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Abstract. Consider a setting inwhich a principal induces effort from an agent to reduce the
arrival rate of a Poisson process of adverse events. The effort is costly to the agent and
unobservable to the principal unless the principal is monitoring the agent. Monitoring
ensures effort but is costly to the principal. The optimal contract involves monetary
payments and monitoring sessions that depend on past arrival times. We formulate the
problem as a stochastic optimal control model and solve the problem analytically. The
optimal schedules of payment andmonitoring demonstrate different structures depending
on model parameters. Overall, the optimal dynamic contracts are simple to describe, easy
to compute and implement, and intuitive to explain.
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1. Introduction
Adverse events often bring significant damages to an
organization or the society. In many situations, better
efforts in maintaining and safeguarding a system can
reduce the chance of such adverse events. The chal-
lenge is that these events may still occur, albeit less
frequently, despite the best effort. And efforts are
often hard to verify. Furthermore, people in charge of
the effort (an agent) often cannot bear the full con-
sequence of an adverse event because of limited lia-
bility. In practice, an agent is often a hired employee
or subcontractor, who can be paid one way or another
but cannot compensate damages. In order to ensure
efforts, a principal, be it a firm or a government, may
decide to “keep an eye” on the agent, which ensures
that adverse events occur at a lower frequency and are
not the result of a lack of effort should they happen.
For example, Accenture served as an outside vendor
to support the IT systems for Kbank of Thailand.
According to conversations with Accenture, once in a
while, the in-house IT team at Kbank would show up
to work together with the Accenture team. Such
monitoring activities are often too costly to conduct at
all times. The principal can also schedule payments
that are contingent on arrivals tomotivate effort. How
do we induce effort from the agent with minimum
payments andmonitoring costs? In a dynamic setting
in which adverse events occur stochastically over
time, what is the optimal schedule to pay and to
monitor the agent?

To answer these questions, we study an optimal
contract design problem in a dynamic setting in
which a risk-neutral principal faces a Poisson process
of costly adverse events. (Think of adverse events as
system breakdowns or production defects.) The in-
stantaneous rate of the Poisson process can be re-
duced by a risk-neutral agent if the agent exerts effort
at that moment. Effort is costly to the agent and ob-
servable to the principal only when the principal
monitors the agent. The principal, who can commit
to a long-term contract over an infinite horizon in
continuous time, needs to trade off direct payments
to the agent, versus costly monitoring, in order to
induce effort.
We formulate this optimal dynamic contract de-

sign problem as a continuous-time stochastic opti-
mal control model and are able to provide com-
plete characterizations of the optimal monitoring and
payment schedules, which vary depending on the
monitoring cost. As expected, if themonitoring cost is
lower than a threshold, the principal should monitor
all the time. In this case, the agent’s total future utility
(commonly referred to as the “promised utility,” see,
for example, Spear and Srivastava 1987) is always
kept at zero. Interesting structures emerge when
the monitoring cost is above the threshold. In this
case, the promised utility serves as a sufficient sta-
tistic of the entire history of arrival times, on which
the optimal monitoring and payment schedules
critically depend.
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Generally speaking, the agent needs to be penalized
for each arrival when not being monitored. Because
we assume that the agent has limited liability and
cannot pay the principal, the penalty takes the form of
a downward jump of the promised utility upon each
arrival whenever the agent is not being monitored.
Between arrivals, the promised utility gradually in-
creases. When downward jumps resulting from ar-
rivals bring the promised utility below a threshold,
the principal starts monitoring. Monitoring stops
only after the promised utility climbs back to the
threshold, during which arrivals do not matter. A
flow of payment starts onlywhen the promised utility
reaches and stays at an upper bound. As soon as
another arrival occurs, the promised utility takes a
downward jump from the upper bound, which stops
the payment.

The aforementioned movements of the promised
utility and payment schedule are not completely new
to our model. In fact, both Biais et al. (2010) and
Myerson (2015) study similar models as ours without
monitoring. Biais et al. (2010) consider the agent as a
firm and the principal as an investor, who can change
the firm size when the promised utility becomes
too low.Myerson (2015), on the other hand, considers
a political economy setting, in which the principal
can dynamically replace an agent with a new one.
A fundamental difference between Biais et al. (2010)
and Myerson (2015) is the time discount rate. In Biais
et al. (2010), the principal is strictly more patient
than the agent although Myerson (2015) assumes
the two players’ time discount rates are the same.
Equal time discount rate in this setting introduces an
“infinite back-loading” issue. That is, the principal
always prefers to delay the cash payment to the future
while promising to pay the corresponding interest. In
order to prevent the problem from becoming un-
bounded, Myerson (2015) introduces an exogenous
upper bound on the promised utility. For the different
discount rate case, Biais et al. (2010) obtain an en-
dogenous upper bound on the promised utility. We
study both the different and equal time discount
cases. For the different discount case, although it is
also not necessary to introduce an exogenous upper
bound, we also describe the optimal contract under
such a bound in case the endogenous one is high for
the agent to stomach in practice.

Our optimal contract demonstrates subtle and im-
portant features that do not arise in Biais et al. (2010)
even though the aforementioned movements of the
promised utility above the monitoring threshold also
appear in Biais et al. (2010) andMyerson (2015).When
the principal is more patient than the agent, in par-
ticular, the promised utility may always be strictly
positive, which means that the individual rationality
(IR) constraint may never be binding. This may be

counterintuitive to people familiar with the mecha-
nism design literature, starting from Myerson (1981).
As we explain in the paper, raising the promised
utility threshold for monitoring allows the principal
to shorten the monitoring time, which is preferable
when the monitoring cost is high. From a technical
point of view, the optimal value function demon-
strates the “smooth pasting” phenomenon that often
arises in optimal stopping problems (see, for example,
Dixit 1994). Smooth pasting does not arise in Biais
et al. (2010). Finally, we identify a subtle connection
between monitoring and allowing the agent to shirk.
Essentially, the optimal contract that allows the agent
to shirk can be solved as a special case of the moni-
toring problem with a specific monitoring cost.
Optimal scheduling of monitoring in a dynamic

environment is fundamentally an operations prob-
lem. There is a recent stream of papers in the oper-
ations research/management science literature that
study incentive issues related to auditing/monitoring/
inspecting. Most of these papers compare a few classes
of practically useful mechanisms or focus on static
settings. Babich and Tang (2012), for example, study
three mechanisms (deferred payment mechanism,
inspection mechanism, and a mechanism that com-
bines the two) for dealing with product adulteration
issues when manufacturers cannot control the sup-
pliers’ actions. Rui and Lai (2015) study similar sets of
mechanisms in a similar problem setting with en-
dogenous procurement decisions and more general
arrival discovery processes. Kim (2015) studies en-
vironmental disclosure and inspection policies in a
dynamic setting and compares deterministic versus
random inspection schedules. Plambeck and Taylor
(2016, 2019) also study environmental monitoring
and disclosure issues, using static models.Wang et al.
(2016) study monetary and inspection instruments to
induce the agent to report the occurrence of an ad-
verse environmental event. The paper models this
dynamic adverse selection problem as an optimal
control model in continuous time and identifies op-
timal policies.
Monitoring is a way to conduct costly state verifi-

cation under asymmetric information in the economics
literature, started from Townsend (1979) for adverse
selection issues in a static setting. Dye (1986) extends
the idea to moral hazard problems, also in a static
setting. In continuous-time dynamic settings, Piskorski
and Westerfield (2016) study a model in which the
underlying uncertainty is a Brownianmotion, and the
principal checks the agent following a Poisson pro-
cess, the rate of which is the design issue. If the agent
is found shirking, the principal may terminate the
contract. Varas et al. (2017) study a two-state hid-
den Markov model, whose instantaneous transition
rates are affected by the agent’s effort. The principal
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decides the schedule of inspecting the true state of the
Markov chain in order to induce effort.

Ourmodel and analysis are rooted in the continuous-
time optimal contracting literature. Sannikov (2008)
provides the analytical foundation for these types
of models. In Sannikov (2008), the agent’s effort af-
fects the drift of a Brownian motion. And the optimal
contract is solved as the solution of a stochastic op-
timal control problem. The Brownian motion setup is
natural for corporate finance applications (see, for
example, DeMarzo and Sannikov 2006, Biais et al.
2007, and Fu 2017 to name a few).

Biais et al. (2010) build upon this framework and
study continuous-time optimal contracting based
on Poisson processes instead of Brownian motions.
One important advantage of Poisson process–based
models is that the optimal control policies are often
easier to describe and implement. More recently,
Sun and Tian (2018) study how to induce an agent
to increase the arrival rate of a Poisson process in
a continuous-time infinite horizon setting. More
broadly, a sequence of recent papers also study op-
timal contracting problems related to Poisson ar-
rivals (see, for example, Mason and Välimäki 2015,
Green and Taylor 2016, Hidir 2017, Shan 2017, Varas
2018). Our paper differs from the aforementioned
continuous-time dynamic contracting literature in the
monitoring component.

More generally, dynamic moral hazard problem
has also been the focus of some recent papers pub-
lished in operations research. Plambeck and Zenios
(2003) study continuous-time control of incentive
issues in a make-to-stock production system. Li et al.
(2012) investigate how to motivate multiple agents
(suppliers) in a discrete time dynamic setting. Their
model is also based on the promised utility frame-
work originated from Spear and Srivastava (1987).

The rest of this paper is organized as follows. We
introduce the model and supporting concepts in
Section 2 and focus on the equal discount rate case in
Section 3, in which we introduce general structures
of optimal contracts and value functions. Built upon
these concepts, Section 4 further investigates the case
in which the principal is more patient than the agent.
We then present theories that support a computa-
tional algorithm for the optimal value function and
contract in Section 5, study a simple cyclic monitoring
schedule in Section 6, and conclude the paper with a
discussion of allowing shirking in Section 7. All the
proofs are presented in the appendix. In addition,
Appendix E contains a number of extensions and
some potential directions for future research.

2. The Model
We consider a principal–agentmodel in a continuous-
time setting. The principal faces a Poisson process

with arrival rate λ̄ of adverse events (arrivals), each
costing the principal a valueK.1 The principal hires an
agent, who can bring down the instantaneous ar-
rival rate to λ � λ̄ − Δλ if the agent exerts effort at this
point in time. The principal does not observe the
effort unless monitoring the agent at a cost rate m per
unit of time. Denote a left-continuous counting pro-
cess {Nt}t≥0 to represent the total number of arrivals
up to time t, the rate of which depends on the agent’s
effort process. Further denoteΛ � {λt}t≥0 to represent
the agent’s effort process. That is, λt ∈ {λ, λ̄} at each
time epoch t. The principal and the agent are both risk-
neutral and discount future cash flows with discount
rates r and ρ, respectively. As is often assumed in the
literature (see, for example, Biais et al. 2010), ρ ≥ r > 0;
that is, the principal is no less patient than the agent.
We start with ρ � r in Section 3 before moving to
consider ρ > r in Section 4.
We assume that the principal has commitment

power to issue a long-term contract with the agent.
This assumption allows us to formulate the strategic
interaction between the principal and the agent as a
dynamic optimization/optimal control problem in
which the contract is a contingency plan that both
players understand that the principal would fol-
low through.2 The contract specifies a payment and
monitoring schedule over time, which depends on
past arrival times.More generally, the contract should
also specify when to exert effort and when to shirk.
For the most part of the paper, we restrict attention to
contracts that always induce effort from the agent
until the very end of the paper whenwe show that the
shirking problem is a just a special case.
The agent has limited liability, which means that

monetary transfer is from the principal to the agent at
any point in time. Therefore, the agent cannot buy out
the principal to mitigate misalignment of incentives.
Under this assumption, the principal needs to com-
pensate the agent’s effort, which costs a constant rate
b per unit of time. Therefore, the agent benefits from
shirking at the rate b. Beyond this flow payment b in
the background, denote Lt to represent the principal’s
cumulative payment to the agent up to time t, such
that dLt � dIt + �tdt, in which the pure jump process It
represents the cumulative instantaneous payment by
time t and �t is a flow payment at time t with dIt ≥ 0
and �t ≥ 0. (Again, �t does not include the payment b.)
Denote process } � {mt}t≥0 to represent the moni-

toring schedule under the contract in which mt ∈ {m, 0}
captures the monitoring cost at time t. Monitor-
ing during a time interval (t, t + δ] guarantees the
agent’s effort during this time interval. Monitoring
may start in one of two ways. First, at any point in
time t when an arrival occurs, the principal may de-
cide to start monitoring with a probability yt ∈ [0, 1].
Second, monitoring may also start at time t in a
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“deterministic” fashion with respect to realizations
of past uncertainties. In order to formally character-
ize past uncertainties, it is convenient to split the
counting process {Nt}t≥0 into two processes {Ns

t }t≥0
and {Nn

t }t≥0, which represent the total numbers of
arrivals that have and have not triggered monitoring
up to time t, respectively. Therefore, Ns

t +Nn
t � Nt. In

our setting, there are two sources of randomness. One
is from nature (the Poisson arrival) and the other from
control (random start of monitoring upon arrival). The
counting processes Ns

t and Nn
t fully capture these two

sources of uncertainties in the history. Consequently,
we define filtration ^ � {^t}t≥0 such that ^t captures
the entire historical information up to time t specified
by the two-variate countingprocess {Ns

t ,N
n
t }t≥0. Overall,

a contract Γ consists of ^t-predictable payment and
monitoring processes, Lt and mt, respectively.3

Before proceeding, it is worth noting that, in order
to start monitoring randomly upon arrival, the out-
come of the probability process yt needs to follow a
device that is agreed upon and commonly observ-
able by the principal and the agent. In practice,
playersmay use devices such as the last two digits of a
stock market index to generate a commonly observed
random outcome. It is also worth explaining at this
point why we need this randomness in the control
policy space. As we show in Section 4, when the two
players’ discount rates are different and the moni-
toring cost is relatively low, in order to show that
always monitoring is optimal, we need to specify
optimal control policies for all positive promised
utility values. Such an optimal control policy critically
depends on the random start of monitoring.

2.1. Agent’s Utility
Given contract Γ and the agent’s effort process Λ, the
agent’s total utility is defined as

u Γ,Λ( ) � EΓ,Λ

∫ ∞

0
e−ρτ dLτ + b Iλτ�λ̄ dτ

( )[ ]
. (1)

It is standard and convenient to workwith the agent’s
continuation utility (also referred to as the promised
utility; see, for example, Spear and Srivastava 1987).
That is, the total discounted utility starting from time
t, defined as the following left-continuous process:

Wt Γ,Λ( )� EΓ,Λ

∫ ∞

t
e−ρ τ−t( ) dLτ + b Iλτ�λ̄ dτ

( )[ ⃒⃒⃒⃒
^t

]
. (2)

When there is no confusion, we omit (Γ,Λ) and refer to
the agent’s continuation utility at time t asWt. Clearly,
W0 � u(Γ,Λ). As is often assumed in the literature, the
agent does not commit to staying in the contract.
Therefore, we require the following participation
(also referred to as the IR constraint):

Wt ≥ 0, for all t ≥ 0. (IR)

Later in the paper, the optimal contract and the
principal’s value function are all expressed as func-
tions of the agent’s promised utility so that the op-
timal contract design problem is essentially a sto-
chastic optimal control with Wt being the state
variable.
Under any contract, the agent’s promised utilityWt

must satisfy the following dynamics.

Lemma1. For any contract Γ, there exists an^t-predictable
process {(Hs

t ,H
n
t )}t≥0 such that

dWt � ρWt − bIλτ�λ̄ + λt ytHs
t + 1 − yt

( )
Hn

t

[ ]{ }
dt

−Hs
tdN

s
t −Hn

t dN
n
t − dLt. (PK)

In order to satisfy the agent’s continued participation (IR),
Hs

t and Hn
t are less than or equal to Wt.

The condition (PK) stands for “promise keeping,”
which ensures that Wt is indeed the agent’s contin-
uation utility starting from time t. Lemma 1 follows
directly from the Martingale representation theorem
(theorem T9, Brémaud 1981), and extends lemma 1 in
Biais et al. (2010) and lemma 6 in Sun and Tian (2018)
to our setting with a multivariate counting process.
Here, we provide a heuristic derivation of (PK) fol-
lowing discrete time approximation, which offers an
intuitive illustration.
Consider the promised utility at the beginning of a

small time interval [t, t + δ) to beWt. With probability
λtδyt, there is an arrival that triggers monitoring to
start. In this case, the promised utility moves to
Wt −Hs

t . With probability λtδ(1 − yt), on the other
hand, there is an arrival that does not trigger moni-
toring. In this case, the promised utility moves to
Wt −Hn

t . Finally, with probability 1 − λtδ, no arrival
occurs and the promised utilitymoves toWt+δ. Taking
into consideration the potential benefit from shirking
and ignoring payment for simplicity, we have

Wt � bδIλτ�λ̄ + e−ρδ λtδ yt Wt −Hs
t

( )[{
+ 1 − yt
( )

Wt −Hn
t

( )] + 1 − λtδ( )Wt+δ
}
.

Following the standard procedure of subtracting Wt

from and dividing δ on both sides and letting δ ap-
proach zero, we obtain

lim
δ↓0

Wt+δ −Wt

δ
� ρWt − bIλτ�λ̄ + λt ytHs

t + 1 − yt
( )

Hn
t

[ ]
,

which explains the continuously changing part of
(PK). The additional terms in (PK),Hs

tdN
s
t andHn

t dN
n
t ,

further capture the jumps in the promised utility
resulting from arrivals as mentioned just now. Fi-
nally, payment dLt at time t naturally brings down
total future payments.
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2.2. Incentive Compatibility
In this paper, we mainly focus on contracts that al-
ways induce effort from the agent. We first argue that
assuming

m ≤ KΔλ − b, (3)
the principal should always motivate the agent to
exert effort. For any contract that allows shirking, we
can always improve it by replacing a shirking period
with monitoring. This is because monitoring costs the
principal m plus the effort cost b, and shirking costs
the principal KΔλ from a higher arrival rate. (The
principal does not reimburse effort when the agent
shirks under the contract.) In the end of the paper, we
consider the situation in which (3) is violated and
shirking is allowed.

Condition (3) allows us to transform our problem
into an optimal control model over contracts that
must always induce effort. Correspondingly, the count-
ing process {Nt}t≥0 admits intensity λt � λ for all t ≥ 0.
If a contract Γ induces the agent to always exert effort,
that is,

u Γ,Λ( ) ≥ u Γ,Λ( ), for Λ :� λt � λ{ }t≥0 and ∀Λ, (4)
then we call contract Γ incentive compatible.

Incentive compatibility critically depends on the
following ratio between the agent’s private benefit b
and the difference in arrival rates Δλ,

β :� b
Δλ

. (5)

Intuitively, should the principal be able to charge the
agent an amount β for each arrival, the agentwould be
indifferent between exerting effort or not. Shirking in
a small time interval δ brings the agent a benefit bδ,
which is offset by the higher penalty cost Δλβδ. Be-
cause charging the agent is not allowed in our setting,
the principal instead reduces the agent’s promised
utility by at least β for each arrival in order to induce
effort.4 Therefore, the value β is the minimum penalty
in the promised utility that induces effort from the
agent as mentioned in the introduction. This is for-
malized in the following result:

Lemma 2. Contract Γ is incentive compatible, that is, it
satisfies (4), if and only if the following condition holds:

ytHs
t + 1 − yt

( )
Hn

t ≥ β, if mt � 0. (IC)

The term ytHs
t + (1 − yt)Hn

t is the expected downward
jumpwhen there is an arrival at time t. Constraint (IC)
implies that this expected downward jump is at least
β when the principal does not monitor.

Constraint (IC) further implies that either Hs
t or H

n
t

has to be at least β. Therefore, we can simultaneously
satisfy constraints (IC) and (IR) after the potential

downward jump only if the promised utility Wt is at
least β. This implies that, in order to induce effort, the
principal has to monitor the agent instead of relying
on (IC) whenever the promised utility Wt < β. We
summarize this in the following corollary.

Corollary 1. Under any incentive compatible contract, the
agent is monitored (mt � m) when Wt < β.

When Wt ≥ β, the principal trades off monitoring
and enforcing (IC) and should monitor the agent if and
only if the shadow cost of the (IC) constraint is higher
than the monitoring cost m.

2.3. Principal’s Utility
Assume that the principal receives a constant revenue
flow of R. Under an incentive compatible contract, the
agent always exerts full effort. The corresponding
principal’s total discounted utility under an incentive
compatible contract Γ is

EΓ,Λ

∫ ∞

0
e−rt

(
R −mt( )dt − KdNt − dLt

)[ ]
� R − Kλ

r
− EΓ,Λ

∫ ∞

0
e−rt

(
mtdt + dLt

)[ ]
.

Because the term R only shifts the principal’s total
utility by a constant and is independent of the contract
design, without loss of generality, we set

R � Kλ. (6)
Therefore, the principal’s total discounted utility
under an incentive compatible contract Γ is

U Γ( ) � −EΓ,Λ

∫ ∞

0
e−rt mtdt + dLt( )

[ ]
. (7)

Before finishing this section, we present the following
verification result, which provides an upper bound
of the principal’s utility U(Γ) over all incentive com-
patible contracts. This result forms the foundation of
proving optimality under various parameter regimes.

Lemma 3. Suppose F(w) is a continuous, concave, and
upper-bounded function with F′(w) ≥ −1. (If F(w) is not
differentiable at a point w, we denote F′(w) to be the average
between its left and right derivatives.) Consider any in-
centive compatible contract Γ, which yields the agent’s ex-
pected utility u(Γ,Λ) � w � W0, followed by the promised
utility process {Wt}t≥0 according to (PK).Define a stochastic
process {Ψt}t≥0, where

Ψt :� F′ Wt( )ρWt − rF Wt( ) −mt + λyt F′ Wt( )Hs
t

[
+ F Wt −Hs

t

( ) − F Wt( )]
+ λ 1 − yt

( )
F′ Wt( )Hn

t + F Wt −Hn
t

( )[
− F Wt( )].

(8)

If the process {Ψt}t≥0 is nonpositive almost surely, then we
have F(w) ≥ U(Γ).
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3. Equal Discount Rate
In this section, we consider the case in which r � ρ.
That is, the principal shares the same discount rate
with the agent. In this setting, we need to introduce an
upper bound for the agent’s continuation utility, w̄, as
an additional model parameter. This is due to the
infinite back-loading problem identified in Myerson
(2015) for the equal discount moral hazard problem
without monitoring. Without such an upper bound,
the principal would keep increasing the agent’s
promised utility to infinity without payment. We
provide a comprehensive discussion on the intuitive
reason for such an upper bound toward the end of this
section. To avoid triviality, the upper bound w̄ is set to
be above β.5 It is worth noting that we only need such
an upper boundwhen r � ρ. When r < ρ, the principal
is more patient than the agent, it is no longer neces-
sary to introduce w̄, as we discuss in the next section.

When r � ρ, the optimal contract structure is not
unique. Interestingly, when r < ρ to be discussed
in the next section, either contract structure may
be optimal, depending on how high the monitoring
cost is.

3.1. Optimal Contract Structure: Deterministic
and Randomized

For the equal discount case, the optimal contract may
take two different forms with the same performance.
We first describe the evolution of the promised utility
under the deterministic optimal contract (that is,
probability yt in (PK) is always zero). As discussed in
the previous section, the (IC) condition implies that
the principal has to monitor the agent if the promised
utility Wt is lower than β. In this section, we establish
that, when r � ρ, it is optimal to monitor if and only
if Wt < β. Moreover, the principal does not penalize
the agent for any arrivals (i.e., Hn

t � Hs
t � 0) and does

not pay the agent while monitoring (i.e., dLt � 0).
Therefore, when Wt < β, (PK) implies that the prom-
ised utility evolves according to

dWt � ρWtdt. (9)
Intuitively, the term ρWtdt is the “interest” accrued
from the promised utility because of time discount-
ing. Furthermore, whenever Wt < β at time t, condi-
tion (9) implies that the promised utility increases
deterministically following the simple exponential
curve

Wt+τ � Wteρτ, (10)
until Wt+τ reaches the threshold β.

When the promised utilityWt ∈ [β, w̄), the principal
no longermonitors the agent, and the promised utility
takes a downward jump of β upon each arrival. That
is, following the optimal contract,Hs

t � Hn
t � β in (PK).

In this case, the principal still does not pay the agent
(i.e., dLt � 0), and (PK) reduces to

dWt � ρWt + βλ
( )

dt − βdNt. (11)
Compared with (9), the rate of increase in (11) is
higher. Besides the interest term ρWtdt, the term βλdt
is the “information rent” that the agent receives in the
form of faster increase in the promised utility when
there is no arrival. To see this intuitively, remember
that, in order to motivate effort, the principal charges
the agent utility β for each arrival, which occurs with
probability λdt. Because the agent cannot actually
pay the principal money upon arrivals, when there is
no arrival during a period dt, the principal increases
the agent’s promised utility by βλdt. This exactly
equals the expected decrease of the agent’s utility for
an arrival during this time period, reflected in the
downward jump term βdNt.
Therefore, if there is no arrival during the time

interval [t, t + τ], then, again, the promised utility
increases following the curve

Wt+τ � Wteρτ+ βλ

ρ
eρτ − 1( ), (12)

as long as Wt+τ < w̄. Compared with (10), the addi-
tional term involving βλ is the information rent as
discussed earlier.
Without an arrival, the agent’s promised utility

keeps increasing according to a rate ρWt + βλ until
Wt reaches the upper bound w̄. At this point, the
promised utility cannot increase any more and stays
at w̄ until the next arrival. That is, when Wt � w̄, the
promised utility evolves according to

dWt � −βdNt. (13)

In order to keep Wt at w̄, the principal has to pay the
agent a flow rate

�t � ρw̄ + βλ, (14)

to release the upward pressure that would otherwise
occur to the promised utility.
Nowwe are ready to present a formal definition for

a class of contracts that includes the optimal one. Note
that, in the following definition, we allow the mon-
itoring threshold to be amore general level s although
it is just β as described before. This is because the
optimal threshold can be higher than β in the next
section when r < ρ.

Definition 1. Contract Γd(w; s, w̄) is defined as
i. The dynamics of the agent’s promised utility,Wt,

follows (9) for Wt ∈ [0, s), (11) for Wt ∈ [s, w̄), and (13)
for Wt � w̄, starting from W0 � w.
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ii. In terms of payments, the agent is not paidwhen
Wt < w̄ and is paid at a flow rate (14) when Wt � w̄.

iii. Regarding monitoring, mt � m if and only if
Wt < s.

InDefinition 1, the subscript “d” in Γd(w; s, w̄) stands
for deterministic because monitoring starts in a de-
terministic fashion with respect to the arrival times.
That is, the promised utility Wt is adapted to the
filtration generated from the arrival process. The
parameter s represents the monitoring threshold.
Clearly, in this section, we are only interested in
contract Γd(w; β, w̄). In the following section when we
discuss ρ > r, however, the threshold s could be
strictly higher than β, and the upper bound w̄may be
replaced with an endogenous one.

Figure 1(a) provides a sample trajectory under
contract Γd(w∗; β, w̄). On this sample trajectory, there
are a total of five arrivals, labeled as time epochs t1,
t2, . . . , t5. In the beginning, the promised utility keeps
increasing with slope ρwt + βλ until reaching the
upper bound w̄ at time t̂. Then three arrivals cause
three downward jumps of magnitude β that eventu-
ally bring the promised utility below the threshold β.
Monitoring starts from time t3 and lasts until time t′,
during which the arrival at t4 has no impact. The kink
at t′ reflects the difference between the slopes ρwt on
the left and ρwt + λβ on the right.

This description shows that it is fairly easy for
the principal to implement this contract over time,
keeping track of a single number in a simple way.
Furthermore, the contract guarantees incentive com-
patibility on an intuitive level. A monitoring ses-
sion starts when arrivals occur rather frequently over
a period of time. Under monitoring, the prom-
ised utility grows rather slowly, which means that

payment can only happen far into the future. There-
fore, monitoring not only ensures effort at the mo-
ment, but also serves as a threat to the agent before
its use.
Furthermore, the contract motivates the agent to

exert effort besides using the threat of monitoring.
When the promised utility is at a level w above β and
below w̄, payment starts if there is no arrivals for the
next 1ρ ln

ρw̄+βλ
ρw+βλperiod of time (following (12)withWt �

w and Wt+τ � w̄). Exerting effort increases the chance
of the promised utility reaching w̄ and payment. Once
payment has started, an arrival brings the promised
utility down from w̄ to w̄ − β and pauses the flow
payment for at least a period of time of 1

ρ ln
ρw̄+βλ

ρw̄+β(λ−ρ)
(again, following (12)). Therefore, once being paid,
the agent is willing to exert effort in order to prolong
the payment period before it pauses.
Figure 1(b) depicts an alternative contract with

the same performance that involves randomization
upon arrivals, facing the same sample trajectory as in
Figure 1(a). In particular, whenever the promised
utility drops to below β, it either jumps to zero or β.
For example, at time t3, the randomization brings the
promised utility to β, and at t4, the promised utility
lands at zero, which triggers monitoring ever after.
More formally, if an arrival occurs when Wt− is

in [β, 2β), the next moment’s promised utility lands
on zero with probability 2 −Wt−/β and on β with
probability Wt−/β − 1. Technically, this means that,
in (PK), the jumps are Hs

t � Wt− and Hn
t � Wt− − β,

and the randomization probability is yt � 2 −Wt−/β.
Therefore, we define the following class of con-
tracts Γr(w; w̄), in which the subscript “r” stands for
randomized.

Figure 1. (Color online) Sample Trajectories of Wt Under the Deterministic and Randomized Contracts
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Definition 2. Define contract Γr(w; w̄) the same as con-
tract Γd(w; β, w̄) in Definition 1 except that the dynam-
ics of the agent’s promised utility Wt follows

dWt �

0, if Wt � 0,
ρWt + βλ
( )

dt −WtdNs
t − Wt − β

( )
dNn

t ,

if Wt ∈ β,min w̄, 2β
{ }[ )

,

ρWt + βλ
( )

dt − βdNt,

if Wt ∈ min w̄, 2β
{ }

, w̄
[ )

,

−βdNt, if Wt � w̄,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

starting from W0 � w.

The reason that both deterministic and randomized
contracts are optimal is revealed in the next sub-
section, in which we show that the principal’s value
function is linear in the interval [0, β]. For the different
discount rate case of Section 4, however, whether the
value function is linear or not depends on how high
the monitoring cost is. In particular, the deterministic
contract is optimal when the monitoring cost is high,
and the randomized contract is optimal when the
monitoring cost is low.

3.2. Principal’s Value Function
Following the evolution of the promised utility de-
scribed, next we heuristically derive the dynamics of
the principal’s utility as a function of the agent’s
promised utility using discrete time approximation.
Specifically, denote F(w) to represent the principal’s
total discounted utility when the agent’s promised
utility is w.

First, for any w ∈ [0, β), over a small time inter-
val with length δ, the principal incurs a monitoring
cost mδ, and following the deterministic contract
dynamics (9), the agent’s promised utility increases to
weρδ. Therefore, we have the following expression for
the principal’s utility function,

F w( ) � −mδ + e−rδF weρδ
( ) + o δ( ). (16)

Assuming F(w) is differentiable on [0, β), following
standard procedures of subtracting F(w) from and
dividing δ on both sides, and by letting δ approach
zero, we obtain

rF w( ) � ρwF′ w( ) −m. (17)
We keep both r and ρ in (17) and all the equations in
this section because the value function takes the same
expressions when r < ρ in the next section.

Differential Equation (17) has the following stan-
dard solution:

Fθ w( ) � θw
r
ρ −m

r
, (L)

parameterized with a scalar θ. The tag (L) indicates
that the promised utility is lower than β. Later in this
section, we specify the choice of θ to complete the
description of the value function Fθ(w). When r � ρ,
(L) reduces to

Fθ w( ) � θw −m
r
, (Ll)

which is a linear function of w and, hence, the sub-
script l in the tag.
Next, for any w ∈ [β, w̄), the principal no longer

monitors the agent. Following similar heuristic der-
ivations for (16), we reach a delay differential equa-
tion (DDE),

λ + r( )F w( ) � λF w − β
( ) + ρw + λβ

( )
F′ w( ), (H)

where the tag (H) indicates that the promised utility is
higher than β. We denote function Fθ(w) to be the
solution to the DDE (H) on w ∈ [β, w̄) with boundary
condition (Ll) on w ∈ [0, β).
Finally, for w � w̄, the principal pays the agent

a flow payment according to (14) and keeps the
promised utility at w̄ until the next arrival. Standard
arguments imply that the principal’s value function
takes the form of

λ + r( )F w̄( ) � λF w̄ − β
( ) − ρw̄ + βλ

( )
, (U)

where the tag (U) stands for upper bound. The com-
bination of (H) and (U) implies that F′(w̄) � −1. In-
tuitively, when the slope of the principal’s value
function is −1, increasing the promised utility further
by an amount costs the principal the same amount.
This is consistent with the fact that at this point
delaying payment while letting the promised utility
increase does not yield further benefit to the principal
any more.
In order to specify the optimal value function, we

need to determine θ in (Ll). To that end, we introduce
function J(w) to be the solution of DDE (H) for w ≥ β
with boundary condition J(w) � 1 instead of (Ll) on
w ∈ [0, β). Therefore, function J(w) is independent of θ
and the monitoring cost m. It is easy to verify that,
when ρ � r, function Fθ(w), which is the solution to
(H) with boundary condition (Ll), can be expressed in
terms of J(w) as

Fθ w( ) � θw −m
r
J w( ), for w ≤ w̄. (18)

We further extend the function tow ≥ w̄with slope−1,
that is,

Fθ w( ) � Fθ w̄( ) + w̄ − w, for w > w̄. (19)
Furthermore, if we define

θ w̄( ) � m
r
J′ w̄( ) − 1, (20)

Chen, Sun, and Xiao: Optimal Monitoring Schedule in Dynamic Contracts
1292 Operations Research, 2020, vol. 68, no. 5, pp. 1285–1314, © 2020 INFORMS



it is easy to verify that F′θ(w̄)(w̄) � −1, so function
F′θ(w̄)(w̄) is differentiable at w̄ with slope −1.
Proposition 1. We have the following properties regarding
the value function Fθ(w̄)(w) defined according to (18)–(20):

i. The value θ(w̄) is bounded. Specifically,
−1 ≤ θ w̄( ) < m

βr
. (21)

ii. Function Fθ(w̄)(w) is linear for w ∈ [0, β) and strictly
concave on [0, w̄] with F′θ(w̄)(w̄) � −1.

iii. Moreover, for any w̄ and w̃ such that β ≤ w̃ < w̄, we
have Fθ(w̃)(w) < Fθ(w̄)(w) for any w ≥ 0.

Figure 2 depicts the value function with different
model parameters. As we can see, all the functions
plotted in the two subfigures are concave as described
in Proposition 1(ii). Therefore, it is easy to find its
maximizer

w∗ � argmax
w≥0

Fθ w̄( ) w( ),

as depicted in Figure 2(a) for the case ofm � 4. In order
to maximize the total future expected utility, the
principal should use contract Γd(w∗; β, w̄), starting the
contract from promised utility w∗.

Figure 2(a) also demonstrates that the value func-
tion decreases with the monitoring cost m, which is
intuitive and consistent with (18). According to (18)
and (20), the slope θ(w̄) increases in m and is positive
if and only if m > r/J′(w̄). In Figure 2(a), θ(w̄) is pos-
itive when m � 4, zero when m � 1.9, and negative
when m � 1. If m < r/J′(w̄), the slope θ(w̄) < 0 and the
maximizer of Fθ(w̄)(w) is w∗ � 0. In this case, the
monitoring cost is low enough such that it is optimal
for the principal to always monitor while keeping the
agent’s promised utility at zero. This is depicted in the
curve with m � 1 in Figure 2(a).

Figure 2(b) further depicts the value function under
different exogenous upper bounds on the promised

utility. Consistent with Proposition 1(iii), the value
function increases with the upper bound. This is also
intuitive. From an optimization point of view, the
upper bound puts a constraint on the optimal control
problem. Relaxing it improves the objective function.
From an economic point of view, a higher upper
bound allows the principal to delay payments further
into the future and, therefore, improves the princi-
pal’s utility. This explains the infinite back-loading
problem: if allowed, the principal would choose the
upper bound to approach infinity.
It is worth discussing the underlying reason why

infinite back-loading arises in the equal discount
setting. First of all, let us consider the first best/
efficient outcome, one that maximizes the societal
utility without private information. In the equal dis-
count setting, the efficient outcome corresponds to
the low arrival rate λ with no monitoring because
payments have no impact on the total utility of the
two players. It is important to realize that, in our
setting with arrivals of adverse events, any incen-
tive compatible contract (including the optimal one)
cannot induce the first best outcome. This is because
the (IC) constraint implies that nomatter howhigh the
promised utility is, there is always a positive prob-
ability with which the promised utility drops below
the threshold β following a number of frequent ar-
rivals, triggering monitoring, and losing efficiency.
On the other hand, the higher the promised utility, the
longer it takes to startmonitoring (i.e., lose efficiency).
This explains why the higher the upper bound w̄,
the better the objective function. If w̄ is infinity,
however, the principal essentially does not pay the
agent in any finite time, which is no longer a mean-
ingful contract. In fact, a contract becomes mean-
ingless if w̄ is too high (say higher than the totalwealth
of the world) because the principal does not have
the credibility of delivering such a promised utility to
the agent.

Figure 2. (Color online) Principal’s Value Function Fθ(w̄)(w)
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With different discount rates as are discussed in the
next section, this infinite back-loading problem does
not appear. This is because the cost of early payments
to the principal is lower than its benefit to the agent.
As a result, it is no longer beneficial for the principal to
always delay payment. The corresponding upper
bound of promised utility at which payment starts
becomes finite.

3.3. Proof of Optimality
So far we have not formally established the connec-
tion between the value function Fθ(w̄)(w) and either
contract structure. Now we establish that Fθ(w̄)(w) is
indeed the optimal value function.

First, the following proposition states that Fθ(w̄)(w)
is indeed the value function of both contracts Γd(w; β, w̄)
and Γr(w; w̄).
Proposition 2. For Fθ(w̄)(w) defined according to (18)–(20),
we have

Fθ w̄( ) w( ) � U Γd w; β, w̄
( )( ) � U Γr w; w̄( )( ).

Therefore, starting from w∗, contracts Γd(w∗; β, w̄) and
Γr(w∗; w̄) both yield the maximum Fθ(w̄)(w∗) for the
principal.

According to both (9) and (15), the promise util-
ity stays at zero forever whenever it falls to zero,
according to both contracts Γd(w; β, w̄) and Γr(w; w̄).
That is, once Wt � 0, the principal needs to monitor
the agent (and endure the monitoring cost) forever.
Following the optimal contract Γd(w∗; β, w̄), however,
the promised utility hitting zero is a zero measure
event. And, starting from a promised utilityw ∈ (0, β),
dynamics (10) implies that the length of a monitoring
episode under the optimal contract Γd(w∗; β, w̄) is

Tm w( ) :� 1
ρ

ln β − lnw
( )

, (22)

which is finite. Superficially, the randomized contract
Γr(w∗; w̄)may appear worse because of the possibility
of monitoring forever. In fact, when the promised
utility before an arrival is in the interval (β, 2β), under
the deterministic contract Γd(w∗; β, w̄), the principal
has to pay the monitoring cost for a period of time
after each arrival. Under the randomized contract
Γr(w∗; w̄), however, there is a chance that monitoring
does not happen at all, which balances the chance of
monitoring ever after. This explains, intuitively, why
these two contracts are equivalent to the risk-neutral
principal.

The following theorem, together with Proposition 2,
establishes the optimality of value function Fθ(w̄)(w)
and both contracts Γd(w∗; β, w̄) and Γr(w∗; w̄).

Theorem 1. For any incentive compatible contract Γ, which
yields an agent’s utility w ≤ w̄, we have

U Γ( ) ≤ Fθ w̄( ) w( ) ≤ Fθ w̄( ) w∗( ). (23)
Therefore, contracts Γd(w∗; β, w̄) and Γr(w∗; w̄) are both
optimal, which yield expected utility Fθ(w̄)(w∗) to the
principal.

The first inequality in (23) follows from Lemma 3.
The second inequality simply follows from w∗ be-
ing the maximizer of Fθ(w̄)(w). Therefore, Theorem 1
and Proposition 2 imply that the principal’s expected
utility generated from contracts Γd(w∗; β, w̄) and Γr(w∗; w̄)
is higher than those generated from any other in-
centive compatible contracts. Hence, these two con-
tracts are both optimal. Finally, it is worth point-
ing out that various combinations of the contracts
Γd(w∗; β, w̄) and Γr(w∗; w̄) are also optimal. That is,
whenever in the interval (0, β), the promised utility w
can either continuously increase following (9) or
randomly jump between zero and β, following (15),
no matter how it behaved in this interval previously.

4. Different Discount Rates
In this section, we consider the case of ρ > r. That is,
the principal is more patient than the agent. One
important distinction compared with the case of ρ � r
is that there exists a finite upper bound w̄∗ on the
promised utility, which is implied endogenously
under the optimal contract. Therefore, we no longer
need to introduce the exogenous upper bound as in
the previous section. Nevertheless, when ρ > r, we
can still include an exogenous upper bound w̄ for the
promised utility in the model, which is discussed in
Section 4.3.
For the main parts of this section (Sections 4.1

and 4.2), we show that the structure of the optimal
contract changes with model parameters, especially
the monitoring cost, as illustrated in Figure 3. In this
figure, we vary the principal’s discount rate r (as the
x-axis) and the monitoring costm (as the y-axis) while
keeping other model parameters fixed. In the fol-
lowing two sections, we show that, if the monitoring
cost m is above a threshold m̄ (the solid curve), the
optimal contract takes a structure similar to the de-
terministic contract defined in the previous section. If
m is below m̄, on the other hand, it is optimal for the
principal to always monitor the agent. Figure 3 de-
picts two additional dotted curves m̂ and m in this
region. We defer the detailed discussion on them to
Section 4.2.
Here, we first define the threshold m̄ as

m̄ :� inf
w>β

r
J′ w( ) . (24)
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For thecaseofρ � r, Equation (20) implies thatθ(w̄) < 0
for any w̄ > β when m < m̄, which implies that the
value function is decreasing, and therefore, it is op-
timal to alwaysmonitor the agent. Later in Section 4.2,
we show that, for the case ρ > r, it is still optimal to
always monitor the agent. Next, we first study the
case of m ≥ m̄.

4.1. High Monitoring Cost
In this section, we investigate the case in which the
monitoring cost is above the threshold m̄.

Recall Corollary 1; the principal needs to monitor
when the promised utility w is lower than β. When
m ≥ m̄, the principal may still need to monitor the
agent even if w is higher than β. That is, the optimal
contract is similar to the deterministic contract Γd in
the previous section, in which monitoring occurs
whenever the promised utility is below a threshold
α ≥ β.

Following the same heuristic derivation in Sec-
tion 3.2, define function Fθ,α(w) to be the solution of
DDE (H) for w ∈ [α,∞) with boundary condition (L)
for w ∈ [0, α). Next, we identify the optimal value
function in a two-step procedure. In the first step, we
specify α for a given parameter θ. In the second step,
we establish θ and the endogenous upper bound w̄∗.

First, we identify the threshold α for a given pa-
rameterθ. A key property of the value function Fθ,α(w)
is smooth pasting (Dixit and Pindyck 1994) at w � α.
That is, the left and right derivatives, F′θ,α(α−) and
F′θ,α(α+), respectively, are set to be equal to each other
if possible.6 To this end, it is convenient to define the
following function,

f α( ) :� F′θ,α α−( ) − F′θ,α α+( )( )
ρα + βλ
( )

� m − λθα
r
ρ 1 − rβ

ρα

( )
− 1 − β

α

( )r
ρ

[ ]
, (25)

in which F′θ,α(α−) and F′θ,α(α+) are obtained from (L)
and (H)with switchingpointα, respectively. Therefore,
we may set f (α) � 0 to achieve F′θ,α(α−) � F′θ,α(α+).
Lemma 4. Function f (α) is increasing in α on [β,∞), and
limα→∞ f (α) � m.

In order to find the threshold α by solving the
equation f (α) � 0, denote f −1 to represent the inverse
function of the monotone function f , and for any θ,
define

αθ :� β, if f β
( ) ≥ 0,

f −1 0( ), if f β
( )

< 0.

{
(26)

Proposition 3. (i) We have

f αθ( ) ≥ 0 and αθ − β
( )

f αθ( ) � 0. (27)
Therefore, if αθ � β, we have F′θ,αθ

(αθ−) ≥ F′θ,αθ
(αθ+),

and if αθ > β, we have F′θ,αθ
(αθ−) � F′θ,αθ

(αθ+). (ii) Fur-
thermore, if αθ > β, we have F

′′
θ,αθ

(αθ+) < F
′′
θ,αθ

(αθ−) < 0.
(iii) Finally, for any α ∈ [β, αθ), F′θ,α(α−) < F′θ,α(α+); for
α ∈ (αθ,∞), F′θ,α(α−) > F′θ,α(α+).
Proposition 3(i) and (ii) imply that function Fθ,αθ(w)

is locally concave at α. This is important for us to
later show (global) concavity and optimality of this
function. Proposition 3(iii) further helps us to es-
tablish Proposition 4(ii) to be presented later.
After characterizingα, we nowdescribe the optimal

θ and the endogenous upper bound w̄∗.

Lemma 5. (i) Function Fθ,αθ(w) is supermodular in (θ,w) ∈
R × R+. Therefore, derivative F′θ,αθ

(w) increases in θ for
any w. (ii) For any given parameter m ≥ m̄, there exist
positive quantities θ̄ and w̄∗ such that

inf
w>αθ̄

F′̄θ,αθ̄
w( ) �−1 and w̄∗ :� inf arg inf

w>αθ̄

F′̄θ,αθ̄
w( )

{ }
,

respectively.

(28)

Furthermore, we have

0 ≤ θ̄ <
m
r
β−

r
ρ and w̄∗ ∈ αθ̄,∞

[ )
. (29)

Lemma 5(i) implies that the value θ̄ as defined in (28)
is unique and (ii) further indicates that it is upper
and lower bounded. Therefore, the value of θ̄ can be
identified using binary search. The lower bound zero
implies that the value function is nondecreasing on
[0, αθ̄]. Therefore, the maximizer of the value func-
tion is nonnegative. This further implies that, if the
monitoring cost is higher than m̄, it would be too
costly for the principal to always monitor the agent.
The upper bound can be used in a binary search

Figure 3. (Color online) Split of the Low and High Monitor-
ing Cost
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algorithm to find θ̄. Finally, (29) also indicates that the
endogenous upper bound w̄∗ is indeed finite.

Now we are ready to define the following value
function F(w) based on Fθ̄,αθ̄

(w),

F w( ) :� Fθ̄,αθ̄
w( ), if w ≤ w̄∗,

Fθ̄,αθ̄
w̄∗( ) − w − w̄∗( ), otherwise.

{
(30)

Here are some key properties of the value function
that are essential for proving its optimality.

Proposition 4. For m ≥ m̄, we have
i. Function F(w) is strictly concave on w ∈ [0, w̄∗] with

F′(w) � −1 for w ≥ w̄∗.
ii. For anyw ∈ (αθ̄, w̄

∗], we have rF(w) > ρwF′(w) −m.

Proposition 4(i) is a standard property that often
arises in the dynamic contracting literature; it is the
foundation for proving that F(w) is the optimal value
function. Proposition 4(ii), however, appears unique
to our setting and requires a novel proof based on
Proposition 3. Comparing this differential inequality
with the differential Equation (17), it is clear that, for
any promised utility w above the threshold αθ̄, the
principal is better off not to monitor. This condition is
critical in proving optimality of the threshold struc-
ture in our contract.

Based on the calculation of threshold αθ̄ and upper
bound w̄∗ in Lemma 5, we can establish that the op-
timal contract is Γd(w∗;αθ̄, w̄

∗) following Definition 1,
in which w∗ is a maximizer of function F(w) defined
in (30).

Figure 4(a) provides a sample sketch of the prin-
cipal’s value function. Under this particular param-
eter setting, we have αθ̄ > β, and therefore, according
to Proposition 3, the value function demonstrates the
smooth pasting property at αθ̄.

Figure 4(b) presents a sample trajectory of the
promised utility according to the optimal contract,
using the same parameter values as in Figure 4(a). As

we can see, in this particular example, we have αθ̄ > β
and w∗ > αθ̄. Therefore, the principal starts the con-
tract with the initial promised utility w∗ without
monitoring the agent. As long as Wt is above αθ̄, the
promised utility Wt takes a downward jump of β for
each arrival (at time t1, t2, t3, and t6 in the figure). In
this sample trajectory, the promised utility drops
below αθ̄ at time t3. The principal starts monitoring
the agent at this point while the promised utility Wt

cumulates interest and increases along the expo-
nential curve (10) until it reaches αθ̄ regardless of
arrivals (t4 and t5) in the interval [t3, t′). When the
promised utility climbs back to αθ̄ (at time t′), it keeps
increasing along the other exponential curve (12) as
long as there is no arrival. Aflowpayment startswhen
Wt reaches w̄ at time t̂ and stops when another arrival
(at t6 in this figure) drops Wt to below w̄∗ again.
Similar to Proposition 2 andTheorem1 for the equal

discount case, the following result establishes the
optimality for the case of ρ > r.

Theorem 2. For m ≥ m̄ and any incentive compatible
contract Γ that yields an agent’s utility w, we have U(Γ) ≤
F(w) ≤F(w∗) �U(Γd(w∗;αθ̄,w̄

∗)). Therefore, contract Γd(w∗;
αθ̄, w̄

∗) is the optimal contract, which yields utilities F(w∗)
for the principal and w∗ for the agent.
It is worth noting that, under the optimal contract

Γd(w∗;αθ̄, w̄
∗), it is possible that the agent’s promised

utility never reaches zero. That is, constraint (IR) is
never binding. In fact, as long as αθ̄ > β, a down-
ward jump induced by an arrival at most brings the
promised utility Wt down to αθ̄ − β and never lower.
(Figure 4 depicts such a case.) This phenomenon
contrasts sharply with long-held insights in the op-
timalmechanism/contract design literature, inwhich
the individual rationality constraint is generally
binding. Therefore, a curious reader may wonder if
the agent is overpaid under our definition of contract
Γd(w∗;αθ̄, w̄

∗) when the monitoring threshold αθ̄ > β.

Figure 4. (Color online) High Monitoring Cost (i.e., m ≥ m̄)
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In fact, similar to (22), for anymonitoring threshold
α > β, starting from the lowest possible promised
utility level α − β, it takes time 1

ρ ln
α

α−β for monitoring
to stop. This time increases as α decreases and ap-
proaches infinity as α decreases to β. Therefore, the
higher the value of α, the shorter the monitoring time
period during which the principal has to endure the
monitoring cost at rate m. This explains why, for high
monitoring cost m (as in the current case), the prin-
cipal is willing to set a threshold α higher than β in
order to avoid long episodes of monitoring the agent.
Even though the agent’s promised utility is main-
tained at strictly positive levels, this strategy yields
lower monitoring costs than keeping the threshold at β.
This phenomenon highlights the trade-off that the
principal faces between payments to the agent and
monitoring costs.

4.2. Low Monitoring Cost
Wenow consider the casewhen themonitoring costm
is lower than m̄. First, it is helpful to consider the case
of m � m̄. Following the previous section, it is easy
to verify that θ̄ � 0 and αθ̄ � β. In this case, the
function F(w) is linear (in fact, constant) for w ∈ [0, β).
If we decrease m further and still follow contract Γd,
then Lemma 5 yields a negative θ̄. Loosely speaking,
the corresponding value function is decreasing, and
therefore, the optimal contract is to always monitor
the agent and keep the promised utility at zero. In-
deed, this is the structure of the optimal contract.

More rigorously, contract Γd with a starting prom-
ised utility zero and monitoring threshold zero is,
in fact, not optimal. A value function following (L)
with a negative θ̄ is convex instead of concave. A
nonconcave value function cannot be optimal because
it can be improved through concavification with
randomization.

In fact, the exact form of the optimal value func-
tion varies with model parameters when m < m̄. In
Figure 3, two dotted curves, m̂ and m, further divide
them < m̄ area into three regions, each corresponding
to a distinct value function form. Here we provide the
expressions for m̂ and m as

m :� ρ − r
( )

β and

m̂ :� β ρ − r
( )

2λ + r( )/λ, if r > ρ − λ,

ρ + λ
( )

β, if r ≤ ρ − λ.

{
(31)

The simplest value function is a linear function,

F w( ) � −m
r
− w, (32)

which is optimal when m < m. In this case, the moni-
toring cost is so low that the principal should simply
pay off any positive promised utility immediately
and start monitoring the agent forever.

Ifm ∈ [m, m̂), the optimal value function is a slightly
more complex piecewise linear function of the fol-
lowing form,

F w( ) � −m
r
− 1 − ρ − r

( )
β −m

λ + r( )β
[ ]

w, if w ≤ β,

F β
( ) − w − β

( )
, if w > β.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (33)

The randomized contractΓr(w; β) following Definition 2
achieves the value function. That is, similar to
Proposition 2, we can show that F(w) � U(Γr(w; β)).
In other words, if, for whatever reason, the initial
promised utility is w > β, then the principal pays the
agent w − β to bring the promised utility down to β
and then keeps it there while paying a flow of interest
and information rent, (ρ + λ)β, to the agent until the
first arrival. Upon the arrival, the principal start
monitoring the agent forever and stops the payment.
Because the value function is decreasing, its maxi-
mizer is zero. Therefore, the optimal contract Γr(0; β)
effectively starts monitoring from the very beginning.
Ifm ∈ [m̂, m̄), however, the optimal value function is

more complex. It is the solution to DDE (H) for w ∈
[β, w̄∗] with boundary condition (Ll) for w ∈ [0, β),
where θ in (Ll) and w̄∗ are defined as the following,

inf
w>β

F′̄θ w( ) � −1 and w̄∗ � inf arg inf
w>β

F′̄θ w( )
{ }

. (34)

Therefore, function F(w), defined as

F w( ) � Fθ̄ w( ), if w ≤ w̄∗,
Fθ̄ w̄∗( ) + w̄∗ − w, if w > w̄∗,

{
(35)

is linear on [0, β) and nonlinear on [β, w̄∗) and takes a
slope of −1 on [w̄∗,∞). Furthermore, the next result
characterizes w̄∗ and θ̄.

Proposition 5. Form ∈ [m̂, m̄) and θ̄ and w̄∗ defined in (34),
we have

w̄∗ ≥ 2β and − 1+ ρ − r
λ

< θ̄ ≤ 0. (36)
The randomized contract Γr(w; w̄∗) achieves the value
function. That is, the proof of Proposition 2 already
establishes that F(w) � U(Γr(w; w̄∗)). Again, the value
function is decreasing. Therefore, following contract
Γr(0; w̄∗), the principal monitors the agent from the
beginning forever.

Figure 5 depicts the optimal value functions for
different monitoring costs. As we can see from the
figure, for the monitoring cost m3 ∈ [0,m), the value
function is a straight line with slope −1. If we further
increase the monitoring cost to m2 ∈ [m, m̂), the value
function becomes a piecewise linear function. If the
monitoring cost further increases to m1 ∈ [m̂, m̄), the
value function is nonlinear in the interval [β, w̄∗)with
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an endogenous w̄∗ > 2β. Finally, the value function
decreases with the monitoring cost.

Now we are ready to show our main result of this
section.

Theorem 3. For m < m̄ and any incentive compatible
contract Γ that yields an agent’s utility w, we have U(Γ) ≤
F(w) ≤ F(0) � −m/r, in which concave function F(w) is
defined as (32) for m ∈ [0,m), (33) for m ∈ [m, m̂), and (35)
for m ∈ [m̂, m̄), where θ̄ and w̄∗ are defined in (34).Therefore,
it is optimal for the principal to always monitor the agent.

4.3. Exogenous Upper Bound
In certain practical settings, the principal may not be
able to allow the promised utility to grow too high
before paying the agent. This is especially true if the
agent’s discount rate is close to the principal’s, in
which case the endogenous upper bound w̄∗, although
finite, tends to be very large. Therefore, in this section,
we allow the model to include an exogenous upper
bound w̄ on the promised utility. That is, our opti-
mization problem has an additional constraintw ≤ w̄,
similar to the case of ρ � r.

It is clear that, if the exogenous upper bound w̄ is
higher than the endogenous w̄∗, then the constraint
w ≤ w̄ is not binding, and it has no effect on the op-
timal contract. Therefore, we focus on the situation in
which, after computing w̄∗ without considering w̄, the
principal realizes that w̄ < w̄∗.

An immediate observation is that the threshold m̄,
which separates the high and low monitoring cost
regions, needs to change from (24) to the following:

m̄ w̄( ) :� inf
w∈ β,w̄( ]

r
J′ w( ) . (37)

Obviously, this new threshold m̄(w̄) increases in the
upper bound w̄ and, therefore, is greater than or equal

to m̄ defined in (24). Therefore, the principal may
choose to always monitor the agent for higher moni-
toring costs comparing with the base model with-
out w̄. This is intuitive not only mathematically, but
also practically. The upper bound pushes the prin-
cipal to start payments “prematurely.” Given the
trade-off between payments and monitoring costs,
such a pressure makes monitoring more favorable.
Finally, thresholds m̂ and m do not change with the

upper bound w̄. The main results of this section only
require slight changes to accommodate the upper
bound w̄. For example, in specifying the monitor-
ing threshold αθ̄ and optimal value functions, (28)
and (34) are changed to F′̄

θ,αθ̄
(w̄) � −1 and F′̄

θ
(w̄) � −1,

respectively. The optimal contract for high monitor-
ing cost is Γd(w∗;αθ̄, w̄) in which w∗ is the maximizer
of the corresponding updated value function. For the
low monitoring cost case, contract Γr(0; w̄) achieves
the optimal value function in place of Γr(0; w̄∗).

5. Computation
It is worth pointing out that the optimal value func-
tions and contracts presented in Sections 3 and 4 are
very easy to compute. For the value function Fθ(w̄)(w)
of Section 3, we only need to first solve the func-
tion J(w) following DDE (H) using, for example, the
standard shooting method starting from J(w) � 1 for
w ∈ [0, β). After obtaining the function J(w), we obtain
the slope θ(w̄) using (20). Then the value function
Fθ(w̄)(w) is readily available following (18). The exact
definition of the optimal contract follows the initial
promised utility w∗, which is a maximizer of Fθ(w̄)(w).
After obtaining the optimal contract, implementing it
over time becomes very easy as we have already
discussed in Section 3.
When the principal is more patient than the agent

(ρ > r), threshold m̄ defined in (24) is easy to compute.
In fact, it has closed form expressions if r and p do not
differ too much, as shown in the following result.

Proposition 6. (a) For r∈ (0,ρ−λ], we have m̄ � (ρ + λ)β;
(b) for r ∈ (ρ − λ, r̄], we have

m̄ � ρ + λ
( )

β 1 − βρ

β 2ρ + λ
( )[ ]λ+r

ρ −1
,

in which r̄ is the unique solution to the following equation
on [ρ − λ, ρ],

1 − βρ

β 2ρ + λ
( )[ ]λ+r̄

ρ −1
� 1 − ρ − r̄

λ
. (38)

If the monitoring cost is higher than the threshold m̄,
the computation is slightly more complex than the
case with equal discount. In order to specify the

Figure 5. (Color online) Value Functions with Low Monitor-
ing Costs
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optimal value function Fθ,αθ̄
(w), we also need to search

for the slope θ̄ through a binary search. In Algorithm 1,
we provide a pseudo code for the arguably more
complex case of ρ > r and m > m̄(w̄) with an exoge-
nous upper bound w̄.

Algorithm 1
1: Let Stopping ← 0, θl ← 0, and θh ← m

β−r/ρ

r
fol-

lowing (29)
2: while Stopping � 0, do
3: Let θ ← (θl + θh)/2
4: Compute αθ according to (26) in which the

function f is defined in (25)
5: Use the shooting method to compute function

Fθ(w) following DDE (H) for w ≥ αθ with
boundary condition (L) on w ∈ [0, αθ) until a
point ŵ ∈ [αθ, w̄] that must satisfy one of the
following cases:

6: if F′θ,αθ
(ŵ) < −1, then

7: Let θl ← θ
8: else, if (ŵ < w̄ and F′′θ,αθ

(ŵ) ≥ 0) or ŵ � w̄, then
9: if (F′θ,αθ

(ŵ) > −1 and ŵ < w̄), then
10: Let θh ← θ
11: else, if (F′θ,αθ

(ŵ) � −1 or ŵ � w̄), then
12: Let w̄∗ ← ŵ, θ̄ ← θ, and Stopping ← 1
13: end if
14: end if
15: end while

The logic behind steps 6 and 7 of Algorithm 1
follows from Lemma 5 and Proposition 7.

Proposition 7. Function Fθ,αθ(w) is strictly concave on
w ∈ [0, ŵ] for ŵ defined as the following:

ŵ :�
inf arg inf

w>αθ

F′θ,αθ
w( )

{ }
, if θ ≥ θ̄,

inf w : w ≥ αθ and
{

F′θ,αθ
w( ) < −1

}
, if θ < θ̄.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(39)

Following the definition of θ̄ in (28), Lemma 5(i)
implies that, if θ ≥ θ̄, we must have Fθ,αθ(w) ≥ −1
for all w ≥ αθ. Therefore, the existence of a point ŵ
such that Fθ,αθ(ŵ) < −1 must imply that θ < θ̄. Con-
sequently, value θ serves as a lower bound θl for θ̄.
Furthermore, Proposition 7 guarantees that, if θ < θ̄,
for any w ≤ ŵ, we must have F

′′
θ,αθ

(w) < 0. Therefore,
the search does not stop prematurely at a point fol-
lowing steps 8 and 9.

The logic behind steps 8 and 9 also follows from
Proposition 7 together with Lemma 5(i). In particular,
Proposition 7 implies that, for θ > θ̄, as soon as we
observe a point w̄ with F

′′
θ,αθ

(ŵ) � 0 for the first time,
the point ŵmust be the minimum of derivative F′θ,αθ

(w)
over the entire interval [αθ,∞). Hence, if F′θ,αθ

(ŵ) > −1,
we must have θ > θ̄.

Overall, the algorithm involves a binary search for
θ̄ and solving for the value function given any current
choice of θ. This computation, again, is very easy to
implement. Overall, simple computation and contract
structures make our results easily implementable in
practice.

6. A Simple Cyclic Monitoring Schedule
The optimal monitoring and payment schedules are
dynamically adjusted following changes of the prom-
ised utility. In certain situations, the principal may
prefer an even simpler, more “regular” schedule. For
example, one may think of a “periodic review” con-
tract, which is determined by a set of parameters
(T,Nd, π).7 Under this contract, the principal reviews
the performance of the agent every T time units. If the
number of arrivals during this period is less than or
equal to Nd, the agent collects an amount of payment
π; otherwise, the agent is not compensated for this
cycle. Although payment to the agent is based on the
actual performance, such a contract may not be in-
centive compatible. Imagine that the number of ar-
rivals is already Nd in the middle of the cycle. In this
case, the agent has no incentive to continue the effort
for the remaining time in the cycle. Similarly, the agent
may notwant to bother exerting effort toward the end of
a cycle when the number of arrivals is still far belowNd.
Lack of full effort also implies that it may be hard to
determine the optimal values for the contract parame-
ters because the contract design is no longer an opti-
mization problem but involves a differential game.
Here we propose a different, incentive compatible,

cyclic contract that is very easy to compute and
manage. Each cycle starts with a flow payment until
an arrival, which starts amonitoring episode of a fixed
period of time without payment. After the monitor-
ing episode a new cycle starts. This schedule is not
only very easy to implement, its optimal parameters
(payment level and length of monitoring episode) are
also very easy to compute. For the equal discount
case, they are even in closed forms.
Now we derive the optimal parameters for this

contract. Denote � to be theflowpayment,T the length
of each monitoring period, and ŵ the agent’s con-
tinuation utility while being paid. An arrival brings
down this continuation utility by β as long as ŵ > β.
Therefore, we have

ŵ �
∫ ∞

0
λe−λt

∫ t

0
e−ρτ�dτ + e−ρt ŵ − β

( )[ ]
dt and

ŵ − β � e−ρTŵ,

which imply that

ŵ � 1
ρ

� − λβ
( )

and e−ρT � � − λ + ρ
( )

β

� − λβ
. (40)
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Clearly, to make the cyclic monitoring schedule mean-
ingful, the flow payment rate � must be no less than
(λ + ρ)β. Equation (40) reveals the one-to-one corre-
spondence between the payment �, maximal utility
ŵ, and monitoring period length T from binding
incentive constraints. Next, denote C(�) to be the
principal’s cost of this simple contract as a function of
the payment �. It is easy to verify that function C(�)
follows a recursive formulation:

C �( ) �
∫ ∞

0
λe−λt

∫ t

0
e−rτ�dτ + e−rt

∫ T

0
e−rτmdτ

[
+ e−r T+t( )C �( )

]
dt.

Therefore, following (40),

C �( ) � m
r
− m − �

λ + r − λ
� − λ + ρ

( )
β

� − λβ

( )r
ρ
,

from which we can compute the optimal �∗ that min-
imizes C(�) following a simple one-dimensional search
and then obtain the optimal value following (40).

For the equal discount case (i.e., r � ρ), we may
express the principal’s cost as a simple convex func-
tion of payment rate �:

C �( ) � � − λβ

r
+ λmβ

r�
,

which isminimized at �∗ � ̅̅̅̅̅̅
λmβ

√
whenm > (λ + ρ)2β/λ.

The corresponding monitoring time T∗ is

T∗ � 1
r
ln

̅̅̅̅̅̅
λmβ

√ − λβ̅̅̅̅̅̅
λmβ

√ − β λ + r( ) .

The principal’s optimal cost under this contract is
C(�∗) � (2 ̅̅̅̅̅̅

λβm
√ − λβ)/r. Whenm ≤ (λ + ρ)2β/λ, on the

other hand, the optimal flow payment is �∗ � (ρ + λ)β <
(λ + ρ)β, and the first arrival triggers monitoring
forever (T∗ � ∞). The corresponding principal’s value
is C(�∗) � β + λm/[r(r + λ)].

Figure 6 provides numerical comparisons between
the optimal policy and the cyclic monitoring schedule
proposed. As we can see, the suboptimality of the
cyclic monitoring schedule is substantial when m is
high and/or the discount rate of the agent is close to
that of the principal. The intuition is that, comparing
with the cyclic monitoring schedule, under which
each arrival triggers a costlymonitoring episode, the
optimal policy leads to relatively infrequent moni-
toring in the two scenarios. To be more specific,
when m is high, the principal reduces monitoring
frequency in the optimal policy to avoid high moni-
toring cost. When the discount rate of the agent is
close to that of the principal, the principal sets a high
threshold in the promised utility for payment (back-
loading). As a result, in the optimal policy, it may take
many arrivals before a monitoring episode is triggered.

7. Concluding Remarks and
Further Discussion

This paper studies the optimal monitoring and pay-
ment mechanism to induce an agent’s effort in order
to reduce the arrival rate of adverse events. Under
condition (3), the contract design problem can be
formulated as a continuous time optimal control
model. The structures of its optimal solution depend
on model parameters, in particular, the monitoring
cost. The variations of the contract structures high-
light the trade-off between the monitoring cost and
direct payment to the agent. The optimal contract
structures are simple to describe, easy to compute and
implement, and intuitive to explain. In particular, the
key for computing the optimal contract only involves
numerically solving a delay differential equation com-
bined with a single dimensional search.
Our results easily extend to discrete time settings. The

only issueworthmentioning is that toward the very end
of a monitoring episode, it may be optimal to randomly
stop monitoring either in the current period or in the
next period. This is because, in discrete time settings, the

Figure 6. (Color online) Performance of the Cyclic Monitoring Schedule with Parameters λ � 10, β � 1, r � 0.99, and ρ � 1.5 in
(a) and m � 5 in (b)
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switch between monitoring and nonmonitoring may
not be a single threshold any more. Instead, there could
be an interval in which the optimal value function is
linear. The corresponding control policy when the
promised utilityw falls in this interval is to randomize
it between either end of the interval. The upper bound
of the interval corresponds to stop monitoring, and
the lower bound of the interval corresponds to con-
tinue monitoring for one more period after which the
promised utility would increase to the upper bound.

Recall that our paper has focused on the case in
which the monitor cost is below KΔλ − b such that
the principal should always induce full effort from
the agent. When condition (3) does not hold, we
argue that the principal should never monitor but
allow the agent to shirk instead. In fact, consider
any contract with monitoring and construct another
contract during which the monitoring periods are
replaced with periods that the agent shirks. (When
the agent is shirking, the principal does not pay the
effort cost b.) Path-wise, the dynamics of the agent’s
promised utility remain the same although the
principal’s value improves because KΔλ − b < m.
Therefore, in a problem in which the principal al-
lows the agent to shirk, the optimal shirking and
payment schedule can be solved exactly the same
as we have done in the paper, using a monitoring cost
of m � KΔλ − b. Although the shirking problem ap-
pears quite challenging for the Brownianmotion (Zhu
2013) and the good arrival Poisson (end of section 4 of
Sun and Tian 2018) settings, it is readily solved in the
bad arrival Poisson setting as a special case of our
paper.
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Appendix A. Proofs in Section 2

Proof of Lemma1. For a generic contract Γ and effort process
Λ, following Equations (1) and (2), we define the agent’s total
expected utility conditioned on the information available at
time t as

ut Γ,Λ( ) :� EΓ,Λ

∫ ∞

0
e−ρτ dLτ + b Iλτ�λ̄ dτ

( )[ ⃒⃒⃒⃒
^t

]
�
∫ t

0
e−ρτ dLτ + b Iλτ�̄λ dτ

( ) + e−ρtWt Γ,Λ( ). (A.1)
Therefore, u0(Γ,Λ) � u(Γ,Λ). Moreover, it is easy to verify
that process {ut}t≥0 is an ^t-martingale by conditional ex-
pectation’s tower property. Define processes

Ms,Λ
t :�

∫ t

0
yτλτ dτ −Ns

t

and Mn,Λ
t :�

∫ t

0
1 − yτ
( )

λτ dτ −Nn
t . (A.2)

Following the Martingale representation theorem (see, for ex-
ample, theorem T9 of Brémaud 1981), there exist ^t-pre-
dictable processes {Hs

t (Γ,Λ)}t≥0 and {Hn
t (Γ,Λ)}t≥0 such that

ut Γ,Λ( ) � u0 Γ,Λ( ) +
∫ t

0
e−ρτ Hs

τ Γ,Λ( ) dMs,Λ
τ

[
+Hn

τ Γ,Λ( ) dMn,Λ
τ

]
, ∀t ≥ 0. (A.3)

On the one hand, (A.1) implies

dut � e−ρt dLt + b Iλt�λ̄ dt − ρWt Γ,Λ( ) dt[
+ dWt Γ,Λ( )]. (A.4)

On the other hand, (A.3) implies

dut � e−ρt
[
Hs

t Γ,Λ( ) dMs,Λ
t +Hn

t Γ,Λ( ) dMn,Λ
t

]
� e−ρt Hs

t Γ,Λ( ) ytλt dt − dNs
t

( )[
+Hn

t Γ,Λ( ) 1 − yt
( )

λt dt − dNn
t

( )]
, (A.5)

where the second equality follows from the definitions
in (A.2). Combining (A.4) and (A.5) yields (PK). □

Proof of Lemma 2. This result corresponds to proposition 1
in Biais et al. (2010). Denote ^t-measurable random variable
ũt(Γ,Λ,Λ) to represent the agent’s utility under effort process
Λ before time t and effort process Λ afterward. We have

ũt Γ,Λ,Λ( )
�

∫ t

0
e−ρτ dLτ + b Iλτ�λ̄ dτ

( )
+ e−ρtWt Γ,Λ( ). (A.6)

Consider any sample trajectory of {Ns
t ,N

n
t }t≥0 and effort

process Λ and Λ,

ũt Γ,Λ,Λ( ) � ut Γ,Λ( ) +
∫ t

0
e−ρτb Iλτ�λ̄ dτ

� u0 Γ,Λ( ) +
∫ t

0
e−ρτ Hs

τ Γ,Λ( ) dMs,Λ
τ

[
+Hn

τ Γ,Λ( ) dMn,Λ
τ + b Iλτ�λ̄ dτ

]
� u0 Γ,Λ( ) +

∫ t

0
e−ρτ

[
Hs

τ Γ,Λ( ) dMs,Λ
τ

+Hn
τ Γ,Λ( ) dMn,Λ

τ

]
−

∫ t

0
e−ρτ yτHs

τ Γ,Λ( ) + 1 − yτ
( )[

× Hn
τ Γ,Λ( ) − β

]
ΔλIλτ�λ̄ dτ,

where the first equality follows from (A.1) and (A.6), the
second equality from (A.3), the third equality from (A.2)
and the definition of β in (5).

Consider any two times t′ < t,

E ũt Γ,Λ,Λ( ) |^t′[ ]
� u0 Γ,Λ( )+

∫ t′

0
e−ρτ

[
Hs

τ Γ,Λ( )dMs,Λ
τ +Hn

τ Γ,Λ( )dMn,Λ
τ

]
−
∫ t′

0
e−ρτ yτHs

τ Γ,Λ( )+ 1−yτ
( )[

Hn
τ Γ,Λ( )−β

]
ΔλIλτ�λ̄ dτ

−E

∫ t

t′
e−ρτ yτHs

τ Γ,Λ( )+ 1−yτ
( )[[

×Hn
τ Γ,Λ( )−β

]
ΔλIλτ�λ̄ dτ

⃒⃒⃒
^t′

]
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� ũt′ Γ,Λ,Λ( ) − ΔλE

∫ t

t′
e−ρτ yτHs

τ Γ,Λ( )[[
+ 1 − yτ
( )

Hn
τ Γ,Λ( ) − β

]
Iλτ�λ̄ dτ

⃒⃒⃒
^t′

]
. (A.7)

i. On the one hand, if (IC) holds under contract Γ, (A.7)
suggests that

E
[
ũt Γ,Λ,Λ( ) |^t′

] ≤ ũt′ Γ,Λ,Λ( ),
which implies that the process {ũt}t≥0 is a super-martingale.
Taking t′ � 0 and letting t → ∞, we have

u Γ,Λ( ) � lim
t→∞

{
E ũt Γ,Λ,Λ( ) |^0[ ]} ≤ ũ0 Γ,Λ,Λ( )

� u Γ,Λ( ). (A.8)
That is, effort process Λ dominates any other process Λ
under contract Γ, or Γ is incentive compatible if (IC) holds.

ii. On the other hand, suppose (IC) does not hold, or
yτHs

τ(Γ,Λ) + (1 − yτ)Hn
τ (Γ,Λ) < β for mτ � 0 over a subset

of [0, t] with positive measure. Define an effort process Λ �
{λτ}τ≥0 such that λτ � λ for ∀τ ∈ (t,∞) and for ∀τ ∈ [0, t]:

λτ �
λ̄ if yτHs

τ Γ,Λ( ) + 1 − yτ
( )

Hn
τ Γ,Λ( )

< β and mτ � 0,
λ otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Clearly, we must have

− E

∫ t

0
e−ρτ yτHs

τ Γ,Λ( ) + 1 − yτ
( )

Hn
τ Γ,Λ( ) − β

[ ][
×ΔλIΛτ�λ̄ dτ

⃒⃒⃒
^t′

]
> 0.

As a result, taking t′ � 0 and letting t → ∞ in (A.7), we
obtain

u Γ,Λ( ) � lim
t→∞

{
E ũt Γ,Λ,Λ( ) |^0[ ]} > ũ0 Γ,Λ,Λ( )

� u Γ,Λ( ).
This implies that effort process Λ dominates Λ, or contract Γ
is not incentive compatible when (IC) does not hold. □

Proof of Lemma 3. Following Itô’s change of variable for-
mula with function F (see, for example, theorem 14.3.2 of
Cohen and Elliott 2015), for any τ ≥ 0, we have

e−rτF Wτ( )
� F w( ) +

∫ τ

0
e−rtdF Wt( ) − re−rtF Wt( )dt[ ]

� F w( ) +
∫ τ

0
e−rt mtdt + dLt( ) +

∫ τ

0
e−rtd!t, (A.9)

where

d!t :� dF Wt( ) − rF Wt( )dt −mtdt − dLt
� F′ Wt( ) ρWt + λ ytHs

t + 1 − yt
( )

Hn
t

( )( )
dt

[
− �tdt] − rF Wt( )dt
+ F Wt −Hs

tdN
s
t −Hn

t dN
n
t − dIt

( ) − F Wt( )
−mtdt − dLt.

Further define

d@t :� F Wt −Hs
t

( ) − F Wt( )[ ]
dNs

t − λytdt
( )

+ F Wt −Hn
t

( ) − F Wt( )[ ]
× dNn

t − λ 1 − yt
( )

dt
( )

. (A.10)
Because function F(w) is concave and F′(w) ≥ −1, we have

d!t ≤ F′ Wt( ) ρWt + λ ytHs
t + 1 − yt

( )
Hn

t

( )( )
dt

+ F Wt −Hs
tdN

s
t −Hn

t dN
n
t

( )
− F′ Wt( )�tdt − F′ Wt −Hs

tdN
s
t −Hn

t dN
n
t

( )
dIt

− F Wt( ) − rF Wt( )dt −mtdt − dLt
≤ F′ Wt( ) ρWt + λ ytHs

t + 1 − yt
( )

Hn
t

( )( )
dt

− rF Wt( )dt −mtdt + F Wt −Hs
tdN

s
t

(
−Hn

t dN
n
t

) − F Wt( )
� F′ Wt( ) ρWt + λ ytHs

t + 1 − yt
( )

Hn
t

( )( )
dt

− rF Wt( )dt −mtdt + F Wt −Hs
t

( )[
− F Wt( )]dNs

t

+ F Wt −Hn
t

( ) − F Wt( )[ ]
dNn

t

� d@t +Ψtdt.

Therefore, if Ψt ≤ 0, we must have d!t ≤ d@t almost surely.
Taking the expectation on both sides of (A.9), we im-
mediately have

F w( ) ≥ EΓ,Λ e−rτF Wτ( ) −
∫ τ

0
e−rt mtdt + dLt( )

[ ]
,

where we use the fact that
∫ τ

0 e−rtd@t is a martingale.
Taking τ → ∞, the preceding inequality reduces to

F w( ) ≥ −EΓ,Λ

∫ ∞

0
e−rt mtdt + dLt( )

[ ]
� U Γ( ).

This completes the proof. □

Appendix B. Proofs in Section 3
We first present the following technical lemma.

Lemma B.1. For any α ≥ β, starting with any boundary con-
dition F(w) that is continuous for w ∈ [0, α], DDE (H) uniquely
determines a continuous function F(w) on w ∈ [0,∞). Further-
more, function F(w) is increasing on [α,∞) if either of the following
two conditions holds.

i. Function F(w) is positive and nondecreasing on [0, α].
ii. Function F(w) is increasing within [0, α] and F(α) ≥ 0.

Proof. Solving DDE (H) with well-defined boundary con-
ditions over w ∈ [0, α] is equivalent to solving a sequence
of initial value problems over interval [α + kβ, α + (k + 1)β],
where k � 0, 1, . . .. This sequence of initial value problems
satisfies the Cauchy–Lipschitz theorem (see, for example,
theorem 1.1 of Hartman 1982); therefore, a unique and dif-
ferentiable solution is guaranteed over w ∈ (α,∞).

i. If F(w) is positive and nondecreasing for w ∈ [0, α],
suppose it is nonincreasing for some w ≥ α. Let

ŵ :� min
{
w|F′ w+( ) ≤ 0 and w ≥ α

}
.
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DDE (H) implies

rF ŵ( ) + λ F ŵ( ) − F ŵ − β
( )[ ] ≤ 0,

which is impossible because F(ŵ) ≥ F(α) > 0 as assumed,
and F(ŵ) ≥ F(ŵ − β) for w ∈ [α, ŵ] from the definition of ŵ.
Therefore, we must have F′(w) > 0 for ∀w ∈ [α,∞). Part (ii)
can be proven similarly. □

Lemma B.2. Consider the case r � ρ. Function J(w), which is the
solution of DDE (H) with boundary condition J(w) � 1 on w ∈
[0, β) is increasing and strictly convex on w ∈ [β,∞).
Proof. Note that following DDE (H), function J(w) is dif-
ferentiable for w > β and is twice-differentiable except at
w � 2β. Taking derivatives on both sides of DDE (H) yields

J′′ w( ) � λ + r − ρ
( )

J′ w( ) − λJ′ w − β
( )

ρw + βλ
, for

w ∈ β, 2β
( ) ∪ 2β,∞( )

. (B.1)
In particular, there is

J w( ) � r
λ + r

ρw + λβ

ρβ + λβ

( )λ+r
ρ + λ

λ + r
, for

w ∈ β, 2β
( )

, (B.2)
whose first and second derivatives are

J′ w( ) � r ρw + λβ
( )λ+r−ρ

ρ

ρβ + λβ
( )λ+r

ρ

J′′ w( ) � r ρw + λβ
( )λ+r−2ρ

ρ

ρβ + λβ
( )λ+r

ρ

λ + r − ρ
( )

. (B.3)

When r � ρ, the closed-form expression in (B.2) is clearly
convex; that is, J(w) is convex for w ∈ [β, 2β). Consider the
point w � 2β; (B.1) and (B.3) yield

J′′ 2β+
( ) � λr 2βρ + βλ

( )λ
ρ − βρ + βλ

( )λ
ρ

[ ]
2βρ + βλ
( )

βρ + βλ
( )λ+r

ρ

> 0.

Therefore, we only need to show J′′(w) > 0 for all w > 2β. We
prove by contradiction. Suppose, on the contrary, there exists
some w > 2β such that J′′(w) ≤ 0. Define

ŵ :� min w|J′ w( ) ≤ J′ w − β
( )

and w > 2β
{ }

.

By construction, we have J′′(w) > 0 for all w ∈ (β, ŵ). First, ŵ
cannot be in (2β, 3β] because otherwise we would have
ŵ − β ≤ 2β, and

J′ ŵ( ) > J′ 2β
( ) ≥ J′ ŵ − β

( )
,

which contradicts the definition of ŵ. Second, ŵ cannot be
greater than 3β either because otherwise we have

J′ ŵ( ) � J′ ŵ − β
( ) + ∫ β

0
J′′ ŵ − β + x

( )
dx

> J′ ŵ − β
( )

,

which, again, contradicts the definition of ŵ. Therefore,
we must have J′′(w) > 0 for all w > 2β. Last but not least,

monotonicity of J(w) follows directly from Lemma B.1, which
completes the proof. □

Proof of Proposition 1. (i) Given that θ(w̄) � m
r J

′(w̄) − 1
and J′(w̄) ≥ 0 (from Lemma B.2), we have θ(w̄) ≥ −1. We
prove θ(w̄) < m

βr by contradiction. Suppose, on the contrary,
we have θ(w̄) ≥ m

βr. It’s easy to verify that function Fθ(w̄)(w) can
be decomposed as

Fθ w̄( ) w( ) � θ w̄( ) − m
rβ

( )
G1 w( ) +m

r
G2 w( ),

for w ≥ 0,
in which functions G1(w) and G2(w) are the solution of DDE
(H) with boundary conditions being

G1 w( ) � w and G2 w( ) � w
β
− 1, ∀w ∈ 0, β

[ )
,

respectively. Because G1(w) and G2(w) are both increasing on
[0, β] and nonnegative at w � β, we know that they are
both increasing on [β,∞) by Lemma B.1. As such, Fθ(w̄)(w̄)
is increasing on [β,∞) as well, which contradicts to
F′θ(w̄)(w) � −1. Therefore, contradiction is established, and
we must have θw̄< m

βr.
(ii) We only need to show that F′θ(w̄)(β+) ≤ F′θ(w̄)(β−) be-

cause, for w > β, concavity of Fθ(w̄)(w) follows immediately
from the strict convexity of function J(w) in Lemma B.2 and
the decomposition in (18). If r � ρ, according to (H), we
have

F′θ w̄( ) β+
( ) � λ + r( )Fθ w̄( ) β

( ) − λFθ w̄( ) 0( )
r + λ( )β

� λ

λ + r
θ w̄( ) ≤ θ w̄( ) � F′θ w̄( ) β−

( )
. (B.4)

(iii) By the definition of θ(w̄), we know that θ(w̄) is strictly
increasing in w̄ (recall the convexity of J(w)). Therefore, for
any w̃ ∈ [β, w̄), we have θ(w̄) > θ(w̃). For any w ≥ 0, de-
composition (18) implies that

Fθ w̄( ) w( ) − Fθ w̃( ) w( ) � [
θ w̄( ) − θ w̃( )]w > 0.

This completes the proof. □

Lemma B.3. Consider a concave function F(w) that satisfies
Equations (H), (U), and (19). For any w ≥ β, the following
function Φ(w, x) is increasing in x ∈ (−∞, 0] and decreasing in
x ∈ [0,∞),

Φ w, x( ) :� F′ w( )x + F w − x( ). (B.5)
Proof. Taking the first derivative of Φ(w, x) with respect to x
yields

∂Φ w, x( )
∂x

� F′ w( ) − F′ w − x( ).

Because F(w) is concave, we know that ∂Φ(w,x)
∂x ≥ 0 when x ≤ 0

and ∂Φ(w,x)
∂x ≤ 0 when x ≥ 0. That is, for any w ≥ β, Φ(w, x) is

increasing in x ∈ (−∞, 0] and decreasing in x ∈ [0,∞). □

Proof of Proposition 2. Starting with any promised utility
W0 � w ∈ [0, w̄], consider the process {Wt}t≥0 according to
(PK) in which the counting processes {(Ns

t ,N
n
t )}t≥0 are gen-

erated from the effort process Λ under contracts Γd(w; β, w̄) or
Γr(w; w̄). Clearly, we must have 0 ≤ Wt ≤ w̄ for ∀t.
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(i) First, we consider contract Γd(w; β, w̄) defined in
Definition 1. Following Itô’s formula for jump processes,
we have

dFθ w̄( ) Wt( )
� Fθ w̄( ) Wt − dIt( ) − Fθ w̄( ) Wt( )[ ] + F′θ w̄( )
× Wt( ) ρWt + λt ytHs

t + 1 − yt
( )

Hn
t

[ ] − �t
{ }

dt

+ Fθ w̄( ) Wt −Hs
t

( ) − Fθ w̄( ) Wt( )[ ]
dNs

t

+ Fθ w̄( ) Wt −Hn
t

( ) − Fθ w̄( ) Wt( )[ ]
dNn

t . (B.6)
Following the dynamics of Wt according to Definition 1,
we have

dFθ w̄( ) Wt( )
� F′θ w̄( ) Wt( ) ρWtIWt<β + ρWt + λβ

( )
Iβ≤Wt<w̄

( )
dt

+ Fθ w̄( ) Wt − β
( ) − Fθ w̄( ) Wt( )[ ]

Iβ≤Wt≤w̄dNt. (B.7)
Note that dNs

t and dNn
t take values zero or one in the pre-

ceding expressions.
For any τ ≥ 0, we have

e−rτFθ w̄( ) Wτ( )
� Fθ w̄( ) w( ) +

∫ τ

0
Fθ w̄( ) Wt( ) de−rt

+
∫ τ

0
e−rtdFθ w̄( ) Wt( )

� Fθ w̄( ) w( ) +
∫ τ

0
e−rt F′θ w̄( ) Wt( ) ρWtIWt<β

([
+ ρWt + βλ
( )

Iβ≤Wt<w̄
) − rFθ w̄( ) Wt( )

]
dt

+
∫ τ

0
e−rt Fθ w̄( ) Wt − β

( ) − Fθ w̄( ) Wt( )[ ]
Iβ≤Wt≤w̄dNt. (B.8)

FromEquations (17) and (H), we know that Fθ(w̄)(w) satisfies

F′θ w̄( ) Wt( )ρWtIWt<β � rFθ w̄( ) Wt( ) +m
[ ]

IWt<β, and

F′θ w̄( ) Wt( ) ρWt + βλ
( )

Iβ≤Wt<w̄

� λ + r( )Fθ w̄( ) Wt( ) − λFθ w̄( ) Wt − β
( )[ ]

Iβ≤Wt<w̄.

Substituting these equations into (B.8), we obtain

e−rτFθ w̄( ) Wτ( )
� Fθ w̄( ) w( ) +

∫ τ

0
e−rt Fθ w̄( ) Wt − β

( )[
− Fθ w̄( ) Wt( )]Iβ≤Wt≤w̄dNt +

∫ τ

0
e−rt λ + r( )Fθ w̄( ) Wt( )[

− λFθ w̄( ) Wt − β
( )]

Iβ≤Wt<w̄dt

+
∫ τ

0
e−rt rFθ w̄( ) Wt( ) +m

( )
IWt<β

[ − rFθ w̄( ) Wt( )] dt
� Fθ w̄( ) w( ) +

∫ τ

0
e−rt mIWt<β

( + ρw̄ + βλ
( )

IWt�w̄
)
dt +Ωτ,

(B.9)
where the second equality utilizes Equation (U), and the
process {Ωτ}τ≥0, defined as

Ωτ :�
∫ τ

0
e−rt Fθ w̄( ) Wt − β

( ) − Fθ w̄( ) Wt( )[ ]
Iβ≤Wt≤w̄

× dNt − λdt( ),

is a martingale. Taking expectation on both sides of (B.9)
and letting τ → ∞, we have

Fθ w̄( ) w( ) � −EΓd w;β,w̄( ),Λ
∫ ∞

0
e−rt mIWt<β

([
+ ρw̄ + βλ

( )
IWt�w̄

)
dt
]

� −EΓd w;β,w̄( ),Λ
∫ ∞

0
e−rt mt dt + dLt( )

[ ]
� U Γd w; β, w̄

( )( )
,

where the second equality follows from Definition 1.
(ii) Next, we consider contract Γr(w; w̄) defined in

Definition 2. Following Itô’s formula for jump processes,
we have

dFθ w̄( ) Wt( )
� F′θ w̄( ) Wt( ) ρWt + λβ

( )
Iβ≤Wt<w̄dt

+ Fθ w̄( ) β
( ) − F Wt( )[ ]

dNn
t

{
+ Fθ w̄( ) 0( ) − Fθ w̄( ) Wt( )[ ]

dNs
t

}
Iβ≤Wt≤min w̄,2β{ }

+ Fθ w̄( ) Wt − β
( ) − Fθ w̄( ) Wt( )[ ]

Imin w̄,2β{ }<Wt≤w̄dN
n
t . (B.10)

For any time τ ≥ 0, we have

e−rτFθ w̄( ) Wτ( )
� Fθ w̄( ) w( ) +

∫ τ

0
Fθ w̄( ) Wt( )de−rt +

∫ τ

0
e−rtdFθ w̄( ) Wt( )

� Fθ w̄( ) w( ) +
∫ τ

0
e−rt F′θ w̄( ) Wt( )

(
× ρWt + λβ

( )
Iβ≤Wt<w̄ − rFθ w̄( ) Wt( )

)
dt

+
∫ τ

0
e−rt Fθ w̄( ) β

( ) − Fθ w̄( ) Wt( )[ ]
Iβ≤Wt≤min w̄,2β{ }dNn

t

{
+ Fθ w̄( ) 0( ) − Fθ w̄( ) Wt( )[ ]

Iβ≤Wt≤min w̄,2β{ } dNs
t

+ Fθ w̄( ) Wt − β
( ) − Fθ w̄( ) Wt( )[ ]

Imin w̄,2β{ }<Wt≤w̄dNt

}
(B.11)

� Fθ w̄( ) w( ) +
∫ τ

0
e−rt mIWt�0 dt

(
+ ρWt + βλ

( )
IWt�w̄ dt

) +Ωτ,

where the last equality follows from Equation (L), which
implies that Fθ(w̄)(0)(2 − Wt

β ) + Fθ(w̄)(β)(Wt
β − 1) � Fθ(w̄)(Wt − β),

and the process {Ωτ}τ≥0, defined as

Ωτ :�
∫ τ

0
e−rt

{(
Fθ w̄( ) 0( ) − Fθ w̄( ) Wt( )

)
.

× dNs
t − 2 −Wt

β

( )
λdt

( )
Iβ≤Wt≤min w̄,2β{ }

+ Fθ w̄( ) β
( ) − Fθ w̄( ) Wt( )( )

× dNn
t −

Wt

β
− 1

( )
λdt

( )
Iβ≤Wt≤min w̄,2β{ }

+ Fθ w̄( ) Wt − β
( ) − Fθ w̄( ) Wt( )( )

× dNt − λdt( )Imin w̄,2β{ }<Wt≤w̄

}
,

is a martingale.
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Taking expectation on both sides of (B.11) and letting
τ → ∞, we have

Fθ w̄( ) w( )
� −EΓr w;w̄( ),Λ

∫ ∞

0
e−rt mIWt�0 dt + ρw̄ + βλ

( )
IWt�w̄ dt

)( ][
� U Γr w; w̄( )( ).

This completes the proof. □

Proof of Theorem1. By Proposition 1, we know that Fθ(w̄)(w)
is concave and F′θ(w̄)(w) ≥ −1. Therefore, we only need to
show Ψt ≤ 0 holds almost surely (recall Lemma 3).

From Equation (8), we have

Ψt ≤ λ F′θ w̄( ) Wt( ) ytHs
t + 1 − yt

( )
Hn

t

( ) + ytFθ w̄( )
[

× Wt −Hs
t

( ) + 1 − yt
( )

Fθ w̄( ) Wt −Hn
t

( ) − Fθ w̄( ) Wt( )
]

+ F′θ w̄( ) Wt( )ρWt − rFθ w̄( ) Wt( ) −mt

≤ λΦ Wt, ytHs
t + 1 − yt

( )
Hn

t

( ) + F′θ w̄( ) Wt( )ρWt

− λ + r( )Fθ w̄( ) Wt( ) −mt, (B.12)

in which function Φ is defined in (B.5).
i. When Wt < β, we know that the principal monitors the

agent (i.e., mt � m). From Equation (17), we have

Ψt ≤ ρWtF′θ w̄( ) Wt( ) − rFθ w̄( ) Wt( ) −m � 0.

ii. When β ≤ Wt ≤ w̄, substituting (H) into inequality (B.12)
yields

Ψt ≤ λΦ Wt, ytHs
t + 1 − yt

( )
Hn

t

( ) − λβF′θ w̄( ) Wt( )
− λFθ w̄( ) Wt − β

( ) −mt.

• If the principal does not monitor at time t (i.e.,mt � 0), we
must have ytHs

t + (1 − yt)Hn
t ≥ β. Lemma B.3 implies

Ψt ≤ λΦ Wt, β
( ) − λβF′θ w̄( ) Wt( ) − λFθ w̄( ) Wt − β

( )
� 0.

• If the principal monitors at time t (i.e.,mt � m), Lemma B.3
implies

Ψt ≤ λΦ Wt, 0( ) − λβF′θ w̄( ) Wt( )
− λFθ w̄( ) Wt − β

( ) −m

� −rFθ w̄( ) Wt( ) + rWtF′θ w̄( ) Wt( ) −m

≤ −rFθ w̄( ) β
( ) + rβF′θ w̄( ) β

( ) −m

� −r θ w̄( )β −m
r

( )
+ rβθw̄

λ

λ + r
−m

� rβθ w̄( ) λ

λ + r
− 1

( )
≤ 0,

where the second inequality follows the fact that −rF(Wt) +
rWtF′(Wt) is decreasing in Wt.

To sum up, we must have Ψt ≤ 0. This completes the
proof. □

Appendix C. Proofs in Section 4
To prove Proposition 6 and Lemma 5, we first characterize
the structural properties of function J(w) for the case r < ρ.

Lemma C.1. Consider the case r < ρ. For any α ≥ β, define
function J(w) to be the solution of DDE (H) with boundary
condition J(w) � 1 on w ∈ [0, α). J(w) exhibits the following
properties.

i. When r ≤ ρ − λ, J(w) is concave on [α,∞).
ii. When ρ − λ < r < r̄, J(w) is convex on [α, α + β] and

concave on [α + β,∞).
iii. We have lim supw→∞ J′(w) � 0.

Proof. (i) Note that following DDE (H), function J(w) is
differentiable for w > α and is twice differentiable except
at w � α + β. Taking derivatives on both sides of DDE (H)
yields

J′′ w( ) � λ + r − ρ
( )

J′ w( ) − λJ′ w − β
( )

ρw + βλ
, for

w ∈ α, α + β
( ) ∪ α + β,∞( )

. (C.1)
Because J(w) is nondecreasing (recall Lemma B.1), we
have J′(w) ≥ 0 and J′(w − β) ≥ 0 for w ∈ (α,∞). As such, we
must have J′′(w) ≤ 0 if r ≤ ρ − λ except w � α + β, at which
point J(w) is differentiable. Therefore, J(w) is concave on
(α,∞) and continuity of function J(w) extends concavity
to w ∈ [α,∞).

(ii) Starting from boundary conditions J(w) � 1 for
w ∈ [0, α), DDE (H) yields the following:

J w( ) � r
λ + r

ρw + λβ

ρβ + λβ

( )λ+r
ρ + λ

λ + r
, for

w ∈ α, α + β
( )

, (C.2)
whose first and second derivatives are

J′ w( ) � r ρw + λβ
( )λ+r−ρ

ρ

ρβ + λβ
( )λ+r

ρ

J′′ w( ) � r ρw + λβ
( )λ+r−2ρ

ρ

ρβ + λβ
( )λ+r

ρ

λ + r − ρ
( )

. (C.3)

Therefore, if r > ρ − λ, we must have J′′(w) > 0, that is, J(w) is
convex on [α, α + β] because function J(w) is continuous.

Given that the right-hand-side of (38) is increasing,
whereas the left-hand side is decreasing in r̄, it is readily
shown that Equation (38) has a unique solution within
(ρ − λ, ρ). Moreover, for r ∈ (ρ − λ, r̄), we have

2ρ + λ

ρ + λ

( )λ+r
ρ −1

<
λ

λ + r − ρ
,

which implies that J′′((α + β)+) < 0, that is, we have (λ + r−
ρ)J′(α + β) < λJ′(α+).

To prove that J(w) is concave on [α + β,∞), we only need
to show J′′(w) ≤ 0 for allw > α + β. Suppose, on the contrary,
there exists a w > α + β such that J′′(w) > 0. Define

ŵ :� min w| λ + r − ρ
( )

J′ w( ) ≥ λJ′ w − β
( )

and
{

w > α + β
}
.
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• If ŵ ∈ (α + β, α + 2β], we have J′(α + β) ≥ J′(ŵ) because
J(w) is concave within [α + β, ŵ]. We also have J′(β+) < J′(ŵ −
β) because J(w) is convex on [α, α + β]. Therefore,

λ + r − ρ
( )

J′ ŵ( ) ≤ λ + r − ρ
( )

J′ α + β
( )

< λJ′ β+
( )

< λJ′ ŵ − β
( )

.

• If ŵ > α + 2β, then both J(ŵ) and J(ŵ − β) are twice
continuously differentiable. As such,

J′ ŵ( ) � J′ ŵ − β
( ) + ∫ β

0
J′′ ŵ − β + x

( )
dx < J′ ŵ − β

( )
,

which implies (λ + r − ρ)J′(ŵ) < λJ′(ŵ − β).
That is, (λ + r − ρ)J′(ŵ) ≥ λJ′(ŵ − β) cannot be true for

either case. Therefore, J(w) is concave on [α + β,∞).
(iii) For notational convenience, we let � :� limsupw→∞ J′(w).

First, we show that � cannot be positive infinity. Suppose, on
the contrary, � � lim supw→∞ J′(w) � ∞. Then there exists an
increasing divergent sequence {wn}n≥1 in (α + β,∞) such that
limw→∞ J′(wn) � ∞ and

wn � arg max
w∈ 0,wn[ ]

J′ w( ){ }.

Then, for each n ≥ 1 by mean value theorem, there exists ŵn ∈
(wn − β,wn) such that

ρwn + βλ
( )

J′ wn( )
� λ J wn( ) − J wn − β

( )[ ] + rJ wn( )
� λβJ′ ŵn( ) + rJ wn( ).

Rearranging the equation, one gets

J′ ŵn( ) � wn

λβ
ρJ′ wn( ) − r

wn
J wn( )

[ ]
+ J′ wn( ). (C.4)

Because J(0) � 1 and {J′(wn)}n is an increasing sequence, there
is J(wn) − 1 ≤ wnJ′(wn) by construction. For such n, from (C.4)
and the fact J(wn) ≤ wnJ′(wn), there is

J′ ŵn( ) ≥ ρ − r
( )

wnJ′ wn( )
λβ

.

Because J′(wn) > 0, an immediate result that follows the
previous inequality is that

J′ ŵn( )
J′ wn( ) ≥

ρ − r
( )

wn

λβ
,

which goes to infinity as n goes to infinity. Therefore, we can
obtain J′(ŵn) > J′(wn) eventually, which contradicts the defini-
tion of wn because ŵn < wn. Thus, we have that � must be finite.

Consider a new increasing and divergent sequence {wn}n≥1
in (α + β,∞) such that limn→∞ J′(wn) � �. Then, for all n ≥ 1,
we can find a constant D such that J(wn) ≤ �wn +D. Let
ŵn ∈ (wn − β,wn), by substituting J(wn) ≤ �wn +D into the
differential equations of J(w) for all n ≥ 1, we have

ρJ′ wn( ) − rl ≤ λβ J′ ŵn( ) − J′ wn( )[ ] + rD
wn

.

By letting n go to infinity, there is

ρ − r
( )

l ≤ λβ lim inf
n→∞

J′ ŵn( )
wn

.

If l > 0, the preceding inequality implies that � must go to
infinity; this contradicts to the fact that l is finite. Therefore,
we have l≤ 0. Given that J′(w) ≥ 0 for allw (recall Lemma B.1),
we must have � � 0. □

Proof of Lemma 4. Taking the first derivativewith respect to
α, we have

f ′ α( ) � − rλθ
ρ

α
r
ρ−1 1 + ρ − r

ρα
β − 1 − β

α

( )r
ρ−1

[ ]
.

Consider a function

h x( ) :� 1 + ρ − r
( )

βx − 1 − ρβx
( )r

ρ−1,

x ∈ 0,
1
ρβ

[ ]
. (C.5)

We know that h(0) � 0 and

h′ x( ) � ρ − r
( )

β 1 − 1 − ρβx
( )r

ρ−2
[ ]

< 0,

where the inequality holds because r < ρ. Therefore, we must
have h(x) < 0, ∀x ∈ (0, 1/(ρβ)]. Consequently,

f ′ α( ) � − rλθ
ρ

α
r
ρ−1h

1
ρα

( )
> 0,

implying that function f (α) is strictly increasing in α ∈ [β,∞).
Moreover, we have

lim
α→∞ f α( ) � m − λθ lim

α→∞
1 − rβ

ρα − 1 − β
α

( )r
ρ

α−r
ρ

� m − λθ lim
α→∞

rβ
ρα2 − rβ

ρα2 1 − β
α

( )r
ρ−1

− r
ρ α

−r
ρ−1

� m + λθβ lim
α→∞

1 − 1 − β
α

( )r
ρ−1

α1−r
ρ

� m.

This completes the proof. □

Proof of Proposition 3. (i) The definition of αθ directly
implies that f (αθ) ≥ 0. From the definition of Fθ,α(w), for any
α ≥ β, we have

F′θ,α α−( ) � rθ
ρ
α

r
ρ−1 and

F′′θ,α α−( ) � r r − ρ
( )
ρ2 θα

r
ρ−2 < 0.

From DDE (H), we have

F′θ,α α+( )
� 1
ρα + λβ

λ + r( )Fθ,α α( ) − λFθ,α α − β
( )[ ]

,

� 1
ρα + λβ

λ + r( )θαr
ρ − λθ α − β

( )r
ρ−m

[ ]
.
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As such,

F′θ,α α−( ) − F′θ,α α+( ) � 1
ρα + βλ

f α( ). (C.6)

Consider the case α � αθ. If f (β) ≥ 0, the definition of αθ

implies that f (α) � f (β) ≥ 0, that is, F′θ,αθ
(αθ−) ≥ F′θ,αθ

(αθ+).
Otherwise, we must have f (αθ)� 0 and F′θ,αθ

(αθ−)�F′θ,αθ
(αθ+).

Therefore, we have (27).
(ii) When αθ > β, we must have f (αθ) � 0. From DDE (H),

we have

F
′′
θ,αθ

αθ+( ) � 1
ραθ + λβ

λ + r − ρ
( )

F′θ,αθ
αθ+( )

[
− λF′θ,αθ

αθ − β
( )]

,

� θr
ρ ραθ + λβ
( ) λ + r − ρ

( )
α

r
ρ−1
θ − λ αθ − β

( )r
ρ−1

[ ]
.

As such,

F′′θ,αθ αθ−( ) − F′′θ,αθ αθ+( )

� θrλα
r
ρ−1
θ

ρ ραθ + βλ
( ) 1 − β

αθ

( )r
ρ−1− 1 − β ρ − r

( )
ραθ

[ ]

� − θrλα
r
ρ−1
θ

ρ ραθ + βλ
( ) h 1

ραθ

( )
> 0,

where function h(x) is defined in (C.5). This inequality holds
because h(x) < 0 for ∀x ∈ (0, 1/(ρβ)].

(iii) Consider an arbitrary α ≥ β. If α < αθ, we must have
f (α) < f (αθ) � 0; which, together with (C.6), implies F′θ,α(α−) <
F′θ,α(α+). Otherwise, if α > αθ, we must have f (α) > f (αθ) ≥ 0,
that is, F′θ,α(α−) > F′θ,α(α+). □

Proof of Lemma 5. We first show that, for any w ≥ 0, de-
rivative F′θ,αθ

(w+) is increasing in θ. To do so, we define

g(w, θ) � Fθ,αθ (w), and show ∂g(w,θ)
∂θ is well defined and strictly

increasing in w.
• For ∀w ∈ [0, αθ), we have ∂g(w,θ)

∂θ � w
r
ρ, which is strictly

increasing in w.
• For w � αθ,

∂g w, θ+( )
∂θ

⃒⃒⃒⃒
w�αθ

� lim
ε↓0

Fθ+ε,αθ αθ( ) − Fθ,αθ αθ( )
ε

+ Fθ,α θ+ε{ } αθ( ) − Fθ,αθ αθ( )
ε

× dαθ

dθ

� lim
ε↓0

θ + ε( )α
r
ρ

θ − θα
r
ρ

θ

ε
� α

r
ρ

θ

� ∂g w, θ−( )
∂θ

⃒⃒⃒⃒
w�αθ

,

where the second equality follows from Fθ,α{θ+ε} (αθ) �
Fθ,αθ (αθ) because αθ+ε ≥ αθ for any ε > 0.

• For w > αθ, note that g(w, θ) � Fθ,αθ (w) is a solution to
DDE (H), parameterized by θ. That is, the following equality
also holds:

λ + r( )g w, θ( )
� λg w − β, θ

( ) + ρw + λβ
( ) ∂g w, θ( )

∂w
.

Taking derivatives w.r.t. θ on both sides of the preceding
equation, we have

λ + r( ) ∂g w, θ( )
∂θ

� λ
∂g w − β, θ

( )
∂θ

+ ρw + λβ
( ) ∂g w, θ( )

∂w∂θ
,

which implies that ∂g(w,θ)
∂θ satisfies DDE (H) as well. Because

∂g(0,θ)
∂θ > 0 and ∂g(w,θ)

∂θ is increasing on w ∈ [0, αθ], we imme-
diately know that ∂g(w,θ)

∂θ is increasing on w ∈ [αθ,∞) from
Lemma B.1.

Summarizing these three cases, we conclude that ∂g(w,θ)
∂θ is

well-defined and strictly increasing in w. Therefore, de-
rivative F′θ,αθ

(w+) is increasing in θ. As a result, we know that
infw F′θ,αθ

(w+) is increasing in θ. On the one hand, when θ is
sufficiently large (i.e., θ → ∞), we know that αθ approaches
∞ as well. As such,

lim
θ→∞ inf

w>β
F′θ,αθ

w( )
{ }

� lim
θ→∞ inf

w>β

rθ
ρ
w

r
ρ−1

[ ]{ }
> 0.

On the other hand, when θ � 0, we have αθ � β. It is clear that

F0,β w( ) � −m
r
J w( ) for ∀w ≥ 0.

As such,

inf
w>β

F′0,β w( ) � −m
r
sup
w>β

J′ w( ) ≤ −1,

where the last inequality holds because J(w) is nondecreasing
and m ≥ m̄.

Therefore, there exists a unique θ̄ ≥ 0 such that
infw F′̄

θ,αθ̄
(w+) � −1.

Using similar techniques as in the proof of Proposition 1(i),
we can show that θ̄ < m

r β
−r
ρ. We only need to modify the

definition of functions G1(w) and G2(w) as

G1 w( ) � w
r
ρ and G2 w( ) � w

β

( )r
ρ−1, for

w ∈ 0, αθ̄

[ ]
.

We omit the detailed proof to avoid redundancy.
Finally, we show that w̄∗, which is determined by (28), is

finite. Notice that

θ̄ � − 1 −mJ′ w̄∗( )/r
G′

1 w̄∗( ) .

If, on the contrary, w̄∗ → ∞, the preceding equation implies
that θ̄ < 0 because lim supw→∞ J′(w) � 0 (recall LemmaC.1(iii))
and G1(w) is increasing (recall Lemma B.1). This contradicts
the fact that θ̄ > 0. Therefore, w̄∗ must be finite. □

To prove Proposition 4, we first show a more general
result, as presented in the following lemma.

Lemma C.2. For any θ ≥ θ̄, define ŵ :� inf{arg infw>β F′θ,
αθ(w)}. Then function Fθ,αθ (w) is strictly concave on w ∈ [0, ŵ].
Proof. First, Fθ,αθ (w) is nondecreasing and concave in [0, αθ)
because θ ≥ 0 (recall Lemma 5). Next, from Proposition 3(i)
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we know that F′θ,αθ
(αθ−) ≥ F′θ,αθ

(αθ+). Therefore, in order to
show that F(w) is concave, we only need to show that Fθ,αθ (w)
is concave on [αθ, ŵ].

Recall that Fθ,αθ (w) is continuous on [0, ŵ], and F′θ,αθ
(w)

is continuous on (αθ, ŵ]. By the definition of θ̄, w̄ in (28)
and given the fact that θ ≥ θ̄, we know that F′θ,αθ

(ŵ) ≥ −1.
Therefore, Fθ,αθ (w) + w is increasing on [0, ŵ].

We prove by contradiction. Suppose, on the contrary, there
exists some w ∈ (αθ, ŵ), such that F

′′
θ,αθ

(w) ≥ 0 (i.e., F′θ,αθ
(w) is

increasing at w). Define

w1 :� min w|F′′
θ,αθ

w( ) ≥ 0 and αθ ≤ w < ŵ
{ }

.

Furthermore, F′θ,αθ
(w)must be decreasing on some interval

within (w1, ŵ) in order for F′θ,αθ
(w) to drop to −1 at ŵ. As such,

define

w2 :� inf w|F′′
θ,αθ

w( ) < 0 and w1 < w < ŵ
{ }

.

We claim that F
′′
θ,αθ

(w) must be continuous at w2. To show
this, recall that, only when αθ � β and F′θ,αθ

(β−) > F′θ,αθ
(β+),

would F
′′
θ,αθ

(w) be discontinuous at point w � β or w � 2β.
Suppose, on the contrary, F

′′
θ,αθ

(w) is not continuous at w2,
then we must have αθ � β and w2 � 2β. As such, differenti-
ating (H) would yield

F
′′
θ,αθ

2β
{ }

−
( ) � λ + r − ρ

( )
F′θ,αθ

2β
( ) − λF′θ,αθ

β−
( )

2ρβ + βλ

<
λ + r − ρ
( )

F′θ,αθ
2β
( ) − λF′θ,αθ

β+
( )

2ρβ + βλ

� F
′′
θ,αθ

2β
{ }

+
( )

,

where the inequality follows from Proposition 3(i), and the
assumption that F′θ,αθ

(w) is not continuous at β.
Because F′θ,αθ

(w) is increasing on w ∈ [w1,w2], we must
have F

′′
θ,αθ

({2β}−) > 0. Therefore,

F
′′
θ,αθ

2β+
( )

> F
′′
θ,αθ

2β−
( )

> 0,

which is in contradiction to the definition of w2. Therefore,
F

′′
θ,αθ

(w) must be continuous at w2, and as a result, we must
have F

′′
θ,αθ

(w2) � 0. Consequently, DDE (H) yields

ρw2 + βλ
( )

F
′′′
θ,αθ

w2( ) � −λF′′
θ,αθ

w2 − β
( ) ≤ 0,

which implies that F
′′
θ,αθ

(w2 − β) ≥ 0. Therefore, wemust have
w2 − β ≥ w1 because F′θ,αθ

(w) is decreasing for w < w1. As
such, F′θ,αθ

(w) is increasing on [w2 − β,w2]. Differentiating (H)
at w2 yields

λ F′θ,αθ
w2( ) − F′θ,αθ

w2 − β
( )[ ]

� ρ − r
( )

F′θ,αθ
w2( ) ≥ 0,

which implies that F′θ,αθ
(w2) ≥ 0.

On the one hand, we have

ρw2 + λβ F′θ,αθ
w2( ) + 1

[ ]
≤ ρw2 + λβ

( )
F′θ,αθ

w2( ) + 1
[ ]

� λ Fθ,αθ w2( ) − Fθ,αθ w2 − β
( )[ ] + rFθ,αθ w2( )

+ ρw2 + βλ

≤ λβF′θ,αθ
w2( ) + rFθ,αθ w2( ) + ρw2 + βλ, (C.7)

where the second inequality holds because Fθ,αθ (w) is convex
within w ∈ [w2 − β,w2]. Rearranging inequality (C.7) yields
Fθ,αθ (w2) ≥ 0, which leads to

Fθ,αθ ŵ( ) + ŵ > Fθ,αθ w2( ) + w2 ≥ w2 > 0, (C.8)
because Fθ,αθ (w) + w is increasing on [0, ŵ].

On the other hand, Equation (U), in which w̄ is set as ŵ, is
equivalent to

λ Fθ,αθ ŵ( ) − Fθ,αθ ŵ − β
( )[ ] + rFθ,αθ ŵ( ) + ρŵ

+ βλ � 0.

Because Fθ,αθ (ŵ) > Fθ,αθ (ŵ − β) − β, we must have rFθ,αθ (ŵ) +
ρŵ < 0. Consequently,

Fθ,αθ ŵ( ) + ŵ < − ρ − r
r

ŵ < 0,

which is in contradiction to (C.8). Therefore, F
′′
θ,αθ

(w) < 0
for ∀w ∈ (αθ̄, ŵ). To summarize, Fθ,αθ (w) is strictly concave
within [0, ŵ]. □

Proof of Proposition 4. (i) First note that function Fθ̄,αθ̄
(w) is

strictly concave on w ∈ [0, αθ̄). The concavity proof on w ∈
[αθ̄, w̄

∗] is a special case of the concavity proof in Lemma C.2
with θ � θ̄ and ŵ � w̄∗. Therefore, we omit the proof of this
part to avoid redundancy.

(ii) We prove by contradiction. Suppose, on the contrary,
there exists a w ∈ (αθ̄, w̄

∗] such that

rFθ̄,αθ̄
w( ) ≤ ρwF′̄θ,αθ̄

w( ) −m.

Let

ŵ :� min w|rFθ̄,αθ̄
w( ) ≤ ρwF′̄θ,αθ̄

w( ) −m and
{
αθ̄ < w ≤ w̄∗

}
. (C.9)

Therefore, we must have the following relationship:

rFθ̄,αθ̄
w( ) > ρwF′̄θ,αθ̄

w( ) −m, for w ∈ αθ̄, ŵ
( )

. (C.10)

For notational convenience, we let ẑ :� Fθ̄,αθ̄
(ŵ). Figure C.1

illustrates various notations in this proof. We first dem-
onstrate that Fθ̄,∞(ŵ) > ẑ by showing F′̄

θ,αθ̄
(w) < F′̄

θ,∞(w) for
all w ∈ (αθ̄, ŵ] using contradiction. Suppose there exists w̃
such that

w̃ :� min w|F′̄θ,αθ̄
w( ) ≥ F′̄θ,∞ w( ) and

{
αθ̄ < w ≤ ŵ

}
.

On one hand, when αθ̄ � β, from Proposition 3(i), we have
F′̄
θ,αθ̄

(αθ̄+) ≤ F′̄
θ,αθ̄

(αθ̄−). On the other hand, when αθ̄ > β, from
Proposition 3(ii), we have F

′′
θ̄,αθ̄

(αθ̄+) < F
′′
θ̄,αθ̄

(αθ̄−) < 0. Either
of these cases leads to the result that F′̄

θ,αθ̄
(w) < F′̄

θ,∞(w) for all
w ∈ (αθ̄, w̃), according to the definition of w̃. Thus, the fol-
lowing relationship holds as well:

Fθ̄,αθ̄
w( ) < Fθ̄,∞ w( ), w ∈ αθ̄, w̃

( ]
. (C.11)

Then considering (C.10) at w � w̃, we have

rFθ̄,αθ̄
w̃( ) > ρw̃F′̄θ,∞ w̃( ) −m � rFθ̄,∞ w̃( ),
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where the first inequality follows from F′̄
θ,αθ̄

(w̃) ≥ F′̄
θ,∞(w̃) and

the next equality follows from (17). Clearly, this is a con-
tradiction to the relationship in (C.11). Therefore, we must
have F′̄

θ,αθ̄
(w) < F′̄

θ,∞(w) for all w ∈ (αθ̄, ŵ). As a result, we
have Fθ̄,ŵ(ŵ) � Fθ̄,∞(ŵ) > ẑ.

Let

θ̂ :� ẑ +m
r

( )
ŵ−r

ρ.

Then, we must have

θ̂ < Fθ̄,ŵ ŵ( ) +m
r

( )
w−r

ρ � θ̄.

On the one hand, from Equation (C.9), we have

F′̄θ,αθ̄
ŵ( ) ≥ rẑ +m

ρŵ
� F′̂

θ,ŵ ŵ−( ). (C.12)

On the other hand, given that function f (α) is strictly in-
creasing, we have αθ̂ < αθ̄. Therefore, ŵ > αθ̄ > αθ̂. By
Proposition 3(i), we have

F′̂
θ,ŵ ŵ+( ) < F′̂

θ,ŵ ŵ−( ). (C.13)

From DDE (H), we know that

F′̂
θ,ŵ ŵ+( )
� 1
ρŵ + βλ

λ + r( )Fθ̂,ŵ ŵ( ) − λFθ̂,ŵ ŵ − β
( )[ ]

,

F′̄θ,αθ̄
ŵ( )

� 1
ρŵ + βλ

λ + r( )Fθ̄,αθ̄
ŵ( ) − λFθ̄,αθ̄

ŵ − β
( )[ ]

.

Because Fθ̂,ŵ(ŵ) � Fθ̄,αθ̄
(ŵ) and Fθ̂,ŵ(ŵ − β) < Fθ̄,αθ̄

(ŵ − β), we
must have

F′̂
θ,ŵ ŵ+( ) > F′̄θ,αθ̄

ŵ( ). (C.14)

Combining (C.13) and (C.14) yields

F′̂
θ,ŵ ŵ−( ) > F′̂

θ,ŵ ŵ+( ) > F′̄θ,αθ̄
ŵ( ),

which contradicts (C.12). Therefore, there does not exist aw >
αθ̄ such that (C.9) holds, which completes the proof. □

To prove Theorem 2, we first present the following
lemma.

Lemma C.3. Consider a concave function F(w) that satisfies (H)
with α ≥ β and (U), in which w̄ is set as w̄∗, at w � w̄∗ ≥ α, and is
linear with slope −1 on [w̄∗,∞). For any w ≥ w̄∗,

ψ w( ) :� λF w − β
( ) − λ + r( )F w( )

− ρw + λβ
( ) ≤ 0. (C.15)

Proof. Taking the first derivative of ψ(w) yields

ψ′ w( ) � λF′ w − β
( ) − λ + r( )F′ w( ) − ρ

� λF′ w − β
( ) + λ + r − ρ

≤ λF′ w̄ − β
( ) + λ + r − ρ,

where the second equality follows from F′(w) � −1 forw ≥ w̄∗
and the last inequality follows from concavity of F(w).
Condition (H) implies that

λF′ w̄∗ − β
( )
� λ + r − ρ

( )
F′ w̄∗( ) − ρw̄∗ + βλ

( )
F′′ w̄∗

+
( )

.

Note that, from the definition of w̄∗ in (28), we have

F′′ w̄∗+
( )

> 0, if F′′ w̄∗−
( )

< F′′ w̄∗+
( )

,

F′′ w̄∗+
( ) � 0, if F′′ w̄∗−

( ) � F′′ w̄∗+
( )

. (C.16)

{

Therefore,

ψ′ w( ) ≤ λ + r − ρ
( )

1 + F′ w̄∗( )[ ]
− ρw̄∗ + βλ

( )
F′′ w̄∗

+
( ) ≤ 0,

where the last inequality follows (C.16). Therefore, ψ(w) is
decreasing in w ∈ [w̄∗,∞). As such, for any w ≥ w̄∗,

ψ w( ) ≤ ψ w̄∗( ) � λF w̄∗ − β
( ) − λ + r( )F w̄∗( )

− ρw̄∗ + λβ
( ) � 0,

where we have used equality (U). This completes the
proof. □

Proof of Theorem 2. The proof is parallel to those of
Proposition 2 and Theorem 1. Note that the proof for F(w∗) �
U(Γd(w∗;αθ̄, w̄

∗)) is exactly the same as that of Proposition 2
under contract Γd(w∗; β, w̄) except that the switching point is
αθ̄ instead of β. We omit the proof of this part to avoid re-
dundancy. In the following, we only show that U(Γ) ≤ F(w)
for any incentive compatible contract Γ.

From Proposition 4, we know that F(w) is concave and
F′(w) ≥ −1. Therefore, we only need to show Ψt ≤ 0 holds
almost surely (recall Lemma 3).

Recall the inequality (B.12). We consider the following four
cases. (i) When Wt < β, we know that the principal monitors
the agent (i.e., mt � m). Following (17), we have

Ψt ≤ ρWtF′ Wt( ) − rF Wt( ) −m � 0.

Figure C.1. (Color online) Illustration of Fθ̄,αθ̄
(w), Fθ̄,∞(w),

and Fθ̂,∞(w)
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(ii) When β≤Wt ≤αθ̄, substituting (17) into inequality (B.12)
yields

Ψt ≤ m −mt + λΦ Wt, ytHs
t + 1 − yt

( )
Hn

t

( )
− λF Wt( ).

• If the principal does not monitor at time t (i.e., mt � 0),
condition (IC) indicates that ytHs

t + (1 − yt)Hn
t ≥ β. Following

Lemma B.3, we have,

Ψt ≤ m −mt + λΦ Wt, β
( ) − λF Wt( )

� m + λθ̄W
r
ρ

t
βr
ρWt

− 1
( )

+ 1 − β

Wt

( )r
ρ

[ ]
� f Wt( ) < 0,

inwhichwe have used Equation (L) and the fact that f (Wt) is
increasing with f (αθ̄) � 0.

• If the principal conducts monitoring at time t (i.e., mt �
m), considering Lemma B.3, inequality (B.12) yields

Ψt ≤ λΦ Wt, 0( ) − λF Wt( ) � λF Wt( )
− λF Wt( ) � 0.

(iii) When αθ̄ < Wt < w̄∗, substituting (H) into inequality
(B.12) yields

Ψt ≤ λΦ Wt, ytHs
t + 1 − yt

( )
Hn

t

( ) − λβF′ Wt( )
− λF Wt − β

( ) −mt.

• If the principal does not monitor at time t (i.e., mt � 0),
we must have ytHs

t + (1 − yt)Hn
t ≥ β. Lemma B.3 implies

Ψt ≤ λΦ Wt, β
( ) − λβF′ Wt( ) − λF Wt − β

( ) � 0.

• If the principal conducts monitoring at time t (i.e., mt �
m), Lemma B.3 implies

Ψt ≤ λΦ Wt, 0( ) − λβF′ Wt( ) − λF Wt − β
( ) −m

� −rF Wt( ) + ρWtF′ Wt( ) −m < 0,

where the last inequality follows from Proposition 4(ii).
(iv) When Wt ≥ w̄∗, we must have F′(Wt) � −1, and in-

equality (B.12) reduces to

Ψt ≤ λΦ Wt, ytHs
t + 1 − yt

( )
Hn

t

( ) − ρWt

− λ + r( )F Wt( ) −mt.

• If the principal does not monitor at time t (i.e., mt � 0),
condition (IC) and Lemma B.3 imply

Ψt ≤ λΦ Wt, β
( ) − ρWt − λ + r( )F Wt( ) � ψ Wt( )

≤ 0.

• If the principal conducts monitoring at time t (i.e., mt �
m), Lemma B.3 implies

Ψt ≤ λΦ Wt, 0( ) − ρWt − λ + r( )F Wt( ) −m

� −rF Wt( ) − ρWt −m

≤ −rF αθ̄

( ) − ραθ̄ −m,

where the second inequality holds because −rF(w) − ρw is
decreasing in w. As such, by considering Equation (17), we
have

Ψt ≤ −ραθ̄ 1 + F′ αθ̄−
( )[ ] ≤ 0.

To summarize, we know that Ψt ≤ 0 holds for all the
possible cases. This completes the proof. □

Proof of Proposition 5. First, following DDE (H), for any θ,
we have the following closed-form solution for Fθ(w) for
w ∈ [β, 2β]:

Fθ w( ) � _θ ρw + βλ
( )λ+r

ρ − λm
r λ + r( )

+ θλ β ρ − r
( ) + λ + r( )w[ ]
λ + r( ) λ + r − ρ

( ) , (C.17)

where the θ-dependent parameter _θ is defined as

_θ � − 1
λ + r

m + θβ ρ − r
( )

2λ + r( )
λ + r − ρ

[ ]
× β ρ + λ

( )( )−λ+r
ρ . (C.18)

As such, when

θ ≥ θ :� −λ + r − ρ

λ
,

we have

_θ β ρ + λ
( )( )λ+r

ρ

≤ − 1
λ + r

m − ρ − r
( )

β 2λ + r( )
λ

[ ]
< 0, (C.19)

where the second inequality holds because m > m̂.
Second, we show that, for any w ≥ 0, derivative F′θ(w)

is increasing in θ. To do so, consider the following de-
composition of Fθ(w),

Fθ w( ) � θG w( ) −m
r
J w( ),

where function G(w) satisfies DDE (H) with boundary con-
dition G(w) � w for all w ∈ [0, β), and function J(w) is defined
in Lemma 5. Note that, because G′(w) > 0 for w ∈ (0, β),
Lemma B.1 implies that G′(w) > 0 for all w ∈ (β,∞), which
further implies that

∂F′θ w( )
∂θ

� G′ w( ) > 0.

On the one hand, when θ � 0, it is clear that

F0 w( ) � −m
r
J w( ), for w ≥ 0,

and therefore,

inf
w≥β F

′
0 w( ) � −m

r
sup
w≥β

J′ w+( ) ≥ − m̄
r
sup
w≥β

J′ w+( )

� −1,
where the inequality holds because J(w) is nondecreasing and
m ≤ m̄.
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On the other hand, when θ � θ, (C.17) implies that

F′θ β+
( ) � _θ λ + r( ) ρβ + λβ

( )λ+r
ρ −1−1 < −1,

where the inequality holds because _θ < 0. Therefore,

inf
w>β

F′θ w( ) ≤ F′θ β+
( )

< −1.
As such, there exists a unique θ̄ ∈ (θ, 0] such that
infw>β F′̄θ(w) � −1.

From (C.19), we know that _θ̄ < 0. Given that r > ρ − λ
when m ∈ [m̂, m̄), Fθ̄(w) is strictly concave within [β, 2β], that
is, F′̄

θ
(w) is strictly decreasing in (β, 2β]. By the definitions of θ̄

and w̄, we must have w̄ ≥ 2β. This completes the proof. □

Proof of Theorem 3. We first remark that function F(w) is
concave. This is obviously true if m ∈ [0,m) orm ∈ [m, m̂). For
m ∈ [m̂, m̄), the concavity proof of F(w) is similar to those
of Proposition 1 and Proposition 4 except the slight difference
in showing that F′(β−) ≥ F′(β+). We omit the detailed proof to
avoid redundancy.

Next, we show that U(Γ) ≤ F(w) for any incentive com-
patible contract Γ and ∀w ≥ 0. To do so, we only need to show
Ψt ≤ 0 holds almost surely (recall Lemma 3). Given that F(w)
takes different forms, depending on the value of m, we
consider three cases in the following.

Case (a). If m ∈ [0,m), given that F(w) is linear and F′(w) �
−1 for all w ≥ 0 (recall Equation (32)), we have

Ψt � −ρWt − rF Wt( ) −mt � − ρ − r
( )

Wt

+ m −mt( ).
Therefore,

a.1. If mt � m, we have Ψt ≤ 0 because ρ ≥ r.
a.2. If mt � 0, Corollary 1 implies Wt ≥ β; consequently,

Ψt � − ρ − r
( )

Wt +m ≤ − ρ − r
( )

β +m ≤ 0,

where the inequality holds because m ≤ m.
Therefore, Ψt ≤ 0 holds almost surely. This completes the
proof for m ∈ [0,m).

Case (b). If m ∈ [m, m̂), recall that F(w) takes the piecewise
linear form of (33). We consider the following two cases.

b.1. When Wt < β, the principal monitors the agent
(i.e., mt � m). Following inequality (B.12), we have

Ψt ≤ ρWtF′ Wt( ) − rF Wt( ) −m

� −ρWt 1 − ρ − r
( )

β −m
λ + r( )β

[ ]
+ r 1 − ρ − r

( )
β −m

λ + r( )β
[ ]

Wt

� − ρ − r
( )

Wt 1 − ρ − r
( )

β −m
λ + r( )β

[ ]
≤ 0,

where the second inequality holds because m ≥ m.
b.2. When Wt ≥ β, we have F′(Wt) � −1. If the principal

does not monitor at time t (i.e., mt � 0), considering the (IC)
condition and Lemma C.3, we have

Ψt ≤ λΦ Wt, β
( ) + F′ Wt( )ρWt − λ + r( )F Wt( )

� λF Wt − β
( ) − λ + r( )F Wt( ) − ρWt + βλ

( )
� ψ Wt( ),

where function ψ(w) is decreasing in w ∈ [β,∞). As such,
we have

Ψt ≤ ψ β
( ) � λF 0( ) − λ + r( )F β

( ) − ρβ + βλ
( ) � 0.

If the principal conducts monitoring at time t (i.e., mt � m),
Lemma B.3 implies that

Ψt ≤ ρWtF′ Wt( ) − rF Wt( ) −m

� −ρWt − rF Wt( ) −m

≤ −ρβ − rF β
( ) −m < 0.

In summary, we always have Ψt ≤ 0, which completes the
proof for m ∈ [m, m̂).

Case (c). If m ∈ [m̂, m̄), we consider the following three
cases.

c.1. When Wt < β, the principal must monitor the agent
(i.e., mt � m). From inequality (B.12) we have

Ψt ≤ ρWtF′ Wt( ) − rF Wt( ) −m

� ρWtθ̄ − r θ̄Wt −m
r

( )
−m � θ̄ ρ − r

( )
Wt ≤ 0,

where we have used Equation (Ll) and the fact that θ̄ ≤ 0.
c.2. When β ≤ Wt < w̄∗, substituting Equation (H) into in-

equality (B.12) yields

Ψt ≤ λΦ Wt, ytHs
t + 1 − yt

( )
Hn

t

( ) − λβF′ Wt( )
− λF Wt − β

( ) −mt.

If the principal does not monitor at time t (i.e.,mt � 0), we
must have ytHs

t + (1 − yt)Hn
t ≥ β. By Lemma B.3, we have

Ψt ≤ λΦ Wt, β
( ) − λβF′ Wt( ) − λF Wt − β

( ) � 0.

If the principal conducts monitoring at time t (i.e., mt � m),
by Lemma B.3, we have

Ψt ≤ λΦ Wt, 0( ) − λβF′ Wt( ) − λF Wt − β
( ) −m

� −rF Wt( ) + ρWtF′ Wt( ) −m

≤ −rF β
( ) + ρβF′ β+

( ) −m

≤ −rF β
( ) + ρβF′ β−

( ) −m ≤ 0.

c.3. When Wt ≥ w̄∗, we must have F′(Wt) � −1, and in-
equality (B.12) reduces to

Ψt ≤ λΦ Wt, ytHs
t + 1 − yt

( )
Hn

t

( ) − ρWt

− λ + r( )F Wt( ) −mt.

If the principal does not monitor at time t (i.e., mt � 0),
by (IC) condition and Lemma B.3, we have

Ψt ≤ λΦ Wt, β
( ) − ρWt − λ + r( )F Wt( )

� λF Wt − β
( ) − λ + r( )F Wt( ) − ρWt + βλ

( )
≤ 0,

where the last inequality follows from Lemma B.3.
If the principal conducts monitoring at time t (i.e., mt � m),

by Lemma B.3, we have

Ψt ≤ λΦ Wt, 0( ) − ρWt − λ + r( )F Wt( ) −m

� −rF Wt( ) − ρWt −m

≤ −rF β
( ) − ρβ −m,
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where the second inequality holds because −rF(w) − ρw is
decreasing in w. As such, considering (Ll), we have

Ψt ≤ −r θ̄β −m
r

( )
− ρβ −m

≤ −rβλ + r − ρ

λ
− ρβ

� − ρ − r
( ) r + λ( )β

λ
< 0,

in which the second inequality holds because θ̄ ≥ −1+
(ρ − r)/λ.

In summary, for any contract Γ, we have Ψt ≤ 0 almost
surely. This completes the proof. □

Appendix D. Proofs in Section 5

Proof of Proposition 6. (i) From Lemma C.1(i), we know
that, if r ≤ ρ − λ, J′(w) is decreasing on [β,∞). Therefore,

m̄ � r
J′ β+
( ) � ρ + λ

( )
β.

From Lemma C.1(ii), we know that, if ρ − λ < r < r̄, J′(w) is
increasing on [β, 2β] and decreasing on [2β,∞). Therefore,

m̄ � r
J′ 2β
( ) � ρ + λ

( )
β

[ ]λ+r
ρ

2ρ + λ
( )

β
[ ]λ+r

ρ −1 .

This completes the proof. □

Proof of Proposition 7. This proposition follows the same
logic as Lemma C.2. Therefore, the proof is omitted. □

Appendix E. Further Discussions
E.1. Fixed Cost to Start Monitoring
In our paper, we did not consider a fixed cost of start
monitoring. If such a fixed cost exists, we expect that there
are two different thresholds. When the promised utility
falls below the lower threshold, monitoring starts. And
monitoring stops after the promised utility increases to be
above the higher threshold. The intuition for such a “control
band” structure is similar to the (s, S) policy in inventory
control with fixed ordering cost.

E.2. General Cost of Arrival
When we introduce the model, we claim our results extend
naturally to the case of random cost for each arrival as long
as the random cost is not associated with the effort process.
In this case, we just need to use K to represent the mean cost
per arrival.More generally, however, the effort processmay
affect the random cost. For example, the agent’s effort may
affect not only the rate of arrival, but also the distribution of
the cost. In this case, the optimal contract needs to take
advantage of the information contained in themagnitude of
the cost of an arrival. Such a setting is much more complex
than the one studied in this paper. Even without moni-
toring, the dynamic contracting problem with multiple
signal types has not been well understood. We suspect that
the general optimal contract could be so complex such that a
fruitful way to proceed is to explore approximations of the
optimal contracts that are easy to compute and implement.

Another way of thinking about arrivals is not to consider
them simply as arrivals, as we do in this paper, but as
breakdowns of a production process (machine). That is, the
agent is a maintenance team, whose effort reduces the ar-
rival rate of breakdowns. The cost, therefore, corresponds to
the lost revenuewhen themachine is down. The breakdown
time can be random. Even without monitoring, such a
model has not been studied in the literature, and one of the
authors of this paper has beenworking on a related problem
in an ongoing research project. It would be interesting to
consider combining such a model with monitoring as a
potential future research direction.

E.3. Agent More Patient than Principal
Following long traditions of the dynamic contracting lit-
erature, we assume that the principal is no less patient than
the agent. This is true inmost practical settings, inwhich the
principal, as the contract designer, often possesses more
resources than the agent. One may wonder what happens if
the agent is more patient than the principal or ρ < r. In this
case, delaying payments is even more beneficial to the
principal because the interest the principal collects during
the delay is higher than what is demanded by the agent. As
a result, we believe that one still needs to introduce the
exogenous upper bound on the promised utility to make
sure that an optimal solution exists. In order to prove

Figure E.1. (Color online) Value Function and Sample Trajectory with Agent Replacement
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optimality, we still need to establish concavity of the value
function. This appears to be quite challenging when ρ < r.
Neither the proof techniques in this paper nor the ones in
Biais et al. (2010) work when ρ < r. We suspect one needs to
carefully go through a discrete time model and follow a
proof logic of Biais et al. (2007) and Sun and Tian (2018) to
show that uniform convergence between the discrete time
value function and the continuous-time one. Given the
length and complexity of this paper and the relative lack of
practical motivation for this technically interesting setting,
we consider it outside the scope of this paper.

E.4. Imperfect Monitoring
Monitoring in our setting can be perceived as another signal
on the agent’s effort level that the principal can pay to
obtain besides the arrivals. In this paper, we assume that
this signal perfectly reflects the effort level. More generally,
one can consider imperfect monitoring. That is, the agent’s
effort changes the statistic of another stochastic process,
which is observable to the principal only if the principal
pays for it. For example, in the quality control setting
mentioned throughout the paper, the arrivals represent
customer complaints. The principal may choose to monitor
by conducting costly customer surveys and collect praises
from customers. The arrivals of praise constitute the second
Poisson process that is observable to the principal only if the
principal pays for this information. Our model sheds light
on tackling more complex and general incentive systems
such as these.

E.5. Opportunity of Replacing Agents
In certain practical situations, the principal has the op-
portunity of replacing an agent with a cost Kr. Intuitively, if
such a cost is relatively low, the principal may prefer such
an option over monitoring the agent for a long period of
time (when the promised utility drops too low). The general
idea of replacing the agent in other dynamic contracting
settings has been discussed in detail in Myerson (2015) and
section 5.2 of Sun and Tian (2018). Here we provide a de-
scription for the case with different discount rates and a
high monitoring cost using an example and leave the
complete and detailed results for interested readers to
work out.

Figure E.1 provides an example of the value function and
a corresponding trajectory considering agent replacement.
In Figure E.1(a), there is an additional threshold γ com-
pared with Figure 4(a). Smooth pasting works again at this
threshold. That is, the value function’s left and right de-
rivatives are the same at γ. Furthermore, the value function
is linear on [0, γ], which implies that, upon an arrival that
decreases an agent’s promised utility below γ, the princi-
pal immediately randomly reset the promised utility to
either zero (replacing the agent with a new one) or γ
(continue monitoring the current agent). Recall that a new
contract starts at promised utility w∗, which maximizes
the value function F. Therefore, in Figure E.1(b), we have
F(w∗) − F(0) � Kr.

Figure E.1(b) provides a partial sample trajectory of the
agent’s promised utility. Arrivals occurring at time t1 and t2
bring the promised utility below the threshold γ. At time
t1, randomization takes the promised utility to γ so the

contract continues with a monitoring session. Randomi-
zation at time t2, on the other hand, brings the promised
utility to zero for the current agent and triggers re-
placement. The new agent’s promised utility starts atw∗ and
follows the trajectory of the dashed curve in the end.

Endnotes
1Assuming a constant cost K for each arrival is for simplicity of
exposition. Our results naturally extend to the case in which the cost
of each arrival is a random variable and K is its mean as long as this
random cost is independent to the effort process.
2The commitment power assumption follows a long tradition of
dynamic contracting literature, (see, for example, Sannikov 2008,
Biais et al. 2010, Myerson 2015, among many other references).
Without this assumption, one may have to use the subgame perfect
equilibrium concept, which is very hard to describe. Inmany practical
circumstances in which the principal has much more power and
resources than the agent, this is a reasonable assumption.
3Note that we have considered a very general class of feasible
contracts in our models. Mathematically speaking, one may gener-
alize the contract space evenmore by introducing a switch control at a
nonarrival time with a certain probability. Such a control is essen-
tially “adding points” following the terminology of Brémaud (1981),
which involves mathematical tools that are beyond Brémaud (1981).
In particular, it would invoke control of “piecewise-deterministic-
Markov-processes,” a much more sophisticated mathematical
framework introduced in Davis (1984). Even if we generalize the
class of contract this way, the current optimal contracts remain
optimal. Therefore, it is not necessary to introduce additional
mathematical complexities with no practical benefits.
4Without the limited liability constraint, even if the agent cannot buy
out the entire enterprise, the principal can simply charge the agent a
cash amount of β to induce effort. Therefore, the limited liability
constraint prevents the model from becoming trivial.
5 If w̄ < β, the only (IC) contract is to always monitor the agent.
6Note that smooth pasting does not arise in Section 3 for the equal
discount case because the optimal monitoring threshold is always β
although in the different discount case, the threshold can be higher
than β.
7We appreciate the review team for suggesting this simple contract
structure.
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