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Moral hazard in teams

Bengt Holmstrom*

This article studies moral hazard with many agents. The focus is on two features that are
novel in a multiagent setting: free riding and competition. The free-rider problem implies
a new role for the principal: administering incentive schemes that do not balance the
budget. This new role is essential for controlling incentives and suggests that firms in which
ownership and labor are partly separated will have an advantage over partnerships in
which output is distributed among agents. A new characterization of informative (hence
valuable) monitoring is derived and applied to analyze the value of relative performance
evaluation. It is shown that competition among agents (due to relative evaluations) has
merit solely as a device to extract information optimally. Competition per se is worthless.
The role of aggregate measures in relative performance evaluation is also explored, and
the implications for investment rules are discussed.

1. Introduction

B Orthodox economic theory has little to offer in terms of understanding how nonmarket
organizations, like firms, form and function. This is so because traditional theory pays
little or no attention to the role of information, which evidently lies at the heart of
organizations. The recent development of information economics, which explicitly rec-
ognizes that agents have limited and different information, is a welcome invention, which
promises to be helpful in understanding the intricacies of organizational design. Partic-
ularly important in this context are questions concerning the control of agents’ incentives,
which to a large degree dictate the structure of organizations and set the limits of its
performance potential (Arrow, 1974).

The members of an organization may be seen as providing two kinds of services:
they supply inputs for production and process information for decisionmaking. Along
with this dichotomy goes a taxonomy for incentive problems. Moral hazard refers to the
problem of inducing agents to supply proper amounts of productive inputs when their
actions cannot be observed and contracted for directly. Adverse selection refers to a
situation where actions can be observed, but it cannot be verified whether the action was
the correct one, given the agent’s contingency, which he privately observes.

This article is concerned with moral hazard in teams.' By a team I mean rather
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loosely a group of individuals who are organized so that their productive inputs are
related.? The objective of the analysis is to derive some positive and normative impli-
cations regarding the organization of production with many agents whose inputs are
imperfectly observed. The analysis will focus on two features that are specific to multiagent
organizations: the problem of free riding when there is joint production and the role of
competition in controlling incentives.

I start by considering the free-rider issue (Section 2). In contrast to the single-agent
case, moral hazard problems may occur even when there is no uncertainty in output.
The reason is that agents who cheat cannot be identified if joint output is the only
observable indicator of inputs. Indeed, I show that noncooperative behavior will always
yield an inefficient outcome if joint output is fully shared among the agents.

In a well-known paper, Alchian and Demsetz (1972) argue that efficiency can (and
will) be restored by bringing in a principal who monitors the agents’ inputs. My first point
will be that the principal’s role is not essentially one of monitoring. I show that under
certainty group incentives alone can remove the free-rider problem. Such incentives re-
quire penalties that waste output or bonuses that exceed output. In both cases the principal
is needed, either to enforce the penalties or to finance the bonuses. Thus, the principal’s
primary role is to break the budget-balancing constraint. The fact that capitalistic firms
feature separation of ownership and labor implies that the free-rider problem is less
pronounced in such firms than in closed organizations like partnerships.

Group incentives can also work quite well under uncertainty, but their effectiveness
will be limited if there are many agents and if the agents are risk averse. This makes
monitoring important. As a refinement of earlier results on monitoring in the single-agent
context (Holmstrom, 1979; Shavell, 1979), I show in Section 3 that agents’ sharing rules
can, without loss in welfare, be written on a statistic of all observations if and only if this
statistic is sufficient in the sense of statistical decision theory. This result parallels those
in decision theory, but is not the same, since the context is a strategic game where agents
rather than Nature choose the parameters of the distribution.

The most interesting implications of the sufficient statistic condition concern relative
performance evaluation. These are explored in Section 4. One finds that relative perfor-
mance evaluation will be valuable if one agent’s output provides information about an-
other agent’s state uncertainty. Such will be the case if and only if agents face some
common uncertainties. Thus, inducing competition among agents by tying their rewards
to each other’s performance has no intrinsic value. Rather, competition is the consequence
of the efficient use of information.

An example of performance evaluation that can be rationalized in this fashion is the
use of rank-order tournaments, which have recently been studied by Lazear and Rosen
(1981). But since rank order is not a sufficient statistic for individual output except in
special circumstances, rank-order tournaments will generally imply an inefficient use of
available information. In contrast, I show that aggregate measures like peer averages may
often provide sufficient information about common uncertainties and thus schemes that
compare agents with such aggregate measures will be efficient. An example of relative
performance evaluation of this kind is given by the new executive incentive packages,
which base rewards on explicit comparisons with firms within the same industry.

For another application of the sufficient statistic condition, I show that the cost of
common uncertainties can be essentially eliminated when the number of agents grows
large. What remains to be coped with are the idiosyncratic risks of individual agents. This
implies a particular concern for idiosyncratic risks in managerial decisions about invest-

2 Although “team” is the most natural term to describe the setting I study, it should be noted that the
term ‘“‘team” has another precise technical meaning within team theory (Marschak and Radner, 1972), which
is inconsistent with incentive problems. My model is also similar in structure to what Wilson (1968) called a
syndicate.
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ments, since only idiosyncratic risk will enter the process of evaluating managers. Thus,
an agency-theoretic perspective implies changes in the normative implications of standard
asset pricing models, which hold that systematic risk is the only risk that carries a premium.

The article concludes with some remarks on facets of the multiagent problem that
are not addressed here but deserve consideration.

2. Group incentives and the role of the principal

B Certainty. Consider the following simple model of team production. There are n
agents. Each agent, indexed i/, takes a nonobservable action @, € A4; = [0, o), with a
private (nonmonetary) cost v;: 4, — IR; v; is strictly convex, differentiable, and increasing

with v;(0) = 0. Leta = (a,, ..., a,) € A = X A; and write
i=1

a-; = (ab ey Aimyy Qg ov ey al1)9 a= (ab a—i)'

The agents’ actions determine a joint monetary outcome x: 4 — IR, which must be
allocated among the agents. The function x is assumed to be strictly increasing, concave,
and differentiable with x(0) = 0. Let s,(x) stand for agent i’s share of the outcome x. The
preference function of agent i is assumed (for simplicity) to be additively separable in
money and action, and linear in money. Hence, it is of the form u,(m;, a;) = m; — vi(a)).
Agents’ initial endowments of money are finite and normalized to be zero.

The question is whether there is a way of fully allocating the joint outcome x so that
the resulting noncooperative game among the agents has a Pareto optimal Nash equilib-
rium. That is, we ask whether there exist sharing rules s;(x) = 0,i = 1, ..., n, such that
we have budget-balancing

2 si(x) = x, for all x, (1)
i=1

and the noncooperative game with payoffs,
S,’(X(a)) - vi(ai)a = 19 RN (S (2)

has a Nash equilibrium a*, which satisfies the condition for Pareto optimality,

a* = argmax [x(a) — 2 via)). (3)
aE. i=1

If the sharing rules are differentiable, we find, since a* is a Nash equilibrium, that
sixi—v,=0, i=1,...,n, (4)
where x = dx/da;. Pareto optimality implies that
xi—v;=0, i=1,...,n (5)

Consistency of (4) and (5) requires s; = 1, i = 1, ..., n. But this is in conflict with (1),
since differentiating (1) implies

M=

sh=1. (6)

1

T

Therefore, with differentiable sharing rules we cannot reach efficient Nash equilibria. The
same is true more generally as stated in the following:

Theorem 1. There do not exist sharing rules {s;(x)} which satisfy (1) and which yield a*
as a Nash equilibrium in the noncooperative game with payofts (2).
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Proof: See Appendix.

Theorem 1 extends the intuition of the inconsistency of (4)—(6) to the case of arbitrary
sharing rules. As long as we insist on budget-balancing—that is, (1)—and there are ex-
ternalities present (x; # 0), we cannot achieve efficiency. Agents can cover improper
actions behind the uncertainty concerning who was at fault. Since all agents cannot be
penalized sufficiently for a deviation in the outcome, some agent always has an incentive
to capitalize on this control deficiency.

The result indicates that in closed (budget-balanced) organizations like a labor-man-
aged firm or a partnership, free-rider problems are likely to lead to an insufficient supply
of productive inputs like effort. This observation is the starting point for Alchian and
Demsetz’ (1972) well-known theory of the firm. They argue that the inefficiency of a
partnership will cause an organizational change. To secure a sufficient supply of effort,
firms should hire a principal to monitor the behavior of agents. The monitor should be
given title to the net earnings of the firm so that he has the proper incentives to work.
Such an arrangement will restore efficiency. At the same time, it will change the part-
nership into a capitalistic firm with the monitor acting effectively as the owner.

There is a simpler solution, however, at least under certainty. The free-rider problem
is not solely the consequence of the unobservability of actions, but equally the consequence
of imposing budget-balancing. If we relax (1) to read:

2 si(x) < x, (7
then there will exist efficient Nash equilibria.
Theorem 2. There exists a set of feasible sharing rules s;(x) = 0, i = 1, ..., n, satisfying
(7), such that a* is a Nash equilibrium.
Proof” Let
) {b, if  x=x(a* ®
si(x) =
' 0 if x < x(a*).

Choose b;s so that > b; = x(a*) and b, > v;(a¥) > 0. This is possible because x(a*)
i

— 2 vi(a¥) > 0 by Pareto optimality. It is clear that a* is a Nash equilibrium when

sharing rules are chosen in this fashion. Q.E.D.

The purpose of relaxing the budget-balancing constraint in (1) is to permit group
penalties that are sufficient to police all agents’ behavior. It is worth noting that the scheme
in (8) does not violate individual endowment constraints and works independently of the
team size. This feature is specific to the certainty case.

Schemes like (8) are observed in some types of contracting with labor teams. Usually
it takes the form of a flat wage and a group bonus to be paid if a target is attained (whether
one views the discontinuity in (8) as a bonus or a penalty appears immaterial). An extreme
example of group punishment is the dismissal of the board of directors of a firm.

In a dynamic context the punishment in (8) can be interpreted as a threat to dis-
continue cooperation. There is a problem, however, with enforcing such group penalties
if they are self-imposed by the worker team. Suppose something less than x(a*) is pro-
duced. Ex post it is not in the interest of any of the team members to waste some of the
outcome. But if it is expected that penalties will not be enforced, we are back in the
situation with budget-balancing, and the free-rider problem reappears. In the language
of game theory, self-imposed penalties lead to an imperfect equilibrium in the sense of
Selten (1975).

The enforcement problem can be overcome only by bringing in a principal (or a
party) who will assume the residual of the nonbudget balancing sharing rules. The principal
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will not renegotiate the contract if for some reason the proper level of output is not
attained. Note that it is important that the principal not provide any (unobservable)
productive inputs or else a free-rider problem remains.

Of course, the scheme in (8) is only one of many possible solutions to the free-rider
problem when (1) is not imposed. Bonding, where each agent pays up front x(a*) and
receives a share s;(x) = x, is another alternative, though it may be infeasible when there
are endowment constraints. My point here is therefore not that group punishments are
the only effective scheme, but rather that budget breaking is the essential instrument in
neutralizing externalities from joint production. The primary role of the principal is to
administer incentive schemes that police agents in a credible way rather than to monitor
agents as in Alchian and Demsetz’ story. The reason capitalistic firms enjoy an advantage
over partnerships in controlling incentives is that they can (and will) independently of
the level of internal monitoring employ schemes that are infeasible in closed (budget-
balancing) organizations. There is little to suggest that either of the two forms of orga-
nization would stand at a comparative advantage when it comes to monitoring alone.

The theme that budget balancing and efficiency are inconsistent when externalities
are present is certainly not novel. A celebrated solution to the resulting free-rider problem
in the public goods context is Groves’ scheme (Groves, 1973). I note that Groves’ solution
is possible only by breaking the budget constraint; it does not balance the budget (barring
exceptional cases), because by analogy with Theorem 1 balancing the budget would nec-
essarily result in inefficiencies.’

O Uncertainty. The reader may have noticed that when agents choose a*, as they should
in equilibrium, there will be no residual left with a scheme like (8). This fact may make
the certainty solution appear extreme. That is not true, however. Penalties may work
quite effectively under uncertainty as well. This was first observed by Mirrlees (1974) in
a model with one agent. The argument is here extended to the multiagent case.

For the moment agents are assumed to be risk neutral.* Input costs are as above,
output x(a, 6) is random through the state of nature 4, and agents have homogeneous
beliefs concerning 6.

It is more convenient and illuminating to suppress # and to consider the distribution
function of x parameterized by a. (See Holmstrom (1979) for a more detailed argument.)
Denote the conditional distribution of x, given the action vector a, by F(x, a) and the
conditional density function by f(x, a). Assume that the partial derivatives F;(x, a)
= 0F(x, a)/da; and f(x, a) = 3f(x, a)/da; exist for all i and (x, a). The following assumptions
regarding distributions will be used in the theorems below.

Assumption 1. F(x, a) is convex in a.
Assumption 2. Fi(x, a)/F(x, a) — —oo as x — —oo (or its lower bound).
Assumption 3. Fi(x, a)/(1 — F(x, a)) — —o0 as x — oo (or its upper bound).

Technically, the role of Assumption 1 will be to assure global optimality of the agents’
actions. Unfortunately, it is not an assumption that is satisfied by natural specifications
of x(a, 0), for example, x(a, 6) = (Z a;)§ with § normally distributed. It has an economic
interpretation, though. Since F(x, Aa; + (1 — Nan) < MF(x, a,) + (1 — NF(x, a,), the
distribution on the left dominates the distribution on the right in the sense of first-order

3 The idea of breaking the budget-balancing constraint to resolve externalities has figured more or less
explicitly in many articles on property rights. This is particularly true of the bonding solution. Part of the analysis
in Green (1976) is closely related to the one presented here, although its context and emphasis are different.

4 Note that risk neutrality does not here mitigate the moral hazard problem as is the case with a single
agent (Harris and Raviv, 1979).
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stochastic dominance. Therefore, Assumption | corresponds to a particular form of sto-
chastically diminishing returns to scale.

Assumptions 2 and 3 are implied by f;/f — —o as x — —oo and f,/f — +oo as
X — +o0, respectively, which hold for many natural specifications of x(a, 8). These are
likelihood ratio conditions and can be interpreted as stating that for very small or very
large values of x, one can discern very precisely whether the right actions were taken
(Milgrom, 1981).

Let output x be shared according to sharing rules s;(x), i = 1, ..., n, satisfying (7).
For the time being I omit consideration of endowment constraints. The following theorem
extends the insights about group incentives from the certainty case to the uncertainty
case. The idea of the proof is taken from Mirrlees (1974).

Theorem 3: Under assumptions 1 and 2, a first-best solution can be approximated ar-
bitrarily closely by using group penalties.

Proof: Consider the following sharing rules:

$i X, X=X,
si(x) =19 " . )
six — ki, X <X,
where k; > 0, and ¥ s; = 1. Evidently (9) satisfies (7). The rules in (9) prescribe a penalty
k; to each agent i if a critical output level X is not achieved. Otherwise, the entire output
is shared. For a* to be a Nash equilibrium with (9), it is necessary and sufficient (by
Assumption 1) that

s;Ei(a*) — ki Fi(X, a*) — vi(aF) =0, i=1,...,n, (10)

where E(a) = Ex(a), the expected value of x, given a, and E;(a) = dEx(a)/da;. For fixed
X, choose k; so that (10) holds. The expected residual is given by W = 2 k. F(X, a*). 1

need to show that 1 can be made arbitrarily small. From (10),
ki = A/ Fi(X, a*), with  A4; = s;Ei(a*) — vi(al). (11)
Let x decrease and adjust k; so that (11) holds. Then the residual is given by

W= 2 AR @)/ F( @), (12)

which, by Assumption 2, goes to zero with x. Q.E.D.

From (10) and Assumption 2 it follows that the ks generally go to infinity as x is
decreased. Finite endowments will make this arrangement infeasible. If the x-distribution
is tight in the sense that there is an X-value for which |F}| is large while |F/F}| is small,
then we can get good approximations to first best even with endowment constraints. But
if the distribution has much spread, so that |F;| is small for all x (as is the case for a
lognormal distribution when the variance is big), then efficiency losses become substantial
with wealth constraints. Assuming that the distribution of output becomes more diffuse
when the number of agents grows large (more specifically that |F}| — 0 for all x), while
E;(a) stays bounded, implies that a* will converge to 0 because of (10) and that s; — 0
(because T s; = 1). Thus, in contrast to the certainty case, endowment constraints will
generally limit the size of a team that can effectively be policed by penalties.

A resolution of this dilemma can occasionally be found by paying bonuses as the
following theorem indicates:

Theorem 4: Under Assumptions 1 and 3, the first best can be enforced at a negligible cost
to a principal with unbounded wealth, even when agents’ endowments are limited.

The proof is omitted because it is similar to that of Theorem 3. The scheme that the
principal will use pays a bonus b; if x > X and pays s;x(a*), (Z s, = 1), if x < Xx. The
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bonuses and x can be adjusted simultaneously so that ¢* remains an equilibrium, while
the principal’s expected cost (2 b;)(1 — F(X, a*)) goes to zero because of Assumption 3.
The theorems above were developed under risk neutrality assumptions. If agents are
risk averse with utility tending to —oo as wealth decreases, Theorem 3 remains valid
(Mirrlees, 1974). Theorem 4, however, appears quite dependent on the risk neutrality
assumption. An unverified conjecture is that asymptotic risk neutrality suffices.

3. Sufficient statistics

B The preceding analysis suggests that under some circumstances efficient team pro-
duction can be approached via simple penalty or bonus schemes. The role of the principal
is important even if there are no risk-sharing advantages, which contrasts with the single-
agent case. In the case of penalties the principal is needed to enforce them, and in the
case of bonuses he is needed to pay them. The central feature is that the principal allows
the budget-balancing constraint to be broken.

If there is uncertainty in production and if agents are risk averse or have limited
endowments, monitoring becomes an important instrument in remedying moral hazard,
since the first best is not attainable. I shall investigate below what type of monitoring
provides valuable information in the sense that it helps improve welfare.

The model includes a risk-neutral principal and # risk-averse agents. The ith agent’s
utility function is additively separable in money and action, with u;(#,) denoting the
agent’s utility of money function and v;(q;) the agent’s disutility of action. Since the
principal is risk neutral, there are no gains to risk-sharing per se. To the extent output
is used in determining agents’ payofls, its value is solely in providing incentives. Put
differently, output will merely be used as a signal about the actions taken by the agents.

Let y be the vector of signals observed, so that y can be used as the basis for sharing.’
This vector may or may not contain x. The distribution of y as a function of a is given
by G(y, a), with density g(y, a). I assume that the derivative of g with respect to a;,
denoted g,, exists for all i. The welfare problem can be stated as

max f {E(x

a,si(y)

@) = 2 s,(0}dG(, a), (13)
subject to:

(1) f ui(s;(VAG(y, a) — vi(a) = i=1,...,n
(i) a; € argmax f ui(s;MAG(y, a'’y, a)) — vi(a?), i=1,...,n

Here, E(x|y, a) is the expected output of x, given y and a. Of course, it equals x if x is
part of y. Condition (ii) implies that a is a Nash equilibrium. This behavioral assumption
may be unreasonable at times, but the results to be presented do not depend on it in a
critical way. (See p. 333.)

The following definition is an extension of that in Holmstrom (1979).

Definition:® A function T;(y) is said to be sufficient for y with respect to a;, if there exist
functions /;(-) = 0, p;(+) = 0 such that:

5 It is not necessarily enough, as the literature frequently suggests, that y is observable to the principal and
the agent for s() to be enforceable. Legal enforceability requires that the enforcing authorities are also able to
observe y when needed. On the other hand, implicit contracts may include signals that are not observed perfectly
by the agents.

6 Gjesdal (1982) provides a related extension of my earlier sufficient statistic condition.
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g, @) = hi(y, a_)p(T:(y), a), for all y and «a in the support of g. (14)

The vector T(y) = (T\(y), . . ., T,()) is said to be sufficient for y with respect to «, if each
T:(y) is sufficient for a;.

Equation (14) is the well-known condition for a sufficient statistic in ordinary sta-
tistical decision theory (deGroot, 1970). Note, however, that the action ¢, is a parameter
chosen not by Nature but by a strategic agent. This notwithstanding, it will be shown
below (Theorems 5 and 6) that agent i’s sharing rule should be based solely on T;(y) if
and only if 7; is sufficient, which parallels results in statistical decision theory.

Theorem 5. Assume T(y) = (T,(y), . . ., T,()) is sufficient for y with respect to a. Then,
given any collection of incentive schemes {s,(y)}, there exists a set of schemes {;(7})}
that weakly Pareto dominates {s;(»)}.

Proof: 1 consider first the case of a single agent, dropping subscripts throughout. Define
S(T) as follows:

u(s(y)g (v, a)dy/n(T, a) = f u(s()h(y)dy. (15)

TO)=T

ws(T)) = f

TW=T

By Jensen’s inequality (15) implies:
f S(T)g(y, a)dy < f s(Vg(y, a)dy. (16)

From (14) and (15) it follows that the agent will enjoy the same expected utility for all
a, whether faced with s(3) or §(7). Thus, he will take the same action under §(7°) as he
takes under s(y). From this and (16), it follows that the principal is at least as well off
with §(T') as with s(y).

With # agents, the proof is identical once it is observed that the other agents’ actions
can be viewed as known constants because they can be inferred from the equilib-
rium. Q.E.D.

The converse to Theorem 5 requires brief preparation. I wish to state that if 7(y) is
not sufficient, then we can strictly improve welfare by observing y. There is a problem,
however, with the meaning of an insufficient statistic 7(y). Equation (14) may not hold
for all @ and yet a particular 7()’) will be sufficient in the sense that welfare improvements
cannot be made. Such is obviously the case if we take 7(y) equal to the vector of optimal
sharing rules.” Moreover, for a fixed a, equation (14) can always be satisfied by an ap-
propriate choice of /;(-) and p;(-, *).

To handle such cases, I shall define 7(y) as sufficient at a if it is the case that for all
iand all T}

8a(V1> @) _ 84,(2, @)
g, @) g, a)

for almost all y,, y, € {(JT;(v) = T;}. (17)

Note that (17) follows from (14). Conversely, (17) implies (14) (by integrating) if it holds
for all a. I shall say that 7(y) is globally sufficient if (17) is true for all a and i and globally
insufficient if for some i (17) is false for all a.

Theorem 6. Assume T(y) is globally insufficient for y. Let {s,(y) = $;(7()))} be a collection
of nonconstant sharing rules such that the agents’ action choices are unique in equilibrium.
Then there exist sharing rules {s;())} that yield a strict Pareto improvement. Moreover,

71 am indebted to Steve Ross for this observation.
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{$:(»)} can be chosen so as to induce the same equilibrium actions as the rules
{5:(»)} do.®
Proof Again, for notational simplicity, I consider only the single-agent case. The fact that
improvements can be achieved by keeping the agent’s action unaltered implies that
changes in one agent’s sharing rule will not affect the other agents’ behavior. Therefore,
the steps shown here for a single agent can be repeated for all other agents in turn. The
strategy of the proof is to show that if 7(y) is globally insufficient, there exists a different
set of sharing rules that (i) leave the agent’s action unchanged and (ii) leave the principal
no worse off and the agent better off in terms of risk sharing.

Since 7(y) is globally insufficient, there exist a 7 and sets of positive measure Y,
Y\, which are disjoint and subsets of Y, = {y|7(y) = T,} such that

&Y\, a) % gAY\, a)
gYi,a) gYa)’

where a is the agent’s response to s(y). Here g(Yi, a) = Pr{y € Yla}. Since s(y) is not
constant, there exists a 7, # T such that the set Y, = {y|7(y) = T} is of positive measure
and §(7) # $(T3). Define the following variation:

§y) = STW) + InWwyds\y + 1(y)dsi» + I(v)ds, ,

(18)

where /() is the indicator function for the event {y € Y;,} and similarly for 7,5(y), I());
and ds,,, ds», and ds, are numbers that we shall choose.

The effect on the principal’s (P) and the agent’s (4) welfare (excluding any change
in action) from a change to §(y) is given by

AP = —[ds;1g(Y1,, a) + ds\2g(Y2, a) + ds,g(Y>, a)l, (19)
AA = u'[ds,1g(Y1, a) + ds\28(Y12, @)] + usds,g(Ys, a). (20)

Here u| = u'(s(T))) and u5 = u'(s(T5)). Since §(T,) # $(T3), u\ # u5. Assume for
concreteness that 15 > u/.
The sign of the effect on the agent’s action from the variation §(y) is given by

sgn(Aa) = sgnfu(ds1 18 Y11, @) + dsi284 Y12, @) + usrds8.Y2, a)]. (21)

Choose ds,,, dsi,, ds, as follows. Fix ds, > 0 and require that AP = 0 and Aa = 0 so that
ds;ig(Y, a) + ds;2g(Y12, a) = —ds,g(Ys, a), and (22)

ds g/ Y11, @) + ds\284Y 12, @) = —us/u'ds,8.Y2, a). (23)

From (20) and (22), it follows that A4 > 0, because 15 > 1. The system (22) and (23)
has a solution because (18) implies that the determinant is nonzero. This shows that dfs,,,
dsi,, ds, can be chosen so that AP = 0, A4 > 0, and Aa = 0, in other words so that the
principal is no worse off and the agent is better off in terms of risk sharing while the action
remains unchanged. Q.E.D.

The main import of Theorem 35 is that randomization does not pay if the agent’s
utility function is separable.” Indeed, any pure noise should be filtered away from the

8 The assumption that sharing rules are nonconstant is not an essential restriction; a constant sharing rule
does not provide any incentives for effort and would obviously not be employed.

The assumption that actions are unique is restrictive. For conditions that guarantee uniqueness at the
optimum, see Grossman and Hart (1980).

9 Separability of the utility function is crucial for the result that pure randomization does not pay; see
Gijesdal (1982). On the other hand, Karl Shell alerted me to the fact that even if the utility function is not
separable, 7(y) is all we need to know about y, since randomization, when desired, can be generated in other
ways than through the noninformative part of y.
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agent’s sharing rule. To the extent the sharing rule is random, it should be through signals
that are informative about the agent’s action.

Conversely, Theorem 6 states that if 7(y) is not a sufficient statistic for y (at the
optimal a), we can do strictly better by using all of y instead of 7(y) as a basis for the
sharing rule. The intuition, of course, is that p reveals more information about & than
T(y) does if and only if 7{(y) is not sufficient for y.

Theorems 5 and 6 differ somewhat from my earlier result on informativeness, which
dealt with a comparison of the two information systems n, = x and 5, = (x, z). In 7, the
outcome x is observed, while in 7, both the outcome x and an additional signal z are
observed. In Holmstrom (1979), I called z an informative signal if T(x, z) = x is not
sufficient for (x, z) as defined in (14), and I proved that z is valuable if and only if z is
informative.'® Obviously, Theorems 5 and 6 generalize this result.

More importantly, though, for the application to the multiagent case, Theorem 6
shows that if 7(y) is not sufficient, welfare improvements can be made without changing
the agents’ actions, but merely by improving risk sharing. The proofs in Holmstrom (1979)
and Shavell (1979) both do the reverse: maintain the same level of risk sharing, while
providing incentives for the agent to change the action in a direction desirable for the
principal. Such changes in action would complicate considerably the situation with many
agents, since the whole equilibrium would then change.''

Working with risk sharing improvements, while keeping actions intact, has another
advantage: the results do not hinge critically on the Nash equilibrium assumption made
in the earlier formulation of the problem (see (13)). Theorem 5 is valid no matter what
behavior is assumed; in particular, cooperation among agents would be acceptable. Theo-
rem 6 is not so insensitive, because in the proof the agents’ payoffs (as a function of
actions) are changed globally, and this may induce collusive behavior. But aslong as actions
are chosen noncooperatively, the specific equilibrium concept is inessential, even in
Theorem 6.

The sufficient-statistic results above are closely related to Blackwell’s well-known theo-
rem in decision theory. Blackwell’s theorem states that all decisionmakers in all decision
situations will prefer one information system (that is, experiment) to another if and only
if the former is sufficient for the latter. (I shall explain shortly what this means.) But,
Theorems 5 and 6 are not corollaries of Blackwell’s results. Most importantly, the agency
problem does not fit directly the framework of statistical decision theory. No inferences
are being drawn from y concerning a, because actions are determined by the choice of the
incentive scheme. In fact, the outcome y does not tell the principal anything at all about
the actions of the agents! It is quite appealing, therefore, that the agency results conform
with the intuition that information is being extracted from y, although logically that is not
what is occurring.'?

Secondly, Theorem 6 does not have a counterpart in Blackwell’s analysis. Whether
the necessary part of Blackwell’s theorem, that information systems cannot be compared
unless one is sufficient for the other, is true in the agency framework is still an open
question.

Grossman and Hart (1980) and Gjesdal (1982) discuss the value of different infor-

10 The sufficiency part was also proved by Shavell (1979) without explicitly using the notion of a sufficient
statistic.

' Baiman and Demski (1980) prove a special case of Theorem 6 by using an extra assumption that appears
unnecessary. This assumption is called for, since they do not exploit the possibility of improving risk-sharing
benefits, but rather use the line of proof in Holmstrom (1979).

12 Mathematically, the agency problem can be set up as a statistical decision problem with the restriction
that the “decision rule,” s(y), has to satisfy the agents’ incentive constraints. These are nonconvex in general,
which explains why randomization may be valuable (see Gjesdal (1982) for an example). Randomization is
never worthwhile in Blackwell’s set-up.
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mation systems from the point of view of Blackwell’s notion of sufficiency. The following
discussion will reveal its relationship to the sufficiency property used here.'?

Let n, = y, and n, = y, be two information systems. Blackwell calls n, sufficient for
n, if we have for all y,, a:

&, a) = f h(y2, yg1(yvy, a)dy , (24)

where g, and g, are the marginal densities of y, and y,. Condition (24) looks much like
(14), but is conceptually quite different, since (24) involves only marginal distributions,
whereas (14) presumes a joint distribution for y = (y,, y,). But the solutions to the Pareto
problem (13) corresponding to n; or 7, do not depend on the joint distribution of y, and
y,.. Hence we may define a joint density by letting

g, v, a) = h(y2, y)gi1(v1, @). (25)

This will have as its marginals g, and g, (as in (24)). But (25) says that 7(yy, y») = y, is
sufficient for (y,, y»). Hence, we get as good results by basing the sharing rule on y; as we
do by basing it on (y, y,). Therefore, ;, = y, is as good an information system as
n = (y1, y2). But, of course, n can be no worse than 7, = y,. The conclusion is that 7, is
as good as 7, if n, is sufficient for », in the Blackwell sense. The Blackwell ordering can
therefore be viewed as a corollary to the results of Theorems 5 and 6. The converse is
true as well, since (24) is weaker than (14).

4. Relative performance evaluation and competition
among agents

® The result on sufficient statistics has many useful applicationsin agency theory. I shall
illustrate its applicability by analyzing relative performance evaluation, which is of con-
siderable relevance in the multiagent setting.

Theorem 6 lends support to the effort firms make in creating information systems
that separate out individual contributions to total output. It is easy to show (by using (18))
that two independent measures of joint output are together more informative than a single
measure of output. Thus, refined budgetary measures have positive value when costs are
excluded.

Now consider the case where the information system is so rich that total output can
be itemized according to the contribution of each individual; that is,

.X(a, 9) = z X,'((Z,', 01’)3 6 = (01, ) 011),

where all x;’s are separately observed. If the #,’s are not random, then efficiency can be
achieved by holding each agent responsible for his own output.'* This is in accordance
with the general principles of responsibility accounting. What will be examined here is
when under uncertainty it will be valuable to deviate from this general principle and
actually have s;, the sharing rule of i, depend on the vector of outcomes x = (x,, . .., X,)
rather than on x; alone.

We frequently observe agents being evaluated on the basis of peer performance. In
almost all organizations, agents compete with each other in one form or another. Some-
times there is an explicit prize for the best ones, as for instance, among sales personnel
(““salesman of the month” awards, etc.). The special case of rank-order tournaments, in
which relative performance is measured by rank alone, has been analyzed by Lazear and

31 am grateful to Paul Milgrom for discussing this relationship.

4 In an earlier version of this article, I showed a partial converse: to achieve efficiency under certainty by
using monitoring alone, #n measures are needed that locally separate the contributions of individuals as in (26);
this was shown under the restriction that sharing rules and measures are monotonic functions.
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Rosen (1981). Related examples are provided by recent executive incentive packages in
which performance is compared with that in competing firms.

The rationale for relative performance evaluation is easily understood in light of the
results on the value of information given in the previous section. The following theorem
shows how those results apply.

Theorem 7:'> Assume the x;’s are monotone in §,. Then the optimal sharing rule of agent
i depends on individual i’s output alone if and only if outputs are independent.

Proof" If the 6;’s are independent, then
fox, @) =11 fitxi, @), (26)
i=1

which obviously implies that 7;(x) = x; is sufficient for x with respect to ¢,. By Theorem
5, it will be optimal to let s; depend on X; alone.

Suppose instead that 6, and 6, are dependent. Since, in equilibrium, the value of a,
can be inferred, we can, without loss of generality, assume x, = 6,. Keeping a, at its
equilibrium value (and suppressing, it notationally), the joint distribution of x, and
X, = 6, conditional on g, is given by

FCx1, 02y @) = FOT(ay, X1), 62), 27

where x7! is the inverse of x,(a;, 8,) and }(01, 6,) is the joint distribution of (8, 6,). It
follows that N
falxi, 02, @) _ f106 (@1, x1), 62) 0y (an, X1)
f(-xl.s 023 al) f(xl_l(als .XI), 02) aal '
Since 6, and 6, are dependent, ;‘, /} depends on 6,. Thus, (17) does not hold, and Theorem

6 applies. Consequently, the sharing rule for agent 1 should depend on both x,
and Xx,. QED

(28)

An important implication of Theorem 7 is that forcing agents to compete with each
other is valueless if there is no common underlying uncertainty. In this setting, the benefits
from competition itself are nil. What is of value is the information that may be gained
from peer performance.'® Competition among agents is a consequence of attempts to
exploit this information.

At this point it is appropriate to comment on the use of rank-order tournaments
(Lazear and Rosen, 1981). A rank-order tournament awards agents merely on their per-
formance rank, not on the value of the output itself. With »n agents there are »n prizes,
w, =...= w, The agent with the highest output gets w,, second highest gets w»,
and so on.

From Theorem 7 it follows that if the agents’ outcomes are unrelated, then rank-
order tournaments will perform worse than rewarding agents on the basis of their indi-
vidual outcomes alone. Pitting agents against each other will only result in more ran-
domness in the reward scheme without any gains in the power of inference about actions.!”
On the other hand, as first noted by Lazear and Rosen, rank-order tournaments may be
valuable if outcomes are related. The analysis above supports this contention. But it
should be observed that rank-order tournaments may be informationally quite wasteful

!5 A related result is proved in Baiman and Demski (1980).

' In the extreme, if agents’ outputs are completely dependent, in the sense that any x; will reveal all 6,
i # j, then the first-best outcome can be easily achieved by using relative performance evaluations.

'7 Lazear and Rosen (1981) find that rank-order tournaments may dominate piece rates even if agents’
outputs are independent. Theorem 7 shows that this is the case not because of the value of competition, but
because piece rates are sometimes far from optimal in the single-agent case.
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if performance levels can be measured cardinally rather than ordinally. It is clear that the
mapping from the agents’ outcomes x = (x;, ..., X,) into the statistic 7(x) = (k(x),

., kni(X)), where k;(x) is the rank order of agent /, is not a sufficient statistic for a, except
in trivial cases. Therefore, Theorem 6 tells us that there should be a better way of making
use of x than what the rank-order tournament does. (Of course, if the output is very
complex so that only ordinal measures are possible, then rank-order tournaments will be
the best one can do.)

A general characterization of how information about the optimal use of peer per-
formance with many agents can be developed formally as an extension of the character-
ization in Mirrlees (1976) or Holmstrom (1979). I shall not pursue that issue here. Instead
I shall indicate how the sufficient statistic condition can be used to rationalize schemes
that only use aggregate information about peer performance.

I shall restrict attention to the following two particular output structures:

I: xi(a,0)=a,+n+ ¢, i=1,...,n,
II: x,'(a,', 0,) = a,-(n + 6,‘) s = 1, Y (R

Here 6; = (n, ¢;), where n is a common uncertainty parameter, while the ¢’s are indepen-
dent, idiosyncratic risks.

Theorem 8: Let the technology be given by either I or II. Assume that 2, ¢, ..., ¢, are
independent and normally distributed. Let X = 2 «;x; be a weighted average of the agents’
outcomes. In the case of technology 1, let «; = 7,/7, where 7; is the precision (the inverse
of the variance) of ¢, and 7 = X 7,. In the case of technology II, let o; = 7,/7a;, where a;
is the equilibrium response of agent i. In both cases, an optimal set of sharing rules {s;(x)}
will have s; depend on X and X; alone.

Proof Consider technology I. The joint density function for x, given a, is:

fx, a) = Kf exp{—2[ 2 7,(x = & — w; — n) + To(n — wo)’1}dn, (29)
J

where K is a constant, 7, is the precision of n, uo is the mean of n, and 7;, u; are the
precision and mean of ¢;. In view of Theorem 5, we need to show that we can write (29)
in the form of (14) foreach i = 1, ..., n. Let

7= 2 (T T )Xk — Ak — s =2 Tk

k#i k#i
Then we can write:
g — =) = 20— gy 2t 20 g — @ — )’
J j#i
=2 05— a4 —w— 2+ (= 1D)(E — )’ + il — @ — e — )

J#Fi
Substituting this expression into (29), we find upon integrating over n that we can write
f(x, a) = hi(x, a_)pi(z-;, x;, a). But, since

2= (X — X))/ — AZ (Ti/T-)ak + pa),
(i

we have p;(Z_;, x; a) = pi(X, x;, a), which completes the proof of writing (29) in the
form (14).
The proof for technology II is similar and is omitted. Q.E.D.

Theorem 8 suggests that sometimes an aggregate measure like the weighted average
of peer performance will capture all the relevant information about the common uncer-
tainty. This provides a rationale for the common practice of comparing performance
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against peer aggregates, although, of course, the sufficiency of a weighted average is a
specific feature of the normal distribution.

Notice that Theorem 8 does not make the claim that s; should depend on x; — X,
only that it will have the form s,(x;, X). The fact that the outputs of different agents are
generally weighted differently in calculating X reflects possible differences in scale and in
the value of these information sources. Differences in scale are corrected for by dividing
X; by a;, which can be interpreted as a rate of return measure. Information values differ
if ¢/s have different precision. If ¢ has high precision (low variance), then x; tells rather
sharply the value of  and should receive more weight in the average. This is another way
of saying that x;’s which are correlated strongly with x; should be more significant indi-
cators in evaluating agent /’s performance. Conversely, as 7; — 0, x; will essentially tell
nothing about n because of the noise in ¢, and hence should count very little.

The predictions of Theorem 8 conform well with the recent trend in executive in-
centive design. After stock options lost their tax advantage (and perhaps also because the
market had been depressed in general), performance incentive packages became popular.
These tie executive compensation to performance measured explicitly in relation to other
firms in the industry (in particular, industry averages).

Let me turn finally to an analysis of large teams under the simplifying (but unnec-
essary) assumption that the technology is given by I or II. First, note that if we knew 7
ex post, this common uncertainty could and should (by Theorem 35) be filtered away to
yield an improved solution to the agency problem. Also, if we knew 5 ex post, there
would be no need to compare individual agents’ outputs, since conditional on 7 they are
independent (cf. Theorem 7). Thus, the solution to the incentive problem with n agents
coincides with the solution of the » individual agency problems when 7 is known ex post.
For these individual problems, the optimal schemes will depend on a; + ¢, (for I) and ae;
(for II), since the observation of  will allow us to observe these variables.

Now suppose 7 is not observed ex post. It is intuitively clear that as the number of
agents grows large, we can essentially observe n by inferring it from the independent signals
about  provided by the x;’s. Therefore, we would expect that with many agents we would
be able to achieve approximatelythe same solution asif there were no common uncertainty
at all. This intuition is correct.

Theorem 9: Consider technology I or II. Assume %, ¢, ..., ¢, are independent with
uniformly bounded variance. Assume that in the solution to the single-agent problem
without common uncertainty (i.e., n = 0) the agent’s response is unique. Then this solution
can be approximated arbitrarily closely as the number of agents grows large.

Proof: Consider technology I. Define g;=n + ¢, j=1,...,n,and g, =1/(n—1) 2 q;,

J#Fi
i=1,...,n Let s¥x,) be the optimal solution to the single-agent problem when there
is no common uncertainty, and let ¢ be the agent’s optimal response.

By the strong law of large numbers, ¢, goes almost surely to n. Therefore,
f ui(sf(ai +n+ e — q-))dP(n, e, . . ., €)

converges uniformly to
f ll,'(Si'k(a,' + 6,’))(1P(6,’).

Since a¥ is a unique solution to

max f u;(s¥ (a; + €))dP(e;)) — vi(ay),

daj

we find that for large enough #, the agent will choose an action arbitrarily close to «F
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when solving
max f u(st(alr + n+ e — G )dP, e, ..., e) — vi(a).
[
Since g-; can be inferred from the other agents’ outcomes by calculating x; — g
= n + ¢, where g, is the response of agent j, this proves the claim. The proof for technology
II is similar. Q.E.D.

It is clear that constraining attention to technology I or II is not essential. The im-
portant thing is that all common uncertainty can be discerned in the limit and therefore
removed from the agent’s responsibility. The specifications above were just simple ways
to illustrate the point.

The result that one may use relative performance measures to filter away common
uncertainties has some interesting implications for financial theory. A standard model of
financial markets is the capital asset pricing model (CAPM). One of its normative impli-
cations is that investments carried out by firms should be decided upon without reference
to the investment’s idiosyncratic risk as the market, through diversification, can neutralize
such risk (see, e.g., Mossin (1969)). Investment decisions should be made solely with
reference to systematic risk.

The analysis above shows that when incentives are a relevant concern, the normative
implications of CAPM are altered. A new cost component related to moral hazard must
be added. The interesting fact is that the costs due to moral hazard depend only on the
idiosyncratic risk, which is precisely the converse of the costs due to risk bearing in the
market. Therefore, the total costs of investment risk can be separated into two compo-
nents: a price for the systematic risk given by the market according to CAPM (or more
generally by arbitrage pricing) and a price for idiosyncratic risk determined by the project-
specific returns to effort and the risk preferences of the manager.'®

The agency perspective implies that between two projects with the same level of
systematic risk, the one with lower idiosyncratic risk is strictly preferred. Consequently,
diversification within the firm can be useful, since it helps to measure more accurately the
manager’s input. Furthermore, the concern for more accurate performance evaluation
tends to make the firm choose projects which are more correlated with the market portfolio
than efficient risk taking would prescribe. This implies that in their efforts to reduce
idiosyncratic risk, firms provide society with a market portfolio which is not so diversified
as (and hence riskier than) it would be were there no incentive problems present.'’

This last point has a counterpart in the internal organization of a firm. Specialization
is good from a purely technological point of view. In this respect agents’ tasks should be
well diversified. But problems with performance evaluation place a limit on the value of
specialization. Thus, it may be optimal to have agents’ tasks overlap (or duplicate) each
other. One manifestationof this principle comes in the form of job rotation, which provides
independent readings of the circumstances in which tasks are being carried out and thereby
reduces moral hazard costs.

5. Concluding remarks

B This article has made two general points. One is that the free-rider problem, which
may arise in a multiagent setting, can largely be resolved if ownership and labor are partly

'8 Note, however, that including agency costs does not require a change in the positive theories of asset
pricing. Prices of assets are based on expected returns in which agents’ actions have already been factored.
Whether expected returns are high because of the state variable in the outcome function x(a, ) or because of
the agent’s action is immaterial for pricing the asset.

' One should not interpret insufficient diversification due to moral hazard as an inefficiency, since the
framework is second best. There is a source of true inefficiency, though, when investment decisions are made
independently. A firm which moves its project portfolio closer to the market’s for improved performance
evaluation does not account for the benefits that accrue to other firms from such a move.



HOLMSTROM / 339

separated. This gives capitalistic firms an advantage over partnerships. The other point is
that relative performance evaluation can be helpful in reducing moral hazard costs, because
it provides for better risk sharing. It is worth noting that many of the insights in the
literature on rank-order tournaments and the value of competition (Lazear and Rosen,
1981; Green and Stokey, 1982; Nalebuff and Stiglitz, 1982) are fundamentally derivatives
of the sufficient-statistic condition and therefore of much broader scope as shown here.
In this respect generality proved both tractable and rich in implications.

There are other factors of the multiagent problem that have not been addressed in
this article, but are worth studying. One concerns the possibility of collusion among agents
when relative performance evaluations are used. Collusion may imply restrictions on re-
ward structures. In this regard rank-order tournaments, which induce a zero-sum game
between the agents, seem to have an advantage over schemes which are not zero-sum.

Another important issue relates to monitoring hierarchies. In this article monitoring
technologies were exogenously given. In reality, they are not. The question is what de-
termines the choice of monitors; and how should output be shared so as to provide all
members of the organization (including monitors) with the best incentives to perform?
Satisfactory answers to these questions would take us a big step toward understanding
nonmarket organization.

Appendix

Proof of Theorem 1

B Letsi(x),i=1,...,n be arbitrary sharing rules satisfying (1). I shall show that the
assumption that a* is a Nash equilibrium will lead to a contradiction.
From the definition of a Nash equilibrium

six(a, a*)) — vi(a) < si(x(a*)) — vi(a¥), Va, € 4, . (A1)

Let {a'} be a strictly increasing sequence of real numbers converging to x(a*). Let {al}
be the corresponding #n sequences satisfying

o = x(dl, a*)). (A2)

The sequences {a!} are well defined (starting from a large enough / if necessary), since
a* € int 4, xi(a*) # 0, and x(a) is strictly concave. Pareto optimality implies v j(a¥F)
= x}(a*), ¥ i. This in turn implies, using (A2), that v,(a*) — vi(a}) = x(a*) — x(d}, a*)
+ o(al — a¥), ¥ i, ¥ [, where o(h)/h — 0 as h — 0. Substituting into (A1), using (A2)
gives

x(a*) — o + o(a — aF) < si(x(a*)) — si(), ¥ i, ¥ I. (A3)
Sum (A3) over i, use (1), rearrange and multiply by n/(n — 1). This gives:

n

2 {(x(@) — o+ old — a¥)} <0, ¥,
i=1

which can be written
2 {—xia*)di — a¥) + o(al — a¥)} <0, ¥ I (A4)
i=1

Since of < x(a*) by the choice of o/, and xj(a*) # 0, the first term in the bracket is strictly
positive. For large enough /, this term dominates, which contradicts (A4). Hence, the
assumption that a* is a Nash equilibrium has led to a contradiction and must be
false. Q.E.D.
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