial state E0´ is I and ∅, respectively.

Remark 3. Here, it is interesting to compare with Remark 2 and consider the situation if

the principal is forced to deliver a utility w ą 0 to the agent starting at state ∅. If w ą θ̄K ,

then it is optimal to direct the agent to start working immediately, and then follow the contract

Γ˚pw, I; 0, qwppwq, pw, pwq. If w P p0, θ̄Kq, on the other hand, it is optimal to randomize the agent’s

continuation utility at time 0. Specifically, the agent is immediately terminated with probabil-

ity 1 ´ w{θ̄K , and, with probability w{θ̄K , the agent should start working following contract

Γ˚pθ̄K , I; 0, qwppwq, pw, pwq, from a starting promised utility θ̄K . It is easy to verify that the correspond-

ing principal’s utility at time zero before the randomization is indeed V∅pwq ´w, following (29).

Therefore, although the optimal contracts are the same under high and medium switching cost

cases when the principal can freely choose the initial promised utility, there are subtle differences

between them. ˝
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4.3. Low Switching Cost K

The previous two subsections show that when the switching cost K ě K1, it is optimal not to

switch the state from ∅ to I. Equivalently, the lower threshold θ “ 0. More interesting and richer

structure occurs when the switching cost K satisfies the following condition,

0ăK ăK1. (L1)

Small K means that switching the agent from resting to working is not too costly. It is clear that

condition (L1) holds only if K1 is strictly positive, or, equivalently, slope mK defined in Lemma 4

is larger than 1 for small enough K.

In this case, the value function for state I is no longer V
pwpwq. Recall the function V

rw defined in

Lemma 2 for any rw P p0, w̄q. When the switching cost K is low, the additional boundary condition

that allows us to identify a particular rw to obtain a value function is no longer at w“ 0. Instead, we

need to identify the threshold θ, at which point the value functions for states ∅ and I are connected.

In particular, when the promised utility is below θ, the principal should direct the agent to rest,

which allows the promised utility to increase, according to (11). For the resting state ∅, we use

function Vcpwq defined in (23) as the value function. The next result allows us to identify all the

parameters, including the constant c in (23).

Proposition 4. Under Conditions 1 and (L1), there exists a set of parameters pc, ŵ, ϑ̄, ϑq with

cą 0 and ϑă ϑ̄ă ŵă pw, in which pw is defined in Lemma 3, such that

Vŵpϑq “Vcpϑq, (30)

V 1ŵpϑq “V1cpϑq, (31)

Vŵpϑ̄q “Vcpϑ̄q`K, and (32)

V 1ŵpϑ̄q “V1cpϑ̄q ą 1, (33)

in which Vŵ is defined in Lemma 2 with ŵ replacing rw, and Vc is defined in (23) with c replacing

c. Moreover, we have ϑ̄ą qwpŵq, in which qwpŵq is defined in Lemma 2(i), with ŵ replacing rw.

Equations (30) and (31) are called value-matching and smooth-pasting conditions in the optimal

control literature, respectively, which occur at the promised utility threshold ϑ, when the state

is switched from I to ∅. Similarly, (32) and (33) specify the value-matching and smooth-pasting

conditions when the state is switched from ∅ to I at promised utility ϑ̄, except that the values

between the two states differ by K. The proof of Proposition 4 is rather intricate, and takes four

key steps, as shown in Appendix B.3.3. Relying on these key steps, we illustrate how to identify

compute ϑ̄ and ϑ in Appendix A.2.
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Equipped with Proposition 4, we define the following optimal value functions:

VIpwq :“

"

Vcpwq, w P r0, ϑq,
Vŵpwq, wě ϑ,

and V∅pwq :“

"

Vcpwq, w P r0, ϑ̄q,
Vŵpwq´K, wě ϑ̄.

(34)

Figure 4 depicts functions VI and V∅ defined in (34). In particular, functions VIpwq and V∅pwq

are identical for wď ϑ. Furthermore, function VIpwq is linear in the interval rϑ, qwpŵqs, while V∅pwq

remains to be Vcpwq for wď ϑ̄. For higher w such that wě ϑ̄, however, function V∅pwq is a parallel

shift of VIpwq, where the two functions differ by K.

I

Figure 4 Value functions with r“ 0.05, ρ“ 1, c“ b“ 0.3, R“ 112, ∆µ“ 0.1, K “ 40, and µ“ 1.95. In this case,

w̄“ 5.85, ϑ“ 0.18, qwpŵq “ 0.45, ϑ̄“ 5.22, and ŵ“ 5.62.

Now, we specify the optimal contract structure as follows. For any w0 ě 0, define contracts

Γ̂Ipw0q :“

"

Γ˚
`

w0, I; ϑ, pϑ_ qwpŵqq, ϑ̄, ŵ
˘

, w0 ą ϑ,
Γ˚

`

w0,∅; ϑ, pϑ_ qwpŵqq, ϑ̄, ŵ
˘

, w0 ď ϑ,
and (35)

Γ̂∅pw0q :“

"

Γ˚
`

w0, I; ϑ, pϑ_ qwpŵqq, ϑ̄, ŵ
˘

, w0 ą ϑ̄,
Γ˚

`

w0,∅; ϑ, pϑ_ qwpŵqq, ϑ̄, ŵ
˘

, w0 ď ϑ̄,
(36)

where we use notation a_b to denote maxta, bu for any a, b PR. The term ϑ_ qwpŵq as the threshold

qw of Definition 1 implies that random switching from I to ∅ occurs under this contract if and

only if ϑă qwpŵq. If ϑě qwpŵq, on the other hand, contracts Γ̂Ipw0q and Γ̂∅pw0q demonstrate the

control band structure. Note that the initial promised utility value w0 affects which state to start

the contracts with. For contract Γ̂Ipw0q, the threshold is ϑ. In contrast, for contract Γ̂∅pw0q, the

threshold is ϑ̄. The following result implies that these contracts are indeed related to the optimal

ones.
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Proposition 5. Under Conditions 1 and (L1), functions VI and V∅ defined in (34) satisfy the

optimality condition (20)–(22). Furthermore, for any wě 0, we have

U
´

Γ̂Ipwq, I
¯

“ VIpwq´w, and (37)

U
´

Γ̂∅pwq,∅
¯

“ V∅pwq´w. (38)

Note that it is quite involved to verify that VIpwq satisfies AIVI ě 0 in condition (20) for w P

r0, ϑs. As one can imagine, we need to show that the function AIVI is always monotone in this

interval. However, this function is not convex. In the proof presented in Appendix B.3.5, we have

to establish that either AIVI’s first-order-derivative is negative, or its second-order-derivative is

positive, throughout this interval. Together with the fact that the function AIVI takes a non-negative

value and negative derivative at ϑ, this guarantees AIVI ě 0. Corresponding proofs in the existing

literature, such as Duckworth and Zervos (2001), Vath and Pham (2007) are much simpler in

comparison. In particular, Vath and Pham (2007) relies on showing convexity/concavity to verify

variational inequalities.

Note that following expression (33) of Proposition 4, the slope of V∅pwq at w“ ϑ̄ is larger than

1. (Figure 4 does not appear this way, because of different scales of the x and y-axes. —The value

of ŵ is around 5, while the difference VIp pwq ´ VIp0q is around a few thousands.) This implies that

the principal’s utility function V∅pwq ´w for state ∅ is maximized at a point larger than ϑ̄. The

same point maximizes function VIpwq´w as well, because V∅pwq´w and VIpwq´w are “parallel”

and differ by K for wě ϑ̄ according to (34). Therefore, we have the following result.

Theorem 4. Under Conditions 1 and (L1), for any initial state ε0 P tI,∅u, contract Γ̂ε0pw
˚
0 q

is optimal, in which w˚0 P rϑ̄, ŵs is a maximizer of both functions V∅pwq ´ w and VIpwq ´ w. In

particular, if the initial state is ∅, the principal should ask the agent to start working right away.

Theorem 4 demonstrates that when the promised utility is low due to underperformance, the

principal should punish the agent with resting for a period of time, rather than terminating the

contract forever. Following the optimal contract structure, the agent is never terminated. As dis-

cussed in the introduction, this is because contract termination, as a threaten to mitigate moral

hazard, is in fact even more inefficient than letting the agent to rest and then paying the fixed

switching cost to restart working once in a while.

Now let us summarize the optimal contract structures obtained in this section. Under Condition

1, the principal should hire the agent to start working immediately only if the switching cost K is

lower than K1. The corresponding optimal dynamic contract starts at the promised utility w˚0 and

follows the general dynamic outlined in Definition 1 with parameters θ“ ϑ, qw“ pϑ_ qwpŵqq, θ̄“ ϑ̄,

and pw“ ŵ. In Appendix A.2 we discuss how to compute contract parameters ϑ, qwpŵq, ϑ̄ and ŵ.
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5. Optimal Contract under Condition 2

Under Condition 2, the optimal value functions may not be differentiable on the entire R` anymore.

Similar to the previous section, we explore the optimal contract structures for different values of

the switching cost.

5.1. High and Medium Switching Cost K

Under Condition 2, function V
pw from Lemma 3 no longer exists, because the boundary condition

V
rwp0q “ v does not hold for any rw P r0, w̄s. In this case, the principal needs to either set the agent’s

promised utility at w̄, or 0, but never in between. The corresponding value function is linear over

the interval r0, w̄s, connecting v at w “ 0 and V̄ at w “ w̄, where V̄ is defined in (9). Therefore,

define piece-wise linear function

VIpwq :“

$

&

%

v`
V̄ ´ v

w̄
¨w, w P r0, w̄s,

V̄ , wě w̄.
(39)

Under Condition 2, it is clear that the slope
V̄ ´ v

w̄
ą 1. If

K ě K̄2 :“ V̄ ´ v, (H2)

we claim, and will later show, that the principal’s value function for state I is VIpwq ´w, and for

state ∅ is v´w.

Now consider the case that K is neither too high or too low. That is,

K2 ďK ă K̄2, in which K2 :“ V̄ ´ v´ w̄. (M2)

In this case the value function for state ∅ changes from linear under (H2) to the following piece-wise

linear function,

V∅pwq “

$

&

%

v`
V̄ ´ v´K

w̄
¨w, w P r0, w̄s,

V̄ ´K, wě w̄.
(40)

This is in contrast to the differentiable value function of Section 4.2. Note that under (M2), the

slope
V̄ ´ v´K

w̄
ă 1, which implies that the principal’s utility function, V∅pwq´w is monotonically

decreasing.

Theorem 5. If Condition 2 holds, under (H2), functions VIpwq as defined in (39) and V∅pwq “ v

satisfy the optimality condition (20)–(22); under (M2), on the other hand, functions VIpwq and

V∅pwq as defined in (39) and (40), respectively, satisfy (20)–(22).

Furthermore, if K ą V̄ ´ v´ w̄, for all wě 0, we have

U
´

Γ̄, I
¯

“ V̄ ´ w̄ě VIpwq´w, and (41)

U
´

Γ,∅
¯

“ vě

"

v´w, under (H2),
V∅pwq´w, under (M2),

(42)
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in which Γ̄, Γ, and V∅pwq are defined in (15), (16), and (40), respectively.

Therefore, under Condition 2 and K ąK2, it is optimal to implement contract Γ̄ for the initial

state E0´ “ I, and Γ for E0´ “ ∅.

Remark 4. As a reminder, contract Γ̄ directs the agent to work forever and pays β for each

arrival. Its optimality for state I is in sharp contrast with the correponding optimal contract in

Section 4 when K ąK1, where the agent is terminated within finite time with probability 1. This is

intuitive, because under Condition 2, the revenue R per arrival is higher, compared with Condition

1, and therefore the principal is willing to always keep the agent working. Next, we show that if K

is lower, then contract Γ̄ may be optimal even for state ∅. ˝

5.2. Low Switching Cost K

We now consider the arguably more interesting case of K being low, or,

0ăK ăK2. (L2)

The following result, which is similar to Lemma 4, uses the resting state ∅’s value function Vc to

identify parameters for the value functions later.

Lemma 5. Under Conditions 2 and (L2), there exists a set of K-dependent parameters

pcK ,mK , θKq with cK ą 0 and mK P
`

0, pV̄ ´ vq{w̄
˘

, such that

VcK pθKq “ V̄ `mKpw´ w̄q, (43)

V1cK pθKq “mK , and (44)

VcK pw̄q “ V̄ ´K, (45)

in which VcK is defined in (23) with cK replacing c. Furthermore, we have cK is decreasing in K,

mK is increasing in K, and θK is decreasing in K with limKÓ0 θK “ w̄.

It is easy to verify that Condition 2 is equivalent to
V̄ ´ v

w̄
ě

ρ´ r

ρ´ r´µ
ą 1. Given mK ď

V̄ ´ v

w̄
following Lemma 5, we first consider parameter settings that satisfy the following condition, which

is more restrictive than Condition 2,

mK ě
ρ´ r

ρ´ r´µ
ą 1. (mH)

Following the monotonicity of mK in K, (mH) implies that

qK2 ďK ăK2, in which qK2 :“ inf

"

K P p0,K2s

ˇ

ˇ

ˇ

ˇ

mK ě
ρ´ r

ρ´ r´µ

*

. (46)
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Under Condition (mH), we define the following function for state I, which is smooth-pasting

between the function VcK and a linear piece for the interval rθK , w̄s,

VIpwq :“

$

&

%

VcK pwq, w P r0, θKs,
V̄ `mKpw´ w̄q, w P rθK , w̄s,
V̄ , wą w̄.

(47)

We further extend function VcK to include wą w̄,

V∅pwq :“

"

VcK pwq, w P r0, w̄s,
V̄ ´K, wą w̄.

(48)

Figure 5 gives an example of the societal value functions VIpwq and V∅pwq, as defined in (47)

and (48), respectively. As we can see, the two functions are the same for w ă θK , and have the

same derivative at w“ θK . The two functions then diverge for wą θK , with function VIpwq being

piece-wise linear in this interval. For wě w̄, both functions become constant, and differ by exactly

K.

I

Figure 5 Value functions with r“ 0.2, ρ“ 0.5, c“ b“ 0.3, R“ 10, ∆µ“ 0.2, K “ 1.6, and µ“ 0.6. In this case,

w̄“ 0.9, θK “ 0.1, V̄ “ 24.9 and v“ 20.

Following (mH), and the fact that V1cpwq ą 1 for any c and w, the derivatives of both functions

VIpwq and V∅pwq are higher than 1 for any w P r0, w̄q. Therefore, both functions VIpwq ´ w and

V∅pwq´w are maximized at w̄. Hence, in the following, we show that contract Γ̄ is optimal.

Theorem 6. Under Conditions (2), (L2) and (mH), functions VIpwq and V∅pwq, as defined in

(47) and (48), respectively, satisfy the optimality condition (20)–(22).
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Furthermore, for any wě 0, we have

U
´

Γ̄, I
¯

“ V̄ ´ w̄ě VIpwq´w, and (49)

U
´

Γ̄,∅
¯

“ V̄ ´ w̄´K ě V∅pwq´w, (50)

in which Γ̄ is defined in (15). Therefore, it is optimal to implement contract Γ̄ regardless of whether

the initial state is E0´ “ I or E0´ “ ∅.

Comparing Theorem 6 with Theorem 5, we see that if K ěK2, then it is optimal for the principal

to not hire the agent to start working; if K ăK2 and (mH) holds, on the other hand, it is optimal

to start the work from the very beginning and keep the agent working forever.

If condition (mH) does not hold, or, equivalently,

0ămK ă
ρ´ r

ρ´ r´µ
, (mL)

the function V
rw defined in Lemma 2 is still the optimal value function for state I, and the results

are identical to those in Proposition of Section 4.3, as summarized in the next theorem.

Theorem 7. Under Conditions 2, (L2), and (mL), Propositions 4 and 5 and Theorem 4 still

hold.

The following result further implies that as if R is large enough, we have the fixed switching cost

K P p qK2,K2q, when contract Γ̄ becomes optimal.

Proposition 6. Fixing model parameters ρ, r, µ, ∆µ, c and b, the threshold qK2 is non-

increasing in R for R ě R̂, and reaches 0 at a point R̄ ą R̂. Furthermore, K2 is increasing in R

and diverge to infinity with R.

The proof of Proposition 6 in the appendix provides closed form expressions for qK2 and R̄.

Remark 5. At this point, it is helpful to use Figure 6 to summarize the optimal contract

structures under different parameter settings from Sections 4 and 5. As we can see, if the switching

cost is above K1 or K2 (Region I), it is optimal for the principal not to hire the agent at state

∅. If R is high enough such that qK2 ďK ďK2 (Region II), then it is optimal for the principal

to hire the agent and start paying β for each arrival. If K is lower than K1 or qK2 (Region III),

the optimal contract take the general form of Γ˚
`

w˚0 , I; ϑ, pϑ^ qwpŵqq, ϑ̄, ŵ
˘

. This figure depicts

model parameters such that ρ´ rą µ. If ρ´ rď µ, on the other hand, R̂ is essentially infinity and

Region II disappears from the graph. ˝
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Figure 6 r“ 0.2, ρ“ 1.5, c“ b“ 0.2, R P r0.6,1.1s, ∆µ“ 0.7, and µ“ 1.

6. Switching Cost K Approaching Zero

In this section, we discuss impacts of the switching cost K on the optimal contract, especially when

K approaches zero. For this purpose, we focus on the following condition.

Condition 3. Model parameters (not including K) satisfy either Condition 1 and K1 ą 0, or

Condition 2 and qK2 ą 0.

Note that if Condition 3 does not hold, when K “ 0, the principal should either not hire the agent,

or always motivate the agent to work.

Proposition 7. Under Condition 1 and (L1), or under Condition 2, (L2) and (mL), ϑ and

ϑ̄ defined in Proposition 4 are decreasing and increasing in K, respectively. Furthermore, under

Condition 3, these two values converge to the same value as K approaches 0, or,

θ0 :“ lim
KÓ0

ϑ“ lim
KÓ0

ϑ̄. (51)

The monotonicity of ϑ and ϑ̄ implies that the limit θ0 is an upper or lower bound for these

thresholds. In Appendix A.2, we demonstrate an algorithm to compute the optimal contract for

general K values, in which computing θ0 is the first step.

Proposition 7 also implies that, as K approaches 0, the control band between ϑ and ϑ̄ diminishes.

Consequently, switching occurs more and more frequently. In the limit as K becomes zero, the

number of switchings approaches infinity in a finite time period after the promised utility reaches

the threshold θ0. A similar, although not identical, phenomenon in the optimal contract structures

arises in the Brownian motion uncertainty case, as demonstrated in Zhu (2013), where the promised

utility becomes “sticky” when the promised utility reaches a threshold.
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Intuitively, a high switching frequency control policy appears impractical. Therefore, it is instruc-

tive to reflect on basic modeling choices. If the switching cost is fairly low, it is often a good

practice to ignore it when building the first model. However, if the corresponding optimal switching

frequency is extremely high, any cost associated with switching cannot be ignored any more.

Although the optimal control is not practical if K “ 0, we can still study the corresponding

optimal value function, which sheds lights on how much the resting option helps, compared with

always inducing the agent to work until potential termination. Following Proposition 7, we have

the following result, which allows us to construct the optimal value function for K “ 0, regardless

of whether other model parameters satisfy Conditions 1 or 2.

Theorem 8. Under Condition 3, the following quantities are well defined:

ŵ0 :“ lim
KÓ0

ŵ, and c0 :“ lim
KÓ0

c, (52)

in which ŵ and c are defined according to Proposition 4. Further define function

Vθ0pwq :“

"

Vc0pwq, w P r0, θ0s,
Vŵ0

pwq, wą θ0.

Functions VI “ V∅ “Vθ0 satisfy (20)–(22) in which we set K “ 0.

Theorem 8 implies that as K approaches zero, the optimal value functions for positive K values

converge to a value function Vθ0 , which is an upper bound of the optimal value function for

K “ 0. Therefore, function Vθ0 serves as a benchmark for potential benefits of the switching option.

Proposition 8 in Appendix A.2 describes how to compute the function Vθ0 directly, rather than to

treat it as the limit of a sequence of functions.

Following Theorem 8, we define the optimal principal’s utility under K “ 0 as

Ū :“max
wě0

tVθ0pwq´wu . (53)

It is worth comparing this value with the principal’s utility without the resting option following

Cao et al. (2021), defined as

U :“

"

maxwě0 tVpwpwq´wu , under Condition 1,
V̄ ´ w̄, under Condition 2.

(54)

Therefore, it is clear that if model parameters do not satisfy Condition 3, the switching option does

not bring any value to the principal. Under Condition 3, we conduct a numerical test to compute

the relative difference, pŪ ´Uq{U .

In particular, we consider the following model parameters. Fix ρ“ 1, R“ 10 and c“ b. Take r

from the set t0.01,0.1,0.5,0.9,0.99u, µ from t0.1,0.55,1.1,1.45,1.9u, ∆µ{µ from t0.1,0.5,0.9u, and

c{pR∆µq from t0.1,0.5,0.9u, so that model parameters satisfy Assumption 1 and r ă ρ. Among
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Table 1 Parameters of the cases with relative difference that is greater than 10%

r µ ∆µ{µ c{pR∆µq Relative difference
0.01 1.9 0.9 0.5 68.74%
0.01 1.45 0.9 0.5 58.05%
0.01 1 0.9 0.5 42.14%
0.1 1.9 0.9 0.5 30.06%
0.1 1.45 0.9 0.5 28.36%
0.1 1 0.9 0.5 24.47%
0.01 0.55 0.9 0.5 20.40%
0.1 0.55 0.9 0.5 14.61%

these 225 cases, 85 of them satisfy Condition 3. The mean of the relative differences among these

85 cases is 3.71%. However, in 8 cases, the relative difference exceeds 10%. We list the parameter

of these 8 cases in Table 1. As we can see, these cases correspond to r being very low (taking values

0.01 and 0.1), µ not too low (no lower than 0.55), ∆µ is close to µ (ratio being 0.9), and c{pR∆µq

is neither close to 0 nor to 1. The maximum improvement of considering the switching option can

be as high as 68.74%.

7. Concluding Remarks

We have fully solved the optimal contract design problem that dynamically schedules an agent to

work and rest over time, depending on past arrival times. A natural modeling extension is to include

a benefit payoff that the agent collects while resting. Although seemingly simple, such an extension

appears highly non-trivial, given how intricate the proofs for Propositions 4 and 5 are. We suspect

that the current policy structure remains optimal, but leave it as an open question. Furthermore,

our model assumes that the principal undertakes the fixed switching cost. There could be settings

where this cost is incurred to the agent and not observable to the principal. In such a setting, even

if the principal reimburses this cost, the contract needs to mitigate the incentive for the agent to

divert this fund for other purposes instead of switching on effort. Such a model poses additional

challenges, and is left to future investigation.

Endnotes

1. We use “work” and “exert effort” interchangeably in this paper.

2. Here we implicity assume that the continuous part of L, Lc is absolutely continuous with

repsect to the Lebesgue measure on R`.

3. Notation WtpΓ, νq represents the agent’ continuation utility after observing either an arrival

or a random switching that occurs at time t, which may trigger an instantaneous payment at time

t. Hence, in its definition (4), we use the Lebesgue-Stieltjes integral
ş8

t`
to exclude the possible

instantaneous payment at time t.
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4. Technically speaking, all time indices in the dt term in (PK) should be t´. However, it does

not make any difference as there is no jump in the dt term. This kind of confusion also appears in

other places, making no harm to the results.

5. Condition 2 corresponds, but is not identical, to Equation (13) of Cao et al. (2021). The

difference is due to model assumptions. The model in Cao et al. (2021) assumes that the effort cost

c is not immediately reimbursed, while it is in our model.
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Online Appendices for “Punish Underperformance with Resting
– Optimal Dynamic Contracts in the Presence of Switching

Cost”
In this document, we present some further discussions in Appendix A, and all proofs omitted in the paper

in Appendix B.

Appendix A: Further Discussions

Appendix A contains four parts. Appendix A.1 gives a heuristic derivation of the optimality condition (20)–

(22) for the optimal value functions VI and V∅, which appears in Section 3. Appendix A.2 demonstrates how

to compute the optimal contract parameters. Besides, we discuss two extensions to the basic model studied

in the paper. More precisely, in Appendix A.3, we consider the equal time discount case, and in Appendix

A.4, we study the case in which there is also a fixed cost to switch from state I to ∅.

A.1. A Heuristic Derivation of (20)–(22)

In this section we provide a heuristic derivation of the principal’s utility function and of the main features

of the optimal contract. Some arguments are borrowed from Section 4.1 in Biais et al. (2010). Let FIpwq and

F∅pwq be the principal’s optimal utility function that yields an agent’s utility w when the initial state is I

and ∅, respectively.

First, we characterize the evolution of the principal’s utility function FEt´
pWt´q. Since the principal dis-

counts the future utility flow at rate r, his expected flow rate of utility at time t is rFEt´
pWt´q. This must

be equal to the sum of expected cash flow, the (possible) switching cost, and the expected rate of change in

his continuation utility over pt´dt, ts. Hence, we have

rFEt´
pWt´qdt“ rν̄tR´pc´ bq1Et“Isdt´dLt`Et´r´κpEt´,Etq`dFEt

pWtqs, (55)

where Et´r¨s :“Er¨|Ft´s.

Following the discussions in Section 3, we assume that for any ε P tI,∅u, Fεp¨q is concave and differentiable

on R`. The actual value function might not be differentiable on the entire domain R`, which is an issue

frequently arising in the optimal control literature, and often addressed by the viscosity solution approach.

Since this section is devoted to a heuristic derivation of the optimality equation for the optimal utility

function Fε, we assume that Fε is smooth enough temporarily.

Recall that dLt “ `tdt`∆Lt. Note that under any admissible contract, 1νt“µ “ 1Et“∅ and 1νt“µ “ 1Et“I.

Using (PK) and regarding Fεpwq as a function of pw,εq, we are able to apply calculus of point process to the

process pW,Eq to obtain

dFEt
pWtq “

`

ρWt´` b1Et“I´Htν̄t` qtH
q
t ´ `t

˘

F 1Et´
pWt´qdt

`
“

FEt´
pWt´´∆Ltq´FEt´

pWt´q
‰

`
“

FEt´
pWt´`Htq´FEt´

pWt´q
‰

dNt

`
“

FEt´
pWt´´H

q
t q´FEt´

pWt´q
‰

dQt`
“

FEt
pWtq´FEt´

pWtq
‰

.
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Plugging the above formula into (55) and using Et´dNt “ ν̄tdt, and Et´dQt “ qtdt, we have

rFEt´
pWt´qdt“

”

Rν̄t´pc´ bq1Et“I´ `t`
`

ρWt´` b1Et“I´Htν̄t` qtH
q
t ´ `t

˘

F 1Et´
pWt´q

`
`

FEt´
pWt´`Htq´FEt´

pWt´q
˘

ν̄t`
`

FEt´
pWt´´H

q
t q´FEt´

pWt´q
˘

qt

ı

dt

´∆Lt`FEt´
pWt´´∆Ltq´FEt´

pWt´q`Et´
“

´κpEt´,Etq`FEt
pWtq´FEt´

pWtq
‰

. (56)

Here, `t, ∆Lt, Ht, H
q
t , qt and Et are all control variables. Besides, the contract might be terminated at

time t by paying off the promised utility to the agent instantaneously. Hence, we have FEt
pWtq ě v ´Wt.

That is, Fεpwq ě v´w for any w PR` and ε P tI,∅u.

We first optimize the constant-order terms on the right-hand side in (56). Considering that the optimized

constant-order terms should be zero, we have

max
∆Ltě0

 

´∆Lt`FEt´
pWt´´∆Ltq´FEt´

pWt´q
(

“ 0, and (57)

max
EtPtI,∅u

 

´κpEt´,Etq`FEt
pWtq´FEt´

pWtq
(

“ 0. (58)

Equation (57) yields that F 1εpwq ě´1 for any w PR` and ε P tI,∅u. Let pwε “ inftwě 0 : F 1εpwq “´1u. The

concavity of Fε implies that it is optimal for the principal to pay ∆Lt “maxtWt´´ pwEt´
,0u instantaneously

to the agent.

Equation (58) yields that FIpwq ě F∅pwq and F∅pwq ě FIpwq´K for any w PR`. Besides, Et ‰ Et´ only if

´κpEt´,Ect´q`FEc
t´
pWtq´FEt´

pWtq “ 0, where εc is I if ε“ ∅ and is ∅ if ε“ I.

Next, we consider the controls such that ∆Lt “ 0 and Et “ Et´. If we plug these values into (56), the

symbol “=” should be replaced by “ď” due to the suboptimality of these controls. Comparing the dt-order

terms on both sides of the resulting inequality yields

rFEt´
pWt´q ěmax

!

Rν̄t´pc´ bq1Et“I´ `t`
`

ρWt´` b1Et“I´Htν̄t`H
q
t qt´ `t

˘

F 1Et´
pWt´q

`
`

FEt´
pWt´`Htq´FEt´

pWt´q
˘

ν̄t`
`

FEt´
pWt´´H

q
t q´FEt´

pWt´q
˘

qt

)

, (59)

where the maximization is taken over the set of controls p`t,Ht,H
q
t , qtq that satisfies `t ě b1Et“I, the IR

constraint (5), and the IC constraint (IC).

Inequality (59) can be written as two inequalities, for working and resting respectively. If Et´ “ I, by

omitting the time index, (59) becomes

rFIpwq ěRµ´pc´ bq` pρw` bqF
1
I pwq

`max
!

´ `´p``µh´ qhqqF 1I pwq`µpFIpw`hq´FIpwqq` pFIpw´h
qq´FIpwqqq

)

, (60)

where the maximization is taken over the set of p`, h,hq, qq that satisfies

`ě b, hě β, hq ďw, qě 0. (61)

If Et´ “ ∅, then (59) becomes

rF∅pwq ěRµ` ρwF
1
∅pwq`max

!

´ `´p``µh´ qhqqF 1∅pwq`µ
`

F∅pw`hq´F∅pwq
˘

`
`

F∅pw´h
qq´F∅pwq

˘

q
)

, (62)
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where the maximization is taken over the set of p`, h,hq, qq that satisfies

`ě 0, hě´w, hq ďw, qě 0. (63)

Recall that VIpwq “ FIpwq `w and V∅pwq “ F∅pwq `w. Then, we have the following basic properties of VI

and V∅:

1. VIpwq ě v and V∅pwq ě v for any w PR`.

2. V 1I pwq ě 0 and V 1∅pwq ě 0 for any w PR` (this follows from the fact that F 1I pwq ě´1 and F 1∅pwq ě´1).

3. Both VI and V∅ are concave on R`.

4. VI (resp. V∅) will take constant value on r pwI,8q (resp. r pw∅,8q).

5. VIpwq ě V∅pwq and V∅pwq ě VIpwq´K for any w PR`.

We first analyze (60), which can be rewritten as follows in terms of VI:

rVIpwq ěRµ´ c´pρ´ rqw`pρw` bqV
1
I pwq`max

!

´ `V 1I pwq`
`

VIpw`hq´VIpwq´hV
1
I pwq

˘

µ

`
`

VIpw´h
qq´VIpwq`h

qV 1I pwq
˘

q
)

, (64)

where the maximization is taken over the constraints (61).

Optimizing the right-hand side of (64) with respect to `, we have `˚ “ arg max`ěbt´`V
1
I pwqu “ b if w P

r0, pwIq, where we use the fact that V 1I pwq ą 0 for w P r0, pwIq.

Optimizing the right-hand side of (64) with respect to h, we have h˚ “ arg maxhěβtVIpw`hq´V
1
I pwqhu “ β,

by noting that VIpw`hq´V
1
I pwqh is decreasing in h on r0,8q, since V 1I pw`hq´V

1
I pwq ď 0 for any hě 0 due

to the concavity of VI.

Note that maxhqďwtVIpw´h
qq´VIpwq`h

qV 1I pwqu “ 0. Hence, (64) reduces to

rVIpwq ěRµ´ c´pρ´ rqw´ ρpw̄´wqV
1
I pwq`µpVIpw`βq´VIpwqq, (65)

for w PR`, which can be rewritten as pAIVIqpwq ě 0 by using the operator AI defined in (18).

We next analyze (62), which can be rewritten as follows in terms of V∅:

rV∅pwq ěRµ´pρ´ rqw` ρwV
1
∅pwq`max

!

´ `V 1∅pwq`µ
`

V∅pw`hq´V∅pwq´hV
1
∅pwq

˘

`
`

V∅pw´h
qq´V∅pwq`h

qV 1∅pwq
˘

q
)

, (66)

where the maximization is taken over the constraints (63).

Optimizing the right-hand side of (66) with respect to `, we have `˚ “ arg max`ě0t´`V
1
∅pwqu “ 0 if w P

r0, pw∅q. Optimizing the right-hand side of (66) with respect to h, we have h˚ “ arg maxhě´wt´V
1
∅pwqh`

V∅pw`hqu “ 0, by noting that ´V 1∅pwqh`V∅pw`hq is increasing in h for hă 0 and decreasing in h for hą 0

due to the concavity of V∅. Also, we have maxhqďwtV∅pw´ h
qq ´ V∅pwq ` h

qV 1∅pwqu “ 0. Consequently, (66)

can further reduce to

rV∅pwq ěRµ´pρ´ rqw` ρwV
1
∅pwq, (67)

where can be rewritten as pA∅V∅qpwq ě 0.

Summarizing the above discussions leads us to consider (20)–(22).
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A.2. Computing Contract Parameters

For K “ 0, we have the following result.

Proposition 8. (i) Under Condition 1 and K1 ą 0, we have θ0 “ θ
0, where θ0 and θ0 are defined in

Proposition 7 and Lemma 8, respectively. Correspondingly, we have ŵ0 “ rwpθ0q and c0 “ Cpθ0q, in

which functions rwp¨q and Cp¨q are defined in Lemma 7.

(ii) Under Condition 2 and qK2 ą 0, define a lower bound

qθ :“
pV̄ ´ vqpρ´ r´µq´ pρ´ rqw̄

µpρ{r´ 1q
.

Similar to Lemmas 7 and 8, for any θ P pqθ, w̄q, there exist unique values rwpθq P pθ, w̄q and Cpθq, such

that if we set ŵ “ rwpθq, c“ Cpθq, and ϑ“ θ, the value-matching and smooth-pasting conditions (30)

and (31) are satisfied. Furthermore, value θ0 :“ inftθ P pqθ, w̄q : rw1pθq ě 0u is well-defined, and we have

θ0 “ θ
0, ŵ0 “ rwpθ0q, and c0 “Cpθ0q.

For any θ P p0, w̄q, function hp rw,θq, as defined in (93), is decreasing in rw with hp rwpθq, θq “ 0. Hence,

rwpθq can be efficiently found by a binary search procedure, starting from lower bound θ and upper bound

w̄. Consequently, Cpθq can also be immediately computed as C1p rwpθq, θq, with C1p rw,θq defined in (92).

Therefore, following Proposition 8, in order to determine the optimal contract parameters for K “ 0 under

Condition 3, we only need to find θ0. Based on the definition of θ0 (see part (ii) of Proposition 8), this value

can be determined by a line search to check at which point rwpθq is no longer increasing, starting from 0

under Condition 1 and K1 ą 0, or from qθ under Condition 2 and qK2 ą 0.

Computation of the optimal contract parameters for K ą 0 is more complex. We only demonstrate how to

compute the control band parameters pc, ŵ, ϑ̄, ϑq under Conditions 1 and (L1) or under Conditions 2, (L2),

and (mL), as the optimal contract in other cases takes a simpler form. Take the case under Conditions 1

and (L1) for illustration. Note that for any θ P p0, θ0
q, the value θ̄pθq can be determined by (89), using a line

search procedure. Hence, function ψpθq, as defined in (90), can be readily computed for each θ P p0, θ0
q. Since

by Lemma 10 function ψpθq is decreasing in θ with ψpϑq “K, the quantity ϑ can be efficiently found by a

binary search procedure, starting from lower bound 0 and upper bound θ0. The three other parameters, c,

ŵ, ϑ̄, are thus immediately computed as Cpϑq, rwpϑq and θ̄pϑq. For the case under Conditions 2, (L2), and

(mL), the only difference is that initial lower bound for the binary search is qθ.

The above procedure can be summarized by the following four subroutines.

Subroutine 1. Given θ P p0, w̄q, compute w̃pθq: Binary search on rθ, w̃s, to determine w̃pθq according to

hpw̃pθq, θq “ 0 where function hp rw,θq is defined in (93).

Subroutine 2. Given θ P p0, w̄q, compute Cpθq: Following Subroutine 1, we obtain w̃pθq. Then, Cpθq “

C1pw̃pθq, θq with C1p rw,θq defined in (92).

Subroutine 3. Given θ P p0, θ0
q, compute θ̄pθq: Following Subroutines 1 and 2, we obtain w̃pθq and

Cpθq. Then, we calculate θ̄pθq by (89), using a line search procedure.

Subroutine 4. Given θ P p0, θ0
q, compute ψpθq: Following Subroutines 1–3, we obtain w̃pθq, Cpθq and

θ̄pθq. Then, we compute ψpθq, as defined in (90).

With the above four steps, the optimal control band parameters can be computed by Algorithm 1 below.
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Algorithm 1 Compute pc, ŵ, ϑ̄, ϑq.

1: Line search to determine θ0 according to w̃1pθq “ 0, in which function w̃pθq is computed accord-

ing to Subroutine 1.

2: Binary search to determine ϑ according to ψpϑq “K where ψpϑq can be computed following

Subroutine 4.

3: Following Subroutines 1–3, we obtain ŵ“ w̃pϑq, c“Cpϑq and ϑ“ θ̄pϑq, respectively.

A.3. Equal Discount Rate

In the study of dynamic contracts without the switching options, Sun and Tian (2018) claimed, without a

formal proof, that under equal discount rates, it is optimal for the principal to always induce the agent to

work before contract termination. In our context with switching, this claim corresponds to never switching

the agent to resting and then working again. Here, we provide a formal proof that validates this claim, for

any K ě 0.

When the two player’s discount rates are the same, that is, r“ ρ, various expressions in the main part of

the paper become simpler. For example, the value V̄ defined in (53) becomes

V̄e :“
µR´ c

r
, (68)

and the differential equation (24), which plays an essential role in deciding the optimal value functions,

becomes

0“ pµ` rqVepwq´µVeppw`βq^ w̄q` rpw̄´wqV
1
e pwq´ pµR´ cq. (69)

According to Lemma 3 of Sun and Tian (2018), differential equation (69) with boundary condition Vep0q “ v

has a unique solution Ve on r0, w̄s, which is increasing and strictly concave, with Vepwq “ V̄e for all w ě w̄.

Theorem 1 still holds, in which the operators AI and A∅ are simplified to

pAIfqpwq “ pµ` rqfpwq´µfpw`βq` rpw̄´wqf
1pwq´ pµR´ cq, and

pA∅fqpwq “ rfpwq´ rwf
1pwq´Rµ,

respectively, for differentiable function f .

Furthermore, when r“ ρ, effectively Condition 1 holds. Consequently, analysis for the equal discount case

resembles that in Section 4. In particular, we will show that the value function for state I is Ve defined above.

Furthermore, the upper thresholds K̄ of (H1) becomes

K̄e :“ V̄e´ v. (70)

In order to define the lower threshold for the switching cost, we need to define the value function for state ∅.

Note that when r“ ρ, function V
pw becomes Ve, with pw being w̄ and qwppwq being 0. Hence, following Lemma

4, if K ă K̄e, there exists K-dependent values θ̄K P r0, w̄s and mK P r0, V 1e p0qs such that

Vepθ̄
Kq “mK θ̄K `K ` v, and V 1e pθ̄

Kq “mK .
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Then, similar to (29), we define the following societal value function for the resting state,

V∅pwq “

"

mKw` v, w P
“

0, θ̄K
‰

,
Vepwq´K, w P

“

θ̄K , w̄
‰

.
(71)

Figure 7 depicts the value functions. It is clear that V∅ is linear over the interval r0, θ̄Ks. Furthermore,

VIpwq and V∅pwq are “parallel” with a difference of K for wě θ̄K .

I

Figure 7 Value functions with r“ 0.5, ρ“ 0.5, c“ b“ 0.2, R“ 2, ∆µ“ 0.7, K “ 1.5, and µ“ 2. In this case,

θ̄K “ 0.51, w̄“ 1.14, V̄e “ 7.6 and v“ 5.2.

The following theorem summarizes the optimality results.

Theorem 9. Consider r“ ρ. For any wě 0, we have

UpΓ˚pw, I; 0,0, w̄, w̄q, Iq “ Vepwq, and UpΓ,∅q “ v.

If K ě K̄e, functions VI “ Ve and V∅ “ v satisfy (20)–(22).

If K ă K̄e, on the other hand, functions VI “ Ve and V∅ as defined in (71) satisfy (20)–(22). Furthermore,

if V 1e pθ̄
Kq ą 1, for any wě θ̄K we have

UpΓ˚pw, I; 0,0, w̄, w̄q,∅q “ V∅pwq´w.

Therefore, in the equal discount case, contract Γ˚pw˚e , I; 0,0, w̄, w̄q is optimal for the initial state I, as well

as for the initial state ∅, if K ă K̄e and mK ą 1, in which w˚e P r0, w̄s is the unique maximizer of function

Ve such that w˚e ą θ̄
K . If K ě K̄e, or K ă K̄e and mK ď 1, on the other hand, it is optimal for the principal

not to hire the agent for the initial state ∅. Note that because the threshold θ in contract Γ˚pw, I; 0,0, w̄, w̄q

is zero, the principal does not direct the agent to stop working until the promised utility has reached 0. At

this point the promised utility cannot become positive again and the contract is terminated. Therefore, in

all these cases, it is never optimal for the principal to direct the agent to stop working and restart later.
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A.4. Positive Switching Cost From On to Off

Now we briefly discuss a generalization of our basic model, which involves a fixed cost, call it K, for the

principal to direct the agent to stop working, including terminating the contract. Instead of providing a

comprehensive summary of all results, we provide the key ideas and leave some details for the reader to fill

in.

The general contract structure, Γ˚ of Definition 1, remains optimal. In order to identify the specific

parameters of the policy structure, we describe the optimal value functions.

First of all, in the verification theorem, condition (21) is revised to ´K ď VI ´ V∅ ďK, and the second

inequality in (22) changes to V∅p0q ě v´K. The key idea for constructing the value functions is that when

w ă θ, function VI is a downward parallel shift of V∅ by K. Accordingly, the value-matching and smooth-

pasting conditions of Proposition 4 become

VIpθq “ V∅pθq´K, V 1I pθq “ V
1
∅pθq,

VIpθ̄q “ V∅pθ̄q`K, and V 1I pθ̄q “ V
1
∅pθ̄q.

Figure 8 depicts the value functions. Similar to Figure 4, function VIpwq is linear in the interval w P rθ, qws.

Furthermore, for wď θ, function VIpwq is a downward parallel shift from V∅pwq by K, while for wě θ̄, function

V∅pwq is a downward parallel shift from VIpwq by K.

I

Figure 8 Value functions with r“ 0.05, ρ“ 1, c“ b“ 0.3, R“ 112, ∆µ“ 0.1, K“ 10, K “ 30, and µ“ 1.95. In

this case, w̄“ 5.85, θ“ 0.2, qw“ 0.46, θ̄“ 5.21, and pw“ 5.62.
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Appendix B: Proofs of all the Results

This section collects all proofs for the results in the paper and in Appendix A.

B.1. Proofs of the Results in Section 2

Proof of Proposition 1. The proof of part (i) is exactly the same as that of Proposition 1 in Cao et al.

(2021), in which random termination instead of random switching may take place. The proof of part (ii) is

similar to that of Lemma 6 in Sun and Tian (2018). Hence, we omit both of them for brevity. ˝

Proof of Lemma 1. If we can show that (PK) holds under contract Γ˚pw0, ε0;θ, qw, θ̄, pwq, then (17)

follows immediately from (2) and (4) with t “ 0. In fact, (PK) holds by setting Ht “ β1Et´“I and

Hq
t “ p qw´ θq1Wt´“ qw,Et´“I. ˝

B.2. Proofs of the Results in Section 3

Proof of Theorem 1. Fix any contract Γ P C. For simplicity, we omit Γ and ν from quantities of interest.

The agent’s promised utility follows a process W whose dynamics is described by (PK) with νt “ µ for Et “ I

and νt “ µ for Et “ ∅.

Recall that dLt “ `tdt`∆Lt. Write φpw,εq “ Vεpwq´w for any w PR` and ε P tI,∅u. Applying the change

of variable formula (see, for example, Theorem 70 of Chapter IV in Protter 2003, pp. 214) for processes of

locally bounded variation to the process pW,Eq and using (PK), we have

e´rTφpWT ,ET q “ φpW0´,E0´q`

ż T

0`

e´rt
”

pρWt´` b1νt“µ´Htνt` qtH
q
t ´ `tq ¨Dt´

´ rVEt´
pWt´q

ı

dt`
ÿ

0ďtďT

e´rt∆φpWt,Etq,

for any T ě 0, where Dt´ is the left-derivative of φpw,Et´q with respect to w at Wt´, that is, Dt´ “

V 1Et´
pWt´q ´ 1, by recalling that we use f 1pwq to represent the left-derivative of f at w for any absolutely

continuous function defined on R`. Besides, we have

∆φpWt,Etq “φpWt,Etq´φpWt,Et´q

`φpWt´`HtdNt´H
q
t dQt´∆Lt,Et´q´φpWt´`HtdNt´H

q
t dQt,Et´q

`φpWt´`HtdNt´H
q
t dQt,Et´q´φpWt´,Et´q for tą 0,

and

∆φpW0,E0q “ φpW0,E0q´φpW0,E0´q`φpW0,E0´q´φpW0´,E0´q

by noting that dN0 “ dQ0 “ 0 with probability 1.

Define MN “ tMN
t utě0 and MQ “ tMQ

t utě0 by

MN
t “Nt´

ż t

0

νsds, M
Q
t “Qt´

ż t

0

qsds.
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Note that

ÿ

0ătďT

“

φpWt´`HtdNt´H
q
t dQt,Et´q´φpWt´,Et´q

‰

“

ż T

0`

e´rt
!

rφpWt´`Ht,Et´q´φpWt´,Et´qsdNt`rφpWt´´H
q
t ,Et´q´φpWt´,Et´qsdQt

)

“

ż T

0`

e´rt
“

φpWt´`Ht,Et´q´φpWt´,Et´q
‰

dMN
t `

ż T

0`

e´rt
“

φpWt´`Ht,Et´q´φpWt´,Et´q
‰

νtdt

`

ż T

0`

e´rt
“

φpWt´´H
q
t ,Et´q´φpWt´,Et´q

‰

dMQ
t `

ż T

0`

e´rt
“

φpWt´´H
q
t ,Et´q´φpWt´,Et´q

‰

qtdt.

where the first equality uses the fact that tt P r0, T s : dNt “ dQt “ 1u has a Lebesgue measure 0 with

probability 1. This suggests that

e´rTφpWT ,ET q “φpW0´,E0´q`

ż T

0`

e´rtrφpWt´`Ht,Et´q´φpWt´,Et´qsdMN
t `

`

ż T

0`

e´rtrφpWt´´H
q
t ,Et´q´φpWt´,Et´qsdMQ

t `A1`A2`A3`A4`A5, (72)

where

A1 :“

ż T

0`

e´rt
!

pρWt´` b1νt“µ´Htνt´ `t´q ¨
`

V 1Et´
pWt´q´ 1

˘

´ rφpWt´,Et´q

` rφpWt´`Ht,Et´q´φpWt´,Et´qsνt
)

dt,

A2 :“
ÿ

0ătďT

e´rt
”

φ
`

Wt´`HtdNt´H
q
t dQt´∆Lt,Et´

˘

´φ
`

Wt´`HtdNt´H
q
t dQt,Et´

˘

ı

,

A3 :“
ÿ

0ďtďT

e´rtrφpWt,Etq´φpWt,Et´qs,

A4 :“

ż T

0`

e´rtqt

!

Hq
t

`

V 1Et´
pWt´q´ 1

˘

`φpWt´´H
q
t ,Et´q´φpWt´,Et´q

)

dt,

A5 :“φpW0,E0´q´φpW0´,E0´q.

Below we treat each term separately.

Consider first A1. If Et´ “ I, then νt´ “ µ and φpWt´,Et´q “ VIpWt´q ´Wt´. Since the contract Γ is

incentive compatible, we have Ht ě β from Proposition 1 (ii). Consequently, we have

pρWt´` b1νt“µ´Htνt´ `tq ¨
`

V 1Et´
pWt´q´ 1

˘

´ rφpWt´,Et´q` rφpWt´`Ht,Et´q´φpWt´,Et´qsνt

“pρWt´` b´Htµ´ `tq ¨
`

V 1I pWt´q´ 1
˘

´ r ¨ pVIpWt´q´Wt´q` rVIpWt´`Htq´VIpWt´q´Hts ¨µ

“ρWt´ ¨
`

V 1I pWt´q´ 1
˘

´ r ¨ pVIpWt´q´Wtq´ p`t´ bq ¨
`

V 1I pWt´q´ 1
˘

`
“

VIpWt´`Htq´VIpWt´q´V
1
I pWt´qHt

‰

¨µ

ďρWt´ ¨ pV
1
I pWt´q´ 1q´ r ¨ pVIpWt´q´Wt´q` `t´ b`rVIpWt´`βq´VIpWt´q´V

1
I pWt´qβs ¨µ

“´

”

pµ` rqVIpWt´q´µVIpWt´`βq` ρpw̄´Wt´qV
1
I pWt´q´ pµR´ cq` pρ´ rqWt´

ı

` `t´rRµ´pc´ bqs

“´ pAIVIqpWt´q` `t´rRµ´pc´ bqs

ď`t´rRµ´pc´ bqs.
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In the above, the first inequality follows from (i) VIpWt´q ě 0 (this follows from the fact that VI is nonde-

creasing) and (ii) Ht ě β, and β “ arg maxhěβtVIpw`hq´VIpwq´V
1
I pwq ¨hu due to the concavity of VI; the

last inequality follows from (20).

If Et´ “ ∅, then νt´ “ µ. It follows from (5) that Ht ě´Wt´. Therefore, we have

pρWt´` b1νt“µ´Htνt´ `tq ¨
`

V 1Et´
pWt´q´ 1

˘

´ rφpWt´,Et´q` rφpWt´`Ht,Et´q´φpWt´,Et´qsνt

“pρWt´´Htµ´ `tq ¨
`

V 1∅pWt´q´ 1
˘

´ r ¨ pV∅pWt´q´Wt´q`
“

V∅pWt´`Htq´V∅pWt´q´Ht

‰

¨µ

“ρWt´ ¨
`

V 1∅pWt´q´ 1
˘

´ r ¨ pV∅pWt´q´Wt´q´ `t ¨
`

V 1∅pWt´q´ 1
˘

`
“

V∅pWt´`Htq´V∅pWt´q´V
1
∅pWt´qHt

‰

¨µ

ďρWt´ ¨
`

V 1∅pWt´q´ 1
˘

´ r ¨ pV∅pWt´q´Wt´q` `t

“´

”

rV∅pWt´q´ ρWt´ ¨V
1
∅pWt´q` pρ´ rqWt´´Rµ

ı

` `t´Rµ

“´pA∅V∅qpWt´q` `t´Rµ

ď`t´Rµ,

where the first inequality follows from (i) V 1∅pWt´q ě 0 (this follows from the fact that V∅ is nondecreasing)

and (ii) Ht ě´Wt´, and 0“ arg maxhě´wtV∅pw` hq ´ V∅pwq ´ V
1
∅pwq ¨ hu due to the concavity of V∅, and

the last inequality follows from (20).

Combining the above two cases yields

pρWt´` b1νt“µ´Htνt´ `tq ¨
`

V 1Et´
pWt´q´ 1

˘

´ rφpWt´,Et´q` rφpWt´`Ht,Et´q´φpWt´,Et´qsνt

ď`t´rRνt´pc´ bq1νt“µs (73)

for any tą 0.

Consider next A2. We have

φpWt´`HtdNt´H
q
t dQt´∆Lt,Et´q´φpWt´`HtdNt´H

q
t dQt,Et´q

“VEt´
pWt´`HtdNt´H

q
t dQt´∆Ltq´VEt´

pWt´´H
q
t dQt`HtdNtq`∆Lt

ď∆Lt, @tą 0, (74)

where the inequality follows from the facts that ∆Lt ě 0 and that Vε is nondecreasing for any ε P tI,∅u.

Consider now A3. By considering four possible value combinations of pEt´,Etq and using (21), we have

φpWt,Etq´φpWt,Et´q “ VEt
pWtq´VEt´

pWtq ď κpEt´,Etq. (75)

Consider next A4. We have

Hq
t

`

V 1Et´
pWt´q´ 1

˘

`φpWt´´H
q
t ,Et´q´φpWt´,Et´q

“Hq
t V

1
Et´
pWt´q`VEt´

pWt´´H
q
t q´VEt´

pWt´q ď 0,

where the inequality follows from the concavity of Vε for any ε P tI,∅u. This, combining with qt ě 0, yields

A4 “

ż T

0`

e´rtqt

!

Hq
t

`

V 1Et´
pWt´q´ 1

˘

`φpWt´´H
q
t ,Et´q´φpWt´,Et´q

)

dtď 0. (76)
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Consider finally A5. It follows from (2) and (4) with t“ 0 that ErW0`∆L0s “W0´. Therefore, we have

ErφpW0,E0´qs´φpW0´,E0´q “ErVE0´
pW0qs´VE0´

pW0´q´
`

ErW0´s´W0´

˘

ďVE0´

`

ErW0s
˘

´VE0´
pW0´q`Er∆L0s ďEr∆L0s, (77)

where the first inequality follows from the concavity of Vε for any ε P tI,∅u and Jensen’s inequality, the second

inequality follows from the facts that Vε is nondecreasing and W0´ “ErW0`L0s ěErW0s.

Combining (72)–(76), we have

e´rTφpWT ,ET q ďφpW0´,E0´q`

ż T

0`

e´rtrφpWt´`Ht,Et´q´φpWt´,Et´qsdMN
t

`

ż T

0`

e´rtrφpWt´´H
q
t ,Et´q´φpWt´,Et´qsdMQ

t

`

ż T

0`

e´rtr`t´pRνt´pc´ bq1νt“µqsdt`
ÿ

0ătďT

e´rt∆Lt

`
ÿ

0ďtďT

e´rtκpEt´,Etq`φpW0,E0´q´φpW0´,E0´q

for any T ą 0, which can be rewritten as

φpW0´,E0´q ěe
´rTφpWT ,Etq´

ż T

0

e´rtrφpWt´`Ht,Et´q´φpWt´,Et´qsdMN
t

´

ż T

0`

e´rtrφpWt´´H
q
t ,Et´q´φpWt´,Et´qsdMQ

t

`

ż T

0`

e´rtpRdNt´dLt´pc´ bq1Et“Idtq´
ÿ

0ďtďT

e´rtκpEt´,Etq

`φpW0´,E0´q´φpW0,E0´q.

Taking expectation in the above inequality yields

φpW0´,E0´q ěEre´rTφpWT ,ET qs´E
„
ż T

0`

e´rtrφpWt´`Ht,Et´q´φpWt´,Et´qsdMN
t



´E
„
ż T

0`

e´rtrφpWt´´H
q
t ,Et´q´φpWt´,Et´qsdMQ

t



`E

«

ż T

0`
e´rt

`

RdNt´dLt´pc´ bq1Et“Idt
˘

´
ÿ

0ďtďT

e´rtκpEt´,Etq

ff

`φpW0´,E0´q´EφpW0,E0´q

ěEre´rTφpWT ,ET qs´E
„
ż T

0`

e´rtrφpWt´`Ht,Et´q´φpWt´,Et´qsdMN
t



´E
„
ż T

0`

e´rtrφpWt´´H
q
t ,Et´q´φpWt´,Et´qsdMQ

t



`E

«

ż T

0

e´rtpRdNt´dLt´pc´ bq1Et“Idtq´
ÿ

0ďtďT

e´rtκpEt´,Etq

ff

(78)

for any T ą 0, where the last inequality follows from (77).

We claim that it suffices to consider the case that

E
„
ż 8

0`

e´rt|Ht|νtdt



ă8. (79)
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Otherwise, we have E
”

ş8

0`
e´rt|Ht|νtdt

ı

“8. It follows from (PK) and (WU) that dLt ě pHt ´ W̄ q
`dNt

for tą 0. Hence, we have

E
„
ż 8

0

e´rtdLt



ěE
„
ż 8

0`

e´rtpHt´ W̄ q
`dNt



“E
„
ż τ

0`

e´rtpHt´ W̄ q
`νtdt



ěE
„
ż 8

0`

e´rtp|Ht| ´ W̄ qνtdt



ěE
„
ż 8

0`

e´rt|Ht|νtdt



´
W̄µ

r
“8,

where the equality follows from (2.3), Chapter II in Brémaud (1981), the second inequality follows from

Ht ě´Wt´ ě´Rµ{r in view of (5) and (WU), and the third inequality follows from νt ď µ. Then, we have

UpΓ,E0´q ď Eν̄pΓq
„
ż 8

0

e´rt rRdNt´dLts

ˇ

ˇ

ˇ

ˇ

E0´



ď
Rµ

r
´ Eν̄pΓq

„
ż 8

0

e´rtdLt

ˇ

ˇ

ˇ

ˇ

E0´



“´8,

and thus the desired result follows immediately.

Given (79), we have

E
„
ż 8

0`

e´rt|φpWt´`Ht,Et´q´φpWt´,Et´q|νt


dt

ď max
wą0,εPtI,∅u

t|V 1ε pwq´ 1|u ¨E
„
ż 8

0`

e´rt|Ht|νtdt



ă8,

where maxwą0,εPtI,∅ut|V
1
ε pwq ´ 1|u ă 8 follows from the concavity of Vε and the fact that V 1ε ě 0. It follows

from Lemma L3, Chapter II in Brémaud (1981) that ĂM “ tĂMtutě0, defined by

ĂMt “

ż t

0`

e´rsrφpWs´`Hs,Es´q´φpWs´,Es´qsdMN
s ,

is an F-martingale. Hence, EĂMT “EĂM0 “ 0, that is,

E
„
ż T

0`

e´rtrφpWt´`Ht,Et´q´φpWt´,Et´qsdMN
t



“ 0.

Similarly, using (1), we can show that

E
„
ż T

0`

e´rtrφpWt´´H
q
t ,Et´q´φpWt´,Et´qsdMQ

t



“ 0.

It follows from (22) and the fact that both VI and V∅ are nondecreasing that φpw,εq ě v ´ w for any

ε P tI,∅u. Letting T Ñ8 in (78) and using (WU), we have φpW0´,E0´q ěUpΓ,E0´q with W0´ “ upΓ, ν,E0´q.

Hence, the desired result is obtained. ˝

A byproduct of the proof of Theorem 1 is the following result. In the remaining of this appendix, whenever

we need to prove that certain contract achieves the upper bound, we use this result together with Lemma 1.

Proposition 9. Suppose that the conditions stated in Theorem 1 hold. Furthermore, suppose that there

exists a contract Γ˛ P C such that the corresponding agent’s promised utility Wt satisfies

pρWt´` b1νt“µ´Htνt´ `tq
`

V 1Et´
pWt´q´ 1

˘

´ rφpWt´,Et´q` rφpWt´`Ht,Et´q´φpWt´,Et´qsνt

“ `t´rRνt´pc´ bq1νt“µs, (80)

φpWt´`HtdNt´H
q
t dQt´∆Lt,Et´q´φpWt´`HtdNt´H

q
t dQt,Et´q “∆Lt, (81)

φpWt,Etq´φpWt,Et´q “ κpEt´,Etq, (82)

qt

!

Hq
t

`

V 1Et´
pWt´q´ 1

˘

`φpWt´´H
q
t ,Et´q´φpWt´,Et´q

)

“ 0, (83)
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for any tą 0 and

ErφpW0,E0´qs´φpW0´,E0´q “Er∆L0s. (84)

Then, for any value w P r0,8q and initial state E0´ P tI,∅u, such that upΓ˛, ν̄,E0´q “w, we have

UpΓ˛,E0´q “ VE0´
pwq´w.

Proof. Equalities (80)–(84) demonstrate that all the inequalities in the proof of Theorem 1, (73)–(77),

hold as equalities under contract Γ˛. The desired result can be shown by going through the proof of

Theorem 1, with all inequalities replaced by equalities. ˝

Proof of Lemma 2. This result follows almost the same logic as that for the proof of Lemmas 2 and 3 in

Cao et al. (2021), which uses Lemma 6 below. However, there are minor differences as both β and w̄ in Cao

et al. (2021) take different values from ours. We first present Lemma 6 here because it is frequently used in

the subsequent analysis. Its proof can be found at the end of this section.

Lemma 6. For any rw P r0, w̄q, there exists a unique function V
rw in C1pr0, rwsq that solves the differential

equation (24) on r0, rws with boundary condition (25). Further extend the domain of V
rw to R` by letting

V
rwpwq “ V rwp rwq for all wą rw. Function V

rwpwq is non-decreasing in w, and has the following properties.

piq For any rw1 and rw2 such that 0 ă rw1 ă rw2 ă w̄, we have V
rw1
pwq ą V

rw2
pwq and V 1

rw1
pwq ă V 1

rw2
pwq for

w P r0, rw1q.

piiq V
rwp¨q PC

1pR`qXC2pR`zt rwuq.

piiiq For any given wě 0, define function vp rwq :“ V
rwpwq. We have vp¨q PC1pr0, w̄qq.

pivq If ρ ď r ` µ, then for any w ě 0, V
rwpwq approaches negative infinity, and V 1

rwpwq approaches positive

infinity, as rw approaches w̄ from below.

pvq If ρą r`µ, then for any w P r0, w̄s,

lim
rwÒw̄

V
rwpwq “ V̄ ´

ρ´ r

ρ´ r´µ
pw̄´wq,

where V̄ is defined in (9). Furthermore, V̄ ´
ρ´ r

ρ´ r´µ
w̄ą v is equivalent to

Rą

ˆ

c

b
`

pρ´ rqpρ´µqµ

pµ´µqpρ´ r´µqρ

˙

β.

Below, for the sake of brevity, we only highlight the differences from Cao et al. (2021). Similar to Appendix

B.4 in Cao et al. (2021), we start by considering the case that µ`rď ρ. Here, w̄ă β is implied by ρą µ. The

following argument in Appendix B.4 in Cao et al. (2021) remains intact, until that their inequality (B.22),

which should be modified to

rV
rwpw

cq ą µR´ c´pρ´ rqpwc´βq` rρpwc´βq` rβsV 1
rwpw

cq.

As a result, the two cases to be considered will be ρpwc´βq`rβ ě 0 versus ρpwc´βq`rβ ă 0. The former

case reaches a contradiction, following the same logic as in Cao et al. (2021), and the latter case implies
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wc ă p1´ r{ρqβ, demonstrating a possible value qwp rwq P r0, rwq (which is wc) such that V 2
rw ă 0 over p qwp rwq, rwq

and V 2
rw ą 0 over r0, qwp rwqq. Hence, part (i) follows immediately. Besides, it is evident that V2

rwp qwp rwqq “ 0 if

qwp rwq ą 0.

Both parts (ii) and (iii) follow immediately from Lemma 3 in Cao et al. (2021), by noting that all

remaining arguments in Appendix B.4 of Cao et al. (2021) are valid. We mention that although both

Lemmas 2 and 3 in Cao et al. (2021) are stated under Condition 2, this condition is not needed in showing

properties in our Lemma 2. In fact, this condition is only required for guaranteeing that V
pwp0q “ v is

satisfied for some pw in r0, w̄q; see our Lemma 3. ˝

Proof of Lemma 6. The existence and uniqueness of a function satisfying the claimed property has been

shown as the first step in the proof of Proposition 4 in Sun and Tian (2018), which is omitted for brevity.

Next, we show that such a function V
rw has properties (i)–(v).

(i) This property has been proved in Step 2 from the proof of Proposition 4 in Sun and Tian (2018).

(ii) It follows from (24) and the boundary condition at rw that V
rwp¨q PC

1pR`q. Taking derivative in (24)

with respect to w yields

pµ` rqV 1
rwpwq´µV

1
rw

`

pw`βq^ rw
˘

` ρpw̄´wqV 2
rwpwq´ ρV

1
rwpwq` ρ´ r“ 0 (85)

for w P r0, rwq, which implies that V
rwp¨q PC

2pr0, rwqq. Moreover, V 2
rwp rw´q “´pρ´ rq{rρpw̄´ rwqs ă 0. Besides,

by the definition of V
rw on p rw,8q, we have V 2

rwpwq “ 0 for wą rw and V 2
rwp rw`q“ 0. Hence, V

rwp¨q PC
2pR`zt rwuq.

(iii) Fix any wě 0. If rwďw, then vp rwq “ V
rwpwq “ V̄ p rwq, which implies that vp¨q PC1pr0,w^ w̄qq. Hence,

the desired property is obtained if wě w̄.

Now suppose that w ă w̄ and rw P pw, w̄q. By the above discussion, we have vp¨q P C1pr0,wsq. For any

w1 P rw, rws, it follows from (24) that

ρV 1
rwpw

1q “´
pµ` rqV

rwpw
1q

w̄´w1
`
µV

rw

`

pw1`βq^ rw
˘

w̄´w1
`
pµR´ cq´ pρ´ rqw1

w̄´w1
.

Integrating the above equation with respect to w1 from w to rw yields

ρ
`

V
rwp rwq´V rwpwq

˘

“´pµ` rq

ż

rw

w

V
rwpw

1q

w̄´w1
dw1`µ

ż

rw

w

V
rw

`

pw1`βq^ rw
˘

w̄´w1
dw1

`

ż

rw

w

pµR´ cq´ pρ´ rqw1

w̄´w1
dw1.

First, using the above equality, we can obtain that vp rwq “ V
rwpwq is continuous in rw on rw, w̄q. Then, again

using this equality, we conclude that V
rwpwq is continuously differentiable in rw on rw, w̄q, which, combining

with vp¨q PC1pr0,wsq, yields that vp¨q PC1pr0, w̄q.

(iv) This also has been shown in Step 2 from the proof of Proposition 4 in Sun and Tian (2018).

(v) According to the proof of Lemmas 2 and 3 in Cao et al. (2021), as rw Ò w̄, we have b
rw Ó 0 and thus

V
rwpwqÑ Ū ´

ρ´ r

ρ´ r´µ
pw̄´wq

for any w P r0, w̄q.
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At the end, we show that V
rwpwq is non-decreasing in w on R` by a contradictory argument. Suppose that

wp “ suptw P R` : V 1
rwpwq ă 0u exists. Recall from (ii) that V 2

rwp rw´q ă 0. Hence, wp P r0, rwq, V 1
rwpw

pq “ 0 and

V 1
rw ą 0 on pwp, rwq. It follows from (24) at wp that

rV
rwpw

pq “ µR´ c´pρ´ rqwp`µ
”

V
rw

`

pwp`βq^ rw
˘

´V
rwpw

pq

ı

ą µR´ c´pρ´ rqwp “ rV
rwp rwq,

where the inequality follows from that V 1
rw ą 0 on pwp, rwq. This reaches a contradiction with V

rwpw
pq ă V

rwp rwq.

˝

B.3. Proofs of the Results in Section 4

Proof of Lemma 3. This follows from Lemma 3 in Cao et al. (2021). ˝

B.3.1. Proofs of the Results in Section 4.1

Proof of Proposition 2. The proof consists of two parts.

Part 1. First, we verify (26) and (27). Following the definition of Γ as in (16), (27) trivially holds. Following

Lemma 1, in order to show (26), we apply Proposition 9 by verifying that (80)–(84) all hold.

Fix any t ě 0. By comparing (PK) with the dynamics of W and L in Definition 1 (i) and (ii), we have

νt “ µ, `t “ b and Ht “ β if Et´ “ I, and νt “ µ, `t “ 0 and Ht “ 0 if Et´ “ ∅. This implies that (80) holds.

For (81), we consider the following three cases: (i) if Et´ “ ∅, then It “ 0 and (81) trivially holds; (ii) if

Et´ “ I and It “ 0, then (81) trivially holds; (iii) if Et´ “ I and It ą 0, then by Definition 1 (ii), dNt “ 1 and

It “Wt´`β´ pw, which implies Wt´`β ą pw. Hence, we have

φpWt´`HtdNt´ It, Iq´φpWt´`HtdNt, Iq

“φppw, Iq´φpWt´`β, Iq

“V
pwppwq´ pw´rV

pwppWt´`βq^ pwq´ pWt´`βqs

“Wt´`β´ pw“ It,

and thus (81) also holds.

For (82), we also consider three cases: (i) if Wt ą 0, then (82) holds since Et “ Et´ “ I; (ii) if Wt “ 0 and

Et´ “ I, then (82) holds since Et “ ∅ and κpI,∅q “ 0; (iii) if Wt “ 0 and Et´ “ ∅, then (82) holds since Et “ ∅.

For (83), note that qt ą 0 only if qwppwq ą 0, Wt´ “ qwppwq and Et´ “ I. Hence, we have

Hq
t

`

V 1Et´
pWt´q´ 1

˘

`φpWt´´H
q
t ,Et´q´φpWt´,Et´q

“ qwppwqV 1
pwp qwppwqq`V

pwp0q´V
pwp qwppwqq “ 0,

where the last equality follows from property (ii) in Lemma 2. Hence, (83) holds. Finally, (84) holds since

W0 “ pw^W0´.

Part 2. Next, we show that functions VIpwq “ Vŵpwq and V∅pwq “ v satisfy the optimality condition (20)–

(22).
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First, we show that pAIVIqpwq ě 0 for any w P R`. If w P r qwppwq, pwq, by the definition of Vŵ, we have

pAIVIqpwq “ 0. If w P rpw,8q, then we have

pAIVIqpwq “ pµ` rqVŵppwq´µVŵppwq´ pµR´ cq` pρ´ rqw

“ pρ´ rqpw´ pwq ě 0.

If w P r0, qwppwqq (if we discuss this case, it is implicitly assumed that qwppwq ą 0), then we have Vŵpwq “

v`V 1ŵp qwppwqqw. Consequently,

pAIVIqpwq “ pµ` rqpv`V 1ŵp qwppwqqwq´µVŵpw`βq` ρpw̄´wqV 1ŵp qwppwqq´ pµR´ cq` pρ´ rqw

“: gIpwq.

Obviously, gIp qwppwqq “ 0. Moreover, for w P r0, qwppwqq, we have

g1Ipwq “ pµ` rqV 1ŵp qwppwqq´µV 1ŵpw`βq´ ρV 1ŵp qwppwqq` ρ´ r

“ pρ´ rqp1´V 1ŵp qwppwqqq`µpV 1ŵp qwppwqq´V 1ŵpw`βqq

ď pρ´ rq
`

1´V 1ŵp qwppwqq
˘

`µ
`

V 1ŵp qwppwqq´V 1ŵp qwppwq`βq
˘

“ 0,

where the inequality follows from the concavity of Vŵ, and the last equality follows from that ρpw̄ ´

qwppwqqV2ŵp qwppwqq “ pρ´ rqpV 1ŵp qwppwqq ´ 1q ` µrV 1ŵp qwppwq ` βq ´ V 1ŵp qwppwqqs (due to (85)) and V2ŵp qwppwqq “ 0.

Consequently, gIpwq ě 0 for all w P r0, qwppwqq.

Therefore, we have pAIVIqpwq ě 0 for any w P R`. Obviously, we have pA∅V∅qpwq “ pρ´ rqw ě 0. Hence,

(20) holds.

It follows from the facts that VIpwq ě VIp0q “ v “ V∅pwq and V∅pwq “ v ě V̄ ppwq ´ K “ Vŵppwq ´ K ě

VIpwq´K (due to (H1)) that both (21) and (22) hold. ˝

B.3.2. Proof of the Results in Section 4.2

Proofs of Lemma 4. Define

gpw,Kq :“ V
pwpwq´V 1

pwpwqw´ v´K. (86)

Then, we have

gp qwppwq,Kq “´K ă 0, (87)

where the equality follows from that V
pwpwq is linear in w on r0, qwppwqs, and

gppw,Kq “ V
pwppwq´ v´K ą 0,

where the equality follows from V 1
pwppwq “ 0 and the inequality follows from the assumption that (H1) does

not hold. Furthermore, we have

Bgpw,Kq

Bw
“´V2ŵpwqwą 0 for w P p qwppwq, pwq,
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where the inequality follows from that Vŵ is strictly concave on p qwppwq, pwq. Since gpw,Kq is continuous in w

(recall that V
pwp¨q is continuously differentiable), for any K ą 0, there exists a unique θ̄K P p qwppwq, pwq such that

gpθ̄K ,Kq “ 0. Hence, (28) holds if we define mK :“ V 1
pwpθ̄

Kq. Furthermore, by the Implicit Function Theorem,

we have

dθ̄K

dK
“´

Bgpw,Kq

BK
Bgpw,Kq

Bw

“
1

Bgpw,Kq

Bw

ą 0,

which implies that θ̄K is increasing in K. Since V 1ŵpwq is decreasing in w, we have mK “ V 1
pwpθ̄

Kq is decreasing

in K. Finally, limKÓ0 θ̄
K “ qwppwq is implied by (87). ˝

Proof of Proposition 3. First, (26) and (27) hold as the corresponding argument in the proof of Propo-

sition 2 is still valid. Next, we verify that functions VIpwq “ V
pwpwq and V∅pwq as defined in (29) satisfy the

optimality condition (20)–(22). Note that Lemma 4 implies that mK ď 1 under condition (M1).

Obviously, (22) holds since VIp0q “ V∅p0q “ v. Note that it has been shown in the proof of Proposition 2

that pAIVIqpwq ě 0 for any w P R`. Below, we will establish the second part of (20), as well as (21), by

considering the following three cases.

Case 1: w P r0, θ̄Kq. In this case, we have pA∅V∅qpwq “ pρ´ rqp1´m
Kqwě 0. Besides, we have

V∅pwq “
´

1´
w

θ̄K

¯

v`
w

θ̄K
¨ pV

pwpθ̄
Kq´Kq

ď

´

1´
w

θ̄K

¯

V
pwp0q`

w

θ̄K
¨V

pwpθ̄
Kq ď V

pwpwq “ VIpwq,

where the second inequality follows from the concavity of V
pw. Moreover, we have

V∅pwq´VIpwq`K “m
Kw` v`K ´V

pwpwq

“ V
pwpθ̄

Kq´mK ¨ pθ̄K ´wq´V
pwpwq

“

ż θ̄K

w

pV 1
pwpyq´m

Kqdyą 0,

where the second equality follows from the first equality in (28), and the inequality follows from the concavity

of V
pw and mK “ V 1

pwpθ̄
Kq.

Case 2: w P rθ̄K , pwq. First, we show that pA∅V∅qpwq ě 0 in this case. Note that V∅pwq “ V
pwpwq ´K on

rθ̄K , pwq. Hence, pA∅V∅qpwq ě 0 is equivalent to

f1pwq :“ rpV
pwpwq´Kq´ ρwV 1

pwpwq` pρ´ rqw´Rµě 0.

For w P r qwppwq, pws, it holds that pAIV pwqpwq “ 0. That is,

f2pwq :“ pµ` rqV
pwpwq´µV pwpw`βq` ρpw̄´wqV 1

pwpwq´ pµR´ cq` pρ´ rqw“ 0. (88)

Recall that θ̄K P p qwppwq, pwq. Hence, it suffices to show that

f3pwq :“ f2pwq´ f1pwq

“ µ
`

V
pwpwq´V

pwpw`βq
˘

` ρw̄V 1
pwpwq` rK ´pR∆µ´ cq ă 0

for w P rθ̄K , pwq.
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It follows from (28) that f1pθ̄
Kq “ pρ´ rqθ̄Kp1´mKq ą 0. Hence, f3pθ̄

Kq ă 0. Hence, it is enough to show

that f 13pwq ď 0 for w P rθ̄K , pwq, i.e.,

µpV 1
pwpwq´V 1

pwpw`βqq` ρw̄V2pwpwq ď 0.

Taking derivative with respect to w in (88) yields

pµ` rqV 1
pwpwq´µV 1pwpw`βq` ρpw̄´wqV2pwpwq´ ρV 1pwpwq` ρ´ r“ 0

for w P r qwppwq, pws. Hence, for w P rθ̄K , pwq, we have

µpV 1
pwpwq´V 1

pwpw`βqq` ρw̄V2pwpwq “ pρ´ rqpV 1pwpwq´ 1q` ρwV2
pwpwq ď 0,

where the inequality follows from the fact that V 1
pwpθ̄

Kq “mK ď 1 and the concavity of V
pw. Hence, we have

pA∅V∅qpwq ě 0 for w P rθ̄K , pwq. Note that V∅pwq´VIpwq`K “ 0. Hence, (21) trivially holds.

Case 3: w P rpw,8q. It is straightforward to see that pA∅V∅qpwq “ rpV
pwppwq ´ Kq ` pρ ´ rqw ´ Rµ ą

rv´Rµ“ 0 and V∅pwq´VIpwq`K “ 0. ˝

B.3.3. Proofs of the Results in Section 4.3

Proof of Proposition 4. The proof of Proposition 4 is rather intricate, which has a total of four key steps.

These steps illustrate how to identify thresholds ϑ̄ and ϑ in computation. Furthermore, these steps help us

establish θ0 in Proposition 8.

In Step 1, fixing any θ, we identify bound ŵ and slope c as functions of θ to satisfy (30) and (31).

Lemma 7. For any θ P p0, w̄q, there exist unique values rwpθq P pθ, w̄q and Cpθq, in place of ŵ and c,

respectively, such that value-matching and smooth-pasting conditions (30) and (31) are satisfied at ϑ“ θ.

Step 2 determines an interval to further identify θ.

Lemma 8. Value θ0 :“ inftθ P p0, w̄q : rw1pθq ě 0u is well-defined. Furthermore, we have rwpθq is strictly

decreasing, and Cpθq strictly increasing, for θ P p0, θ0
q, with rw1pθ0

q “ 0. Moreover, Cpθq ą 0 for any θ P p0, θ0
q.

Next, in Step 3, we define the upper threshold θ̄ as a function of θ, such that smooth pasting condition (33)

is satisfied.

Lemma 9. We have

piq for any θ P p0, θ0
q, the threshold

θ̄pθq :“ inf
 

wą θ : V 1
rwpθqpwq ď 1`Cpθqr{ρ ¨wr{ρ´1

(

(89)

is well defined;

piiq as a function of θ, threshold θ̄pθq is decreasing and continuous in θ on r0, θ0
q;

piiiq limθÒθ0 θ̄pθq “ θ
0.
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Finally, in Step 4, we find the appropriate ϑ to satisfy (32), and define pc, ŵ, ϑ̄q as pCpϑq, rwpϑq, θ̄pϑqq. To this

end, we define function

ψpθq :“ V
rwpθqpθ̄pθqq´

“

v` θ̄pθq`Cpθq
`

θ̄pθq
˘r{ρ ‰

. (90)

In order to satisfy (32), we hope to identify the value ϑ such that ψpϑq “K, which is guaranteed in the

following result.

Lemma 10. Function ψpθq is continuous and decreasing in θ on p0, θ0
q, and satisfies

lim
θÒθ0

ψpθq “ 0, and lim
θÓ0

ψpθq ąK.

Consequently, there exists a value ϑ P p0, θ0
q such that ψpϑq “K.

The proofs of Lemmas 7–10 appear at the end of this subsection. According to these results, pŵ, c, ϑ, ϑ̄q

defined by ŵ “ rwpϑq, c “ Cpϑq and ϑ̄ “ θ̄pϑq satisfies (30)–(33). Besides, it follows from θ̄pθq ă rwpθq for

θ P r0, θ0
q that ϑ̄ă ŵ, which implies ŵ“ rwpϑq ă rwp0q “ pw by noting that rwpθq is decreasing in θ on r0, θ0

q. To

end the proof, we need to show that ϑ̄ą qwpŵq. If it fails to hold, then we have V 1ŵpϑq “ V 1ŵpϑ̄q “ V 1ŵp qwpŵqq.

On the other side, it follows from cą 0 and ϑă ϑ̄ that V1cpϑq ą V1cpϑ̄q. This contradicts with (31) and (33).

˝

Proof of Proposition 5. The proof consists of two parts.

Part 1. We verify (37) and (38). Similar to the proof of Proposition 2, we apply Lemma 1 and Proposition 9

by verifying that (80)–(84) all hold.

First, we show (37) by considering the case that E0´ “ I. Equality (80) holds by noting that (i) `t “ b1νt“µ;

(ii) for any t ą 0, Wt´ P rϑ, ŵs if Et´ “ 1 and pAIVIqpwq “ 0 if w P rϑ, ŵs; (iii) for any t ą 0, Wt´ P p0, ϑ̄s if

Et´ “ 0 and pA∅V∅qpwq “ 0 if w P p0, ϑ̄s.

Equality (81) holds by noting that ∆Lt ą 0 only if Et´ “ 1 and Wt`HtdNt´H
q
t dQt ą ŵ, as well as that

VIpwq “ VIpŵq for any wě ŵ.

Equality (82) holds by noting that for any tě 0, (i) Et “ 1´Et´ “ 1 only if Wt´ P rϑ̄, ŵs and VIpwq´V∅pwq “

K if w P rϑ̄, ŵs; and (ii) Et “ 1´ Et´ “ 0 only if Wt´ P p0, ϑs and V∅pwq´VIpwq “ 0 if w P p0, ϑs.

Note that qt ą 0 only if qwpŵq ą 0, Wt´ “ qwpŵq and Et´ “ I. Hence, if qt ą 0, then we have

Hq
t ¨

`

V 1Et´
pWt´q´ 1

˘

`φpWt´´H
q
t ,Et´q´φpWt´,Et´q

“p qwpŵq´ϑqV 1ŵp qwpŵqq`Vŵpϑq´Vŵp qwpŵqq “ 0,

where the last equality follows from property (ii) in Lemma 2. Hence, (83) holds.

Finally, (84) holds by noting that (i) if W0´ ď ŵ, then ErφpW0,E0´qs ´ φpW0´,E0´q ´ E∆L0 “

φpW0´,E0´q´φpW0´,E0´q “ 0; and (ii) if W0´ ą ŵ, then ErφpW0,E0´qs´φpW0´,E0´q´E∆L0 “ φpŵ,E0´q´

φpW0´,E0´q´ pW0´´ ŵq “ 0.

For the case that E0´ “ ∅, by using the same argument as that for the case of E0´ “ I, we find that (80)–(84)

all hold, which establishes (38).
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Part 2. Next, we show that functions VIpwq and V∅pwq as defined in (34) satisfy the optimality condition

(20)–(22). First, (22) holds by noting that VIp0q “ V∅p0q “ v. To verify (20) and (21), we consider the following

three cases separately: w P r0, ϑq, w P rϑ, ŵq, and w P rŵ,8q. We study the case of w P rϑ, ŵq before w P r0, ϑq.

Case 1: w P rϑ, ŵq. First, we prove that

pAIVIqpwq ě 0 on rϑ, ŵq. (91)

Obviously, we have pAIVIqpwq “ 0 for w P r qwpŵq, ŵq. It remains to show that (91) holds for w P rϑ, qwpŵqq if

ϑă qwpŵq ă rw. For w P rϑ, qwpŵqq, Vŵ is linear and thus we have

pAIVIqpwq “ pµ` rqVŵpwq´µVŵpw`βq` ρpw̄´wqV 1ŵp qwpŵqq´ pµR´ cq` pρ´ rqw

“: gIpwq.

Note that

g1Ipwq “ pµ` rqV 1ŵp qwpŵqq´µV 1ŵpw`βq´ ρV 1ŵp qwpŵqq` ρ´ r

“ pρ´ rq
`

1´V 1ŵp qwpŵqq
˘

`µ
`

V 1ŵp qwpŵqq´V 1ŵpw`βq
˘

ď pρ´ rq
`

1´V 1ŵp qwpŵqq
˘

`µ
`

V 1ŵp qwpŵqq´V 1ŵp qw`βq
˘

“ 0,

where the inequality follows from the concavity of Vŵ and the last equality follows from

0“ ρpw̄´ qwpŵqqV2ŵp qwpŵqq “ pρ´ rq
`

V 1ŵp qwpŵqq´ 1
˘

`µ
“

V 1ŵp qwpŵq`βq´V 1ŵp qwpŵqq
‰

.

Consequently, gIpwq ě 0 for all w P rϑ, qwpŵqq, which yields (91). Note that pA∅V∅qpwq “ 0 if w P rϑ, ϑ̄s.

Hence, (20) holds by the following result, whose proof can be found in Appendix B.3.4.

Lemma 11. Under the conditions stated in Proposition 5, we have pA∅V∅qpwq ě 0 for w P rϑ̄, ŵq.

If w P rϑ̄, ŵq, then VIpwq´V∅pwq “K ą 0. To establish (21), we need to show that 0ď VIpwq´V∅pwq ďK

if w P rϑ, ϑ̄s.

Let Φpwq :“ VIpwq ´ V∅pwq and χpwq :“ V 1ŵpwq ´ 1 ´ c ¨ r{ρ ¨ wr{ρ´1. Obviously, we have Φpϑq “ 0 and

χpϑq “ χpϑ̄q “ 0. It follows from the proof of property (i) in Lemma 9 that Φ1pwq “ χpwq ą 0 for any w P pϑ, ϑ̄q.

Hence, for any w P rϑ, ϑ̄q, we have Φpwq ěΦpϑq “ 0 and Φpwq ďΦpϑ̄q “K.

Case 2: w P r0, ϑq. We claim that

Lemma 12. Under the conditions stated in Proposition 5, we have pAIVIqpwq ě 0 for w P p0, ϑq.

Its proof is rather involved, which is relegated to Appendix B.3.5. Obviously, we have pA∅V∅qpwq “ 0 on

r0, ϑq. Hence, (20) holds. Inequality (21) also holds by noting that VIpwq “ V∅pwq in this case.

Case 3: w P rŵ,8q. Using the boundary condition Vŵpŵq “ pµR´ c´pρ´ rqŵq{r, we have

pAIVIqpwq “ rVŵpŵq´ pµR´ cq` pρ´ rqw“ pρ´ rqpw´ ŵq ě 0,

and

pA∅V∅qpwq “ rpVŵpŵq´Kq` pρ´ rqw´Rµ

“ µR´ c´pρ´ rqŵ`pρ´ rqw´Rµ´ rK

“R∆µ´ c`pρ´ rqpw´ ŵq´ rK ě 0,
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where the last inequality follows as K ă K̄1 “ V̄ ppwq ´ v “ pµR ´ c ´ pρ ´ rqpwq{r ´ Rµ{r ă pR∆µ ´ cq{r.

Hence, (20) holds. Inequality (21) holds since VIpwq´V∅pwq “K. ˝

Proof of Lemma 7. For any rw P rθ, w̄q, define

C1p rw,θq “ pV rwpθq´ v´ θqθ
´r{ρ, and (92)

C2p rw,θq “ ρ{r ¨ pV 1
rwpθq´ 1qθ1´r{ρ.

It follows from property (iii) in Lemma 2 that C1p rw,θq is decreasing in rw and C2p rw,θq is increasing in rw

on rθ, w̄q.

Note that

C1pθ, θq “ pVθpθq´ v´ θqθ´r{ρ

“

ˆ

µR´ c´pρ´ rqθ

r
´ v´ θ

˙

¨ θ´r{ρ ą´
ρ

r
θ1´r{ρ

“C2pθ, θq,

where the second and third equalities follow from the boundary conditions at θ (see Lemma 6), and the

inequality follows from Assumption 1. Besides, it follows from property (iv) in Lemma 6 that C1p rw,θqÑ´8

and C2p rw,θqÑ8 as rw Ò w̄. In view of property (ii) of Lemma 6, both C1p rw,θq and C2p rw,θq are continuous in

rw. Therefore, there exists a unique rwpθq P pθ, w̄q such that C1p rwpθq, θq “C2p rwpθq, θq. Let Cpθq :“C1p rwpθq, θq.

Then, rwpθq and Cpθq satisfy (30)–(31) as desired. ˝

Proof of Lemma 8. Define

hp rw,θq “ V
rwpθq´ v´ θ´ ρ{r ¨ pV 1

rwpθq´ 1qθ. (93)

It follows from property (iii) in Lemma 2 that hp rw,θq is decreasing in rw. Besides, hp rwpθq, θq “ 0. Note that

hp rw,θq is continuously differentiable in rw and θ (see properties (ii) and (iii) in Lemma 6). Hence, rwpθq is

continuously differentiable in θ.

Since hp rw,0q “ V
rwp0q ´ v, we have rwp0q “ pwą 0. Besides, it follows from rwpθq P pθ, w̄q that limθÒw̄ rwpθq “

w̄ą pw.

Write h1p rw,θq “ Bhp rw,θq{B rw and h2p rw,θq “ Bhp rw,θq{Bθ. Then, we have h1p rw,θq ă 0,

h2p rw,θq “
ρ´ r´pρ´ rqV 1

rwpθq´ ρθV2rwpθq
r

, and

rw1pθq “´
h2p rwpθq, θq

h1p rwpθq, θq
.

It follows from Condition (L1) and Lemma 4 that mK “ V 1
pwpθ̄

Kq ą 1, which implies that V 1
pwp0q ą 1 by

the concavity of V
pw. Therefore, we have h2p rwp0q,0q “ pρ´ r´ pρ´ rqV 1

pwp0qq{r ă 0 and thus rw1p0q ă 0. This

implies that rwpθq is strictly decreasing in θ when θ is near 0.

It follows from limθÒw̄ rwpθq “ w̄ą pw“ rwp0q and the continuity of rw1pθq in θ that value θ0 :“ inftθ P p0, w̄q :

rw1pθq ě 0u is well defined, and rw1pθq ă 0 for any θ P r0, θ0
q and rw1pθ0

q “ 0. Consequently, we have

ρ´ r´pρ´ rqV 1
rwpwqpwq´ ρwV2rwpwqpwq ă 0, for any w P r0, θ0

q; and (94)

ρ´ r´pρ´ rqV 1
rwpθ0qpθ

0
q´ ρθ0V2

rwpθ0qpθ
0
q “ 0. (95)
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Note that rwpθq is strictly decreasing in θ on r0, θ0
q. We claim that Cpθq is strictly increasing in θ on r0, θ0

q.

In fact, for any θ P p0, θ0
q, we have

C 1pθq “C 11p rwpθq, θq “
d

dθ

“`

V
rwpθqpθq´ v´ θ

˘

θ´r{ρ
‰

“

ˆ

V 1
rwpθqpθq` rw1pθq ¨

BV
rwpθqpθq

B rwpθq
´ 1

˙

θ´r{ρ´
r

ρ

`

V
rwpθqpθq´ v´ θ

˘

θ´r{ρ´1

“ rw1pθq ¨
BV

rwpθqpθq

B rwpθq
ą 0,

where the last equality follows from C1p rwpθq, θq “C2p rwpθq, θq, and the inequality follows from rw1pθq ă 0 and

BV
rwpwq{B rwă 0 in view of property (iii) in Lemma 2.

Note that V 1
pwp0q ą 1. Hence, it follows from the continuity of rwpθq in θ and properties (ii) and (iii) of

Lemma 6 that there exists εą 0 such that V 1
rwpθqpθq ą 1 for any θ P p0, εq. Consequently, Cpθq “C2p rwpθq, θq ą 0

for any θ P p0, εq. As a result, we have Cpθq ą 0 for any θ P p0, θ0
q by noting that Cpθq is strictly increasing

in θ on r0, θ0
q. ˝

Proof of Lemma 9. (i) Define

Ψpw,θq “ V 1
rwpθqpwq´ 1´Cpθqr{ρ ¨wr{ρ´1.

It follows from Lemma 8 and property (iii) in Lemma 2 that Ψpw,θq is decreasing in θ on p0, θ0
q. Therefore,

for any w P p0, θq, we have Ψpw,θq ăΨpw,wq “ 0, which implies that θ“ inftwě 0 : Ψpw,θq “ 0u as Ψpθ, θq “

0. Moreover, we have

BΨ

Bw
pθ, θq “ V2

rwpθqpθq´Cpθqr{ρ ¨ pr{ρ´ 1qθr{ρ´2

“ V2
rwpθqpθq´C2p rwpθq, θqr{ρ ¨ pr{ρ´ 1qθr{ρ´2

“ V2
rwpθqpθq´ ρ{r ¨ pV 1rwpθqpθq´ 1qθ1´r{ρr{ρ ¨ pr{ρ´ 1qθr{ρ´2

“ V2
rwpθqpθq´ pV 1rwpθqpθq´ 1q ¨ pr{ρ´ 1q{θ

ą 0,

where the last inequality follows from (94). This implies that Ψpw,θq ą 0 for w P pθ, θ` εq with some εą 0.

It follows from property (ii) in Lemma 6 that Ψpw,θq is continuous in w. Besides, we have

Ψp rwpθq, θq “ V 1
rwpθqp rwpθqq´ p1`Cpθqr{ρ ¨ rwpθq

r{ρ´1q

“´
`

1`Cpθqr{ρ ¨ rwpθqr{ρ´1
˘

ă 0

and Ψpθ, θq “ 0. Hence,

θ̄pθq :“ inftwą θ : Ψpw,θq ď 0u

“ inf
 

wą θ : V 1
rwpθqpwq ď 1`Cpθqr{ρ ¨wr{ρ´1

(

is well defined and θ̄pθq ă rwpθq.

(ii) This follows immediately by noting that Ψpw,θq is decreasing in θ on r0, θ0
q and is continuous in pw,θq.

(iii) According to (95), we have BΨ
Bw
pθ0, θ0

q “ 0, which implies that Ψp¨, θ0
q attains its local maximum at

θ0. Hence, we have limθÒθ0 θ̄pθq “ θ
0 by noting that θ̄pθq ě θ. ˝



56

Proof of Lemma 10. Note that

ψpθq “

ż θ̄pθq

θ

rV 1
rwpθqpyq´ p1`Cpθqr{ρ ¨ y

r{ρ´1qsdy“

ż θ̄pθq

θ

Ψpy, θqdy.

Fix any θ1
ă θ2 in p0, θ0

q. We have

ψpθ1
q “

ż θ̄pθ1q

θ1
Ψpy, θ1

qdyą

ż θ̄pθ2q

θ2
Ψpy, θ1

qdyą

ż θ̄pθ2q

θ2
Ψpy, θ2

qdy“ψpθ2
q,

where the first inequality follows from Ψpy, θ1
q ą 0 for y P pθ1, θ2

qY pθ̄pθ2
q, θ̄pθ1

qq, and the second inequality

holds because Ψpy, θq is decreasing in θ on p0, θ0
q. Hence, ψpθq is decreasing in θ on p0, θ0

q. The continuity

of ψpθq follows from properties (ii) and (iii) in Lemma 6.

Since limθÒθ0 θ̄pθq “ θ
0, we have limθÒθ0 ψpθq “ 0. Note that rwp0q “ pw and C2p rw,0q “ 0 for any rw P r0, w̄q.

Hence, we have limθÓ0Cpθq “ 0 and thus limθÓ0 θ̄pθq “ inftwą 0 : V 1
pwpwq “ 1u. This yields

lim
θÓ0

ψpθq “

ż 8

0

pV 1
pwpyq´ 1q`dyą

ż θ̄

0

pV 1
pwpyq´ 1qdy

“ V
pwpθ̄

Kq´ v´ θ̄K “K `pmK ´ 1qθ̄K ąK,

where the first inequality follows from the fact that V 1
pwpθ̄

Kq “mK ą 1 and that V 1
pw is nonincreasing, and the

last inequality holds since mK ą 1. Consequently, it follows from the continuity of ψp¨q that there exists a

ϑ P p0, θ0
q such that ψpϑq “K. ˝

B.3.4. Proof of Lemma 11 For w P rϑ̄, ŵq, it holds that V∅pwq “ Vŵpwq ´K. Define $0 “ inftw ą 0 :

V 1
pwpwq “ 1u, which is well-defined by noting that V 1

pwp0q ą 1 and V 1
pwppwq “ 0. For any w P r$0, ŵs, let

pA∅V∅qpwq “ rpVŵpwq´Kq´ ρwV 1ŵpwq` pρ´ rqw´µR“: g∅pwq.

It follows from property (iii) in Lemma 2 and ŵă pw that V 1ŵpwq ă V 1
pwpwq and Vŵpwq ą V

pwpwq for w P r0, ŵs.

Hence, for w P r$0, ŵs, we have

g1∅pwq “ rV 1ŵpwq´ ρV 1ŵpwq´ ρwV2ŵpwq` ρ´ r

“ pρ´ rqp1´V 1ŵpwqq´ ρwV2ŵpwq ě 0,

where the last inequality follows from that V 1ŵpwq ď V 1
pwpwq ď 1 for wě$0 and the concavity of Vŵ. Besides,

we have

g∅p$0q ą rpVŵp$0q´Kq´ ρ$0`pρ´ rq$0´µR

ą rpv`$0`K ´Kq´ ρ$0`pρ´ rq$0´µR“ 0,

where the first inequality follows from V 1ŵp$0q ă V 1
pwp$0q “ 1, and the second inequality follows from the

fact that Vŵp$0q ą V
pwp$0q ą v `$0 `K (the last inequality follows from mK ą 1). As a result, we have

pA∅V∅qpwq ě 0 for all w P r$0, ŵs.

Next, we will prove that pA∅V∅qpwq ě 0 for w P rϑ̄,$0q by a contradictory argument.

Suppose, on the contrary, that there exists a number $ P pϑ̄,$0q such that pA∅V∅qp$q ă 0. Then, we have

pA∅V∅qp$q “ rpVŵp$q´Kq´ ρ$ ¨V 1ŵp$q` pρ´ rq$´µRă 0,
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and thus

V 1ŵp$q ą
pρ´ rq$` rpVŵp$q´K ´ vq

ρ$
. (96)

It follows from (89) that limθÓ0 θ̄pθq “ inftw ą 0 : V 1
pwpwq “ 1u “$0. Note that $ ą ϑ̄“ θ̄pϑq and $ ă$0.

Hence, it follows from Lemma 9 that there exists a number θ1 P p0, ϑq such that θ̄pθ1q “$. Using Lemmas 8

and 10, we have rwpθ1q ą rwpϑq “ ŵ, Cpθ1q ăCpϑq “ c and

ψpθ1q “ V
rwpθ1qp$q´

“

v`$`Cpθ1q$r{ρ
‰

ąψpϑq “K. (97)

Moreover, we have

Vŵp$q ą V
rwpθ1qp$q and V 1ŵp$q ă V 1

rwpθ1qp$q, (98)

in view of property (iii) in Lemma 2.

Consequently,

V 1ŵp$q ą
pρ´ rq$` rpV

pwpθ1qp$q´K ´ vq

ρ$

ą
pρ´ rq$` r ¨ rpv`$`Cpθ1q$r{ρq´ vs

ρ$

“ 1` r{ρ ¨Cpθ1q$r{ρ´1 “ V 1
rwpθ1qp$q,

where the first inequality follows from (96) and (98), the second inequality follows from (97), and the last

equality follows from $“ θ̄pθ1q and the definition of θ̄pwq. This reaches a contradiction with (98).

B.3.5. Proof of Lemma 12 The proof of Lemma 12 is probably the most complex proof in the paper.

As mentioned in the paragraph below Proposition 5, the key step is to establish Lemma 14, which states

that either AIVI’s first-order-derivative is negative, or its second-order-derivative is positive on p0, ϑq. This

crucial result is obtained by studying a total of four cases, which are summarized as Lemmas 15–18.

Following from VIpwq “ v`w` cwr{ρ for w P r0, ϑs and

pAIf ´A∅fqpwq “ µpfpwq´ fpw`βqq` ρw̄f
1pwq´ pR∆µ´ cq,

we define

gIpwq :“ pAIVIqpwq “ µpVIpwq´VIpw`βqq` ρw̄V
1
I pwq´ pR∆µ´ cq

“ µpv`w` cwr{ρ´VIpw`βqq` ρw̄p1` cr{ρ ¨wr{ρ´1q´ pR∆µ´ cq

for w P p0, ϑs. From property (ii) in Lemma 6, we have gI PC
1pp0, ϑqqXC2pp0, ϑqztŵ´β,ϑ´βuq. (Note that

VI may not be twice-differentiable at ϑ.) Besides, we have

g1Ipwq “ µ
`

1` cr{ρ ¨wr{ρ´1´V 1I pw`βq
˘

` ρw̄ ¨ cr{ρ ¨ pr{ρ´ 1qwr{ρ´2, (99)

g2I pwq “ cr{ρ ¨ pr{ρ´ 1qwr{ρ´3rµw` ρw̄pr{ρ´ 2qs´µV 2I pw`βq. (100)

Lemma 12 is equivalent to gIpwq ě 0 for w P p0, ϑs. From (91) at ϑ, we have gIpϑq ě 0. Moreover, the

following holds.
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Lemma 13. We have

g1Ipϑq ă 0. (101)

Proof. Note that qwpŵq ă β (see property (i) in Lemma 2), which implies qwpŵq ă ϑ`β.

If ϑď qwpŵq, then

g1Ipϑq “ µpV
1
I pϑq´V

1
I pϑ`βqq` ρw̄V

2
I pϑq

ă µ
`

V 1I p qwpŵqq´V
1
I p qwpŵq`βq

˘

` ρw̄V 2I pϑq

“ pρ´ rqpV 1I p qwpŵqq´ 1q´ ρpw̄´ qwpŵqqV 2I p qwpŵqq` ρw̄V
2
I pϑq

“ pρ´ rqcr{ρ ¨ϑr{ρ´1
` ρw̄ ¨ cr{ρ ¨ pr{ρ´ 1qϑr{ρ´2

“ pρ´ rqcr{ρ ¨ϑr{ρ´2
pϑ´ w̄q ă 0,

where the first inequality follows from V 1I pϑq “ V 1ŵpϑq “ V 1ŵp qwpŵqq “ V 1I p qwpŵqq and V 1I pϑ`βq “ V 1ŵpϑ`βq ě

V 1ŵp qwpŵq ` βq “ V 1I p qwpŵq ` βq, the second equality follows from the fact that VIp qwpŵqq satisfies (24), as

well as (85) at qwpŵq, and the third equality follows from V 2I p qwpŵqq “ V2ŵp qwpŵqq “ 0, V 1I p qwpŵqq “ V
1
I pϑq “

1` cr{ρ ¨ϑr{ρ´1 and V 2I pϑq “ cr{ρ ¨ pr{ρ´ 1qϑr{ρ´2.

If ϑą qwpŵq, then it follows from (85) at ϑ that

pµ` rqV 1ŵpϑq´µV
1
ŵ

`

pϑ`βq^ ŵ
˘

` ρpw̄´ϑqV 2ŵpϑq´ ρV
1
ŵpϑq` ρ´ r“ 0.

Note that V 1ŵpϑq “ 1` cr{ρ ¨ϑr{ρ´1 and V 1I pw`βq “ V
1
ŵ

`

pϑ`βq^ ŵ
˘

. Hence, we have

g1Ipϑq “ µ
`

1` cr{ρ ¨ϑr{ρ´1
´V 1I pϑ`βq

˘

` ρw̄ ¨ cr{ρ ¨ pr{ρ´ 1qϑr{ρ´2

“ pρ´ rqcr{ρ ¨ϑr{ρ´1
´ ρpw̄´ϑqV 2ŵpϑq` ρw̄ ¨ cr{ρ ¨ pr{ρ´ 1qϑr{ρ´2

ă pρ´ rqcr{ρ ¨ϑr{ρ´1
´
pw̄´ϑqpρ´ rqp1´V 1ŵpϑqq

ϑ
` ρw̄ ¨ cr{ρ ¨ pr{ρ´ 1qϑr{ρ´2

“ pρ´ rqcr{ρ ¨ϑr{ρ´1
`
pw̄´ϑqpρ´ rqcr{ρ ¨ϑr{ρ´1

ϑ
` ρw̄ ¨ cr{ρ ¨ pr{ρ´ 1qϑr{ρ´2

“ 0,

where the inequality follows from (94) at ϑ and ŵ“ rwpϑq.

The proof is complete by combining the above two cases. ˝

Next, we show the following crucial result.

Lemma 14. For any w P p0, ϑq, either g1Ipwq ď 0 or g2I pwq ě 0.

The above result, combining with (101), yields that g1Ipwq ď 0 for any w P p0, ϑs, which immediately con-

cludes the desired result. In fact, if it fails to hold, w: :“ suptw P p0, ϑq : g1Ipwq ą 0u is well-defined, which

further implies that g2I pw
:q ă 0. This contradicts with Lemma 14.

Lemma 14 follows immediately from Lemmas 15–18 below.

Lemma 15. For any w P r0, ϑ̄´βs, we have g1Ipwq ă 0.
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Lemma 16. For any w P pϑ̄´β,ϑq such that V3ŵpw`βq ď 0, we have g2I pwq ą 0.

Lemma 17. For any w P
`

0, p2´ r{ρqβ^ϑ
˘

, we have g2I pwq ě 0.

Lemma 18. For any w P rp1´ r{ρqβ,ϑq such that V3ŵpw`βq ą 0, we have g1Ipwq ď 0.

It is worth mentioning that Vŵ P C
1pR`q X C2pR`ztŵuq X C3pR`ztŵ, ŵ ´ β, qwpŵquq X C4pR`ztŵ, ŵ ´

β, ŵ´2β, qwpŵquq and thus the 3rd-order-derivative of the function Vŵ might not exist at some points. Hence,

in Lemmas 16 and 18, we follow the convention to use V3ŵpwq to represent the left-3rd-order-derivative of

the function Vŵ at w. In their proofs, we also use the following technical lemma.

Lemma 19. If 2ρă r`µ or ρą r`µ, there exists a value ς P r qwpŵq, ŵs, such that V3
rw ą 0 over pς, ŵs and

V3ŵ ă 0 over p qwpŵq, ςs; otherwise, V3ŵ ď 0 over p qwpŵq, ŵq.

By investigating the proof, it is clear to see that Lemma 19 actually holds for any rw P r0, w̄q, rather than

a specific value ŵ. Here, we only need the result at ŵ to prove Lemmas 16 and 18.

The remaining part of this section is devoted to the proofs of Lemmas 15–19. To proceed, we need some

preliminary results of Vc. Recall (23). Obviously, Vc is strictly concave on r0,8q, and

V3c pwq “ cr{ρ ¨ pr{ρ´ 1qpr{ρ´ 2qwr{ρ´3 ą 0, (102)

V4c pwq “ cr{ρ ¨ pr{ρ´ 1qpr{ρ´ 2qpr{ρ´ 3qwr{ρ´4 ă 0, (103)

for all w P p0,8q. Therefore, V1c is strictly convex and V2c is strictly concave, which further implies that

`

V1cpwq´V1cpw`βq
˘

`βV2c pwq ă 0, and (104)
`

V2c pwq´V2c pw`βq
˘

`βV3c pwq ą 0 (105)

for any w P p0,8q.

Proof of Lemma 15. Following the fact that VIpwq “Vcpwq for w P r0, ϑs, we have

g1Ipwq “ µpV
1
I pwq´V

1
I pw`βqq`µβV

2
c pwq

ď µpV1cpwq´V1cpw`βqq`µβV
2
c pwq ă 0,

where the first inequality follows from V 1I pw`βq ěV1cpw`βq, which holds because w`β ď ϑ̄ and (89) with

ϑ̄“ θ̄pϑq, and the second inequality follows from (104). ˝

Proof of Lemma 16. Define φpwq “ V 1ŵpwq´V1cpwq. Since ϑ̄“ inftwą ϑ : φpwq “ 0u and φą 0 over pϑ, ϑ̄q,

we have φ1pϑ̄q ď 0. It follows from V3ŵpw`βq ď 0 and Lemma 19 that V3ŵ ă 0 over p qwpŵq,w`βq.

For any w P pϑ̄´β,ϑq, we have

g2I pwq “ µpV
2
c pwq´V

2
I pw`βqq`µβV

3
c pwq

“ µpV2c pwq´V2ŵpw`βqq`µβV3c pwq need w`β ą ϑ here

“ µ
“

pV2c pwq´V2c pw`βqq`βV
3
c pwq

‰

`µ
`

V2c pw`βq´V2ŵpw`βq
˘

ą µ
`

V2c pw`βq´V2ŵpw`βq
˘

“ µpV2c pϑ̄q´V2ŵpϑ̄qq`µ
ż w`β

ϑ̄

pV3c pyq´V3ŵpyqqdy

ą 0,
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where the first inequality follows from (105), the last equality follows from that Vŵ PC
3pR`ztŵ, ŵ´β, qwpŵquq

and the second inequality follows from V2c pϑ̄q ´ V2ŵpϑ̄q “ ´φ1pϑ̄q ě 0, w ` β ą ϑ̄, and V3c ą 0 (see (102)),

V3ŵ ă 0 over p qwpŵq,w`βq. The proof is complete. ˝

Proof of Lemma 17. Following from (100), we have

g2I pwq “ cr{ρ ¨ pr{ρ´ 1qwr{ρ´3rµw` ρw̄pr{ρ´ 2qs´µV 2I pw`βq

“ cr{ρ ¨ pr{ρ´ 1qwr{ρ´3µrw`βpr{ρ´ 2qs´µV 2I pw`βq

ě´µV 2I pw`βq ě 0,

where the first inequality follows from wď p2´ r{ρqβ and the last inequality from the concavity of VI. ˝

Proof of Lemma 18. We prove this result by contradiction. Suppose there exists a w: P rp1´ r{ρqβ,ϑq

such that V3ŵpw: ` βq ą 0 and g1Ipw
:q ą 0. Following Lemma 13, we know that there must exist a number

w; P pw:, ϑq such that

g1Ipw
;q “ 0 and g2I pw

;q ď 0. (106)

From Lemma 19, we have V3ŵpw;`βq ą 0. Furthermore, (85) at w;`β gives

pµ` rqV 1ŵpw;`βq´µV 1ŵpw;` 2βq` ρpw̄´w;´βqV2ŵpw;`βq´ ρV 1ŵpw;`βq` ρ´ r“ 0.

Since V3ŵpw;`βq ą 0, we have V3ŵ ą 0 over rw;`β, ŵq in view of Lemma 19. According to the Lagrange’s

mean value theorem, V 1ŵpw;` 2βq´V 1ŵpw;`βq “ βV2ŵpwbq for some wb P pw;`β,w;` 2βq. Hence, we have

ρpw̄´w;´βqV2ŵpw;`βq “ pρ´ rq
`

V 1ŵpw;`βq´ 1
˘

`µ
`

V 1ŵpw;` 2βq´V 1ŵpw;`βq
˘

“ pρ´ rq
`

V 1ŵpw;`βq´ 1
˘

`µβV2ŵpwbq

ą pρ´ rq
`

V 1ŵpw;`βq´ 1
˘

`µβV2ŵpw;`βq,

where the inequality follows from V3ŵ ą 0 over rw; ` β,wbq. Using ρw̄ “ µβ, the above inequality can be

rewritten as

pρ´ rqp1´V 1ŵpw;`βqq ą ρpw;`βqV2ŵpw;`βq. (107)

Since g1Ipw
;q “ 0, using (99) we have

1´V 1ŵpw;`βq “´cr{ρ ¨ pw;qr{ρ´2
“

w;´p1´ r{ρqβ
‰

. (108)

Following (100), we have

g2I pw
;q{µ“ cr{ρ ¨ pr{ρ´ 1qpw;qr{ρ´3rw;`βpr{ρ´ 2qs´V2ŵpw;`βq

“
pρ´ rqp1´V 1ŵpw;`βqq

w;´p1´ r{ρqβ
¨
w;`βpr{ρ´ 2q

ρw;
´V2ŵpw;`βq

ą

„

ρpw;`βqrw;`βpr{ρ´ 2qs

pw;´p1´ r{ρqβq ¨ ρw;
´ 1



V2ŵpw;`βq

“´
p2ρ´ rqβ2

pw;´p1´ r{ρqβq ¨ ρw;
V2ŵpw;`βq ą 0,

where the second equality follows from (108), and the first inequality follows from (107) and uses the fact

that w; ąw: ě p1´ r{ρqβ. This reaches a contradiction with (106). ˝
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Proof of Lemma 19. Using (36) in Cao et al. (2021), we have

V3ŵpwq “´bŵ
r`µ

ρ
¨
r`µ´ ρ

ρ
¨
r`µ´ 2ρ

ρ
pw̄´wqpr`µ´2ρq{ρ (109)

for w P pŵ´β, ŵq with bŵ :“ r´ρ

r`µ´ρ
¨

ρ

r`µ
pw̄´ ŵqpρ´r´µq{ρ ă 0.

Besides, for w P p qwpŵq, ŵ´βq, we have

ρpw̄´wqV3ŵpwq “ µpV2ŵpw`βq´V2ŵpwqq` p2ρ´ rqV2ŵpwq (110)

and thus

ρpw̄´wqV4ŵ pwq “ µpV3ŵpw`βq´V3ŵpwqq` p3ρ´ rqV3ŵpwq. (111)

We mention that the left-3rd-order-derivative of the function Vŵ at ŵ´ β is not equal to its right-3rd-

order-derivative. In fact, the right-3rd-order-derivativeV3ŵppŵ´βq`q can be obtained from (109) by replacing

w with ŵ´β. Moreover, it follows from (110) at ŵ´β that the left-3rd-order-derivative is given by

V3ŵppŵ´βq´q “ V3ŵppŵ´βq`q`
µV2ŵpŵ´q

ρpw̄´pŵ´βqq

“ V3ŵppŵ´βq`q´
pρ´ rqµ

ρ2pw̄´pŵ´βqqpw̄´ ŵq
ă V3ŵppŵ´βq`q. (112)

We proceed to prove Lemma 19. First, we consider the case that 2ρ ă r ` µ or ρ ą r ` µ. Hence, (109)

implies that V3ŵ ą 0 over pŵ´ β, ŵq. (If ŵ´ β ď qwpŵq, the desired result is obtained by setting ς “ qwpŵq.)

From (112), V3ŵpŵ ´ βq may not be larger than 0 (recall the convention that we use V3ŵ to denote the

left-3rd-order-derivative of function Vŵ), which motivates us to consider the following two subcases.

Subcase 1: V3ŵpŵ ´ βq ą 0. Let wc :“ suptw P p qwpŵq, ŵ ´ βq : V3ŵpwq ď 0u. If the set is empty, we set

wc “ qwpŵq, in which case we have V3ŵ ą 0 over p qwpŵq, ŵq. Consequently, the desired result is obtained with

ς “ qwpŵq.

If the set is nonempty, then qwpŵq ăwc ă ŵ´ β. Since Vŵ PC
3pp qwpŵq, ŵ´ βqq, we have V3ŵpwcq “ 0 and

V3ŵ ą 0 over pwc, ŵq. Now we prove that

V3ŵ ă 0 over p qwpŵq,wcq. (113)

It follows from (111) at wc and V3ŵpwcq “ 0 that

ρpw̄´wcqV4ŵ pwcq “ µV3ŵpwc`βq ą 0,

which implies that V3ŵ ă 0 over pwc´ ε,wcq for some small εą 0.

If (113) fails to hold, then wd :“ suptw P p qwpŵq,wcq : V3ŵpwq ě 0u is well-defined and wd P p qwpŵq,wcq.

Hence, we have V3ŵpwdq “ 0 and V4ŵ pwdq ă 0. It follows from (111) at wd that ρpw̄´wdqV4ŵ pwdq “ µV3ŵpwd`
βq ă 0. By the definition of wc, we have wd`β ăwc. Hence, V3ŵ ă 0 over pwd,wd`βs and thus V2ŵpwd`βq ă
V2ŵpwdq. Furthermore, it follows from (110) at wd that

µV2ŵpwd`βq “ pµ` r´ 2ρqV2ŵpwdq,

which contradicts with V2ŵpwd`βq ă V2ŵpwdq ă 0, under either 2ρă µ` r or ρą r`µ. Hence, (113) holds in

this case. That is, the desired result is obtained by letting ς “wc.
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Subcase 2: V3ŵpŵ´βq ď 0. We show that

V3ŵ ă 0 over p qwpŵq, ŵ´βq. (114)

Note that if V3ŵpŵ´ βq “ 0, then V4ŵ pŵ´ βq ą 0 in view of (111). Hence, we have V3ŵ ă 0 over pŵ´ β ´

ε, ŵ´βq for some εą 0. If (114) fails to hold, then we :“ suptw P r qwpŵq, ŵ´βq : V3ŵpwq ě 0u is well-defined

and we P r qwpŵq, ŵ´ βq. Moreover, we have V3ŵpweq “ 0 and V4ŵ pweq ă 0. Hence, it follows from (111) at we

that ρpw̄´weqV4ŵ pweq “ µV3ŵpwe ` βq ă 0. Since V3ŵ ą 0 over rŵ´ β, ŵq, we have we ` β ď ŵ´ β. Hence,

V3ŵ ă 0 over pwe,we`βq, which gives V2ŵpwe`βq ă V2ŵpweq. Furthermore, it follows from (110) at we that

µV2ŵpwe`βq “ pµ` r´ 2ρqV2ŵpweq,

which contradicts with V2ŵpwe`βq ă V2ŵpweq ă 0. Hence, (114) holds. The desired result is obtained by noting

(109) and letting ς “ ŵ´β.

Next, we turn to study the case that ρă r`µă 2ρ. In this case, (109) implies that V3ŵ ă 0 over pŵ´β, ŵq.

Hence, we must have V3ŵpŵ´ βq ă 0 in view of (112). The argument for Subcase 2 is valid, which leads us

to the desired result. ˝

B.4. Proofs of the Results in Section 5

B.4.1. Proofs of the Results in Section 5.1

Proof of Theorem 5. The proof consists of three parts.

Part 1. First, we show that under Condition 2 and (H2), functions VIpwq as defined in (39) and V∅pwq “ v

satisfy the optimality condition (20)–(22). Note that the first inequality in Condition 2 implies w̄ ă β. If

w P r0, w̄s, then we have

pAIVIqpwq “pµ` rqVIpwq´µVIpw`βq` ρpw̄´wqV
1
I pwq´ pµR´ cq` pρ´ rqw

“pµ` rq

ˆ

v`
V̄ ´ v

w̄
w

˙

´µV̄ ` ρpw̄´wq
V̄ ´ v

w̄
´pµR´ cq` pρ´ rqw

“pw̄´wq

„

V̄ ´ v

w̄
pρ´ r´µq´ pρ´ rq



ě 0.

Here, it is worth mentioning that although at w̄, VI is not differentiable, its left-derivative exists and is

pV̄ ´ vq{w̄.

If w P pw̄,8q, then

pAIVIqpwq “ pµ` rqV̄ ´µV̄ ´pµR´ cq` pρ´ rqw

“ pρ´ rqpw´ w̄q ą 0.

Combining the above two cases yields pAIVIqpwq ě 0 for any w PR`. Besides, for any w PR`, pA∅V∅qpwq “

pρ´ rqwě 0. Hence, (20) holds.

It is straightforward to see that VIpwq´V∅pwq ě 0, and V∅pwq “ vě V̄ ´K ě VIpwq´K. Hence, (21) holds.

Obviously, VIp0q “ V∅p0q “ v, which implies (22).
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Part 2. Second, we show that under Condition 2 and (M2), functions VIpwq and V∅pwq as defined in (39)

and (40), respectively, satisfy (20)–(22). According to the proof for the case under Condition 2 and (H2), we

have pAIVIqpwq ě 0 for any w PR`. Below we show that pA∅V∅qpwq ě 0 for all w PR`.

If w P r0, w̄s, then

pA∅V∅qpwq “ rV∅pwq´ ρwV
1
∅pwq` pρ´ rqw´Rµ

“ pρ´ rq

ˆ

1´
V̄ ´ v´K

w̄

˙

wě 0.

Here, we mention that although at w̄, V∅ is not differentiable, its left-derivative exists and is pV̄ ´ v´Kq{w̄.

If w P pw̄,8q, then we have

pA∅V∅qpwq “ rV∅pwq´ ρwV
1
∅pwq` pρ´ rqw´Rµ

“ rpV̄ ´Kq` pρ´ rqw´Rµą rpV̄ ´K ´ vq ą 0.

Therefore, (20) holds. Note that VIpwq ´ V∅pwq “ K for w P rw̄,8q and VIpwq ´ V∅pwq “ K{w̄ ¨ w for

w P r0, w̄q. Hence, (21) holds. Besides, VIp0q “ V∅p0q “ v and thus (22) holds.

Part 3. Next, we show (41) and (42). First, by the definition of Γ̄ as in (15) and the definition of Γ as in

(16), we have U
`

Γ,∅
˘

“ v and U
`

Γ̄, I
˘

“ V̄ ´ w̄. The remaining inequalities can be easily verified using (39),

(40) and (H2) (or (M2)). ˝

B.4.2. Proofs of the Results in Section 5.2

Proof of Lemma 5. For any θ P r0, w̄s, it is straightforward to verify that

C1pθq :“
V̄ ´ v´ w̄

r{ρ ¨ θr{ρ´1
rpρ{r´ 1qθ` w̄s

and mpθq :“
pρ{r´ 1qθ` V̄ ´ v

pρ{r´ 1qθ` w̄
(115)

satisfies (43) and (44), with θ replacing θK , C1pθq replacing cK and mpθq replacing mK . Moreover, it follows

from Conditions 2 and (L2) that C1pθq ą 0. Since

d

dx

`

xr{ρ´1rpρ{r´ 1qx` w̄s
˘

“ p1´ r{ρqxr{ρ´2px´ w̄q ă 0

for x P p0, w̄q, C1pθq is increasing in θ on r0, w̄s. It is evident that mpθq is strictly decreasing in θ on r0, w̄s.

We have the following result, which is stated as a lemma for ease of reference. Its proof is provided later.

Lemma 20. Under Conditions 2 and (L2), function ψ1pθq, defined by

ψ1pθq “ V̄ ´ v´ w̄´C
1pθq ¨ pw̄qr{ρ,

is continuous and decreasing in θ on r0, w̄s. Moreover, ψ1pw̄q “ 0 and ψ1p0q “ V̄ ´ v´ w̄ąK. Consequently,

there exists θK P p0, w̄q such that ψ1pθKq “K. Furthermore, θK is decreasing in K with limKÓ0 θK “ w̄.

Lemma 20 immediately implies that pθK , cK ,mKq with cK “ C1pθKq, mK “ mpθKq satisfies (43)–(45).

The monotonicity of θK has already been obtained in Lemma 20. The monotonicity of cK and mK in K

follows from that of C1pθq and mpθq in θ. ˝
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Proof of Lemma 20. Since C1pθq is continuous and increasing in θ on r0, w̄s, ψ1pθq is continuous and

decreasing in θ on r0, w̄s. Note that C1p0q “ 0. Hence, ψ1p0q “ V̄ ´ v ´ w̄ ą K, which follows from (L2).

Besides, C1pw̄q “ pV̄ ´v´ w̄qw̄´r{ρ, which implies that ψ1pw̄q “ 0ăK. Consequently, there exists θK P p0, w̄q

such that ψ1pθKq “K. This, together with the fact that ψ1pθq is decreasing in θ on r0, w̄s, yields that θK is

decreasing in K. limKÓ0 θK “ w̄ follows by the continuity of ψ1p¨q and ψ1pw̄q “ 0. ˝

Proof of Theorem 6. The proof consists of two parts.

Part 1. First, we show that under Condition 2, (L2), and (mH), functions VIpwq and V∅pwq, as defined in

(47) and (48), respectively, satisfy the optimality condition (20)–(22).

Obviously, (22) holds by noting that VIp0q “ V∅p0q “ v. We proceed to verify that VIpwq and V∅pwq satisfy

(20) and (21).

We show that pAIVIqpwq ě 0 for all w PR` by considering the following cases.

Case 1: w P rθK , w̄s. We have

pAIVIqpwq “ pµ` rqpV̄ `mK ¨ pw´ w̄qq´µV̄ ` ρpw̄´wq ¨mK ´pµR´ cq` pρ´ rqw

“ pw̄´wqrmK ¨ pρ´ r´µq´ pρ´ rqs ě 0.

Here, we mention that although at w̄, VI is not differentiable, its left-derivative exists and is mK .

Case 2: w P r0, θKq. We have

pAIVIqpwq “ pµ` rqVIpwq´µVIpw`βq` ρpw̄´wqV
1
I pwq´ pµR´ cq` pρ´ rqw

“ µVIpwq´µVIpw`βq` ρw̄V
1
I pwq´∆µ ¨R` c

“ µpv`w` cKw
r{ρq´µV̄ `µβp1` cKw

r{ρ´1r{ρq´∆µ ¨R` c“: gIpwq,

where the second equality follows from pA∅VIqpwq “ 0 on r0, θKq, and the third equality follows from β ą

µβ{ρ“ w̄ due to Condition 2.

Since VI is continuously differentiable on r0, w̄q, pAIVIqpwq is also continuous in w on r0, w̄q, which implies

that gIpθKq ě 0. Hence, it suffices to show that gIpwq is decreasing in w. Note that

g1Ipwq “ µ`µr{ρ ¨ cKw
r{ρ´2

`

w`pr´ ρq{ρ ¨β
˘

,

and

g1IpθKq “ µ`µr{ρ ¨ cK ¨ pθKq
r{ρ´2

`

θK `pr´ ρq{ρ ¨β
˘

“ µ`µ ¨
mK ´ 1

θK
¨
`

θK `pr´ ρq{ρ ¨β
˘

ă µ`µ

ˆ

ρ´ r

ρ´ r´µ
´ 1

˙ˆ

1`
pr´ ρq ¨β

ρθK

˙

ă µ`µ
µ

ρ´ r´µ

ˆ

1`
pr´ ρq ¨β

ρw̄

˙

“ 0,
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where the second equality follows from (44), the first inequality follows from (mH) and the fact that θK `

pr´ ρq{ρ ¨ β ă w̄` pr´ ρq{ρ ¨ β “ pµ` r´ ρq{ρ ¨ β ă 0, and the last equality follows from w̄“ µβ{ρ. Besides,

we have

g2I pwq “ r{ρpr{ρ´ 1q ¨ cKw
r{ρ´3rµw` ρw̄pr{ρ´ 2qs

ě r{ρpr{ρ´ 1q ¨ cKw
r{ρ´3rµw̄` ρw̄pr{ρ´ 2qs

“ r{ρpr{ρ´ 1q ¨ cKw
r{ρ´3pµ` r´ 2ρqw̄ą 0,

where the last inequality follows from ρą r`µ. Therefore, g1Ipwq ă 0 for w P r0, θKs.

Case 3: w P pw̄,8q. We have

pAIVIqpwq “ pµ` rqV̄ ´µV̄ ´pµR´ cq` pρ´ rqw

“ pρ´ rqpw´ w̄q ą 0.

Combining the above three cases yields pAIVIqpwq ě 0 for any w PR`.

Next, we establish pA∅V∅qpwq ě 0 for all w P R`. Obviously, we have pA∅V∅qpwq “ 0 for w P r0, w̄s. (We

mention that V∅ is not differentiable at w̄, but its left-derivative exists.) If w P pw̄,8q, then

pA∅V∅qpwq “ rpV̄ ´Kq` pρ´ rqw´Rµ

ą rpV̄ ´Kq´Rµ“ rpV̄ ´K ´ vq ą 0.

Hence, (20) is proved.

Below we establish (21). If w P r0, θKs, we have VIpwq´V∅pwq “ 0, and if w P rw̄,8q, we have VIpwq´V∅pwq “

K. If w P pθK , w̄q, we have

V 1I pwq´V
1
∅pwq “mK ´V

1
∅pwq ěmK ´V

1
∅pθKq “ 0,

which implies that VI ´ V∅ is increasing on rθK , w̄s. Consequently, we have 0 ď VIpwq ´ V∅pwq ďK for w P

pθK , w̄q.

Part 2. Next, we show (49) and (50). By the definition of contract Γ̄, it is clear that UpΓ̄, Iq “ V̄ ´ w̄ and

UpΓ̄,∅q “ V̄ ´ w̄´K. The remaining inequalities hold by noting that maxwě0tVIpwq´wu “ VIpw̄q´ w̄ under

(mH), and maxwě0tV∅pwq´wu “ V∅pw̄q´ w̄. ˝

Proof of Theorem 7. We only show that Proposition 4 hold under Conditions 2, (L2), and (mL), as the

proofs of Proposition 5 and Theorem 4 only rely on Proposition 4 and thus hold naturally. Since most

arguments are exactly the same as those for Proposition 4 under Condition 1, we only provide a sketch here.

To start, we observe that qθ :“ pV̄´vqpρ´r´µq´pρ´rqw̄

µpρ{r´1q
P p0, θKq satisfies mpqθq “ ρ´r

ρ´r´µ
by (115). Moreover, we

have

V̄ ´ v´ w̄´C1pqθq ¨ w̄r{ρ´1 ąK (116)

since ψ1pqθq ąψ1pθKq “ 0.

Note that under Condition 2, qwp rwq “ 0, which follows from property (i) in Lemma 2. Hence, we will use

V
rw instead of V

rw in the proof. Next, we will show the desired result by the following four lemmas, which

parallel Lemmas 7–10 used to prove Proposition 4. These lemmas’ proofs are provided at the end of this

section.
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Lemma 21. For any θ P pqθ, w̄q, there exists unique values rwpθq P pθ, w̄q and Cpθq, in place of w̃ and c, such

that (30)–(31) are satisfied at ϑ“ θ.

Lemma 22. Value θ0 :“ inftθ P pqθ, w̄q : rw1pθ0
q ě 0u is well-defined. We have rwpθq is strictly decreasing in

θ, and Cpθq is strictly increasing in θ on pqθ, θ0
q with rw1pθ0

q “ 0. Moreover, Cpθq ą 0 for any θ P pqθ, θ0
q.

Lemma 23. For any θ P pqθ, θ0
q, the threshold θ̄pθq

θ̄pθq :“ inf
 

wą θ : V 1
rwpθqpwq ď 1`Cpθqr{ρ ¨wr{ρ´1

(

is well-defined. As a function of θ, threshold θ̄pθq is decreasing in θ on r0, θ0
q; limθÒθ0 θ̄pθq “ θ0 and

limθÓqθ θ̄pθq “ w̄.

Lemma 24. Function ψpθq, defined as in (90), is continuous and decreasing in θ on pqθ, θ0
q, and satisfies

lim
θÒθ0

ψpθq “ 0, and lim
θÓ0

ψpθq ąK.

Consequently, there exists a value ϑ P pqθ, θ0
q such that ψpϑq “K.

Now we are ready to complete the proof. According to Lemmas 21–24, pŵ, c, ϑ, ϑ̄q defined by ŵ “ rwpϑq,

c “ Cpϑq and ϑ̄ “ θ̄pϑq satisfies (30)–(33). Besides, it follows from θ̄pθq ă rwpθq for θ P rqθ, θ0
q that ϑ̄ ă ŵ,

which implies ŵ“ rwpϑq ă rwpθ0
q “ w̄ by noting that rwpθq is decreasing in θ on rqθ, θ0

q. ˝

Proof of Lemma 21. We will use functions C1p rw,θq and C2p rw,θq defined as in the proof of Lemma 7 to

derive the desired result. In the proof of Lemma 7, we established that C1p rw,θqÑ´8 and C2p rw,θqÑ8 as

rw Ò w̄ and thus

lim
rwÒw̄

C1p rw,θq ă lim
rwÒw̄

C2p rw,θq (117)

for any θ P p0, w̄q. Now, we claim that (117) also holds under the conditions stated in Theorem 7 for any

θ P pqθ, w̄q. In fact, it follows from property (v) in Lemma 6 that

lim
rwÒw̄

C1p rw,θq “

ˆ

V̄ ´
ρ´ r

ρ´ r´µ
pw̄´ θq´ v´ θ

˙

θ´r{ρ

“

ˆ

V̄ ´
ρ´ r

ρ´ r´µ
w̄´ v`

µ

ρ´ r´µ
θ

˙

θ´r{ρ, and

lim
rwÒw̄

C2p rw,θq “
ρ

r

ˆ

ρ´ r

ρ´ r´µ
´ 1

˙

θ1´r{ρ
“
ρ

r

µ

ρ´ r´µ
θ ¨ θ´r{ρ.

It is clear that

lim
rwÒw̄C1p rw,θq

lim
rwÒw̄C2p rw,θq

“
V̄ ´ ρ´r

ρ´r´µ
w̄´ v` µ

ρ´r´µ
θ

ρ

r

µ

ρ´r´µ
θ

is decreasing in θ and takes value 1 at qθ. Hence, (117) holds for any θ P pqθ, w̄q. The remaining proof is exactly

the same as that for Lemma 7 and thus omitted. Moreover, we have the following by-product:

rwpqθq :“ lim
θÓqθ

rwpθq “ w̄ and Cpqθq “
ρµ

rpρ´ r´µq
pqθq1´r{ρ. (118)

˝
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Proof of Lemma 22. We only list the differences between this proof and that of Lemma 8 as follows:

(i) Show rw1pqθq ă 0 instead of rw1p0q ă 0. This holds by noting that h2p rwpqθq,qθq “ lim
rwÒw̄ h2p rw,qθq “ pρ´ r´

pρ´ rq ¨ pρ´ rq{pρ´ r´µqq{ră 0.

(ii) Use the result limθÒw̄ rwpθq “ limθÓqθ rwpθq “ w̄ instead of limθÒw̄ rwpθq “ w̄ ą pw “ rwp0q to establish the

existence of θ0.

(iii) Use V 1
rwpqθq
pqθq “ lim

rwÒw̄ V
1
rwp
qθq “ pρ´ rq{pρ´ r´ µq ą 1 to characterize the monotonicity of Cp¨q near qθ,

instead of using V 1
pwp0q ą 1 to characterize the monotonicity of Cp¨q near 0.

˝

Proof of Lemma 23. The proof is the same as that for Lemma 9, with the range of θ changed from p0, θ0
q

to pqθ, θ0
q. One exception is that we need to show that limθÓqθ θ̄pθq “ w̄. To show this, we first obtain that for

any w P pqθ, w̄q, we have

lim
θÓqθ

Ψpw,θq “ lim
rwÒw̄

!

V 1
rwpwq´ 1´Cpqθq ¨ r{ρ ¨wr{ρ´1

)

“
ρ´ r

ρ´ r´µ
´ 1´

ρµ

rpρ´ r´µq
pqθq1´r{ρ ¨ r{ρ ¨wr{ρ´1

“
µ

ρ´ r´µ

”

1´
`w

qθ

˘r{ρ´1
ı

ą 0,

where the first equality follows from (118) and property (iii) in Lemma 6, the second equality follows from

property (iv) in Lemma 6. This, combining with θ̄pθq ă rwpθq, yields that limθÓqθ θ̄pθq “ w̄. ˝

Proof of Lemma 24. The proof is exactly the same as that for Lemma 10 (also with the range of θ

changed from p0, θ0
q to pqθ, θ0

q), except that we will show limθÓθ0 ψpθq ąK rather than limθÓ0ψpθq ąK. In

fact, we have

lim
θÓθ0

ψpθq “ lim
rwÒw̄

V
rwpw̄q´ rv` w̄`Cpqθq pw̄q

r{ρ
s

“ V̄ ´ v´ w̄´Cpqθq pw̄q
r{ρ
ąK,

where the second equality follows from property (v) in Lemma 6, and the inequality follows from (116). ˝

Proof of Proposition 6. It follows from (115) and limKÓ0 θK “ w̄ that

lim
KÓ0

cK “
V̄ ´ v´ w̄

w̄´r{ρ
and lim

KÓ0
mK “ 1`

rpV̄ ´ v´ w̄q

ρw̄
“
R∆µ´ c

µβ
.

It is straightforward to verify that limKÓ0mK ě pρ´ rq{pρ´ r´µq if and only if Rě R̄, where

R̄ :“

„

c

b
`

pρ´ rqµ

∆µpρ´ r´µq



β ą R̂.

Hence, by definition of qK2 and the monotonicity of mK in K, it is clear that qK2 “ 0 if and only if Rě R̄.

If Ră R̄, we have m
|K2
“ pρ´ rq{pρ´ r´µq. Hence, it follows from (115) with θ“ θ

|K2
that

θ
|K2
“
V̄ ´ v´pρ´ rq{pρ´ r´µqw̄

µ{pρ´ r´µq ¨ pρ{r´ 1q
and c

|K2
“

µ

ρ´ r´µ

ρ

r
θ
|K2

1´r{ρ.
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Substituting these values into (45) with K “ qK2, we obtain the following closed-form expression of qK2:

qK2 “ V̄ ´ v´ w̄´
µ

ρ´ r´µ

ρ

r

„

V̄ ´ v´pρ´ rq{pρ´ r´µq ¨ w̄

µ{pρ´ r´µq ¨ pρ{r´ 1q

1´r{ρ

. (119)

Finally, taking the first-order derivative of qK2 with respect to R in (119), investigating its sign and noting

by Assumption 1 that Rą c{∆µ, we obtain that qK2 is decreasing in R on pc{∆µ, R̄q.

The statement on K2 follows directly from its definition. ˝

B.5. Proof of the Results in Section 6

Proof of Proposition 7. We only consider the case under Conditions 1 and (L1), since the case under

Conditions 2, (L2) and (mL) can be treated similarly. It follows from Lemma 10 that ψpϑq “K with ψ being

decreasing on p0, θ0
q. Consequently, ϑ is decreasing in K. Recall that ϑ̄“ θ̄pϑq. It follows from part (ii) in

Lemma 9 that ϑ̄“ θ̄pϑq is increasing in K.

For the last assertion, we first note that under Condition 1 and K1 ą 0, limθÒθ0 ψpθq “ 0 by Lemma 10,

which implies limKÓ0 ϑ“ θ
0. Then, using part (iii) in Lemma 9, we obtain limKÓ0 ϑ̄“ θ

0. Under Condition

2 and qK2 ą 0, we also have limKÓ0 ϑ“ θ
0
“ limKÓ0 ϑ̄, by a similar argument and using Lemmas 22 and 24.

Hence, the desired result holds with θ0 “ θ
0. ˝

Proof of Theorem 8. First, we consider the case under Condition 1 and K1 ą 0. It follows from Propo-

sition 7 that limKÓ0 ϑ“ limKÓ0 ϑ̄“ θ
0. Recall from the proof of Proposition 4 that ŵ“ rwpϑq and c“Cpϑq.

Hence, we have limKÓ0 ŵ“ limKÓ0 rwpϑq “ rwpθ0
q and limKÓ0 c“ limKÓ0Cpϑq “Cpθ

0
q. The conclusion (52) is

obtained by setting θ0 “ θ0, ŵ0 “ rwpθ0
q and c0 “ Cpθ0

q. Moreover, Vŵ and Vc converge uniformly to Vŵ0

and Vc0 , respectively, as K approaches 0. Consequently, both value functions as defined in (34) converge to

Vθ0 uniformly as K approaches 0. Invoking Proposition 5 and sending K to 0, we conclude that functions

VI “ V∅ “Vθ0 satisfy the optimality conditions (20)–(22) for K “ 0.

The argument for the case under Condition 2 and qK2 ą 0 is exactly the same, and thus is omitted. ˝

B.6. Proofs of the Results in Appendix A

Proof of Proposition 8. These results have already been shown in the second part of the proof of

Proposition 7. ˝

Proof of Theorem 9. The proof consists of three parts.

Part 1. Similar to the proof of Proposition 2, we can show that (i) UpΓ˚pw, I; 0,0, w̄, w̄q, Iq “ Vepwq and

UpΓ,∅q “ v for any w ě 0; and (ii) under condition that K ă K̄e and mK ą 1, UpΓ˚pw, I; 0,0, w̄, w̄q,∅q “

V∅pwq´w for any wě θ̄K with V∅ as defined in (71).

Part 2. Next, we show that under condition K ě K̄e, functions VI “ Ve and V∅ “ v satisfy (20)–(22). By

the definition of Ve, it is clear that AIVI “ 0. Moreover, pA∅V∅qpwq “ rv´µR“ 0 for any wě 0. Hence, (20)

holds.
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Note that Ve is increasing on r0, w̄s (see Lemma 3 of Sun and Tian (2018)). Hence, for any wě 0, we have

VIpwq´V∅pwq ě Vep0q´ v“ 0 and VIpwq´V∅pwq ď V̄e´ v“ K̄e ďK. Hence, (21) holds. Finally, it is evident

that (22) holds.

Part 3. Now we show that under condition K ă K̄e, functions VI “ Ve and V∅ as defined in (71) satisfy

(20)–(22). Obviously, AIVI “ 0. Moreover, we have

pA∅V∅qpwq “ rV∅pwq´ rwV
1
∅pwq´µR

“ rw

ˆ

V∅pwq´V∅p0q

w
´V 1∅pwq

˙

ě 0,

where the equality follows from V∅p0q “ v, and the inequality follows from the concavity of V∅. Hence, (20)

holds.

If wě θ̄K , then VIpwq´V∅pwq “K. If w P r0, θ̄Ks, then V 1I pwq´V
1
∅pwq “ V

1
e pwq´V

1
e pθ̄

Kq ě 0 due to the con-

cavity of Ve, which implies that VIpwq´V∅pwq ě VIp0q´V∅p0q “ 0 and VIpwq´V∅pwq ď VIpθ̄
Kq´V∅pθ̄

Kq “K.

Hence, (21) holds. It is straightforward to see that (22) holds. ˝
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Brémaud, P. (1981). Point Processes and Queues: Martingale Dynamics. Springer Series in Statistics.

Springer.

Cao, P., F. Tian, and P. Sun (2021). Comment on “optimal contract to induce continued effort”. Management

Science. Forthcoming.

Protter, P. E. (2003). Stochastic Integration and Differential Equations (second edition ed.), Volume 21 of

Stochastic Modelling and Applied Probability. Springer.

Sun, P. and F. Tian (2018). Optimal contract to induce continued effort. Management Science 64 (9),

4193–4217.


	Introduction
	Model
	The Agent's Utility and Incentive-Compatible Contracts
	Principal's Utility
	An Overview of General Optimal Contract Structures

	Optimality Conditions
	Optimal Contract under Condition 1
	High Switching Cost K
	Medium Switching Cost K
	Low Switching Cost K

	Optimal Contract under Condition 2
	High and Medium Switching Cost K
	Low Switching Cost K

	Switching Cost K Approaching Zero
	Concluding Remarks
	Further Discussions
	A Heuristic Derivation of (20)–(22)
	Computing Contract Parameters
	Equal Discount Rate
	Positive Switching Cost From On to Off

	Proofs of all the Results
	Proofs of the Results in Section 2
	Proofs of the Results in Section 3
	Proofs of the Results in Section 4
	Proofs of the Results in Section 4.1
	Proof of the Results in Section 4.2
	Proofs of the Results in Section 4.3
	Proof of Lemma 11
	Proof of Lemma 12

	Proofs of the Results in Section 5
	Proofs of the Results in Section 5.1
	Proofs of the Results in Section 5.2

	Proof of the Results in Section 6
	Proofs of the Results in Appendix A


