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1. Introduction
Traditional inventory models focus on characterizing
replenishment policies so as to maximize the expected total
profit, or equivalently, to minimize the expected total cost
over a planning horizon. Of course, this focus on optimiz-
ing expected profit or cost is appropriate for risk-neutral
decision makers, i.e., inventory planners that are insensitive
to profit variations.
Evidently, not all inventory planners are risk neu-

tral; many are willing to trade off lower expected profit
for downside protection against possible losses. Indeed,
experimental evidence suggests that for some products, the
so-called high-profit products, decision makers exhibit risk-
averse behavior; see Schweitzer and Cachon (2000) for
more details. Unfortunately, traditional inventory control
models fall short of meeting the needs of risk-averse plan-
ners. For instance, traditional inventory models do not sug-
gest mechanisms to reduce the chance of unfavorable profit
levels. Thus, it is important to incorporate the notions of
risk aversion in a broad class of inventory models.
The literature on risk-averse inventory models is quite

limited and mainly focuses on single-period problems. Lau
(1980) analyzes the classical newsvendor model under two
different objective functions. In the first objective function,
the focus is on maximizing the decision-maker’s expected

utility of total profit. The second objective function is the
maximization of the probability of achieving a certain level
of profit.
Eeckhoudt et al. (1995) focus on the effects of risk and

risk aversion in the newsvendor model when risk is mea-
sured by expected utility functions. In particular, they deter-
mine comparative-static effects of changes in the various
price and cost parameters in the risk-aversion setting.
Chen and Federgruen (2000) analyze the mean-variance

trade-offs in newsvendor models as well as some stan-
dard infinite-horizon inventory models. Specifically, in the
infinite-horizon models, Chen and Federgruen focus on
the mean-variance trade-off of customer waiting time as
well as the mean-variance trade-offs of inventory lev-
els. Martínez-de-Albéniz and Simchi-Levi (2003) study the
mean-variance trade-offs faced by a manufacturer signing
a portfolio of option contracts with its suppliers and having
access to a spot market.
The paper by Bouakiz and Sobel (1992) is closely related

to ours. In this paper, the authors characterize the inventory
replenishment strategy so as to minimize the expected util-
ity of the net present value of costs over a finite planning
horizon or an infinite horizon. Assuming linear ordering
cost, they prove that a base-stock policy is optimal.
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Table 1. Summary of previous results and new contributions.

Price is not a decision Price is a decision

(Capacity) k= 0 k > 0 (Capacity) k= 0 k > 0

Risk-neutral model (Modified) base stock∗ �s� S�∗ (Modified) base-stock list price∗ �s� S�A�p�∗
Exponential utility (Modified) base stock† �s� S� (Modified) base stock �s� S�A�p�
Increasing and concave utility Wealth dependent (modified) ? Wealth dependent (modified) ?

base stock base stock
World-driven model parameter State dependent (modified) State dependent State dependent (modified) State dependent
exponential utility base stock �s� S� base stock �s� S�A�p�

Partially complete financial State dependent (modified) State dependent State dependent (modified) State dependent
market exponential utility base stock �s� S� base stock �s� S�A�p�

∗Indicates existing results in the literature.
†Indicates a similar existing result based on a special case of our model.

So far all the papers referenced above assume that
demand is exogenous. A rare exception is Agrawal and
Seshadri (2000), who consider a risk-averse retailer which
has to decide on its ordering quantity and selling price for
a single period. They demonstrate that different assump-
tions on the demand-price function may lead to different
properties of the selling price.
Recently, we have seen a growing interest in hedg-

ing operational risk using financial instruments. As far as
we know, all of this literature focuses on single-period
(newsvendor) models with demand distribution that is cor-
related with the return of the financial market. This can be
traced back to Anvari (1987), which uses the capital asset
pricing model (CAPM) to study a newsvendor facing nor-
mal demand distribution. Chung (1990) provides an alter-
native derivation for the result. More recently, Gaur and
Seshadri (2005) investigate the impact of financial hedg-
ing on the operations decision, and Caldentey and Haugh
(2006) show that different information assumptions lead to
different types of solution techniques.
In this paper, we propose a general framework to incor-

porate risk aversion into multiperiod inventory (and pric-
ing) models. Specifically, we consider two closely related
problems. In the first one, demand is exogenous, i.e., price
is not a decision variable, while in the second one, demand
depends on price and price is a decision variable. In both
cases, we distinguish between models with fixed-ordering
costs and models with no fixed-ordering cost. We assume
that the firm we model is a private firm, therefore there
is no conflict of interests between share holders and man-
agers. Following Smith (1998), we take the standard eco-
nomics perspective in which the decision maker maximizes
the total expected utility from consumption in each time
period. In §2, we discuss in more detail the theory of
expected utility employed in a multiperiod decision-making
framework. We extend our framework in §4 by incorpo-
rating a partially complete financial market so that the
decision maker can hedge operational risk through trading
financial securities.
Observe that if the utility functions are linear and

increasing, the decision maker is risk neutral and these

problems are reduced to the classical finite-horizon stochas-
tic inventory problem and the finite-horizon inventory and
pricing problem. We summarize known and new results in
Table 1.
The row “risk-neutral model” presents a summary of

known results. For example, when price is not a decision
variable, and there exists a fixed ordering cost, k > 0, Scarf
(1960) proved that an �s� S� inventory policy is optimal. In
such a policy, the inventory strategy at period t is character-
ized by two parameters �st� St�. When the inventory level
xt at the beginning of period t is less than st , an order of
size St − xt is made. Otherwise, no order is placed. A spe-
cial case of this policy is the base-stock policy, in which
st = St is the base-stock level. This policy is optimal when
k = 0
 In addition, if there is a capacity constraint on the
ordering quantity (expressed as “(Capacity)” in the table),
then the modified base-stock policy is optimal (expressed
as “(Modified)” in the table). That is, when the inventory
level is below the base-stock level, order enough to raise
the inventory level to the base-stock level if possible or
order an amount equal to the capacity; otherwise, no order
is placed.
If price is a decision variable and there exists a

fixed-ordering cost, the optimal policy of the risk-neutral
model is an �s� S�A�p� policy; see Chen and Simchi-Levi
(2004a). In such a policy, the inventory strategy at period
t is characterized by two parameters �st� St� and a set At ∈
�st� �st + St�/2�, possibly empty depending on the problem
instance. When the inventory level xt at the beginning of
period t is less than st or xt ∈ At , an order of size St − xt
is made. Otherwise, no order is placed. Price depends on
the initial inventory level at the beginning of the period.
When At is empty for all t, we refer to such a policy as
the �s� S�p� policy. A special case of this model is when
k = 0, for which a base-stock list price policy is optimal.
In this policy, inventory is managed based on a base-stock
policy and price is a nonincreasing function of inventory
at the beginning of each period. Again, when there is an
ordering capacity constraint, a modified base-stock inven-
tory policy is optimal (see Federgruen and Heching 1999,
Chen and Simchi-Levi 2004a).
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Table 1 suggests that when risk is measured using addi-
tive exponential utility functions, the structures of opti-
mal policies are almost the same as the one under the
risk-neutral case. For example, when price is not a deci-
sion variable and k > 0, the optimal replenishment strategy
follows the traditional inventory policy, namely, an �s� S�
policy. A corollary of this result is that a base-stock policy
is optimal when k= 0. Note that the optimal policy charac-
terized by Bouakiz and Sobel (1992) has the same structure
as the optimal policy in our model. Finally, when k = 0
and there is an ordering capacity constraint, a (modified)
base-stock policy is optimal.
The last row of Table 1 provides information on the

optimal policy for a decision maker with an exponential
utility function having access to a partially complete finan-
cial market. Such a market allows the risk-averse inven-
tory planner to hedge its operational costs and part of the
demand risks. If the financial market is complete, instead
of partially complete, our model reduces to the risk-neutral
case and hence we have the same structural results as the
risk-neutral model with respect to the market risk-neutral
probability. We will explain the meaning of “state depen-
dent” when we present the model in §4.
We complement the theoretical results with a numerical

study illustrating the effect of risk aversion on the inventory
policies.
This paper is organized as follows. In §2, we review clas-

sical expected utility approaches in risk-averse valuation.
In §3, we propose a model to incorporate risk aversion in
a multiperiod inventory (and pricing) setting, and focus on
characterizing the optimal inventory policy for a risk-averse
decision maker. We then generalize the results in §4 by
considering the financial hedging option. Section 5 presents
the computational results illustrating the effects of different
risk-averse multiperiod inventory models on inventory con-
trol policies. Finally, §6 provides some concluding remarks.
We complete this section with a brief statement on nota-

tions. Specifically, a variable with a tilde over it, such as d̃,
denotes a random variable.

2. Utility Theory for Risk-Averse
Valuations

Modelling risk-sensitive decision making is one of the
fundamental problems in economics. A basic theoreti-
cal framework for risk-sensitive decision making is the
so-called expected utility theory (see, e.g., Mas-Collel et al.
1995, Chapter 6).
Assume that a decision maker has to make a decision

in a single-period problem before uncertainty is resolved.
According to expected utility theory, the decision-maker’s
objective is to maximize the expectation of some appro-
priately chosen utility function of the decision-maker’s
payoff. Such a modeling framework for risk-sensitive deci-
sion making is established mathematically based on an
axiomatic argument. That is, based on a certain set of

axioms regarding the decision-maker’s preference over lot-
teries, one can show the existence of such a utility func-
tion and that the decision-maker’s choice criterion is the
expected utility (see, for example, Heyman and Sobel 1982,
Chapters 2–4; Fishburn 1989).
For multiperiod problems, one approach of modeling risk

aversion that seems natural is to maximize the expected
utility of the net present value of the income cash flow. In
calculating the net present value, one may take the interest
rate for risk-free borrowing and lending as the discount fac-
tor, reflecting the fact that the decision maker could borrow
and lend over time and convert any deterministic cash flow
into its net present value. Models based on this approach
are referred to as the net present value models. Sobel (2005)
refers to the utility function used in such a framework as
the interperiod utility function. Note that the net present
value models have been employed by Bouakiz and Sobel
(1992) and Chen et al. (2004) to analyze the multiperiod
inventory replenishment problems of a risk-averse inven-
tory manager.
However, in the economics literature it has long been

known that applying expected utility methods directly to
income cash flows causes the so-called “temporal risk
problem”—it does not capture the decision-maker’s sen-
sitivity to the time at which uncertainties are resolved
(see, e.g., a summary description of this problem in Smith
1998). One way to overcome the temporal risk problem
is to explicitly model the utility over a flow of consump-
tion, allowing the decision maker to borrow and lend to
“smooth” the income flow as the uncertainties unfold over
time. More generally a decision maker can trade on finan-
cial markets to adjust her consumptions over time.
Therefore, an alternative modeling approach for the mul-

tiperiod inventory control problem is to directly model
consumption, saving and borrowing decisions as well as
inventory replenishment and pricing decisions.
Specifically, assume that the decision maker has access

to a financial market for borrowing and lending with a risk-
free saving and borrowing interest rate rf . At the begin-
ning of period t, assume that the decision maker has initial
wealth wt and chooses an operations policy (inventory/
pricing) that affects her income cash flow. At the end of
period t, that is, after the uncertainty of this period has been
resolved, the decision maker observes her current wealth
level wt + �Pt and decides her consumption level ft for this
period, where �Pt is the income generated at period t. The
remaining wealth, wt+ �Pt− ft , is then saved (or borrowed,
if negative) for the next period. Thus, the next period’s ini-
tial wealth is

wt+1 = �1+ rf ��wt + �Pt − ft�


Equivalently, we can model wt+1 as a decision variable and
calculate the consumption,

ft =wt −
wt+1
1+ rf

+ �Pt
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The decision-maker’s objective is to maximize her ex-
pected utility of the consumption flow,

E�U�f1� 
 
 
 � fT ���

over the planning horizon 1� 
 
 
 � T . We call such an
approach the consumption model. Smith (1998) provides an
excellent comparison between the consumption model and
the net present value model.
Similar to single-period problems, axiomatic approaches

were also employed to derive certain types of utility func-
tions for multiperiod problems (see, e.g., Sobel 2005;
Keeney and Raiffa 1993, Chapter 9). In particular, the
so-called “additive independence axiom”1 implies additive
utility functions of the following form:

U�f1� f2� 
 
 
 � fT �=
T∑
t=1
ut�ft�


That is, the utility of the consumption flow is the summa-
tion of the utility from the consumption in each time period,
where function ut is increasing and concave. Sobel (2005)
refers to functions ut as the intraperiod utility functions.
As a special case of the general intraperiod utility func-

tions, the exponential utility functions are also commonly
used in economics (Mas-Collel et al. 1995) and decision
analysis (Smith 1998). In this case, the utility function has
the form ut�ft� = −ate−ft/�t for some parameters at > 0
and �t > 0. Howard (1988) indicates that exponential utility
functions are widely applied in decision analysis practice.
Kirkwood (2004) shows that in most cases, an appropriately
chosen exponential utility function is a very good (local)
approximation for general utility functions.
In the next section, we characterize the structures of the

optimal inventory policies according to the consumption
model. Interestingly, the net present value model is mathe-
matically a special case of the consumption model, as will
be illustrated in §3. This implies that the structures of the
optimal inventory policies for the consumption models are
also valid for the corresponding net present value models.
At this point it is worth mentioning that Savage (1954)

unified von Neumann and Morgenstern’s theory of expected
utility and de Finetti’s theory of subjective probability and
established the subjective expected utility theory. Without
assuming probability distributions and utility functions, the
Savage theory starts from a set of assumptions on the deci-
sion maker’s preferences and shows the existence of a (sub-
jective) probability distribution depending on the decision
maker’s belief on the future state of the world as well
as a utility function. The decision maker’s objective is to
maximize the expected utility, with the expectation taken
according to the subjective probability distribution. In §4,
to introduce the framework of risk-averse inventory man-
agement with financial hedging opportunities, we explic-
itly consider the decision maker’s subjective probability
and distinguish it from the so-called risk-neutral proba-
bility reflected by a (partially) complete financial market
with no arbitrage opportunity. A similar approach has been
employed by Smith and Nau (1995) and Gaur and Seshadri
(2005).

3. Multiperiod Inventory Models
Consider a risk-averse firm that has to make replenish-
ment (and pricing) decisions over a finite time horizon with
T periods.
Demands in different periods are independent of each

other. For each period t, t = 1�2� 
 
 
 � let
d̃t = demand in period t,
pt = selling price in period t,
pt , p̄t are lower and upper bounds on pt , respectively.
Observe that when pt = p̄t for each period t, price is

not a decision variable and the problem is reduced to an
inventory control problem. Throughout this paper, we con-
centrate on demand functions of the following forms:

Assumption 1. For t = 1�2� 
 
 
 � the demand function sat-
isfies

d̃t =Dt�pt� �̃t� �=  ̃t − !̃tpt� (1)

where �̃t = �!̃t�  ̃t�, and !̃t�  ̃t are two nonnegative ran-
dom variables with E�!̃t� > 0 and E� ̃t� > 0. The random
perturbations, �̃t� are independent across time.

Let xt be the inventory level at the beginning of period t,
just before placing an order. Similarly, yt is the inventory
level at the beginning of period t after placing an order.
The ordering cost function includes both a fixed cost and a
variable cost and is calculated for every t, t = 1�2� 
 
 
 � as

k#�yt − xt�+ ct�yt − xt��

where

#�x� �=
{
1 if x > 0�

0 otherwise.

Lead time is assumed to be zero, and hence an order placed
at the beginning of period t arrives immediately before
demand for the period is realized.
Unsatisfied demand is backlogged. Therefore, the inven-

tory level carried over from period t to the next period, xt+1,
may be positive or negative. A cost ht�xt+1� is incurred at
the end of period t which represents inventory holding cost
when xt+1 > 0 and shortage cost if xt+1 < 0. For technical
reasons, we assume that the function ht�x� is convex and
lim�x�→� ht�x�=�.
At the beginning of period t, the inventory planner de-

cides the order-up-to level yt and the price pt . After observ-
ing the demand, she then makes consumption decision ft .
Thus, given the initial inventory level xt , the order-up-to
level yt , and the realization of the uncertainty �̃t , the income
at period t is

�Pt�xt� yt� pt' �̃t�=−k#�yt − xt�− ct�yt − xt�

+ptDt�pt� �̃t�−ht�yt −Dt�pt� �̃t��


Moreover, as discussed in the previous section, the con-
sumption decision at period t is equivalent to deciding on
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the initial wealth level of period t+ 1. Let wt be the initial
wealth level at period t. Then,

ft =wt −
wt+1
1+ rf

+ �Pt�xt� yt� pt' �̃t�


Finally, at the last period T , we assume that the inven-
tory planner consumes everything, which corresponds to
wT+1 = 0.
According to the consumption model, the inventory plan-

ner’s decision problem is to find the order-up-to levels yt ,
the selling price pt , and decide the initial wealth level wt

(or equivalently, the consumption level) for the following
optimization problem:

max E�U�f1� f2� 
 
 
 � fT ��

s.t. yt � xt�

xt+1 = yt −Dt�pt� �̃t��

ft =wt −
wt+1

�1+ rf �
+ �Pt�xt� yt� pt� �t��

wT+1 = 0


(2)

When the utility function U�f1� f2� 
 
 
 � fT � takes the fol-
lowing linear form:

U�f1� f2� 
 
 
 � fT �=
T∑
t=1

ft
�1+ rf �

t−1 �

the consumption model reduces to the traditional risk-
neutral inventory (and pricing) problem analyzed by Chen
and Simchi-Levi (2004a). In this case, we denote Vt�x� to
be the profit-to-go function at the beginning of period t
with inventory level x. A natural dynamic program for the
risk-neutral inventory (and pricing) problem is as follows
(see Chen and Simchi-Levi 2004a for more details):

Vt�x�= ctx+ max
y�x� p̄t�p� pt

−k#�y− x�+ gt�y�p�� (3)

where VT+1�x�= 0 for any x and

gt�y�p�=E

[
pDt�p� �̃�− cty−ht�y−Dt�p� �̃��

+ 1
1+ rf

Vt+1�y−Dt�p� �̃��

]

 (4)

The following theorem presents known results for the
traditional risk-neutral models.

Theorem 3.1. (a) If price is not a decision variable (i.e.,
pt = p̄t for each t), Vt�x� and gt�y�p� are k-concave and
an �s� S� inventory policy is optimal.
(b) If the demand is additive (i.e., !̃t is a con-

stant), Vt�x� and maxp̄t�p� pt
gt�y�p� are k-concave and an

�s� S�p� policy is optimal.

(c) For the general case, Vt�x� and gt�y�p� are symmet-
ric k-concave and an �s� S�A�p� policy is optimal.

Part (a) is the classical result proved by Scarf (1960)
using the concept of k-convexity; part (b) and part (c) are
proved in Chen and Simchi-Levi (2004a) using the concepts
of k-convexity, for part (b), and a new concept, the sym-
metric k-convexity, for part (c). These concepts are sum-
marized in Appendix B. In fact, the results in Chen and
Simchi-Levi (2004a) hold true under more general demand
functions than those in Assumption 1.
In the following subsections, we analyze the consump-

tion model based on the additive utility functions and its
special case, the additive exponential utility model.

3.1. Additive Utility Model

In this subsection, we focus on the additive utility func-
tions. According to the sequence of events as described
before, the optimization model (2) can be solved by the
following dynamic programming recursion:

Vt�x�w�= max
y�x� pt�p�p̄t

E�̃t �
�Wt�x�w� y�p' �̃t��� (5)

in which

�Wt�x�w� y�p' �̃t�=max
w′

{
ut

(
w− w′

1+ rf
+ �Pt�x� y�p' �̃t�

)

+Vt+1�y−Dt�p� �̃t��w
′�
}
� (6)

with boundary condition

WT �x�w�= uT �w+ �Pt�x� y�p' �̃t��

Note that unlike the traditional risk-neutral inventory

models, where the state variable in the dynamic program-
ming recursion is the current inventory level, here we aug-
ment the state space by introducing a new state variable,
namely, the wealth level w.
Instead of working with the dynamic program (5)–(6),

we find that it is more convenient to work with an equiva-
lent formulation. Let

Ut�x�w�= Vt�x�w− ctx��

and the modified income at period t be

Pt�y�p' �̃t�=
(
ct+1
1+ rf

− ct

)
y+

(
p− ct+1

1+ rf

)
Dt�p� �̃t�

−ht�y−Dt�p� �̃t��


The dynamic program (5)–(6) becomes

Ut�x�w�= max
y�x� pt�p�p̄t

E�Wt�x�w� y�p' �̃t��� (7)

in which

Wt�x�w� y�p' �̃t�

=max
z

{
ut

(
w− z

1+ rf
− k#�y− x�+Pt�y�p' �̃t�

)

+Ut+1�y−Dt�p� �̃t�� z�

}

 (8)
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Theorem 3.2. Assume that k = 0. In this case, Ut�x�w�
is jointly concave in x and w for any period t. Further-
more, a wealth (w) dependent base-stock inventory policy
is optimal.

Proof. We prove by induction. Obviously, UT+1�x�w� is
jointly concave in x and w. Assume that Ut+1�x�w� is
jointly concave in x and w. We now prove that a wealth-
dependent base-stock inventory policy is optimal and
Ut�x�w� is jointly concave in x and w.
First, note that for any realization of �̃t , Pt is jointly

concave in �y�p�. Thus,

Wt�w�y�p' �̃t�=max
z

{
ut

(
w− z

1+ rf
+Pt�y�p' �̃t�

)

+Ut+1�y−Dt�p� �̃t�� z�

}

is jointly concave in �w� y�p�, which further implies that
E�Wt�w� y�p' �̃t�� is jointly concave in �w� y�p�.
We now prove that a w-dependent base-stock inventory

policy is optimal. Let y∗�w� be an optimal solution for the
problem

max
y

{
max

p̄t�p� pt
E�Wt�w� y�p' �̃t��

}



Because E�Wt�w� y�p' �̃t�� is concave in y for any fixed w,
it is optimal to order up to y∗�w� when x < y∗�w� and
not to order otherwise. In other words, a state-dependent
base-stock inventory policy is optimal.
Finally, according to Proposition 4 in Appendix B,

Ut�x�w� is jointly concave. �

Theorem 3.2 can be extended to incorporate capac-
ity constraints on the order quantities. In this case, it is
straightforward to see that the proof of Theorem 3.2 goes
through. The only difference is that in this case, a w-depen-
dent modified base-stock policy is optimal. In such a pol-
icy, when the initial inventory level is no more than y∗�w�,
order up to y∗�w� if possible; otherwise order up to the
capacity. On the other hand, no order is placed when the
initial level is above y∗�w�.
Recall that in the case of a risk-neutral decision maker,

a base-stock list-price policy is optimal. Theorem 3.2 thus
implies that the optimal inventory policy for the expected
additive utility risk-averse model is quite different. Indeed,
in the risk-averse case, the base-stock level depends on the
wealth, measured by the position of the risk-free financial
security. Moreover, it is not clear in this case whether a list-
price policy is optimal or the wealth/consumption decisions
have any nice structure.
Next, we argue that the net present value model is mathe-

matically a special case of the consumption model. Indeed,
if the decision maker’s utility functions in each period t =
1� 
 
 
 � T − 1 are all in the form of ut�x� = − exp�−x/R�
with R → 0+, except in period t = T , the consumption

model (5)–(6) mathematically reduces to the net present
value model with intraperiod utility function U = uT . The
intuition is also clear. In fact, R (commonly referred to as
the “risk-tolerance” parameter) approaching zero implies
that the decision maker becomes “extremely risk averse,”
and thus any negative consumption introduces a negative
infinite utility, while any nonnegative consumption intro-
duces zero utility. Therefore, the consumptions in period
t = 1� 
 
 
 � T − 1 have to be nonnegative and the utility is
always zero. The decision maker is better off by shifting
all the consumptions to the last period, which is equiva-
lent to the net present value model. This also implies that
the same structural results in Theorem 3.2 and those to be
presented in the next section also hold for the net present
value model.
Stronger results exist for models based on the additive

exponential utility risk measure, as is demonstrated in the
next subsection.

3.2. Exponential Utility Functions

We now focus on exponential utility functions of the form
ut�f � = −ate−f /�t , with parameters at� �t > 0. �t is the
risk-tolerance factor, while at reflects the decision maker’s
attitude toward the utility obtained from different periods.
The beauty of exponential utility functions is that we

are able to separately make the inventory decisions without
considering the wealth/consumption decisions. This is dis-
covered by Smith (1998) in the decision-tree framework.
The next theorem states this result in dynamic program-
ming language. For completeness, a proof is presented in
Appendix A.
To state the theorem, we first introduce some notation.

For a risk-tolerance parameter R, denote the “certainty
equivalent” operator with respect to a random variable -̃
to be

��R
-̃
�-̃�=−R lnE�e−-̃/R�


For a decision maker with risk-tolerance R and an exponen-
tial utility function, the above certainty equivalent repre-
sents the amount of money she feels indifferent to a gamble
with random payoff �̃. Similarly, we denote the “condi-
tional certainty equivalent” operator with respect to a ran-
dom variable -̃ given .̃ to be

��R
-̃�.̃ �-̃�=−R lnE�e−-̃/R � .̃�


We also consider the “effective risk tolerance” per period,
defined as

Rt =
T∑
/=t

�/
�1+ rf �

/−t 
 (9)

Theorem 3.3. Assume that ut�f �=−ate−f /�t . The inven-
tory decisions in the risk-averse inventory control model
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Equations (5)–(6) can be calculated through the following
dynamic programming recursion:

Gt�x�= max
y�x�p̄t�p� pt

−k#�y−x�

+��Rt
�̃

[
Pt�y�p' �̃t�+

1
1+rf

Gt+1�y−Dt�p��̃t��

]

(10)

and GT+1�x�= 0.
The optimal consumption decision at each period t =

1� 
 
 
 � T − 1 is

f ∗
t �w�x� y�p� d̃�

= �t
Rt

[
w+(− k#�y− x�+Pt�y�p' �̃t�

)

+ 1
1+ rf

Gt+1�y− d̃�

]
+Ct�

in which Ct is a constant that does not depend on
�w�x� y�p� d̃�.

The theorem thus implies that when additive exponential
utility functions are used: (i) the optimal inventory policy
is independent of the wealth level; (ii) the optimal inven-
tory replenishment and pricing decisions can be obtained
regardless of the wealth/consumption decisions; (iii) the
optimal consumption decision is a simple linear function
of the current wealth level; and (iv) the model parame-
ter at does not affect the inventory replenishment and pric-
ing decisions. Thus, incorporating the additive exponential
utility function significantly simplifies the problem.
This theorem, together with Theorem 3.2, implies that

when k = 0, a base-stock inventory policy is optimal
under the exponential utility risk criterion independent of
whether price is a decision variable. If, in addition, there
is a capacity constraint on ordering, one can show that
a wealth-independent modified base-stock policy is opti-
mal. As before, it is not clear whether a list-price policy
is optimal when k = 0 and price is a decision variable.
Because the net present value model is a special case of the
consumption model, our base-stock policy directly implies
the result based on the net present value model obtained
by Bouakiz and Sobel (1992) using a more complicated
argument.
To present our main result for the problem with k > 0,

we need the following proposition.

Proposition 1. If a function f �x� -̃� is concave, k-con-
cave, or symmetric k-concave in x for any realization of -̃,
then for any R> 0, the function

g�x�=��R
-̃
�f �x� -̃��

is also concave, k-concave, or symmetric k-concave, re-
spectively.

Proof. We only prove the case with K-convexity; the other
two cases can be proven by following similar steps.
Define M�x� = E�exp�f �x − -���. It suffices to prove

that for any x0� x1 with x0 � x1 and any 4 ∈ �0�1�,

M�x4��M�x0�
1−4M�x1�

4 exp�4K��

where x4 = �1−4�x0 +4x1. Note that

M�x4��E�exp��1−4�f �x0−-�+4f �x1−-�+4K��
=exp�4K�E�exp��1−4�f �x0−-��exp�4f �x1−-���
�exp�4K�E�exp�f �x0−-���1−4E�exp�f �x1−-���4
=M�x0�

1−4M�x1�
4exp�4K��

where the first inequality holds because f is K-convex, and
the second inequality follows from the Hölder inequality
with 1/p= 1−4 and 1/q = 4. �

We can now present the optimal policy for the risk-averse
multiperiod inventory (and pricing) problem with additive
exponential utility functions.

Theorem 3.4. (a) If price is not a decision variable (i.e.,
pt = p̄t for each t), Gt�x� and Lt�y�p� are k-concave and
an �s� S� inventory policy is optimal.
(b) For the general case, Gt�x� and Lt�y�p� are sym-

metric k-concave and an �s� S�A�p� policy is optimal.

Proof. The main idea is as follows: if Gt+1�x� is k-con-
cave when price is not a decision variable (or symmetric
k-concave for the general case), then, by Proposition 1,
Gt�y�p� is k-concave (or symmetric k-concave). The
remaining parts follow directly from Lemma 1 and Propo-
sition 2 for k-concavity or Lemma 2 and Proposition 3
for symmetric k-concavity. See Lemma 1, Proposition 2,
Lemma 2, and Proposition 3 in Appendix B. �

We observe the similarities and differences between the
optimal policy under the exponential utility measure and
the one under the risk-neutral case. Indeed, when demand
is exogenous, i.e., price is not a decision variable, an �s� S�
inventory policy is optimal for the risk-neutral case; see
Theorem 3.1, part (a). Theorem 3.4 implies that this is also
true under the exponential utility measure. Similarly, for the
more general inventory and pricing problem, Theorem 3.1,
part (c) implies that an �s� S�A�p� policy is optimal for the
risk-neutral case. Interestingly, this policy is also optimal
for the exponential utility case.
Of course, the results for the risk-neutral case are a

bit stronger. Indeed, if demand is additive, Theorem 3.1,
part (b) suggests that an �s� S�p� policy is optimal. Unfor-
tunately, we are not able to prove or disprove such a result
for the exponential utility measure.
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3.3. World-Driven Model Parameters

Next, we extend the results for the exponential utility func-
tion to the case of “world-driven model parameters.” Fol-
lowing Song and Zipkin (1993), we assume that at each
time period, the business environment could be in one of a
number of possible levels. Inventory model parameters and
the sufficient statistics of the demand distribution depend
on the history of the evolution of the business environ-
ment. Formally, let finite set 7t represent the set of business
environments in period t. We use boldface �t =

∏t
/=17/

to represent the set of trajectories of levels from period 1
to t. Each trajectory, 8t ∈�t , is referred to as the state of
the world, which is used to model relevant economic fac-
tors that affect the production/inventory cost and revenue.
A state of the world uniquely determines the cost param-
eters and the sufficient statistics of the demand distribu-
tion of the inventory model. That is, at each time period t,
parameters ct , ht , pt , and p̄t are all functions of 8t ∈�t

(we express them as c8tt , h
8t
t , p

8t
t , and p̄

8t
t , respectively),

and the distributions of !̃t and  ̃t are also 8t-dependent.
For the state-dependent uncertain demand, we denote �̃8tt =
�!

8t
t � 

8t
t �.

Similarly to what we have done earlier, define

Pt�y�p� �̃
8t
t ' 8t� 8t+1�

=
(
c
8t+1
t+1

1+ rf
− c

8t
t

)
y+

(
p− c

8t+1
t+1

1+ rf

)
Dt�p� �̃

8t
t �

−ht
(
y−Dt�p� �̃

8t
t �

)
� (11)

which can be thought of as the decision maker’s modified
income at period t.
The following theorem is a natural extension of Theo-

rems 3.3 and 3.4.

Theorem 3.5. Separation� The optimal inventory and pric-
ing decisions for the world-driven parameter model may be
solved through the following dynamic programming recur-
sion:

Gt�x�8t�=c8tt x+ max
y�p�y�x� p8t�p�p̄8t

−k#�y−x�+Lt�y�p�8t��

(12)

in which

Lt�y�p� 8t�

=��Rt
�̃8t �8t

[
��Rt

8t+1�8t

[
Pt�y�p� �̃t' 8t� 8t+1�+

1
1+ rf

Gt+1

· �y−Dt�p� �̃
8t �� 8t+1�

]]
(13)

and with boundary condition GT+1�x�= 0. Thus, the con-
sumption decisions are decoupled from the inventory (pric-
ing) decisions.

Structural policy� The following structural results for the
optimal inventory (pricing) policies holds.

(a) If price is not a decision variable (i.e., p
8t
t = p̄

8t
t

for each t), for each given 8t , functions Gt�x� 8t� are
kt-concave in x and a 8t-dependent �s� S� inventory policy
is optimal.
(b) For the general case, Gt�x� 8t� are symmetric kt-

concave in x for any given 8t and a 8t-dependent �s� S�
A�p� policy is optimal.

Note that the separation result in Theorem 3.5 could be
extended to the situation where the fixed cost k is world
driven. If we further have the following condition for all 8t ,

�1+ rf �k
8t � max

8t+1� 8t∈8t+1
k8t+1�

we have that the value functions Gt�x� 8� are k
8t
t -concave

(symmetric k
8t
t -concave) and a 8t-dependent �s� S� (8t-

dependent �s� S�A�p�) inventory policy is optimal.
In the next section, we further extend the world-driven

parameter model by considering the situation that the inven-
tory planner has access to a financial market to hedge the
risks associated with fluctuations in the states of the world.

4. Multiperiod Inventory Models with
Financial Hedging Opportunities

The modern financial market provides opportunities to
replicate many of the changes in the state of the world.
Therefore, a risk-averse inventory planner may use the
financial market to hedge the risks from changes in the
business environment. For example, if the production cost
is a function of the oil price, the inventory planner may
hedge the oil price risks through trading financial securi-
ties on oil prices. Similarly, if the demand distribution is
affected by the general economic situation, financial instru-
ments on the market indices provide the possibility of hedg-
ing the risks of general trend in demand. In this section, we
extend our previous framework by assuming that the deci-
sion maker has opportunities of hedging operational risk
through trading financial securities in a so-called “partially
complete” financial market.
Similarly to the previous section, we consider a risk-

averse inventory planner who has to make replenishment
(and pricing) decisions over a finite time horizon with
T periods. The inventory, pricing, and trading decisions are
made at time periods t = 1� 
 
 
 � T . The model parameters
are “world driven” as defined in the last section. In this
section, we explicitly assume that the fixed cost k is world
driven. Besides the risk-free borrowing and saving oppor-
tunity (cash), we assume that there are another N financial
securities in the financial market. To simplify notation and
analysis, assume that these securities do not pay dividends
during the time horizon 1� 
 
 
 � T . We denote the prices
of the securities as a matrix Q such that its component
Qit denotes the price of security i at time t (measured by
period t dollar). We follow the usual assumption in the real-
options literature that the financial security could be traded
at the exact desired amount and there is no transaction fee.
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Following Smith and Nau (1995), we refer to the risks
associated with the evolution of the state of the world 8t
as market risk—it can be fully hedged in the financial mar-
ket. On the other hand, given the state of the world 8t ,
the demand uncertainty in our model is the so-called pri-
vate risk that cannot be hedged in the financial market. The
existence of the private risk contributes to the incomplete-
ness of the financial market, which Smith and Nau (1995)
called a partially complete financial market. Note that in
this section, we explicitly distinguish subjective probabil-
ities from the probability distribution that can be inferred
from the financial market, known as the risk-neutral proba-
bility, which will be introduced in the following subsection.
The next subsection is devoted to the formal description
of a complete financial market. The discussion of the com-
plete market and no arbitrage conditions are standard in the
finance literature. For a discrete-time treatment of such a
financial market, we refer readers to Pliska (1997).

4.1. Complete Financial Market and Risk-Neutral
Probabilities

Formally, a financial market is “complete” if we have the
following conditions.

Assumption 2. (1) Qit only depends on the state of the
world 8t ∈�t . That is, for any trajectory 8T = <=1� 
 
 
 �=T >
and its subtrajectories 8t = <=1� 
 
 
 �=t>, we can uniquely
define the price sequence of financial security i as the (row)
vector Qi·�8T �.
(2) Any cash flow determined by the state of the world

can be replicated by trading the financial securities. That
is, for any given period t, the vector <�t�8t�>∀8t∈�t

is a
linear combination of the vectors 1 and <Q1t�8t�>∀8t∈�t

�

 
 
 � <QNt�8t�>∀8t∈�t

. Here, �t�·� is any mapping from �t

to a real number representing a state of the world adapted
cash flow.
(3) Disclosed demand information in each time period

is not correlated with any future evolution of the state of
the world. That is, given 8t , the decision maker believes
that d8tt and 8t+1 are independent.

We also assume that

Assumption 3. The financial market is arbitrage free.

Intuitively speaking, arbitrage free means that one can-
not guarantee positive gain only through trading financial
securities on the market.
Formally, to define arbitrage opportunities, we need to

introduce the notion of a self-financing trading strategy,
a well-known concept in finance. A self-financing trad-
ing strategy is an N + 1-dimensional vector of 8t adapted
stochastic processes <�wt�wt�>t=1�


�T such that

�1+ rf �wt�8t−1�+Q·t�8t�
�wt�8t−1�

= �1+ rf �wt+1�8t�+Q·t�8t�
�wt+1�8t� (14)

for each time period t and for any state-of-the-world tra-
jectories 8t−1 and 8t such that 8t−1 is a subtrajectory of 8t .
To be specific, �wt�wt� represents the positions of cash and
risky financial securities at the beginning of period t. That
is, the number of shares in security i is wt�i�. Note that
�wt�wt� is determined through the trading in period t − 1
based on the information 8t−1 that was available. Equation
(14) implies that the values of the portfolio before and after
the financial trading in period t are the same. Therefore, no
money is added to or subtracted from the portfolio through-
out the planning horizon according to a self-financing trad-
ing strategy. With the help of the notion of self-financing
trading strategies, the arbitrage-free condition can be repre-
sented as the following: there does not exist a self-financing
trading strategy <�wt�wt�>t=1�


�T such that

w1 +w�
1 Q·1 = 0�

wT �8T−1�+wT �8T−1�
�Q·T �8T �� 0 ∀8T � and

wT �8T−1�+wT �8T−1�
�Q·T �8T � > 0 for some 8T 


Assumption 2, parts (1) and (2), also imply an equiv-
alent “dual” characterization of the no-arbitrage assump-
tion: a security market is arbitrage free if and only if there
exists a strictly positive probability distribution ? (com-
monly referred to as the risk-neutral probability) on the
states of the world � such that for all t = 1� 
 
 
 � T ,

Qit−1�8t−1�=
∑
8t

1
1+ rf

?�8t � 8t−1�Qit�8t�� (15)

in which ?�8t � 8t−1� is the risk-neutral probability of
observing the trajectory 8t given the subtrajectory up to
time period t is 8t−1.
In the sequel, we use E?�· � 8t� to denote the conditional

expectation taken with respect to the risk-neutral proba-
bility distribution ?, while E8t+1 �· � 8t� is used to express
the expectation taken with respect to the decision-maker’s
subjective probability. When we take expectation on the
subjective demand distribution, we use the notation E

�̃
8t
t
�·�.

Therefore, Equation (15) can be equivalently expressed as

Qit−1�8t−1�=E?�Qit�8t�/�1+ rf ��


As was pointed out by one of the referees, our model
can be extended to the case when the risk-free borrowing
and saving interest rate rf is world driven as well. In a
complete financial market, a nonstate driven interest rate (in
terms of dollars) exists anyway, which will be used to serve
our model if the utility functions are in terms of payoff in
dollars. As a matter of fact, in a complete financial market,
we can design a portfolio such that one dollar worth of
such a portfolio is always worth some fixed amount @t > 0
in any given period t regardless of the the state of the world
in period t. Therefore, @t/@t−1 − 1 could be considered as
the risk-free interest rate for time period t. For simplicity of
exposition, we assume that rf is the same across different
time periods.
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4.2. Partially Complete Financial Market

Following the notations introduced before, we use the
N -dimensional vector wt to express the inventory planner’s
financial market position at time period t and the scalar wt

to represent the amount of cash in the bank at period t.
In the beginning of each time period t, the decision maker
observes the current state of the world 8t , the inventory
level xt , and the financial market position �wt�wt�, and then
makes the inventory and pricing decisions yt and pt . After
observing the realized demand (and thus the income cash
flow �Pt�xt� yt� pt� �̃8tt ' 8t�), she makes the decision on the
next period market position �wt+1�wt+1� by trading at the
market price Q·t . With the amount ft consumed for utility
at period t, the period t+ 1 cash amount becomes

wt+1 = �1+ rf �
(
wt + �Pt�xt� yt� pt� �̃8tt ' 8t�
+ �wt −wt+1�

�Q·t − ft
)



Equivalently, we have

ft
(
wt�wt+1�wt�wt+1� xt� yt� pt� �̃

8t
t ' 8t

)
= (

wt −wt+1
)�
Q·t + �Pt

(
xt� yt� pt� �̃

8t
t ' 8t

)+wt −
wt+1
1+ rf




The objective of the inventory planner is to find an order-
ing (and pricing) policy as well as a trading strategy so as
to maximize her expected utility over consumptions. This
maximization problem can be expressed by the following
dynamic programming recursion:

Vt�x�w�w� 8t�

= max
y�p� y�x� p

8t
t �p�p̄

8t
t

E
�̃
8t
t

[�Wt�x�w�w� y�p' �̃
8t
t � 8t�

]
� (16)

in which

�Wt�x�w�w� y�p' �̃
8t
t � 8t�

=max
z�z

{
ut
(
ft�w� z�w� z� x� y�p� �̃

8t
t ' 8t�

)
+E8t+1

[
Vt+1�y−Dt�p� �̃

8t
t �� z� z� 8t+1� � 8t

]}
� (17)

with boundary condition

�WT

(
x�w�w� y�p' �̃8TT � 8T

)
= uT

(
wt +w�

t Q·T �8T �+ �PT �x� y�p� �̃8TT ' 8T �
)



Note that all the expectations taken in the above dynamic
programming model are with respect to the decision-
maker’s subjective probabilities.
A special case of the partially complete market assump-

tion is obtained when �̃8t is deterministic for any given 8t .
This corresponds to the complete market assumption. Fol-
lowing Smith and Nau (1995), we know that a risk-averse
inventory planner with additive concave utility function can

fully hedge the risk in a complete market, while locking
in a profit equal to the expected (with respect to the risk-
neutral probability) profit. Thus, in this case, the inventory
control problem reduces to a risk-neutral problem.
On the other hand, under the partially complete market

assumption, the following theorem holds for a deci-
sion maker with the additive exponential (subjective) ex-
pected utility maximization criterion. This theorem can be
obtained directly from §5 of Smith and Nau (1995) and the
previous section of this paper. Define the modified income
flow in period t, Pt�y�p� �̃

8t
t ' 8t� 8t+1�, as in Equation (11).

Theorem 4.1. Separation� The inventory and pricing deci-
sions in the risk-averse inventory model with financial
hedging Equations (16)–(17) can be calculated through
the following dynamic programming recursion:

Gt�x� 8t�

= c
8t
t x+ max

y�p� y�x� p8t�p�p̄8t
−k8tt #�y− x�+Lt�y�p� 8t�� (18)

in which

Lt�y�p� 8t�

=��Rt

�
8t
t �8t

[
E?

[
Pt�y�p� �̃

8t
t ' 8t� 8t+1�

+ 1
1+ rf

Gt+1�y−Dt�p� �̃
8t �� 8t+1�

∣∣∣8t
]]

(19)

and with boundary condition GT+1�x�= 0.
Structural policy� If, in addition, k8tt �E?�k

8t+1
t+1 � 8t�, then

the following structural results for the optimal inventory
(pricing) policies hold.
(a) If price is not a decision variable (i.e., p

8t
t = p̄

8t
t

for each t), for each given 8t , functions Gt�x� 8� and
Lt�y�p� 8t� are k

8t
t -concave and a 8t-dependent �s� S�

inventory policy is optimal.
(b) For the general case, Gt�x� 8t� and Lt�y�p� 8t� are

symmetric k8tt -concave for any given 8t and a 8t-dependent
�s� S�A�p� policy is optimal.

The theorem thus implies that when additive exponen-
tial utility functions are used: (i) the optimal inventory
policy is independent of the financial market position;
(ii) the optimal inventory replenishment and pricing deci-
sions can be obtained regardless of the financial hedging
decisions; (iii) the coefficient at in the utility function does
not affect the inventory replenishment and pricing deci-
sions; and (iv) unlike Equation (17), the expectation opera-
tor E8t+1 �· � 8t� does not appear in the above dynamic pro-
gramming recursion, which implies that for the purpose of
calculating the optimal inventory decisions, we do not need
to know the decision-maker’s subjective probability on the
state-of-the-world evolution. However, to obtain the optimal
expected utility, the model requires that the decision maker
also implement an optimal strategy on the financial market.
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We refer readers to Smith and Nau (1995) for the detailed
description of such an optimal trading strategy.2

It is also interesting to compare the dynamic program for
the financial hedging case (18)–(19) with the one without
the financial hedging opportunity in (12)–(13). The only
difference in the expressions is that the certainty equivalent
operator with respect to the state-of-the-world transitions in
(13) is replaced by an expectation operator with respect to
the risk-neutral probability.
It is appropriate to point out that the restriction on

fixed costs in the theorem is similar to the assumptions
made in Sethi and Cheng (1997) for a stochastic inventory
model with input parameters driven by a Markov chain.
Finally, when the fixed costs are all zeros and there are
capacity constraints on the ordering quantities, our analysis
shows that a state-dependent modified base-stock policy is
optimal.

5. Computational Results
In this section, we present the results of a numerical study.
We consider an additive exponential utility model in which
�t = � for all t = 1� 
 
 
 � T . Assuming the risk-free inter-
est rate, rf = 0, the experimental model focuses on how
the choice of parameter � can affect the entire inventory
replenishment policies.
We experimented with many different demand distribu-

tions and inventory scenarios and observed similar trends
in profit profile and changes in the inventory policy under
the influence of risk aversion. Hence, we highlight a typi-
cal experimental setup in which we consider a fixed-price
inventory model over a planning horizon with T = 10 time
periods. The inventory holding and shortage cost function
is defined as follows:

ht�y�= h−max�−y�0�+h+max�y�0��

where h+ is the unit inventory holding cost and h− is the
unit shortage costs. The parameters of the inventory model
are listed in Table 2.
Demands in different periods are independent and iden-

tically distributed with the following discrete distribution:

d̃=min�max��30z̃�+ 10�0��150��

where z̃ ∼ � �0�1�, and �y�, the floor function, denotes
the largest integer smaller than or equal to y. Because the

Table 2. Parameters of the inventory model.

Discount factor, At 1
Fixed-ordering cost, k 100
Unit-ordering cost, ct 1
Unit-holding cost, h+ 6
Unit-shortage cost, h− 3
Unit-item price, pt 8

demand distribution is bounded and discrete, we can eas-
ily evaluate expectations within the dynamic programming
recursion and compute the optimal policy exactly.
To evaluate the inventory policies derived, we analyze

the inventory policies via Monte Carlo simulation on S
independent trials. In each trial, we generate T indepen-
dent demand samples (one for each period) and obtain the
accumulated profit at the end of the T th period. Hence,
in the policy evaluation stage, we require ST independent
demands drawn from d̃. We can improve the resolutions of
the policy evaluation by increasing the number of indepen-
dent trials, S. Hence, the choice of S is limited by compu-
tation time, and in our experiment we choose S = 10�000.
For each risk parameter � ∈ <10�20�40>, we construct the
optimal risk-averse inventory policy.
We now study numerically how the replenishment poli-

cies change as we vary the risk-aversion level. That is,
because the optimal policy is �st� St�, we analyze changes
in the replenishment policy parameters as we vary the deci-
sion maker risk-aversion level. Figure 1 depicts the param-
eters �st� St� over the first nine periods. Generally, for any
time period, the order-up-to level, St , decreases in response
to greater risk aversion.
Interestingly, for this particular problem instance, the

reorder level, st� increases as we increase the level of risk
aversion. Of course, this is not true in general. As a matter
of fact, if the fixed-ordering cost, k = 0, we have st = St ,
and unless the policies are indifferent to risk aversion, we
do not expect such phenomenon to hold. Indeed, it is not
difficult to come up with examples (with different values
of k) showing that st decreases in response to greater risk
aversion. We point out that in most of our experiments,
the order-up-to level St decreases, while the reorder points
st are monotonic (both monotone increases and decreases
are possible) in response to greater risk aversion. Unfortu-
nately, while such a monotonicity property is much desired,
we have numerical examples that violate this property as
we change the risk-aversion level.

Figure 1. Plot of �st� St� against t.
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To test the sensitivity of the parameters of the opti-
mal policy to changes in the level of risk aversion, we
track the changes in the parameters of the optimal policy
as we gradually increase the parameter �. It is interest-
ing to observe that while the risk-averse and risk-neutral
policies are different, the policy changes resulting from
small changes in the risk-tolerance level are quite small.
For instance, the optimal policy remains the same as we
vary � = 15�16� 
 
 
 �24. Therefore, we conclude (numer-
ically) that the optimal policy is relatively insensitive to
small changes in the decision-maker’s level of risk aversion.

6. Conclusions
In this paper, we propose a framework to incorporate risk
aversion into inventory (and pricing) models. The frame-
work proposed in this paper and the results obtained moti-
vate a number of extensions.
• Risk-Averse Infinite-Horizon Models: The risk-

averse infinite-horizon models are not only important, but
also theoretically challenging. Assuming stationary input
parameters, it is natural to expect that a stationary �s� S�
policy is optimal when price is not a decision variable and
a stationary �s� S�A�p� policy is optimal when price is a
decision variable. We conjecture that similarly to the risk-
neutral case (see Chen and Simchi-Levi 2004b), a station-
ary �s� S�p� policy is also optimal even when price is a
decision variable.
• Continuous-Time Models: Continuous-time models

are widely used in the finance literature. Thus, it is inter-
esting to extend our periodic review framework to models
in which inventory (and pricing) decisions are reviewed in
continuous time and financial trading takes place in contin-
uous time as well.
• Portfolio Approach for Supply Contracts: It is pos-

sible to incorporate spot market and portfolio contracts
into our risk-averse multiperiod framework. Observe that
a different risk-averse model, based on the mean-variance
trade-off in supply contracts, cannot be easily extended to
a multiperiod framework, as pointed out by Martínez-de-
Albéniz and Simchi-Levi (2006).
• The Stochastic Cash-Balance Problem: Recently,

Chen and Simchi-Levi (2003) applied the concept of sym-
metric k-convexity and its extension to characterize the
optimal policy for the classical stochastic cash-balance
problem when the decision maker is risk neutral. It turns
out, similarly to what we did in §3.2, that this type of pol-
icy remains optimal for risk-averse cash-balance problems
under exponential utility measure.
• Random Yield Models: So far, we have assumed that

uncertainty is only associated with the demand process.
An important challenge is to incorporate supply uncertainty
into these risk-averse inventory problems.
Of course, it is also interesting to extend the framework

proposed in this paper to more general inventory models,

such as the multiechelon inventory models. In addition,
it may be possible to extend this framework to different
environments that go beyond inventory models (for exam-
ple, revenue management models).
Another possible extension is to include positive lead

time. Indeed, throughout this paper, we assume zero lead
time. It is well known that when price is not a decision
variable, the structural results of the optimal policy for the
risk-neutral inventory models with zero lead time can be
extended to risk-neutral inventory models with positive lead
time (see Scarf 1960). The idea is to make decisions based
on inventory positions, on-hand inventories plus inventory
in transit, and reduce the model with positive lead time to
one with zero lead time by focusing on the inventory posi-
tion. To conduct this reduction, we need a critical property
that the expectation E�·� of the summation of random vari-
ables equals the summation of expectations. Unfortunately,
this property does not hold for the certainty equivalent
operator when the random variables are correlated. This
implies that a replenishment decision depends not just on
inventory positions, but also on the on-hand inventory level
and inventories in transit. Thus, our results for risk-averse
inventory models with zero lead time cannot be extended to
risk-averse inventory models with positive lead time. When
price is a decision variable, even under risk-neutral assump-
tions, the structural results for models with zero lead time
cannot be extended to models with positive lead time (see
Chen and Simchi-Levi 2004b).
Finally, we would like to caution the readers about some

limitations and practical challenges of our model. First, the
assumption that the savings and borrowing rates are identi-
cal may not hold in practice, especially for the majority of
manufacturing firms, where the borrowing rate is typically
higher than the savings rate. Similar to many economic and
financial models, our results depend on this assumption.
Second, although expected utility theory is commonly

used for modeling risk-averse decision-making problems, it
does not capture all the aspects of human beings’ choice
behavior under uncertainty (Rabin 1998). In practice, the
set of axioms that expected utility theory is built upon may
be violated. We refer readers to Heyman and Sobel (1982)
and Fishburn (1989) for discussions on the axiomatic game
of expected utility theory. Our model also bears the same
practical challenges as other models based on expected
utility theory—for example, specifying the decision-maker
utility function and determining related parameters are not
easy. We note that some approaches for assessing the
decision-makers’ utility functions were proposed in the
decision analysis literature; see, for example, discussions
in the textbook by Clemen (1996).
Nevertheless, our risk-averse model provides inventory

planners an alternative way of making inventory decisions.
Our numerical study indicates that the risk-averse models
based on the additive exponential utility function are not
that sensitive to the choice of �.
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Appendix A. Proof of Theorem 3.3
First, consider the last period, period T .

UT �x�w�= max
y�x�p

E�−aT e−�w−k#�y−x�+P�y�p' �̃T ��/�T �

= aT e
−w/�T max

y�x�p
−ek#�y−x�/�T E�e−P�y�p' �̃T �/�T �


For simplicity, we do not explicitly write down the con-
straint p̄T � p� pT . We follow this convention throughout
this appendix.
Define

GT �x�=max
y�x�p

−k#�y− x�+���T
�̃T
�P�y�p' �̃T ��


We have

max
y�x�p

−ek#�y−x�/�T E�e−P�x�y�p' �̃T �/�T �=−e−GT �x�/�T 


Thus,

UT �x�w�=−aT e−�GT �x�+w�/RT

with RT defined in Equation (9).
Now we start induction. Assume that

Ut+1�x�w�=−At+1e
−�Gt+1�x�+w�/Rt+1

for some constant At+1 > 0.
Now we consider period t:

Ut�x�w�

=max
y�x�p

E
[
max
z

{−ate−�w−�1/�1+rf ��z−k#�y−x�+Pt�y�p' �̃t ��/�t
−At+1e

−�Gt+1�y−d̃�+z�/Rt+1}]�
where for simplicity, we use d̃ to denote the demand of
period t, which, of course, is a function of the selling price
of this period. For any given �y�p�, the first-order optimal-
ity condition with respect to z is

1
�t
ate

−�w−�1/�1+rf ��z�/�t e�k#�y−x�−Pt�y�p' �̃t ��/�t

= 1+ rf

Rt+1
At+1e

−z/Rt+1e−Gt+1�y−d̃�/Rt+1� (A1)

or, equivalently (because both at and At+1 > 0),

ln
at
�t

− w− z/�1+ rf �

�t
+ k#�y− x�−Pt�y�p' �̃t�

�t

= ln
�1+ rf �At+1

Rt+1
− z

Rt+1
− Gt+1�y− d̃�

Rt+1



Thus, for any given �y�p� at state �x�w� and the real-
ization of the current period uncertainty �̃t , the optimal
banking decision z is

z∗ =− �t
Rt

Gt+1�y− d̃�+ Rt+1
Rt

�−k#�y− x�+Pt�y�p' �̃t��

+ Rt+1
Rt

w+ Rt+1�t
Rt

ln
At+1�1+ rf ��t

atRt+1
�

which implies that the optimal consumption decision at
time period t is

f ∗
t = �t

Rt

[
w+ �−k#�y− x�+Pt�y�p' �̃t��

+ 1
1+ rf

Gt+1�y− d̃�

]

− Rt+1�t
Rt�1+ rf �

ln
At+1�1+ rf ��t

atRt+1

= �t
Rt

[
w+ �−k#�y− x�+Pt�y�p' �̃t��

+ 1
1+ rf

Gt+1�y− d̃�

]
+Ct�

if we define constant

Ct =− Rt+1�t
Rt�1+ rf �

ln
At+1�1+ rf ��t

atRt+1



Equation (A1) also implies that

Ut�x�w�=− �1+ rf �Rt

Rt+1
At+1 max

y�x�p
E
[−e−�z∗+Gt+1�y−d̃��/Rt+1]

=−Ate
−w/Rt

·max
y�x�p

E�− exp
{−[

Gt+1�y− d̃�/�1+ rf �

−k#�y−x�+Pt�y�p'�̃t��/Rt

]}
�

in which

At =
�1+ rf �Rt

Rt+1
At+1

(
At+1�1+ rf ��t

atRt+1

)−�t/Rt

=
(
1+ rf

Rt+1

)1−�t/Rt
Rt

(
�t
at

)−�t/Rt
A
1−�t/Rt
t+1 > 0


If we define

Gt�x�=max
y�x�p

−k#�y− x�

−Rt lnE
[
exp

{
− 1
Rt

[
Pt�y�p' d̃�

+ 1
1+ rf

Gt+1�y− d̃�

]}]
�

we have

Ut�x�w�=−At exp <− �w+Gt�x�� /Rt> 


Appendix B. Review on k-Convexity and
Symmetric k-Convexity
In this section, we review some important properties of
k-convexity and symmetric k-convexity that are used in this
paper (see Chen 2003 for more details).
The concept of k-convexity was introduced by Scarf

(1960) to prove the optimality of an �s� S� inventory policy
for the traditional inventory control problem.
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Definition B.1. A real-valued function f is called
k-convex for k� 0, if for any x0 � x1 and 4 ∈ �0�1�,
f ��1−4�x0 +4x1�� �1−4�f �x0�+4f �x1�+4k
 (B1)

Below we summarize properties of k-convex functions.

Lemma 1. (a) A real-valued convex function is also
0-convex and hence k-convex for all k � 0. A k1-convex
function is also a k2-convex function for k1 � k2.
(b) If f1�y� and f2�y� are k1-convex and k2-convex,

respectively, then for !� � 0, !f1�y�+  f2�y� is �!k1 +
 k2�-convex.
(c) If f �y� is k-convex and w is a random variable, then

E<f �y−w�> is also k-convex, provided E<�f �y−w��> <�
for all y.
(d) Assume that f is a continuous k-convex function and

f �y�→ � as �y� → �. Let S be a minimum point of g
and s be any element of the set

<x � x� S� f �x�= gf �S�+ k>


Then, the following results hold:
(i) f �S�+ k= f �s�� f �y� for all y � s.
(ii) f �y� is a nonincreasing function on �−�� s�.
(iii) f �y�� f �z�+ k for all y� z with s � y � z.

Proposition 2. If f �x� is a K-convex function, then the
function

g�x�=min
y�x

Q#�y− x�+ f �y�

is max<K�Q>-convex.

Recently, a weaker concept of symmetric k-convexity
was introduced by Chen and Simchi-Levi (2002a, b) when
they analyzed the joint inventory and pricing problem with
fixed-ordering cost.

Definition B.2. A function f � �→� is called symmet-
ric k-convex for k� 0 if for any x0� x1 ∈� and 4 ∈ �0�1�,
f ��1−4�x0 +4x1�� �1−4�f �x0�+4f �x1�

+max<4�1−4>k
 (B2)

A function f is called symmetric k-concave if −f is sym-
metric k-convex.

Observe that k-convexity is a special case of symmet-
ric k-convexity. The following results describe properties
of symmetric k-convex functions, properties that are par-
allel to those summarized in Lemma 1 and Proposition 2.
Finally, note that the concept of symmetric k-convexity can
be easily extended to multidimensional space.

Lemma 2. (a) A real-valued convex function is also sym-
metric 0-convex and hence symmetric k-convex for all
k� 0. A symmetric k1-convex function is also a symmetric
k2-convex function for k1 � k2.

(b) If g1�y� and g2�y� are symmetric k1-convex and sym-
metric k2-convex, respectively, then for !� � 0, !g1�y�+
 g2�y� is symmetric �!k1 + k2�-convex.
(c) If g�y� is symmetric k-convex and w is a random

variable, then E<g�y − w�> is also symmetric k-convex,
provided E<�g�y−w��> <� for all y.
(d) Assume that g is a continuous symmetric k-convex

function and g�y� → � as �y� → �. Let S be a global
minimizer of g and s be any element from the set

X �= {
x � x� S� g�x�= g�S�+ k and g�x′�� g�x�

for any x′ � x
}



Then, we have the following results:
(i) g�s�= g�S�+ k and g�y�� g�s� for all y � s.
(ii) g�y�� g�z�+ k for all y� z with �s+ S�/2� y � z.

Proposition 3. If f �x� is a symmetric K-convex function,
then the function

g�x�=min
y�x

Q#�x− y�+ f �y�

is symmetric max<K�Q>-convex. Similarly, the function

h�x�=min
y�x

Q#�x− y�+ f �y�

is also symmetric max<K�Q>-convex.

Proposition 4. Let f �·� ·� be a function defined on �n ×
�m → �. Assume that for any x ∈ �n, there is a corre-
sponding set C�x�⊂�m such that the set C ≡ <�x� y� � y ∈
C�x�� x ∈ �n> is convex in �n × �m. If f is symmetric
k-convex over the set C, and the function

g�x�= inf
y∈C�x�

f �x� y�

is well defined, then g is symmetric k-convex over �n.

Proof. For any x0� x1 ∈�n and 4 ∈ �0�1�, let y0� y1 ∈�m

such that g�x0�= f �x0� y0� and g�x1�= f �x1� y1�. Then,

g��1−4�x0 +4x1�

� f ��1−4�x0 +4x1� �1−4�y0 +4y1�

� �1−4�f �x0� y0�+4f �x1� y1�+max<4�1−4>K

= �1−4�g�x0�+4g�x1�+max<4�1−4>K


Therefore, g is symmetric K-convex. �

Endnotes
1. “Attributes X1�X2� 
 
 
 �Xn are additive independent if
preferences over lotteries on X1�X2� 
 
 
 �Xn depend only
on their marginal probability distributions and not on their
joint probability distribution.” (See Keeney and Raiffa
1993, Chapter 6.5, p. 295.) Note that the above definition
is in the multiattribute preference setting. Preferences over
money at different points of time could be treated as mul-
tiattribute preferences.
2. We caution reader on the difference in the notation of
this paper and Smith and Nau (1995). In this paper, we
measure the prices of financial securities in the period t
dollar, while Smith and Nau measure in period 1 dollar.
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