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Abstract

Geophysicists examine and document the repercussions for the earth’s climate

induced by alternative emission scenarios and model specifications. Using simplified

approximations, they produce tractable characterizations of the associated uncer-

tainty. Meanwhile, economists write simplified damage functions to assess uncertain

feedbacks from climate change back to the economic opportunities for the macro-

economy. How can we assess both climate and emissions impacts, as well as un-

certainty in the broadest sense, in social decision-making? We provide a framework

for answering this question by embracing recent decision theory and tools from asset

pricing, and we apply this structure with its interacting components in a revealing

quantitative illustration.
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1 Introduction

Global efforts to mitigate climate change are guided by projections of future

temperatures. But the eventual equilibrium global mean temperature asso-

ciated with a given stabilization level of atmospheric greenhouse gas concen-

trations remains uncertain, complicating the setting of stabilization targets to

avoid potentially dangerous levels of global warming. Allen et al. (2009)

Our ambition, like that of other researchers, is to understand better the macroeconomic

consequences of climate change and conversely how the economic activity will alter the cli-

mate in the future. We see this challenge as a problem for which aggregate uncertainty is a

first-order consideration and not just a second-order afterthought as it often is in quantita-

tive macroeconomic analyses. To develop a modeling framework that could support policy

discussions requires that we quantify the associated uncertainty and assess its impacts on

policy design. To address this problem requires a structural model in the sense of Hurwicz

(1966) because we will be compelled to assess possibilities that are not well represented by

historical evidence. Economic dynamics necessarily play a central role. To design, say, an

optimal carbon tax compels us to use measurements of the mechanism by which human

activity today will impact climate in the future and an assessment of the resulting damages

to human welfare. Uncertainty prevails in both the transmission mechanism and the re-

sulting social damages. While much of the economics literature has focused on quantifying

social damages, climate science investigates the transmission mechanism by which carbon

emissions alter the environment. As is reflected in the Allen et al. (2009) quote, climate

science quantifications embed uncertainty both across models and within any given model.

This paper pays particular attention to the interaction of the climate impacts and their

economic consequences.

We build and assess dynamic structural economic models using:

a) decision theory under uncertainty

• axiomatic defenses

• recursive representations

b) nonlinear impulse response functions

c) dynamic valuation via asset pricing
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In terms of item a), we use a formal decision problem as a way to conduct a meaningful

sensitivity analysis. While much of decision theory within economics is typically axiomatic

in nature, for us the resulting recursive representations are also of vital importance for

implementation. In terms of item b), changes in emissions today have impacts on the

climate and hence economic damages in current and future time periods. Our interest in

the shadow price of the human-induced externality on the climate leads us to use nonlinear

counterparts to impulse response functions familiar in macroeconomics and climate science.

In terms of item c), we use asset pricing methods not only to impute market valuations

but also social valuations. Our asset pricing vantage point leads us to view the shadow

prices of interest as discounted expected values of the impulse responses. As we know, asset

prices are “marginal” in nature. In a private market setting, they depend on the stochastic

intertemporal marginal rates of substitutions of investors. Since our interest is in social

valuation, the prices of interest use the marginal rates of substitution of the preferences of

the fictitious planner for stochastic discounting and the pertinent relative prices. In turn

these are sensitive to the formulation of decision theory under uncertainty that we use to

represent these preferences. We provide mathematical characterizations of the probability

measures that adjust for ambiguity over how much emphasis to place on the alternative

models and for the potential impact of model misspecification. Indeed, we use tools from

items a, b and c in ways that are intertwined. While our main focus is to apply these

tools in social valuation to represent Pigouvian taxes that confront externalities in socially

efficient manners, an analogous approach can be developed to study the local impacts of

policy changes from socially inefficient allocations.

In this paper, we use the “social cost of carbon” as a target of measurement. Featuring

this entity as a tax on an externality is an overly simplified solution to a complex policy

problem, both politically and economically. Two challenges in implementing such a tax are

i) what happens to the tax revenues and ii) how do existing distortionary taxes alter an

idealized choice of a carbon tax? These challenges carry with them a variety of ramifications

for implementation, from determining how best to offset any undesirable distributional

consequences to ensuring that proceeds are allocated in ways that are not socially wasteful.1

Of course, there are questions about how to coordinate any such policy across a variety

of political venues. These are all vital questions that are part of actual policy discourse,

but not ones that we address in this particular paper. Our aim is to assess what sources

of uncertainty matter the most. We use implications for the social cost of carbon to guide

1Kevin Murphy and Bob Topel have emphasized these points in direct communication.
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those discussions, although we suspect that some of the key uncertainty considerations here

should also contribute to other more complex and pragmatic approaches to policy.

Our analysis targets “sensitivity” to uncertainty and potential misspecification. We

approach this in two ways. First, we take a preliminary stab at exploring the uncertainty

in the transmission mechanism from carbon emissions to the climate (captured by us as

temperature changes). Second, we show that the “details” of the economic model can

really matter, by conducting our analysis within some different economic configurations of

technology and preferences.

In this paper, we feature continuous-time models and corresponding pricing methods

that are familiar to financial economists. We will exploit the continuous-time recursive

representations of preferences to produce revealing formulas for how alternative uncertainty

components are reflected in valuation. While the continuous-time diffusion model gives

some pedagogically revealing formulas, our approach has direct extensions to discrete-time

models and models with jump components, although we do not develop such connections

here.

2 Uncertainty and approximation

We find it advantageous to explore three components to uncertainty:

• risk - uncertainty within a model: uncertain outcomes with known probabilities

• ambiguity - uncertainty across models: unknown weights for alternative possible mod-

els

• misspecification - uncertainty about models: unknown flaws of approximating models

The first of these components is captured in scientific discourse by introducing random

shocks or impulses into models. With known distributions, this modeling approach captures

risk. Economists often discuss risk and aversion to that risk. We frame this discussion as

one in which outcomes are not known, but probabilities are. For instance economic agents

“inside” rational expectation models confront risk. The literature on long-run risk assumes

investors have preferences that respond to the intertemporal composition of risk using the

recursive formulation originally proposed by Kreps and Porteus (1978). The long-run-risk

literature uses this framework in conjunction with uncertainty in macroeconomic growth

rates. See, for instance, Bansal and Yaron (2004). As many previous researchers have
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noted, the human impact on the climate is a potentially important source of uncertainty

that could play out over long horizons. See for instance, Jensen and Traeger (2014), Cai

et al. (2015), Nordhaus (2017), Hambel, Kraft, and Schwartz (2018) and especially Cai,

Judd, and Lontzek (2017).

The second of these components, ambiguity, reflects the fact that there are multiple

models at the disposal of decision makers motivating the question of how much weight to

assign to each of these models in terms of their credibility. This is addressed by subjec-

tive probabilities within a Bayesian framework. The robust Bayesian approach explores

sensitivity to subjective inputs. Historical data alone has only limited insights in terms of

how we conceptualize climate change uncertainty. Some of the potential adverse climate

outcomes seem best understood by using climate models designed to help us think through

the long-term consequences of human inputs into the climate system. For an example of

within model ambiguity, consider the findings reported in Olson et al. (2012) for what they

call the climate sensitivity parameter. Figure 3 of their paper reports Bayesian posteri-

ors using an uninformative prior and compares this to an informative prior documenting

substantial sensitivity, suggesting the importance of the subjective prior in the analysis.

This is not a parameter for which “the evidence speaks for itself.” More generally, the

interplay between models and evidence seems vital if we are to think through the conse-

quences of uncertainty, broadly-conceived. There are now a variety of climate models, with

differing implications so that how to confront cross-model uncertainty seems pertinent to

an assessment of uncertainty.

In this paper, we consider two approaches to model ambiguity. One builds from the

research of Chen and Epstein (2002) recursive implementation of max-min utility model

axiomatized by Gilboa and Schmeidler (1989). The origins of this approach come from the

initial formalization of decision theory due to Wald (1950). The other applies the Hansen

and Miao (2018) recursive implementation of the smooth ambiguity model originally pro-

posed and axiomatized by Klibanoff, Marinacci, and Mukerji (2005). The smooth ambiguity

model provides a differential preferential response to the uncertainty about models that is

distinct from risk. Examples motivated by climate science are given in Millner, Dietz, and

Heal (2013) and Lemoine and Traeger (2016), although their analyses are not motivated by

robustness considerations. Such considerations for subjective probabilities have played an

important role in Bayesian inferences. For instance, see Berger (1984), Hansen and Sargent

(2007) and Hansen and Miao (2018) provide a link between the smooth ambiguity model

and a recursive robust prior model.
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This third component to uncertainty, potential model misspecification, is necessitated

by the underlying complexity of the environment to be understood through the guises of

insightful models. The climate environment, like the economic one, is complex. Models

that we constructed of their interactions are necessarily abstractions designed to help us

understand the underlying phenomenon under consideration. They are necessarily mis-

specified because of our desire for simplicity, and because our understanding of some of the

features of the environment is limited. Other model shortcomings may be hard to pinpoint

ex ante. Interestingly, some well known climate models are themselves sufficiently compli-

cated that researchers construct simplified approximations typically called emulators that

capture some broad features using relatively simple time series models. See, for instance,

Li and Jarvis (2009) and Castruccio et al. (2014). Considerations like these lead us to

consider potential model misspecification as an important source of uncertainty.

Hansen and Sargent (2001) and Anderson, Hansen, and Sargent (2003) draw on insights

from the robust control theory literature (e.g., see James (1992) and Petersen, James, and

Dupuis (2000) ) and incorporate model specific concerns about potential misspecification

in a recursive way. Hansen and Sargent (2019b) then show how to combine the Chen

and Epstein (2002) formulation of ambiguity aversion across “structured models” with

model-specific concerns about misspecification. As an alternative approach, Hansen and

Miao (2018) extends the analysis of Hansen and Sargent (2007) by taking a continuous-time

limit with an interpretable representation thereby combining smooth ambiguity preferences

with model specific concerns about misspecification. As we will show, these approaches give

revealing continuous-time formulas for pricing uncertainty components.

The remainder of the paper is organized as follows. In Section 3 we describe formally

the economic model that we use for our computations. We explore the construction and

implications of Hamilton-Bellman-Jacobi (HJB) equations for our analysis and deduce re-

vealing asset pricing formulas for the social cost of carbon (SCC) for in Section 4. Asset

prices are appropriately discounted cash flows where the form of the discounting is dictated

by the uncertainty in the cash flow. In representing the externality components of SCC, the

counterparts of the cash flows are nonlinear impulse response of damages to the economic

environment. The analysis in Section 4 features only the risk component to uncertainty.

In Section 5, we show formally how to incorporate ambiguity aversion over models and

concerns about potential model misspecification into the analysis. This broader perspec-

tive on uncertainty impacts the preferences of the fictitious social planner preferences used

as a device to compute the social cost of carbon. Moreover, it leads us to alter the prob-
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ability measure used in conjunction with stochastic discounting for social valuation. We

discuss some additional characterizations of uncertainty in the climate dynamics in Section

7. Finally, we provide some concluding remarks in Section 8.

3 A Stochastic Growth Model with Reserves and Cli-

mate Damages

Our model consists of an information structure, the evolution of endogenous state variables

including reserves, cumulative emissions, capital and environmental damages along with

societal preferences. Figure 1 depicts the economic model components without climate

impacts and environmental damages. This model has a Brownian motion information

structure and, like many in macroeconomics, is highly stylized. We use it to illustrate a

framework for doing dynamic policy analysis in the presence of uncertainty in a setting

that is numerically tractable. But we are cognizant of its limitations and hope to add

some complexity in future research. The continuous time, Brownian information structure

simplifies some of the implications for social valuation, but it is not essential to the overall

approach.2

2Our continuous-time diffusion model is similar in some respects to two prior contributions. Hambel,
Kraft, and Schwartz (2018) build and analyze a DICE-type model and consider damage specifications in
technology and in technology growth. Our production specification is different including, in particular,
our inclusion of reserves as a state variable. The structure of our model, net of climate change, bears
some similarity to the Eberly and Wang (2009) analysis of two productive capital stock technologies with
adjustment costs. Our two stocks, however, produce distinct outputs with one being the stock of reserves.
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Figure 1: This figure depicts the economic model in the absence of economic and climate

damages. The model includes Brownian increment shocks, adjustment costs in capital

accumulation and curvature in how investment in discovery increases the stock of new

reserves.

3.1 Information

To assist some of our characterizations, we presume a Brownian information structure where

W
.
“ tWt : t ě 0u is a m-dimensional standard Brownian motion and F

.
“ tFt : t ě 0u is

the corresponding Brownian filtration with Ft generated by the Brownian motion between

dates zero and t.

In what follows we let Z
.
“ tZt : t ě 0u be an exogenously specified, stochastically

stable, multivariate forcing process. We write its evolution equation stochastically as:

dZt “ µZpZtqdt` σZpZtqdWt.

In our examples Z will be Ornstein-Uhlenbeck or Feller type processes with affine mean

dynamics and either constant or linear volatility dynamics.
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3.2 State variable evolution

We consider an extended version of a model used by Brock and Hansen (2018). Capital K

evolves as:

dKt “ Kt

„

ζKpZtqdt` φ0 log

ˆ

1` φ1
It
Kt

˙

dt` σK ¨ dWt



.

where It is investment and 0 ă φ0 ă 1 and φ1 ą 1. For computational purposes, we will

use the evolution for logK

d logKt “ ζKpZtqdt` φ0 log

ˆ

1` φ1
It
Kt

˙

dt´
|σK |

2

2
dt` σK ¨ dWt.

where the third dt term is the local lognormal adjustment implied by Ito’s Lemma.

Output is constrained by an AK model:

Ct ` It ` Jt “ αKt

where Ct is consumption, It is new investment in productive capital, Jt is investment in

new reserves and α ą 0 is a productivity parameter.

Remark 3.1. So far, we imposed the adjustment costs in the capital evolution. Alterna-

tively, we could posit the adjustment costs in the output constraint. This model is sufficiently

streamlined so that it allows for both interpretations. To see this define an alternative in-

vestment/capital ratio equal to:

rIt
Kt

“ φ0 log

ˆ

1` φ1
It
Kt

˙

Substituting into the capital evolution give us:

dKt “ KtµKpZtqdt` rItdt`KtσK ¨ dWt.

Inverting this relationship we have that:

It
Kt

“

exp
´

rIt
φ0Kt

¯

´ 1

φ1

.
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Now the output equation can be written with convex adjustment costs as:

Ct `Kt

»

–

exp
´

rIt
φ0Kt

¯

´ 1

φ1

fi

fl` Jt “ αKt.

The stock of reserves, Rt, can be at least partially replenished and evolves according to:

dRt “ ´Etdt` ψ0pRtq
1´ψ1pJtq

ψ1dt`RtσR ¨ dWt

where ψ0 ą 0 and 0 ă ψ1 ă 1 and Et is the emission of carbon. For computational

purposes, we use the implied evolution for logR:

d logRt “ ´

ˆ

Et
Rt

˙

dt` ψ0

ˆ

Jt
Rt

˙ψ1

dt´
|σR|

2

2
dt` σR ¨ dWt

Remark 3.2. This model of reserves has some features in common with others in the

literature. The well known Hotelling (1931) specification is a special case in which Jt is

constrained to be zero and σR “ 0. To elaborate, let

Rt “

ż `8

0

Et`sds

be a total stock of reserves available from date t forward. Then:

dRt “ ´Etdt,

or

d logRt “ ´
Et
Rt

dt

While the Hotelling constraint gives us some pedagogical simplicity and is a revealing plat-

form for illustration, historically the stock of reserves has been increasing over time because

of new discoveries, which would have to be included in the Hotelling constraint. Moreover,

there is little empirical evidence for the Hotelling price impacts.

Another special case is when ψ1 “ 1. With this specification, a nonnegativity constraint

on Jt may bind for a substantial fraction of time in the solution to the planners problem. A

similar model with these features was analyzed by Casassus, Collin-Dufresne, and Routledge

(2018). They treated the counterpart of Jt as an “impulse control problem” whereby Jt is
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optimally set to zero over time segments determined endogenously. While we view this as

an interesting special case, we choose not to address it in this paper.

As a third example, Bornstein, Krusell, and Rebelo (2017) have an industry model of

reserves with a counterpart to investment Jt with diminishing returns. They allow for richer

dynamics by including an additional state variable they call exploration, whose evolution

depends on Jt. Exploration increases the reserve stock in a proportional manner. In con-

trast, we conserve on state variables by having oil reserve investment augment the reserve

stock. We also allow for the current stock of reserves to alter the productivity of investment

Jt in a manner that preserves a constant-returns-to-scale specification.

None of these three papers used their reserve model to explore adverse social implications

of carbon admissions. While many previous researchers have imposed a Hotelling (1931)-

type constraint, we are particularly interested in the impact on oil reserve investment.

3.3 Damages

Climate literature suggests an approximation that can simplify discussions of uncertainty

and its impact. Matthews et al. (2009) and others have purposefully constructed a simple

“approximate” climate model:

Tt ´ T0 « β

ż t

0

Esds “ βFt. (1)

where the F evolution pertinent to this approximation is:

dFt “ Etdt

Within this framework, emissions today have a permanent impact on temperature in the

future where β is a climate sensitivity parameter.

Of course, this is rather stark approximation of a complex climate system, and we will

entertain some alternatives. There is a substantial literature in climate science assessing for

what purposes this is a revealing approximation, which we will discuss subsequently. There

are transient components to temperature fluctuations not explicitly connected to emissions

that are needed to capture a more complete characterization of temperature dynamics.

These could be captured by an exogenous transient process added to βFt in our analysis.

We focus on the component that the Matthews et al. approximation is meant to capture.

Thus while actual temperature has transient departures, the contribution to temperature
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change that might be most pertinent to our analysis of the economic impact of climate

change could be the increment βEt. Even with a richer specification of the climate dynam-

ics, it could be advantageous to feature the longer-term temperature changes induced by

human activity as it is not obvious why the transient components should be included when

quantifying damages induced by an externality induced by carbon emissions. In this paper

we use cumulative emissions, F , and not temperature, T , as the pertinent state variable.

The simplicity of the Matthews et al. approximation is sometimes used to reframe

policy questions in terms of a carbon budget. Given knowledge of the parameter β, a max-

imal allowable change in temperature implies an intertemporal constraint on the amount

of emissions and in effect could be used to justify a Hotelling-type constraint on cumulative

emissions. But when there is substantial uncertainty about the climate sensitivity coeffi-

cient, β, there is corresponding uncertainty about what constraint to impose on emissions.

This uncertainty is depicted in Figure 2, which provides a histogram and a smoothed den-

sity based on evidence reported by MacDougall, Swart, and Knutti (2017). They find that

the cross model mean value to be 1.72 degrees centegrade per one trillion tons of carbon

(TtC). The .05 quantile value is 0.88, which is about half the mean value; and the .95 quan-

tile is 2.52. showing the extensive range of parameter values. When there is substantial

uncertainty about β, there is uncertainty about what constraint to impose on emissions.

As an alternative, we could impose the constraint on the realized temperature change or

on the admissible augmentation of carbon concentration.
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Figure 2: Histogram and normal density approximation for the climate sensitivity param-

eter β across models. The climate sensitivity parameter is in units degrees centigrade per

teraton carbon. Evidence is from MacDougall, Swart, and Knutti (2017).

Given our limited understanding of how to model damages and long-term uncertainty

associated with the impact that emissions might have on the economy, some scholars have

doubted the value of building so called integrated assessment models with ad hoc specifi-

cations of economic or social damages. Instead some have suggested that the social policy

objectives should be framed in terms of temperature increases induced by of carbon con-

centration targets. For recent such arguments, see Morgan et al. (2017) and Pezzey (2019).

Imposing admissible temperature or concentration bounds can be represented as an ex-

treme form of damage or penalization function with infinite damages or penalties when a

threshold is exceeded. We could use this as our damage function, but instead we follow

much of the economics-climate literature by penalizing large temperature changes through

a so-called damage function specified exogenously. Consistent with a more general view of
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carbon budgeting, this damage function could be taken to be a penalty function instead

of a hard constraint where the magnitude of the penalty is dictated, at least in part, by

the implied climate outcomes. Recall that our aim is to assess what aspects of uncertainty

have the most adverse consequences, and we see value in the modeling formalism. On the

other hand, we share concerns about the literal interpretation of ours and others of the

computed social costs of carbon.

In this paper, we follow much of the previous literature in economics by positing an

ad hoc damage process to capture negative externalities on society imposed by carbon

emissions. Just as in the case of the climate approximation, the damage specification

we use is an obvious simplification. The economics literature has explored alternative

damage specifications typically expressed as functions of temperature. By positing such

an evolution we refrain from modeling formally any dynamics associated with adaptation

including responses in advance of future temperature increases.3 While this model is overly

simplistic, the evolution of damages captures two forms of uncertainty that interest us, one

from damages that we as depict as uncertainty in the function Γ and the other from climate

uncertainty parameter β.

3.4 Preference-based Damages

In this specification, the instantaneous contribution to preferences is:

δp1´ κq plogCt ´ logDtq ` δκ logEt

where δ ą 0 is the subjective rate of discount and 0 ă κ ă 1 is a preference parameter

that determines the relative importance of emissions in the instantaneous utility function.

While damages enter the utility function in this specification, we may equivalently think

of this as a model with proportional damages to production along the lines suggested by

Brock and Hansen (2018).

We model the logarithm of damages,

log d “ Γpβfq ` ζDpzq ¨

«

f

1

ff

.

3While the literature on modeling adaptation to climate change is limited, for a recent example focused
on agriculture, see and Keane and Neal (2018).
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where ζD is a two-dimensional vector. With this specification, ζDpzq ¨

«

f

1

ff

potentially

captures two forms of uncertainty in damage/climate sensitivity by adding an exogenous

shifter to the logarithm of damages. One component is deliberately proportional to the

temperature anomaly. The other component could capture a distinct role for more transient

changes in temperature on damages or other technological contributions that could impact

damages. As we will see, this exogenous component opens the door to possible model

misspecification that is at least partially disguised by the Brownian increments dWt. The

other component could capture a distinct role for more transient changes in temperature

on damages or other technological contributions that could impact damages. The implied

evolution for logD is

d logDt “ r∇ΓspβFtqβEtdt` dζDpZtq ¨

«

Ft

1

ff

` ζDpZtq ¨

«

Et

0

ff

dt (2)

where r∇Γs is the first derivative of the function Γ.

In our subsequent illustration we parameterize Γ as

Γpyq “

#

γ1y `
1
2
γ2y

2 0 ď y ă γ

γ1y `
1
2
γ2y

2 ` 1
2
γ`2 py ´ γq

2 y ě γ
(3)

where γ`2 ě 0. To illustrate the impact of damage uncertainty, we focus on the parameter

γ`2 . For a low damage specification, we set this parameter to zero and for a high damage

specification we set it to be a positive number. By setting γ`2 to an arbitrarily large

number, we approximate a carbon budget constraint by penalizing damages in excess of

γ. While the construction of γ is suggestive of a “tipping point,” previous literature has

focused explicitly on tipping points with uncertain consequences. Of course, other damage

functions are also of interest.
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Figure 3: Two alternative economic damage configurations. The two curves plot D as

a function of the temperature net of pre-industrial levels. The vertical axis gives the

corresponding damage percentage.

In our computation example, we use the two damage functions depicted in Figure

3. The low damage specification is implemented by setting γ`2 “ 0. In terms of the

previous environmental economics literature, we imagine the case in which γ`2 “ 0 as an

approximation to Nordhaus (2018). One can see from this figure that our 3 degrees C

percentage loss is approximately the same as that of Nordhaus and Moffatt (2017) who

say,

the estimated impact is -2.04 (+ 2.21) % of income at 3 C warming. We also

considered the likelihood of thresholds or sharp convexities in the damage func-

tion and found no evidence from the damage estimates of a sharp discontinuity

or high convexity.

Weitzman (2012) argues for a steeper degradation in the damages and motivates his con-

struction of an alternative damage function on the basis of uncertainty considerations.

15



Rather than simply impose an approximation to Weitzman’s damage function we illustrate

an uncertainty adjustment by positing an alternative even steeper function over some some

of the temperature increment region and consider the impact of weighting the two possibil-

ities. This allows us to characterize the uncertainty contribution explicitly. In the extreme

case in which γ`2 is arbitrarily large, we may think of γ as a hard carbon budget con-

straint. While the construction of γ is suggestive of a “tipping point,” previous literature

has focused explicitly on tipping points with uncertain consequences.

There are two interconnected forms of uncertainty in the evolution of damages that we

will capture in conjunction with equation (2), one from the specification of the damage

function Γ and the other from climate uncertainty parameter β.

3.4.1 Damages to macroeconomic growth

Alternatively, suppose that damages diminish growth in the capital evolution:4

d logKt “ζKpZtqdt´ ΓpβFtqdt´ ζDpZtq ¨

«

Ft

1

ff

dt

` φ0 log

ˆ

1` φ1
It
Kt

˙

dt´
|σK |

2

2
dt` σK ¨ dWt.

Not surprisingly, and as discussed in previous literature (see, for instance, the recent dis-

cussion in Diaz and Moore (2017)), this difference can have an important impact on com-

putations of the social cost of carbon.5 Examples of empirical analyses that seek to bear on

this issue are Dell, Jones, and Olken (2012) and Burke, Hsiang, and Miguel (2015), which

have different perspectives on the importance of heterogeneity and nonlinearity based on

reduced-form panel data evidence. From our perspective, this reinforces the notion of

damage rate uncertainty.

Several researchers have looked empirically at the relation between macro growth and

temperature including Dell, Jones, and Olken (2012), Burke, Hsiang, and Miguel (2015),

Burke, Davis, and Diffenbaugh (2018) and Colacito, Hoffmann, and Phan (2019) among

4Bansal, Kiku, and Ochoa (2017) and Hambel, Kraft, and Schwartz (2018) give alternative stochastic
models of damages to macroeconomic growth. Both use a recursive utility specification for preferences
with a risk-based approach where the decision-maker knows the probabilities.

5The material in Section 9 of Diaz and Moore (2017) Supplementary Online Material speaks directly to
this point. An early entrant into this discussion is Moyer et al. (2014), where they illustrate that modifying
a DICE-type model to include damages to the growth rate of productivity could have a big impact on the
implied social cost of carbon.
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others. Dell, Jones, and Olken explore cross country evidence including lagged effects.

They document the largest impacts of temperature on macroeconomic growth occur for

low income countries. While they find evidence for a long term impact the quantitative

magnitude of the impact is much reduced. The climate-economic system potentially has

feedbacks in both directions and a single equation approach may be a flawed way empirically

to deduce the long-term impacts. The heterogeneity in the impacts across economies at

different stages of economic development does seem to be both empirically and substantively

important. Unfortunately our simplified analysis in this paper is not designed to confront

this heterogeneity, although the consequences of uncertainty will remain for a more refined

analysis.

0 1 2 3 4 5

−0.02

−0.015

−0.01

−0.005

0

Macroeconomic Growth­Rate Damages

Temperature Increment over Pre­Industrial Levels (˚C)

G
ro
w
th
 R
at
e 
Im
pa
ct

Figure 4: Macroeconomic growth rate damages and the corresponding quintiles based on

estimation from Burke, Davis, and Diffenbaugh (2018). The blue solid line is the probability

.2 quintile and the red dot-dashed line is the .8 quintile. The intermediate curves are the

.4 and .6 quintiles.

In Figure 4 we use reported evidence from Burke, Davis, and Diffenbaugh (2018) ex-
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ploiting cross country variation in development and temperature exposure. They report

cross country evidence with temperature and its square regressors (in addition to fixed

effects.)6 Their featured econometric has a homogeneous growth response to temperature

and abstracts from more lagged impacts that might emerge through adaptation.

Our growth damage function is constructed from the estimated coefficients from Burke,

Davis, and Diffenbaugh (2018). Our γ1 and γ2 roughly correspond to the linear and

quadratic temperature effects, respectively, on economic growth in their global effect regres-

sion (Figure 1a and estimated Equation 1 in Methods section coefficients β1 and β2). There

are nontrivial issues in converting this evidence to single region, say world, model, leading

us to make some ad hoc choices in how we report and subsequently use their evidence.7

As we will see this quadratic specification of temperature on economic damages will have

rather dramatic implications for the policy implications of our climate-economic model, we

include this in large part to illustrate the impact of damage uncertainty. We have some

skepticism as to how far one can go in using developing country responses to quantify more

generally global responses to temperature changes by extrapolating from lower income

countries in locations with higher temperature.8 Moreover, given historical evidence alone

it is likely to be challenging to extrapolate climate impacts on a world scale to ranges

in which many economies have yet to experience. Both richer dynamics and alternative

nonlinearities may well be essential features of the damages that we experience in the future

due to global warming. Burke, Davis, and Diffenbaugh (2018) give a thoughtful treatment

of the impact of parameter uncertainty that we exploited when constructing Figure 4 and

that we draw on in our computations that follow.9

6Relatedly, Burke, Hsiang, and Miguel (2015) show how a quadratic specification for the temperature
impact on growth can capture the heterogenous temperature responses documented previously by Dell,
Jones, and Olken and others.

7The pre-industrial level of temperature corresponds to a value of approximately thirteen degrees Celsius
in temperature levels as measured by historical records. We use thirteen degrees as the baseline for the
construction of the temperature anomaly values that arise in our model. This value is in line with the
median no damage temperature value estimated in Burke, Davis, and Diffenbaugh (2018). We thank
Marshall Burke for answering our questions about their work and directing us to the GitHub repository with
the full set of parameter estimates and corresponding variance-covariance matrices from their estimations.
Neither he nor his co-authors bear responsibility for how we used their very interesting evidence.

8These studies do include fixed country and time effects.
9While cross-country differences in the long-term impact of temperature on growth is likely to be

pronounced, interestingly Colacito, Hoffmann, and Phan (2019) also find that seasonal differences are
important in an advanced economy like that of the United States. These are masked in the use of annual
data.
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4 Implications of Hamilton-Jacobi-Bellman equations

We start by deducing the relatively standard optimization implications of our model in the

absence of ambiguity and model misspecification concerns. The following notation will be

used in setting up social planner Hamilton-Jacobi-Bellman (HJB) equations. Let the state

vector Xt include logKt, logRt, logDt, Ft, Zt, and let the action vector At include It
Kt
, Jt
Kt

and Et

Rt
. Write the composite state equation as:

dXt “ µXpXt, Atqdt` σXpXtqdWt

where σXpxq
1σXpxq is nonsingular m by m matrix. Let n denote the number of states. In

what follows we use lower-case letters to denote potential realized values. For instance, d is a

possible realization of logDt, k is a possible realization of logKt and r is a potential realized

value of logRt. In terms of the actions, i and j are possible realizations of the investment

ratios It
Kt

and Jt
Kt

and e is a possible realization of emissions Et

Rt
. For our alternative model

specifications, some of the state variables enter into value functions in ways that we can

exploit for computational simplicity.

4.1 Preference Damages

The HJB equation for this setup abstracting from robustness is

0 “max
aPA

´δV pxq ` δp1´ κq rlog pα ´ i´ jq ` k ´ ds ` δκ plog e` rq

`
BV

Bx
pxq ¨ µXpx, aq `

1

2
trace

„

σXpxq
1 B

2V

BxBx1
pxqσXpxq



(4)

where A is a constraint set for the realized action or decision a. As part of a guess and

verify approach, the implied value function coefficient for the logarithm of damages is κ´1.

The pertinent terms for the first-order conditions for the actions or controls are:

δp1´ κq rlog pα ´ i´ jqs ` δκ log e` pκ´ 1q

˜

r∇Γspβfqβ ` ζDpzq ¨

«

1

0

ff¸

e expprq

` Vf pxqe expprq ` Vkpxqφ0 log p1` φ1iq ` Vrpxq
`

´e` ψ0 exp rψ1pk ´ rqs j
ψ1
˘
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The first-order conditions for i, j and e are:

´
δp1´ κq

α ´ i´ j
`
φ0φ1Vkpxq

1` φ1i
“ 0 (5)

´
δp1´ κq

α ´ i´ j
` Vrpxq pψ0ψ1q j

ψ1´1 exp rψ1pk ´ rqs “ 0 (6)

δκ

e
` Vf pxq expprq ´ Vrpxq ` pκ´ 1q

˜

r∇Γspβfqβ ` ζDpzq ¨

«

1

0

ff¸

expprq “ 0 (7)

We denote the solution for the investment-capital ratio as i˚pxq and for the exploration-

capital ratio as j˚pxq. The first-order conditions for the two investments can be solved

separately from first-order condition for emissions. Moreover, there is a further simplifi-

cation as the first-order conditions for investment in capital imply the affine relationship

(conditioned on state variables)

φ0φ1Vkpxq pα ´ i
˚
´ j˚q “ δp1´ κqp1` ψ1i

˚
q,

which can be exploited in computation.

4.1.1 Relative prices of capital and reserves

As is typical in the investment literature, we define the relative price q˚, sometimes referred

to as Tobin’s q, as the marginal rate of substitution between capital and consumption:

q˚pxq “ Vkpxq

„

α ´ i˚pxq ´ j˚pxq

δp1´ κq



“
1` φ1i

˚pxq

φ0φ1

(8)

where the second relation follows from the first-order conditions (5) for investment in new

capital. While the first-order conditions are for the investment-capital ratio, the value

function argument is the logarithm of capital. These two adjustments net out in our

construction of q˚.

Analogously, we define the relative price p˚ as the marginal rate of substitution between

the reserve stock and consumption:

p˚pxq “ Vrpxq

„

α ´ i˚pxq ´ j˚pxq

δp1´ κq



“
j˚pxq1´ψ1 exp rψ1pr ´ kqs

ψ0ψ1

where the second equality is implied by the first-order conditions (6) for investment in new
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reserves.

4.1.2 Social cost of carbon

The social marginal rate of substitution between emissions and consumption is commonly

referred to as the social cost of carbon (SCC). Thus it is a shadow price of the resource

allocation problem for a hypothetical planner. It could be implemented via a Pigouvian tax

that would correct the private shadow price for the externality, although we use this way

to assess the impact of uncertainty, when conceived broadly. Following previous literature,

we start by representing this social cost in terms of partial derivatives of the value function

of the social planner. We then apply an asset pricing perspective to interpret components

to this social cost. This follows in part discussions in Golosov et al. (2014). Cai, Judd, and

Lontzek (2017) have a more ambitious exploration of the risk consequences for the social

cost of carbon. We also embrace an asset pricing interpretation, but we will show how to

extend the analysis to include forms of uncertainty other than risk. Our purpose in making

this asset pricing link goes beyond the particular example economy that we posited. This

same perspective also allows researchers to understand better the components to the social

cost applicable in more general settings.

The marginal utility of emissions as a function of the state vector is given by:

δκ

e˚ expprq
“

Vrpxq

expprq
´ Vf pxq ` p1´ κq

˜

r∇Γspβfqβ ` ζDpzq ¨

«

1

0

ff¸

where the second equality follows from the first-order conditions (7). Dividing by the

marginal utility of consumption gives:

sccpxq “

«

Vrpxq

expprq
´ Vf pxq ` p1´ κq

˜

r∇Γspβfqβ ` ζDpzq ¨

«

1

0

ff¸ff

„

α ´ i˚pxq ´ j˚pxq

δp1´ κq



As with the constructions of q˚ and r˚, the scaling by capital nets out when forming the

marginal rate of substitution used in the social cost of carbon construction.

In the construction of these prices, we use the marginal utility of consumption. De-

pending on the interpretation of the model, an alternative would be to think of Ct{Dt as

“damaged consumption” and that the planner’s preferences are expressed in terms of the

logarithm of damage consumption. Under this alternative, we replace the term α´i˚pxq´j˚pxq
δp1´κq

with α´i˚pxq´j˚pxq
δp1´κq exppdq

in the price constructions.
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The social cost induced by the externality is captured by the two terms:

eccpxq “ ´Vf pxq ` p1´ κq

˜

r∇Γspβfqβ ` ζDpzq ¨

«

1

0

ff¸

(9)

scaled by the current period marginal utility for consumption. As we will now show, both

of these can in turn be expressed as expected discounted values of future social damages.

To motivate this representation, consider impulse response functions for the logarithm of

damages in the future induced by a marginal change in emissions today. This is necessarily

a nonlinear impulse response and hence will be state-dependent. The marginal emissions

change induces an impact on logDt`u given by:10

˜

r∇ΓspβFtqβ ` ζDpZtq ¨

«

1

0

ff¸

`

ż u

0

r∇2ΓspβFt`τ qβ
2Et`τdτ

The first contribution occurs on impact, and the second one accumulates through its effect

on current emissions on the state variable f .

Damages enter the utility function discounted and multiplied by δp1´ κq. Doing some

simple accounting and exploiting the exponential discounting, we combine all the date τ

contributions appropriately integrated to get

expp´δτqp1´ κqr∇2ΓspβFt`τ qβ
2Et`τ

along with the initial term:11

expp´δτqδp1´ κq

˜

r∇ΓspβFtqβ ` ζDpZtq ¨

«

1

0

ff¸

.

Thus the external part to the social cost of carbon expressed in terms of expected realized

state and control variables is:

δp1´ κq

˜

r∇ΓspβFtqβ ` ζDpZtq ¨

«

1

0

ff¸

ż 8

0

expp´δτqdτ

` E

„
ż 8

0

expp´δτqp1´ κqr∇2ΓspβFt`τ qβ
2Et`τdτ | Xt “ x



(10)

10Following our earlier notational convention, r∇2Γs denotes the second derivative of Γ.
11Formally, we exchange orders of integration.
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divided by the date t marginal utility of consumption.

By integrating the exponential function in the first expression, the δ drops out resulting

in:

p1´ κq

˜

r∇ΓspβFtqβ ` ζDpZtq ¨

«

1

0

ff¸

which is one of the two terms in formula (9) for ecc.

Since the second term is a discounted expected value, it solves a so-called Feynman-

Kac (FK) equation. Formally, we are interested in the solution Φ to the forward-looking

equation:

ΦpXtq “ E
„
ż 8

0

expp´δτqΨpXt`τ qdτ | Xt



“ exppδtq

ż 8

t

expp´δτqE rΨpXτ q | Xts dτ (11)

for a pre-specified Ψ. Specifically, let:

Ψpxq “ p1´ κqr∇2Γspβfqβ2e˚pxq expprq.

To provide a heuristic reminder of form and rationale for the FK equation, we obtain the

drift of the process tΦpXtq : t ě 0u of the left-hand hand side of (11) via Ito’s formula for

Xt “ x as:
BΦ

Bx
pxq ¨ µXrx, a

˚
pxqs `

1

2
trace

„

σXpxq
1 B

2Φ

BxBx1
pxqσXpxq



where a˚ is the maximizing decision rule. Differentiating the right-hand side of (11) with

respect to t gives an alternative formula for this drift by computing a time derivative:

δΦpxq ´Ψpxq.

By equating these, we obtain the FK or (more generally) resolvent equation:

´δΦpxq `
BΦ

Bx
pxq ¨ µXrx, a

˚
pxqs `

1

2
trace

„

σXpxq
1 B

2Φ

BxBx1
pxqσXpxq



`Ψpxq “ 0. (12)

Notice that this equation is just the special case of an HJB equation, but one that abstracts

from optimization.

By differentiating the HJB equation with respect to f and applying the “Envelope
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Theorem,” it can be shown that the solution Φ to the FK equation satisfies

Φpxq “ ´Vf pxq

This gives us the following interpretation of ´Vf pxq, which is the second component of ecc

in formula (9):

´Vf pxq “ p1´ κqE

„
ż 8

0

expp´δτqr∇2ΓspβFt`τ qβ
2Et`τdτ | Xt “ x



Thus ecc is an expected discounted impulse response of marginal damages induced by

current period emissions divided by the current period marginal utility of consumption. The

discounting here is with respect to the subjective rate of discount because we are working

with marginal utilities. This overall approach of representing the ecc as a discounted

expected value to more complex models of climate dynamics. But so far, we have presumed

knowledge of the climate dynamics when constructing this cost. We will have much more

to say about uncertainty adjustments and the implied “stochastic discounting” in the next

section.

4.2 Damages to Macroeconomic Growth

We briefly describe the corresponding set of calculations of the model in which there are

damages to capital evolution. In this specification, we no longer make reference to an

explicit damage state variable. The pertinent terms from the HJB equation for optimization

are given by:

δp1´ κq log pα ´ i´ jq ` δκ log e` Vkpxqφ0 log p1` φ1iq

` Vrpxq
“

´e` ψ0 exp rψ1pk ´ rqs j
ψ1
‰

` Vf pxqe expprq

Even with the modifications, the first order conditions for i and j remain the same. The

value function and its derivatives are different, however, as is the first-order condition for

e:
δκ

e
` Vf pxq expprq ´ Vrpxq “ 0
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Thus the implied marginal utility for emissions satisfies.

δκ

e˚ expprq
“

Vrpxq

expprq
´ Vf pxq

We now think of ´Vf divided by the marginal utility of consumption to be the external

contribution to the social cost of carbon. The period utility cost induced by a marginal

change in e is given by:

Ψpxq “ ´Vkpxq r∇Γpβfqβs

Thus ´Vf has an intuitively appealing interpretation as the expected discounted marginal

contribution to growth rate damages multiplied by the marginal utility of capital in the

respective time periods. Changing the numeraires at each date from utils to consumption

entails replacing Vk by the relative price q˚ as given by formula (8) so that the social costs

being discounted weight marginal damages by q˚.

5 Incorporating Additional Uncertainty Components

As formulated so far, the planner’s problem only features risk and not other components

of uncertainty. We now explore multiple ways to capture a broader notion of uncertainty,

beyond just risk, that exploit some simplifications that emerge from our continuous-time

formulation. In what follows, we capture ambiguity and model misspecification concerns

conveniently with two parameters pξp, ξmq following an approach suggested by Hansen and

Sargent (2007) and extended to continuous time by Hansen and Miao (2018). From a com-

putational/mathematical perspective, they act as penalization parameters that restrain

the sensitivity analysis of alternative models (ξp), and the exploration of the potential

misspecification of those models (ξm). An outcome of the computation will be an alter-

native probability measure that reflects aversions to model ambiguity and to the potential

misspecification of each of models under consideration by the social planner. In construct-

ing such a measure, we borrow convenient mathematical tools used extensively for pricing

derivative claims. The measure emerges as part of our solution to an HJB equation for

the planner who designs policies that are aimed to be sensibly robust in the presence of

this uncertainty. In effect, this probability is an uncertainty-based pricing measure. In this

section, we derive this adjusted probability measure under various settings of uncertainty

and its implications for social valuation, and in Section 6 we illustrate its impact in a
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quantitative example.

5.1 Discounting, Uncertainty and Pricing

Before plunging into our analysis, we remark on how an asset pricing perspective adds

new twists to the environmental economics literature. Discussions of the questions “what

should the discount rate be for social valuation?” have been extensive in the environmental

economics literature to date. This discourse sometimes alludes to ad hoc uncertainty ad-

justments. A detailed version of such an exploration is provided in Gollier (2013), including

references to ambiguity aversion as a motivation for wanting to alter discount rates. The

discussion of discount rates often includes both a subjective discount rate contribution, δ

in our model, and a growth rate adjustment. While our formulas for the SCC only include

the former, this is because we expressed the costs to discounting in utility units. Had we

used instead a consumption numeraire, a consumption growth adjustment would have been

present in our analysis as well. But even here, the theory of asset pricing typically uses a

stochastic discount factor process when there are shocks to the macroeconomy. Differential

exposure to these shocks should be discounted in different ways as encoded conveniently

in stochastic discount factors. It is perhaps more germane to ask “what should the social

stochastic discount factor be for social valuation?” Producing interest rate counterparts

over alternative horizons depends on both the price of uncertainty and the exposure to

that uncertainty, but these adjustments are a feature of the joint properties of the stochas-

tic discounting and the uncertain social costs to be discounted. Consistent with Gollier’s

reference to forward rates, the compounding of stochastic discount factors over multiple

periods of time can have substantively important valuation consequences giving rise to a

potentially important term structure for risk prices.

We next provide an overview of how we incorporate a broad notion of uncertainty into

valuation. In a nutshell, our uncertainty measures adds an important dimension to stochas-

tic discounting and the remainder of this section shows how to construct this measure.

5.2 An Overview

We purposely limit our exploration of alternative probability measures to those that are

“disguised” from the planner and not trivially revealed through observations.12 Roughly

12We accomplish this formally considering only alternative probability measures that are absolutely
continuous over finite intervals of time.
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speaking, consider alternative probabilities that can be represented as likelihood ratios.

Since we focus on models with Brownian information structures, it is most convenient to

use changes of measures familiar in mathematical finance justified mathematically by the

Girsanov Theorem. As is well known from the theorem, the implied change of proba-

bility measure includes a possibly history-dependent drift distortion within the Brownian

increment. That is, under the alternative probability measure:

dWt “ Htdt` dW
H
t (13)

with dWH
t a Brownian increment under the change of measure and H “ tHt : t ě 0u is

a history-dependent drift distortion process. The drift distortion allows for considerable

flexibility, but this formulation is not “without loss of generality.”13 It is a restriction

enforced by the likelihood ratio formulation.

To implement concerns about misspecification, we necessarily penalize or constrain the

corresponding drift distortions. For our alternative ways to depict ambiguity aversion and

model misspecification, we show the corresponding adjustments to the Hamilton-Jacobi-

Bellman (HJB) equation of the robust social planner. These adjustments introduce a

minimization problem to the HJB equation formulation so that the planner solves a max-

min, or equivalently a two-player, zero-sum game specified recursively rather than only

a maximization problem. The minimization is over alternative probabilities represented

conveniently as drift distortions. We then use the minimization problem to construct a

specific probability measure that gives the valuation adjustment that we are looking for.

For adding specificity, we start by describing more formally the resulting preferences.

5.3 Continuation Values

We use continuation values to define the preferences recursively. Continuation values are

prospecti and computed by solving a forward stochastic differential equation. As in dynamic

programming, a terminal value along with a forward-looking evolution equation imply

continuation value processes for each hypothetical decision or action process. Looking

forward, for Markov decision problems of the type we consider for a social planner, the

equation for the continuation value evolution alters the HJB equations previously described.

Let U “ tUt : t ě 0u denote the continuation value process posed in continuous time.

13While there are ways to further generalize some of the formulations which follow, these are beyond the
scope of this paper.
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Write:

dUt “ µU,tdt` σU,t ¨ dWt

where a recursive representation of the value function implies the restriction:

0 “ µU,t ` υt ´ δUt. (14)

This representation of preferences translates into an HJB equation once we use the Markov

structure and the Ito formula to depict the drift µU,t in terms of value function derivatives

and the local evolution of the Markov state. For an action or decision process A and value

function V , the local dynamic coefficients for the continuation value process are:

µU,t “
BV

Bx
pXtq ¨ µXpXt, Atq `

1

2
trace

„

σXpXtq
1 B

2V

BxBx1
pXtqσXpXtq



σU,t “

„

BV

Bx
pXtq

1

σXpXtq.

The instantaneous utility υt depends on the action as a function of the state. Optimization

leads us to include the maximization as in (4).

Under the (local) change of measure captured by (13), this is modified to be:

0 “ µU,t ` υt ` σU,t ¨Ht ´ δUt (15)

Alternative specifications of aversions to uncertainty will lead us to restrain the drift dis-

tortion processes H in different ways.

5.4 Model Misspecification

Initially, we explore model misspecification for a single model. Allowing for arbitrary

misspecification leads to a degenerate outcome. Instead we consider ways of penalizing dis-

tortions using a well-studied construct in the applied probability literature called “relative

entropy.” The approach has been used previously in the literature on robust control theory.

For instance, see Jacobson (1973) for an initial entry to the literature and James (1992)

for a continuous-time formulation. We use the adaptation and extension by Hansen and

Sargent (2001), Anderson, Hansen, and Sargent (2003), and Hansen et al. (2006). With

the Brownian motion information structure, this approach is straightforward to implement

by introducing a quadratic penalization term in the Hamilton-Jacobi-Bellman equation.
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Anderson, Brock, and Sanstad (2018) used a discrete-time formulation of this approach to

study an alternative energy climate model with concerns for model misspecification.14

As shown by Hansen and Sargent (2019b), this formulation can be viewed as a special

case of the recursive variational decision theory axiomatized by Maccheroni, Marinacci, and

Rustichini (2006). This approach introduces a quadratic penalty in (15)

0 “ min
hPRm

µU,t ` υt ` σU,t ¨ h´ δUt `
ξm
2
h ¨ h “ µU,t ` υt ´ δUt ´

1

2ξm
σU,t ¨ σU,t (16)

where the minimized value is:

H˚
t “ ´

1

ξm
σU,t

Here ξm determines how much the planner is concerned about misspecification. Large

values of ξm capture low concern about misspecification, while for small values of ξm this

concern is much more pronounced. By taking limits of (16) as ξm goes to 8, the outcome

of the minimization recovers (14).

Recall that the damage evolution equation (2) includes a term

”

Ft 1
ı

¨ dζDpZtq

which contributes a Brownian increment to this equation. Let σDpZtqdWt denote the Brow-

nian component to dζDpZtq. Then the implied Brownian increment for the damage evolution

is:
”

Ft 1
ı

σDpZtqdWt

Under a change of probability measure this becomes:

”

Ft 1
ı

σDpZtqHtdt`
”

Ft 1
ı

σDpZtqdW
H
t .

Notice that if σD does not depend on the exogenous state, Zt, then constant choices of H

can be thought of as a change in the composite function r∇Γspβfqβ when r∇Γs is linear.

Fluctuations in H could proxy for unmodelled time variation in the coefficients. Given the

flexibility in the construction of H, other forms of misspecification are also entertained.

Next, we describe a more structured approach to parameter uncertainty.

14They show that the resulting robust policy design shows a remarkable lack of sensitivity to how much
the baseline model reflects climate changes.
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5.5 Parameter Ambiguity

Dynamic models typically have unknown parameters for which theory and data are only

partially informative. Recall from Figure 2, that there is substantial uncertainty in the

climate sensitivity parameter β used in the Matthews et al. approximation. Similarly,

Figures 3 and 4 illustrate uncertainty in the specification of damages. There may be very

little reason to commit to a specific measure of central tendency in the case of Figures

2 and 4 or an arbitrary weighting of the high and low damage specifications in Figure

4 when solving the model. We could perform calculations based on imposing alternative

values on the fictitious social planner and check for sensitivity of the analysis. Here, we

suggest an alternative strategy whereby the planner confronts parameter ambiguity and

model specification with caution in one of two alternative ways.

Let θ denote a possible parameter configuration unknown to the planner in a set Θ. For

each possible parameter realization θ, there is dynamic evolution given by:

dXt “ µXpXt, At | θqdt` σXpXtqdWt.

For a value function V and a decision process tAt : t ě 0u

µU,tpθq “
BV

Bx
pXtq ¨ µXpXt, Atq | θq

Let Ptpdθq be a date t reference prior/posterior over a set of possible values of Θ con-

ditioned on date t information. In a dynamic setting, the distinction between a prior and

posterior becomes blurred as “yesterday’s posterior” is “today’s prior”. The values of θ can

index unknown parameters or a discrete set of models or both. Rather than fully embrace

this posterior, the planner explores deviations. Let Qtpθq be a relative density that satisfies:

ż

Θ

QtpθqPtpdθq “ 1

used to alter the posterior distribution. Let Gtpθq be a drift distortion that can depend on

the unknown parameter. We use this to capture potential model specific misspecification.

Then the drift distortion that interests us is an Ht that satisfies

σXpXtqHt “

ˆ
ż

Θ

rµXpXt, At | θq ` σXpXtqGtpθqsQtpθqPtpdθq

˙
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´

ż

Θ

µXpXt, At | θqPtpdθq, (17)

as a possible drift distortion for the Brownian motion. Notice that if Qt is identically one,

then Ht “
ş

GtpθqPtpdθq solves this equation. Before proceeding, there is one technical

restriction that we must impose on how the drift depends on the unknown parameter

vector.

Remark 5.1. Recall that we allow for σX to be singular (e.g. m ă n). Instead, we restrict

the m by m matrix pσXq
1σX to be nonsingular. Allowing σX to have more rows than columns

requires some explanation because there may not exist a solution Ht to the equation. We rule

this problem out by requiring that the local learning dynamics not be degenerate. Suppose

there is some (potentially conditional) linear combination of the n-dimensional state vector

that has locally predictable dynamics for which the Brownian exposure is zero. We restrict

the implied drift for this linear combination to be independent of θ. In effect, we restrict

the parameter vector to be fully disguised by the local dynamics. For example, in our model

there is no diffusion component to the state dynamics for F . These same dynamics do not

depend on an unknown parameter.

In terms of (17), premultiply both sides by an n-dimensional row vector r1 with the same

number of coordinates as there are states and that is orthogonal to all of columns of σX .

Then the left-hand side is zero and the right-hand side is:

ż

Θ

r1µXpXt, At | θqQtpθqPtpdθq ´

ż

Θ

r1µXpXt, At | θqPtpdθq.

This expression will be zero if r1µX does not depend on θ as then the choice of what proba-

bility measure to use in the integration is inconsequential.

To accommodate this structured uncertainty, in restricting the local mean of the con-

tinuation value, we now alter minimization problem (16) along the lines suggested in the

Hansen and Miao (2018):

0 “ min
q,
ş

qpθqPtpdθq“1
min

gpθqPRm
´ δUt ` υt

`

ż

Θ

„

µU,tpθq ` σU,t ¨ gpθq `
ξm
2
gpθq ¨ gpθq



qpθqPtpdθq

` ξp

ż

Θ

rlog qpθqsqpθqPtpdθq (18)
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where we have penalized the choice of density distortion q with a scaled version of the

relative entropy divergence:
ż

Θ

rlog qpθqsqpθqPtpdθq,

which has been used extensively in the applied probability and statistics literature. Letting

q be one makes this divergence zero, and letting the parameter ξp become arbitrarily large

restricts the posterior distortion q to be arbitrarily close to unity.

This minimization has a very tractable quasi-analytical solution, which is important for

numerical implementation. The minimizing gpθq does not depend on θ and has a solution

that analogous to that for minimizing h for the model misspecification problem:

G˚t pθq “ ´
1

2ξm
σU,t

The minimizing density distortion

Q˚t pθq “
exp

”

´ 1
ξp
µU,tpθq

ı

ş

Θ
exp

”

´ 1
ξp
µU,tpθq

ı

Ptpdθq

which tilts the resulting posterior towards θ’s for which the value function drift is relatively

low. Substituting these solutions in to the objective in (18) gives:

´δUt ` υt ´ ξp log

ż

Θ

exp

„

´
1

ξp
µU,tpθq



Ptpdθq ´
ξm
2
σU,t ¨ σU,t (19)

Remark 5.2. This approach, absent model misspecification, can be viewed as a continuous-

time version of a “smooth ambiguity” model. Klibanoff, Marinacci, and Mukerji (2005)

represent uncertainty as a two-stage lottery whereby one stage is used to capture risk condi-

tioned on a model θ which for us is depicted as a Brownian increment; and another stage to

depict ambiguity over models (indexed by θ). They suppose that there are distinct preference

representations of aversions associated with this two-stage lottery. This two-stage perspec-

tive permits the ambiguity aversion over models to play a more featured role in the decision

problem. In this paper, we follow Hansen and Miao (2018) in our use of a continuous-time

formulation along with the robustness interpretation. To connect our formulation to that

of Klibanoff, Marinacci, and Mukerji, notice that the outcome of the minimization problem
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depicted in (19) includes a term given on the left-hand side of the inequality

´ξp log

ż

Θ

exp

„

´
1

ξp
µU,tpθq



Ptpdθq ď

ż

Θ

µu,tpθq.Ptpdθq

The term on the left is recognizable as the exponential certainty equivalent and less than the

posterior mean
ş

Θ
µu,tpθqPtpdθq. Hansen and Miao (2018) derive this as a continuous-time

limit of recursive smooth ambiguity preferences.

Remark 5.3. As an alternative ambiguity adjustment in a continuous-time Brownian set-

ting, Chen and Epstein (2002) propose an instant-by-instant restriction on the potential

subjective probabilities QtpθqPtpdθq assigned to the alternative models. The decision maker

is uncertain about Qt but instead restricts it to be in the convex set that can be state-

dependent. The Chen and Epstein (2002) preference specification is a recursive implemen-

tation of the max-min utility formulation axiomatized by Gilboa and Schmeidler (1989).

Hansen and Sargent (2019b) motivate state dependence in the date-by-date constraint set

as a form of time variation in parameters and show how to construct such an ambiguity set

using a refinement of relative entropy. The formulation in Hansen and Sargent (2019a,b)

combines this approach with concerns that each of the models in the ambiguity set might

be misspecified. This amalgam is very much analogous to the extension of the smooth am-

biguity formulation we proposed here. The asset pricing methods that we describe in what

follows are also applicable to the uncertainty averse preferences proposed in Hansen and

Sargent (2019b).

5.6 Parameter Learning

Learning adds state variables to the the analysis. For sufficiently simple examples, there

could be sufficient statistics that make learning recursions straightforward and tractable to

implement recursively. These sufficient statistics would need to be included among the set

of state variables and the drift distortions to the underlying Brownian motion would alter

their evolution. Also, depending on what coefficients are uncertain, the choice of action

could impact the learning and the social planner problem as we have posed it here, as the

social planner might have incentives to “experiment.” To the extent such a channel exists,

designing a policy with this incentive in mind would add controversy to the analysis, as
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it does in macroeconomic policy in other settings.15 For some key climate parameters,

learning can happen at best very slowly. In our computations we will omit the learning

channel altogether. While this will substantially simplify our calculations, there are also

convincing reasons from climate science to embrace this approximation. For instance, Roe

and Baker (2007) write:

The envelope of uncertainty in climate projections has not narrowed apprecia-

bly over the past 30 years, despite tremendous increases in computing power,

in observations, and in the number of scientists studying the problem. ... fore-

seeable improvements in the understanding of physical processes, and in the

estimation of their effects from observations, will not yield large reductions in

the envelope of climate sensitivity.

This perspective is consistent with the Bayesian computations of Olson et al. (2012) for

what they call the climate sensitivity parameter that we mentioned earlier.

5.7 HJB Equation and Implications

We now propose a modified HJB equation for the social planner that includes concerns

about model misspecification and ambiguity. In light of this evidence of very slow learning,

we use a time invariant probability P in place of Pt as an approximation. The value function

dynamics given in equation (18) imply a counterpart HJB equation to (4) with damages

entering preferences (or equivalently scaling consumption):

0 “ max
aPA

min
qą0,

ş

qP pdθq“1
min
gPRm

´ δV pxq ` δp1´ κq rlog pα ´ i´ jq ` k ´ ds ` δκ plog e` rq

`
BV

Bx
pxq ¨

„
ż

Θ

µXpx, a | θqqpθqP pdθq ` σXpxqg



`
1

2
trace

„

σXpxq
1 B

2V

BxBx1
pxqσXpxq



`
ξm
2
g1g ` ξp

ż

Θ

rlog qpθqsqpθqP pdθq.

(20)

15For example, see Cogley et al. (2008) for a discussion of robustness and experimentation in a monetary
policy setting with learning.
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See Appendices A and B for more details on our numerical implementation.

This max-min problem provides a state-dependent action a˚ as well as state-dependent

density q˚ and a drift distortion g˚. We now show how to use these latter two objects

to construct an uncertainty adjusted probability by constructing a corresponding drift for

the state dynamics. The ambiguity-adjusted probability over the parameter space Θ is

q˚pθ | xqP pdθq and the drift as a function of the Markov state is given by:

µ˚pxq “

ż

Θ

µXrx, a
˚
pxq | θsq˚pθ | xqP pdθq ` σXpxqg

˚
pxq (21)

In section 4, we represented the external contribution to the social cost of carbon as

expected discounted future marginal damages induced by a marginal change in emissions

for all future time periods where the time t` τ contribution is:

p1´ κqr∇2ΓspβFt`τ qβ
2Et`τ

` δp1´ κq

˜

r∇ΓspβFtqβ ` ζDpZtq ¨

«

1

0

ff¸

.

scaled by the marginal utility of consumption. This same logic extends once we incorporate

the alternative uncertainty sources, but with qualification. This gives us the following

counterpart to formula (9):

ecc˚pxq “ ´Vf pfq ` p1´ κq

ż

Θ

˜

r∇Γspβfqβ ` ζDpzq ¨

«

1

0

ff¸

q˚pθ | xqP pdθq

where the θ integration is over β and the unknown parameter of Γ. The term ´Vf continues

to equal to an expected discounted value of the following social cost contributions at future

dates,

p1´ κqr∇2ΓspβFt`τ qβ
2Et`τ

where the states and and emissions are the ones implied by the solution for the HJB equation

(20). The expectation, however, is now computed using the conditional ambiguity-adjusted

probability measure. The argument for this conclusion is essentially the same as before

but it recognizes that the minimization problem alters the stochastic evolution of the state
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variable. The FK equivalent computation of ´Vf again applies with:

Ψ˚
pxq “ p1´ κq

ż

Θ

r∇2Γspβfqβ2e˚ expprqq˚pθ | xqP pdθq.

This FK computation opens the door to a novel characterization of the impact of uncer-

tainty on the SCC. As an alternative to evaluating the discounted value using the ambiguity-

adjusted probability, suppose we use the original unadjusted probabilities to evaluate the

expected discounted value of the future marginal social costs. Call this eccpxq. We take

the difference between the two discounted expected values

ucc˚pxq “ recc˚pxq ´ eccpxqs

divided by the marginal utility of consumption or its damaged counterpart to be the un-

certainty component to the SCC of carbon, inclusive of both model ambiguity and model

misspecification adjustments.

We compute ecc and hence ucc˚ as follows:

i) integrate:

p1´ κq

ż

Θ

˜

r∇Γspβfqβ ` ζDpzq ¨

«

1

0

ff¸

P pdθq;

ii) integrate:

Ψpxq “ p1´ κq

ż

Θ

r∇2Γspβfqβ2e˚ expprqP pdθq;

iii) solve FK to produce the function Φ;

iv) add the solution from part i) to the solution Φ from part iii) to form ecc.

We apply the analogous approach for the model in which damages alter economic

growth. The basic construct is much more generally applicable including to models with

richer climate dynamics.

The altered probability is not meant to represent the beliefs of the social planner. This

constructed probability gives the planner a way to confront more general forms of uncer-

tainty other than risk. Conveniently, the outcome of our robustness analysis to alternative

probabilities can be captured and computed by specifying two parameters that serve as

preference parameters for the decision maker, ξp and ξm. While we do not dictate what

these should be, we find it revealing to look at the implied ambiguity-adjusted probabilities
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and the corresponding relative entropies to assess what probabilities are of most concern

to the decision maker. See Anderson, Hansen, and Sargent (2003), Anderson, Brock, and

Sanstad (2018), and Hansen and Sargent (2019a) for alternative ways to link the parameter

ξm to entropy measures and to so-called detection error probabilities used to assess how

close statistically the ambiguity-adjusted probability measure is to the reference or baseline

probability.

Remark 5.4. Since the writing of Good (1952), robust Bayesians have suggested that an

implied “worst-case probability” under which the decision maker optimizes is worthy of

careful inspection. The ambiguity-adjusted probability measure that emerges from the HJB

equation is arguably hard to interpret in this light because it depends on endogenous state

variables. To construct this worst-case probability, we appeal to a result from two-player,

zero-sum differential games. Just like in dynamic programming, there is a date zero static

game that the HJB equation provides a solution for. Provided that a so-called Bellman-

Isaacs condition is satisfied, the orders of maximization and minimization can be exchanged

as of date zero without altering the implied value to the game. See Fleming and Souganidis

(1989) for a formal discussion. To compute the worst-case probability, exchange orders

in the static game by first maximizing conditioned on the probability and then minimizing

over probabilities subject to penalization. The outcome of this static minimization with

the order of extremization reversed gives the worst-case probability from a robust Bayesian

perspective. For further discussion, see Hansen et al. (2006).16

Remark 5.5. The term social cost of carbon can have different meanings depending on

the context. While we featured the Pigouvian taxation interpretation, there is another

construct that may more pertinent to current usage by governments, say as is reflected in the

Green Book prepared by HM Treasury (2018). Consider a marginal change in emissions

from an existing equilibrium that may not be socially efficient. To formalize this with a

similar perspective, we would impose the stochastic evolution of the pertinent economic

state variables specified exogenously in our HJB equation formulation. For instance, we

could solve for a competitive equilibrium abstracting from climate impacts and then impose

the resulting actions on the planners problem. Instead of computing the action “a” as in

HJB equation (20), we would dispense with the maximization and impose the solution for

the action from the competitive problem. We would continue to solve the minimization

problem to produce an ambiguity adjusted probability to use for social valuation. With this

16The material in Appendix D is particularly relevant on this topic.
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approach, we would still compute the social marginal rate of substitution of emissions and

consumption as an alternative measure of the social cost of carbon. This cost also can be

represented as the valuation of a social cash flow for the implied economic damages using

the ambiguity adjusted probability measure from the altered HJB equation.

6 An Illustration

In this section, we illustrate our analysis. To provide a basic understanding of the economic

model, we start by investigating a steady state version of our model without climate im-

pacts. Given the homogeneity imposed, this version of the model possesses a steady state

in the appropriate ratios of variables. This was by design. We use these relations to gain

an initial understanding of our baseline parameter configuration and to set the stage for

assessing how the efficient allocation is altered by incorporating the climate externality. We

then we introduce a climate/damage externality and show how uncertainty alters emissions

and the social cost of carbon. As we will illustrate, the damage specification acts similarly

to a Hotelling-like constraint on emissions.

6.1 Steady state without climate impacts

To illustrate “how the model works” we start with a deterministic version of the model

without damages and investigate the steady state implications.

Table 1 lists the technology parameters, Table 2 gives our choice of preference param-

eters. and Table 3 gives the steady values associated with our parameters. The economic

model at this level of abstraction is hard to calibrate in a fully convincing way. Thus,

this table is not the outcome of a formal moment matching approach sometimes used in

the macro calibration literature. In addition to its simplicity, the notion of capital in our

setup should be broad based in including human capital and forms of intangible capital in

addition to physical capital. Similarly, the reserves in our models could include both oil

and coal.17 See Appendix C for more details.

17We did formally impose two steady state targets in our parameter settings, one on the reserves to
capital ratio and the other on the growth rate of capital.
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Table 1: Technology

parameter value

α .115

φ1 16.7

φ0 .060

µK -.035

ψ0 .113

ψ1 .143

Table 2: Preferences

parameter value

δ .010

κ .032

Table 3: Steady States (without climate impacts)

variable value

investment/capitala: i .090

growth rate of capitala .020

marginal value of capitala: q 2.50

emissions/reservesa: e .015

reserves/capitala: exp pr ´ kq .980

exploration/capital: j 2.72 ˆ10´4

consumption/capital: c .0247

marginal value of reserves: p .0545

aImposed when setting the parameters.

Since the emissions trajectory implicit in this fixed point ignores the climate externality

in perpetuity, the outcome will be essentially will be to “fry the planet.” Absent climate

impacts, by design our model has sufficient homogeneity whereby there is steady growth

implying a fixed point in ratios. Under the Matthews et al. (2009) approximation, tem-

perature will grow without bound. In the competitive steady state associated with our

parameter settings, emissions grow at two percent while the subjective discount factor is

one percent. This implies that log damages will grow at roughly four percent given our

quadratic specification of log damages. This means that the discounted future social costs

will be infinite at the deterministic steady state. The solution to the social planner’s prob-

lem will avoid this extreme outcome as it will be desirable to limit the growth of emissions

and keep the damage integral finite.
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6.2 Consequences of climate and damage uncertainty

Our first set of results are computed using the smooth ambiguity specification of preferences

applied to both climate sensitivity and to the damage uncertainty depicted in Figure 3. In

particular, we make the following modeling simplifications:

i) ξm “ 8,

ii) ζDpZtq ¨

«

Ft

1

ff

“ ζD,2pZtq.

In regards to item i), we do not mean to diminish the importance of model misspecification

and plan to do comparative analysis of the distinct consequences of both uncertainty com-

ponents in future research. We impose the restriction in item ii), to simplify computation,

though it also removes a potentially interesting source of variation for emissions. Moreover,

as we discussed in Section 5.4, activating both would open an interesting additional channel

for model misspecification concerns to impact prudent climate/economics policy.

As we discussed previously, associated with this ambiguity adjustment are altered prob-

abilities assigned to the alternative damage specifications and altered densities for the cli-

mate sensitivity parameter β. As we see no easy way to give a “primitive interpretation”

for the magnitude of the smooth ambiguity parameter ξp, we instead look at the distribu-

tional consequences of this parameter setting. With this in mind, we begin by looking at

the implied densities and probabilities.

We start by assigning baseline probabilities of one half to each of the damage specifi-

cations. Once we introduce damages, there is no even approximate stochastic steady state

that is of interest. As a result, this induces state dependence in the worst-case or adjusted

probabilities that is reflected prominently in the dynamic evolution of state variables. The

dependence on the state variable f that measures cumulative emissions turns out to have a

particularly pronounced impact on the worst-case densities. The altered probabilities be-

come greater as the emissions trajectories push towards relatively higher damages towards

the region where the two damage specifications depicted in Figure 3 diverge. This pattern is

evident in the second column of Table 4, where we report entropies for a deterministic path

simulated from the state initialization that matches the steady states from the competitive

model without climate impacts. The entropies only start to have notable distortions on

this path, 50 years out. Prior to this date, altering probabilities has little impact on the

decision problem because the two damage specifications agree. The simulated path for
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the state variables is from the solution to the planner’s problem in which emissions are

relatively modest. Exposure to large environmental degradation is delayed until well into

the future under this trajectory.

weighted low high

year damage (low damage prob) damage (mean, std dev) damage

0 .006 (.50) .012 (1.81, .503) .005

25 .012 (.50) .040 (1.87, .512) .010

50 .041 (.49) .067 (1.91, .517) .027

75 .168 (.45) .088 (1.94, .521) .124

100 .254 (.41) .105 (1.95, .523) .210

Table 4: Entropies relative to the baseline normal density with a mean of 1.73 and a stan-

dard deviation of .493. For the “weighted damage” specification, the baseline probabilities

are one half for each damage specification in Figure 3. The implied worst-case probabilities

for the low damage specification are given in parentheses. For the “low damage” specifi-

cation, probability one is placed on the low damage specification. The worst-case means

and standard deviations are reported in parentheses. For the “high damage” specification,

probability one is placed on the high damage specification. The value used for ξp is 1
4500

.
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Figure 5: Weighted damage configuration. The blue solid curve is the baseline probabil-

ity density, the red dot-dashed curves are the ambiguity-adjusted density conditioned on

the low damage model and the green dashed curves are the ambiguity-adjusted densities

conditioned on the high damage model.

The distorted climate sensitivity densities that condition on each of the damage function

specifications are depicted in Figure 5. This figure gives three densities for the climate

sensitivity parameter β. One reproduces the normal approximation from Figure 2 and

the other two are the ambiguity adjusted densities conditioned on each of the two damage

specifications. These are shifted to the right to capture the caution implicit in the ambiguity

adjusted probabilities. The distortions are notably larger conditioned on the high-damage

specification, which is to be expected. The high damage specification is of most concern

to the planner while the adjusted weights reported in Table 4 even up to one hundred

years are modest. Conditioned on the high damage specification the adjusted density for β

loads up probability in the right-tail with the second mode of the density becoming more

prominent.
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Figure 6: Social cost of carbon decomposition. The units are 2010 US dollars per ton of

carbon. The costs are computed at the socially efficient allocation. The private contribution

is negligible relative to the other components and is not plotted. The green dot-dashed curve

gives the uncertainty contribution and the red dotted curve gives the external contribution

computed under the baseline probabilities. The sum of these two components is essentially

the total social cost of carbon given by the blue solid curve.

In Figure 6, we plot the implied social cost of carbon over a hundred year time hori-

zon. This figure also includes a contribution that quantifies the impact of the uncertainty-

adjusted probability measure. The private contribution to this cost is relatively speaking,

very small and can safely be ignored. In contrast, the uncertainty component is substantial

and accounts for roughly half of the social cost of carbon for this example. Not surpris-

ingly, given our depiction of the adjusted densities in Figure 5, the relative importance of

the uncertainty adjustment becomes more prominent at say one hundred years out than at

zero. The units are 2010 US dollars per ton of carbon.
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Figure 7: Emissions paths under ambiguity aversion (blue solid line) and ambiguity neu-

trality (red dashed line). In each case, the socially efficient allocations are used under the

respective ambiguity preferences.
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Figure 8: Social cost of carbon trajectories computed under ambiguity aversion (blue solid

line) and under ambiguity neutrality (red dashed line). In each case the socially efficient

allocations are used under the respective ambiguity preferences. The units are 2010 US

dollars per ton of carbon.

Figure 7 gives two emissions trajectories, one computed when we abstract from am-

biguity aversion and the other from the same social planners problem as was used in the

Table 4 and Figure 5. Both trajectories decay much like in a Hotelling exhaustible resource

allocation problem. However, this outcome is not induced by the potential exhaustion of

the resource because our model allows for investment in new reserves. Instead, the po-

tential for severe damages restrain the emissions for the fictitious planner because of the

presence of the climate externality.18 While the curves in Figure 6 hold fixed the emissions

and other allocations implied by the model, in Figure 8, we report the total social cost of

carbon with and without the ambiguity averse preferences. Both trajectories grow like the

18Note that the initial value of emissions is actually higher here than in our steady state ignoring climate
impacts. Apparently this finding emerges because the initial decrease in the marginal social value of holding
reserves increases emissions over that in the steady-state economy. While at the outset this impact offsets
the additional climate-induced social costs, but this is only a transient phenomenon. In models such as this
one, the alternative potential intertemporal trajectories of damages can have subtle and surprising effects
on the corresponding paths of emissions as revealed in our computations.
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resource price in a Hotelling model, but not surprisingly, the social cost of carbon is higher

when the planner is averse to ambiguity.

We next report results from a “sensitivity to the prior” type analysis familiar in robust

Bayesian methods. We change rather substantially the ex ante weights to the two damage

specifications by focusing on two extremes. In the first one, we simply embrace the “low

damage” specification by assigning probability one to this specification while continuing to

focus on climate sensitivity. In the second one, we feature the “high damage” specification

by assigning all of the weight on this specification.

In making these comparisons, we hold fixed the parameter ξp. Alternatively we might

hold fixed relative entropies at perhaps some date and adjust the ξp parameter accord-

ingly. This becomes an issue because for the fixed ξp the relative entropies differ across

damage function specifications as is evident in Table 4. Consistent with the computation

we reported earlier, for the “high damage” configuration, the distortions become quite pro-

nounced with a fatter right-hand tail for the climate sensitivity for longer time periods in

the future. The consequences for emissions and the social cost of carbon are depicted in

Figures 10 and 11, respectively.
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Figure 9: Top panel places probability one on the low damage specification and bottom
panel on the high damage specification. The blue solid curve is the baseline probability
density, the red dot-dashed curves are the ambiguity-adjusted densities for the low damage
specification, and the green dashed curves are the ambiguity-adjusted densities for the high
damage specification.
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Figure 11: The values are computed at the socially efficient allocations simulated along

deterministic paths. The units are 2010 US dollars per ton of carbon.

The emissions and social cost of carbon trajectories when the ex ante one half weights

are used are quite similar to those that emerge when we feature only the high damage

specification. In contrast, the emissions trajectory is higher and the social cost of carbon

lower when entertaining only the low damage specification. This finding is explicitly tied to

our parameter ξp. A larger relative entropy penalty pushes the one-half/one-half outcomes

closer to an intermediate location. Figure 8 illustrates this for the limiting case in which

the ambiguity/robustness parameter is infinite.

To understand the plotted outcomes it is revealing to compare the adjusted probability

densities. Of particular interest are the green densities reported in Figure 5 and the cor-

responding ones reported in the bottom of panel of Figure 9. For instance, consider what

happens at year one hundred. In Figure 5, the density for the climate sensitivity parameter

conditioned on the high damage specification is even more substantial that the correspond-

ing curve in lower panel of Figure 9 where only the high damage specification is entertained

by the planner. But in the ex ante one-half/one-half case, the marginal density for the cli-

mate sensitivity parameter averages over the two damage specifications and adjustments
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conditioned on the low damage configuration are much smaller than those that condition

on the high damage specification. About 40 percent of the ambiguity-adjusted weight goes

to the low damage specification, making it important in the low damage contribution in

the marginal density for the climate sensitivity parameter. More generally, the marginal

densities are similar for the different time periods even though the densities conditioned on

the high damage specification differ in ways that are quantitatively important. Consistent

with the similarities in the ambiguity-adjusted densities, there is an overall similarity in

trajectories for both the emissions and the social cost of carbon.

6.3 Climate Change and Growth Damages

For the macroeconomic growth damage specification, we incorporate estimates of Burke,

Davis, and Diffenbaugh (2018) used as in the construction of Figure 4. The results from

this growth specification of damages are much more extreme than those displayed in the

previous figures. What follows are the impacts observed in emissions and the external and

uncertainty contributions to the social cost of carbon.

Table 5 provides the implications for emissions and the social cost of carbon along a

simulated deterministic path for one hundred years. As before, the initial states for this

path match the steady states from the competitive model without climate impacts. For

these comparisons, we hold fixed relative entropies at time 100 to be close to those in

the preference damage ambiguity averse setting. Given the specification differences, this

compels us to adjust the ξp parameter.
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Ambiguity Neutral: ξp “ 8

Year Emissions SCC - external SCC - uncertainty Entropy

0 2.4 239 0 0

50 2.0 707 0 0

100 1.8 1991 0 0

Ambiguity Averse: ξp “ .005

Year Emissions SCC - external SCC - uncertainty Entropy

0 1.3 201 255 .21

50 1.1 515 649 .24

100 1.0 1280 1608 .26

Table 5: Emissions and social cost of carbon external and uncertainty contributions. The

values are computed at the socially efficient allocations for deterministic pathways. The

top panel gives the values at 0, 50, and 100 years for the ambiguity-neutral setting of the

growth damages model. The bottom panel gives the values at 0, 50, and 100 years for the

ambiguity-averse setting of the growth damages model.

The socially efficient emissions are remarkably small and the social cost of carbon remark-

ably high even under ambiguity neutrality. The uncertainty adjustment is substantial,

making the numbers all the more extreme.

As we noted earlier, using growth damages from tropical, underdeveloped regions may

well overstate damages to growth for other economies for reasons many economists have

discussed (for example, see Sachs (2001).) We conjecture that, to use this evidence in a

more revealing way, it requires explicit regional heterogeneity coupled with a more complete

accounting the economic differences in the regions. Distinguishing long-run from short-run

growth responses could also change the nature of the evidence as suggested in the earlier

work of Dell, Jones, and Olken (2012).19 Hence we view our growth analysis as a call for

more serious probes into the sources and consequences of economic damages.

19Dell, Jones, and Olken (2012) consider only linear specification for temperature on macroeconomic
growth rates. Nonlinearity could well alter their short-run/long-run decomposition.
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6.4 Discussion and Extensions

We have shown how uncertainty can potentially matter for the social cost of carbon. Our

model is very stylized, and our calculations are no doubt sensitive to some of the modeling

details. Whenever one engages, like we have, in quantitative story-telling, the outcome

is in part about the model and in part about the social problem that it addresses. We

constructed the framework explicitly to include multiple “stories.” In what follows, we

conjecture about potential extensions of our analysis.

Our social costs of carbon, and in particular, the uncertainty components, are sensitive

to the paramer ξp. Our particular choice of ξp is made for sake of illustration, but by

conveniently using relative entropy, we have reduced the ambiguity aversion representation

to a single parameter. Instead of being committed to a single parameter value, we may think

of our framework as providing a disciplined way to perform a prior/posterior sensitivity

analysis for uncertain damage and climate sensitivity parameters indexed by the choice of

ξp.

The discount rate choice δ will matter as it does in other discussions of climate policy.

Changing the subjective discount rate will certainly alter our emissions and cost numbers.

Moreover, stochastic discounting in social valuation depends on both the subjective rate of

the discount in preferences and the ambiguity-adjusted probability measure that we char-

acterized. Along a similar vein, we find it revealing and advantageous to focus on distinct

contributions to valuation as well as quantifying their overall impact. While our example

economy is special, the decomposition we propose has much more general applicability.

One familiar observation about Hotelling-type models is that as the price rises, backstop

technologies become viable, which can give an upper bound on the price. The analogous

observation applies in our setting with the potential for green energies to become prof-

itable in the future. While such a technology is absent in our model, extensions that

incorporated this will also place a new source of uncertainty and a new channel by which

uncertainty impacts the economic performance in future time periods. While the model

would have to change and the computations would be altered, we suspect that uncertainty,

broadly-conceived, would continue to play an important role in a quantitative investiga-

tion. Relatedly, as carbon presents more of a challenge for society in the future and as

technology advances, carbon sequestration may become an attractive form of mitigation.

The potential for this and other forms of mitigation to become socially productive would

certainly alter our quantitative findings, but they would also open the door to new sources

of uncertainty.
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While the computations in this section focused on model ambiguity, as we argued earlier

in the paper, potential model misspecification is also a concern. This misspecification may

be disguised by the Brownian increments making it difficult for the planner to detect

model deviations. In future work, we hope to investigate misspecification concerns as a

third component to the uncertainty pertinent to climate change.

In this paper, we abstracted from active learning and its impact on the uncertainty

adjustments. While learning about carbon sensitivity may be modest in the current en-

vironment, if we experience more rapid climate change in the future, learning could also

be more pronounced. This is absent from our model, but it could be an important con-

sideration. This form of learning, however, occurs in times of potentially high economic

damages making it costly for society to defer action while waiting to learn more. This said,

we believe learning to be an interesting extension of our analysis.

7 Impulse Response Approximation to Climate Dy-

namics

Recall that a central component to the social cost of carbon is the response function or

trajectory for damages to an emissions impulse. A variety of papers in the climate science

literature have used transfer function and impulse response methods to approximate the

much more complex output that emerges from climate models. This approach aims to

provide useful summaries of model implications or syntheses to support tractable emula-

tion and facilitate model comparison. Some examples include Li and Jarvis (2009), Joos

et al. (2013) and Castruccio et al. (2014). The Matthews et al. (2009) approximation is a

particularly simple version of such a linearized response function. That paper shows differ-

ences across models for alternative horizons that interest us. In what follows, we describe

some more recent model comparisons that we find to be particularly revealing. We present

this evidence to suggest further important research to be done that incorporates model

uncertainty from climate science and to suggest some of the challenges that embracing this

evidence entails.

Carbon-climate dynamics are often represented in two component parts, the dynamic

response of CO2 concentration to a change in emissions and the dynamic response of

temperature to a change in CO2 concentration via radiative forcing. Combining the two, as

in the Matthews et al. approximation, entails a convolution of these response trajectories.
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Nonlinearity plays a role connecting the two components as it is typically the logarithm of

ratio of current concentration to the pre-industrial counterpart that determines radiative

forcing that is used as an input into the dynamic mapping from CO2 concentration to

temperature. See, for instance, Pierrehumbert (2014).

Impulse response and transfer functions, while pedagogically and computationally con-

venient, are inherently linear tools of analysis. As discussed in Joos et al. (2013), there is

a nontrivial issue over what range of inputs might serve as a good approximation.

Non-linearities arise from the non-linearity of the carbonate chemistry in the

ocean, from changes in ocean circulation with global warming that affect the

surface-to-deep transport of excess anthropogenic CO2 as well as from other

effects such as non-linear dependencies of terrestrial productivity or soil over-

turning rates on climate and atmospheric CO2. ... In conclusion, the IRF

(impulse response function) and thus also the AGWP (absolute global warming

potential) for CO2 depends on the details of the experimental setup (back-

ground concentration, pulse size) as well as on the characteristics of the carbon

cycle climate model used for its determination.20

The impulse response functions that contribute to the social cost of carbon can ac-

commodate nonlinearity by allowing for explicit state dependence in the responses and

by calculating local approximations evaluated at the stochastic outcome of the planner’s

problem. Indeed, a small change in emissions in a nonlinear stochastic system with un-

certain random consequences in the future can be pertinent to the social valuation. Given

a nonlinear stochastic diffusion evolution, these responses could be computed recursively

using what is called the first variation of the process. Such computations, while they have

conceptual appeal, would seem to be tractable only for small scale nonlinear stochastic

systems. Perhaps nonlinear emulation methods would be valuable inputs into studies like

ours.

Here, we report findings using the impulse response approximations from Joos et al.

(2013) that illustrate cross-model heterogeneity and speaks to the potential importance of

model ambiguity in decision making. Figure 12 shows the responses for long-term changes

in carbon concentration. In looking at the left panel, all models agree that the impact of

a change in emissions decays, but not to zero, and that the decay is very slow. After one

hundred years, alternative models have substantial differences in terms of their implications

20This discussion is from page 2797 of Joos et al. (2013).
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for carbon concentration. The impact of emissions continues to decline over future centuries,

but this additional decay is remarkably slow. While there are considerable similarities in the

pattern of the responses, there is substantial variation in the magnitudes of the responses.21

The corresponding temperature responses display more erratic behavior as reported in Joos

et al. (2013) for the reasons they describe. Castruccio et al. (2014) provide further evidence

for cross model differences in temperature responses to changes in radiative forcing.

Figure 12: This figure shows the cross model heterogeneity in carbon-climate responses. It
reproduces Figure 1a of Joos et al. (2013).

We present this evidence to suggest further important research to be done that incor-

porates model uncertainty from climate science and to suggest some of the challenges that

embracing this evidence entails.

21We invite the reader to inspect other figures in Joos et al. (2013) that illustrate model heterogeneity
of responses of surface temperature, ocean temperature, sea level rise and other variables of interest to
emission pulses of CO2.
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8 Conclusion

We have shown how to apply continuous-time decision theory and asset pricing tools to

confront multiple components of uncertainty for the purposes of social valuation. The

framework we developed incorporates both concerns about model uncertainty and model

misspecification. The resulting methods allow for these broader notions of uncertainty to

be integrated formally into decision-making. We apply these tools to study the economic

impacts of climate change through the lens of the social cost of carbon.

While the methods are more generally applicable, our example illustrates the impact

of the interacting uncertainty components coming from climate and economic modeling.

In effect, the impact of these uncertainties is multiplicative: and when both are large,

together their impact can be truly substantial. As a result, the social cost of carbon

shows notable increases when both sources of uncertainty are acknowledged. This aspect

of the analysis is particularly pertinent when the decision maker is averse to ambiguity over

models and to potential model misspecification. Just as risk aversion is theory of “caution,”

so too are preference-based concerns about ambiguity and misspecification.22 We believe

these components to be particularly relevant for assessing the economic impacts of climate

change, and we expect them to be pertinent for social valuation applied in other settings.

We are sympathetic to concerns that readers might have of our seemingly simplistic

use of the social cost of carbon. Yet, for the purposes of this paper, the social cost of

carbon serves as a metric to guide our assessment of what components of uncertainty

are most impactful. The development of richer models of the underlying economy that

include research aimed at mitigation or for the development of viable green technologies

are appealing extensions of our analysis.

For quantifying the consequences of uncertainty in revealing ways, we suspect that we

have scratched the surface so-to-speak. For purposes of illustration, we have imposed overly

simplified specifications of climate and economic dynamics. Moreover, the approximate

climate models we consider potentially understate the importance of nonlinearities in the

climate dynamics. Within the confines of risk analyses, important research on climate

tipping points has been done by Lenton et al. (2008), Cai et al. (2015), Cai, Lenton, and

Lontzek (2016), and Cai, Judd, and Lontzek (2017). We suspect that adopting a broader

perspective on uncertainty could contribute productively to this line of research.

22Even within the study of financial markets, what is typically called risk aversion may be better conceived
as investor concerns about these other components to uncertainty. For example, see Hansen and Sargent
(2019a).
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A Numerical Method

To solve the nonlinear partial differential equations that characterize the HJB equations for

the planner’s problems from our model, we use a so-called implicit, finite-difference scheme

and a conjugate gradient method.23 We briefly outline the steps to this numerical solution

method below.

Recall that the HJB equation (20) includes both minimization and maximization. We

proceed recursively as follows:

i) start with a value function guess rV pxq and a decision function rapxq;

ii) solve the minimization problem embedded in the HJB equation and produce an expo-

nentially tilted density pq and drift distortion pg conditioned on x and given prV ,raq using

the quasi-analytical formulas in Section 5.

iii) compute the implied relative entropy from the change in prior:

pIpxq “
ż

Θ

rlog pqpθqspqpθqP pdθq.

iv) solve the following maximization problem by choice of a “ pi, j, eq:

δp1´ κq log pα ´ i´ jq ` δκ log e

`
BV

Bx
pxq ¨

ż

Θ

µX px, a | θq pqpθ | xqP pdθq

v) use the minimization output from step ii) and maximization output from step iv and

construct an adjusted drift using the following formula, which is the analog to formula

(21):

pµpxq “

ż

Θ

µX px,pa | θq pqpθ | xqP pdθq ` σXpxqpgpxq

23Consultations with Joseph Huang, Paymon Khorrami and Fabrice Tourre played an important role in
the software implementation.
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vi) construct the linear equation system for a new value function V “ pV

0 “´ δV pxq ` δp1´ κq
´

log
”

α ´pipxq ´ pjpxq
ı

` k ´ d
¯

` δκ rlog pepxq ` rs

`
BV

Bx
pxq ¨ pµpxq `

1

2
trace

„

σXpxq
1 B

2V

BxBx1
pxqσXpxq



`
ξm
2
pgpxq ¨ pgpxq ` ξppIpxq

vii) modify this equation by adding a so-called “false transient” to the left-hand side:

V pxq ´ rV pxq

ε
“´ δV pxq ` δp1´ κq

´

log
”

α ´pipxq ´ pjpxq
ı

` k ´ d
¯

` δκ rlog pepxq ` rs

`
BV

Bx
pxq ¨ pµpxq `

1

2
trace

„

σXpxq
1 B

2V

BxBx1
pxqσXpxq



`
ξm
2
pgpxq ¨ pgpxq ` ξppIpxq

(22)

viii) solve linear system (22) for V “ pV using a conjugate-gradient method.

ix) set rV “ pV and ra “ pa and repeat steps ii) - viii) until convergence.

A conjugate gradient method used in viii) is a well known iterative algorithm designed

to solve a minimization problem of the form: 1
2
y1Λ1Λy ´ y1Λ1λ for a nonsingular matrix Λ

and vector λ. The y that minimizes this expression satisfies the linear equation Λy “ λ as

the first-order condition for the minimization problem. The matrix Λ and vector λ come

from the numerical approximation of equation (22).

The choice of ε in step vii) is made by trading off increases in speed of convergence,

achieved by increasing its magnitude, and enhancing stability of the iterative algorithm,

achieved by decreasing its magnitude.

We solved the specification with damages to the growth rate with the same steps applied

to the corresponding HJB equation.
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B Computing Ambiguity-Adjusted Probabilities

In our implementations, we presume a discrete number of possible damage function speci-

fications along with a normal distribution for the climate sensitivity β.

We consider two cases:

i) Each possible Γ is a quadratic function. In this case, we proceed as follows: we deduce

the implied q by first determining the probability distribution for β conditioning the

Γ specification. It is straightforward to show that these conditional distributions are

normal with altered means and variances. We also have a quasi-analytic formula for the

implied relative entropy conditioned on the Γ specification since both the baseline and

altered distributions for β are normal. We then deduce the implied discrete weights

on the alternative Γ specifications and produce the full measure of entropy inclusive

of these discrete components.

ii) One of the Γ’s is not a quadratic function. This is true for the high damage specification

acting through the preferences. In this case, we must do numerical integration to

compute the implied q’s, the relative entropies, and the resulting ambiguity adjusted

drift coefficient. We use Gaussian-Legendre quadrature in our computations.

For the growth specification, we construct nine models for Γ as follows. We take the ap-

proximating normal distribution from Burke, Davis, and Diffenbaugh (2018) for their linear

and quadratic coefficient estimates. In effect, this treats their asymptotic approximation

as a prior for our analysis. We take a Cholesky decomposition of the covariance matrix

and the corresponding linear transformation of the coefficients so as to obtain a bi-variate

standard normal distribution. With three point Gaussian-Hermite quadrature for each di-

mension, we generate nine implied models for Γ with the Gaussian-Hermite weights scaled

to sum to one as the baseline probabilities. Had the SCC not been so substantial, we would

have been more concerned about “lopping off tails” with so few points of approximation.
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C Calibration: Steady states without climate impacts

While we view our model as an illustration, given its level of abstraction, we seek to provide

numerical results that are importantly revealing in understanding the dynamics of pricing

and allocations. To do this, we choose parameters by first looking at the steady state of

the no climate version of the model.24

In this model, it is most convenient to transform the state vector to be y “ r´ k and k

rather than r and k. With the transformation, the value function separates with a linear

term in k with a unit coefficient and nonlinear term in y. To compute the steady state

numerically, use the first-order conditions as three of the equations to be solved

´
δp1´ κq

α ´ i´ j
`
φ0φ1p1´ νq

1` φ1i
“ 0

´
δp1´ κq

α ´ i´ j
` ν pψ0ψ1q j

ψ1´1 exp p´ψ1yq “ 0

δκ

e
´ ν “ 0.

where ν is the co-state corresponding to state y and is equal to the derivative of the value

function with respect to y evaluated at steady-state values. Note that ν is also the co-

state for state r and 1 ´ ν is the implied co-state for state k. The steady-state first-order

conditions are solved along with the contribution from the state equation:

0 “ ´e` ψ0

“

jψ1 expp´ψ1yq
‰

´ µK ´ φ0 log p1` φ1iq , (23)

and from the co-state equation

0 “ δκ´ ν
“

ψ0ψ1j
ψ1 expp´ψ1yq ` δ

‰

. (24)

Finally, let ρ be the growth rate in the economy, which satisfies:

ρ “ µK ` φ0 log p1` φ1iq (25)

steady state q

q “ p1´ νq

„

α ´ i´ j

δp1´ κq



(26)

24John Wilson and Jieyao Wang made valuable contributions to this appendix.
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and the output constraint:

c` i` j “ α. (27)

Thus we have three first-order conditions, a state equation, (23), a co-state equation,

(24), a growth-rate equation, (25), a relative price equation, (26), and an output equation

,(27).

C.1 Backing Out Parameters

Our approach to calibration is to invert the previous equations taking the steady states for

pi, e, y, qq and the growth rate ρ as inputs for determining pν, c, jq along with the production

parameters. There is a nice recursive structure, which we exploit in the following steps.

i) Compute pc, νq from the first-order conditions for e and the formula for q:

δκ

e
“ ν “ 1´

„

δp1´ κq

c



q

ii) Given pi, qq and ρ, we solve for the capital evolution parameters.

a) From the first-order conditions for investment, solve

q “ 1` φ1i,

solve for φ1 where we have set φ0φ1 “ 1.

b) From the growth equation (25) and ρ, solve for µK .

iii) Given pν, c, y, eq, we have three equations for the three unknowns pψ0, ψ1q and log j

based on the first-order conditions for j, the state equation for reserves, equations (23)

and (25) , and the co-state equation for reserves, equation (24):

log

„

δp1´ κq

c



“ log ν ` logψ0 ` logψ1 ` pψ1 ´ 1q log j ´ ψ1y

logpρ` eq “ logψ0 ` ψ1 log j ´ ψ1y,

logpe´ δq “ logψ0 ` logψ1 ` ψ1 log j ´ ψ1y.

It is most convenient to transform this equation system.
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a) By subtracting the first and third equations,

log

„

δp1´ κq

c



´ logpe´ δq “ log ν ´ log j,

which we use to solve for log j.

b) Substituting log j into the second equation gives a linear equation for ψ1 expressed

in terms of logψ0.

c) Substituting this expression for ψ1 into the third equation gives us a single equation

to solve in a single unknown, logψ0.

iv) Given pc, i, jq determine α from the output constraint by adding them together. It

may be verified that α “ i` δq.

C.2 Some Empirical Evidence

Our model is highly stylized making it challenging to find precise inputs to use as calibration

targets. To implement the approach in Section C.1, we set the growth rate ρ at two percent,

and the reserve capital ratio at .98. We will return to this second number later when we

discuss initial conditions. Our number for the emissions-to-reserves ratio is .015. While

this ratio is less than that used by Bornstein, Krusell, and Rebelo (2017), theirs is only

based on oil. (Their ratio is between .026 to .028.) We use a smaller number to incorporate

coal, based in part on numbers from BP (2018) and Figueres et al. (2018).25

There are four preference parameters that are pertinent pδ, κ, ξp, ξmq to our analysis.

In our reported computations, we abstracted from model misspecification concerns and

effectively set ξm “ 8. In the Section 5.1, we discussed discounting in valuation for which

the subjective discount rate, δ, is only part of the story. Stochastic growth and uncertainty

aversion, which we feature, are important contributors. In Section 6, we argued that

the implied worst-case probabilities or their relative entropies are easier to interpret than

the numerical value of ξp. The actual numerical values for ξp are 1
4500

for the damages in

preferences specification and 1
200

for the damages to growth rates specification. Finn (1995)

and Leduc and Sill (2004) use p.04q as the value of the energy input share which we deflate

by 80 percent based on the approximate proportion of energy consumption that comes from

25Specifically, we choose an initial period emissions target of about 10 GtC/yr in our calibrations to
match the most recent number from Figueres et al. (2018).
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fossil fuels. For instance, see data from the International Energy Agency (IEA) Statistics

database. Thus, we use κ “ .032 in our computations.

Consider next the technology parameters for capital accumulation and productivity.

For such a stylized model, there is no agreed upon way to fit parameters to measured

counterparts of steady states. We agree with Pindyck and Wang (2013) that capital within

this model should be interpreted broadly to include both human, intangible as well as

organizational capital. Even for more narrow views of capital, there is a rather substantial

range for the magnitude of the adjustment costs. We set the steady state q “ 2.5 and

the investment-capital ratio to be .9. Although not critical to computation, the implied

investment-capital ratio is sensitive to whether the costs are presumed on the input or

output side of the capital evolution. See Remark 3.1.

The capital and oil reserves volatility σK , σR are chosen to match the empirically mea-

sured annual changes in the time series of GDP and reserves from the World Bank database

and BP (2018).

Table 6: Initial Values

Y0 80

Ka
0 666.67

R0 650

F0 290

aK0 is derived from K0 “ Y0{α

The initial values for the model solution simulations are given in Table 6. The value for

GDP comes from the World Bank database and the capital value is implied by the assumed

productivity parameter α and this GDP value. The value for reserves comes from estimates

of existing recoverable reserves of oil and coal from the Energy Information Agency and

BP (2018) and within the range of empirical measures of reserves cited by McGlade and

Ekins (2015) (who provide further details on this data) and earlier research by Rogner

(1997). By construction, the ratio of the initial reserves to capital matches the steady state

value used in setting the steady state target y. The initial value of cumulative emissions or

atmospheric carbon concentration comes from the NOAA dataset. We use anomaly from

the pre-industrial level, where the pre-industrial level we use is 580, in line with the IPCC

Fourth Assessment Report (2007) for concentrations around 1800. The Carbon Dioxide

Information Analysis Center (CDIAC) provides a conversion factor to convert the NOAA
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and IPCC concentrations values from parts per million (ppm) to gigatons of carbon (GtC).

The exogenous stochastic component to damages, as introduced in our example, plays

a very passive role in the analysis. We presume this component is present to disguise the

parameter and model uncertainty. It only contributes an additive component to the value

function that is pertinent for stochastic simulations of the model, but it does not alter the

decision rules computed in their absence. The simulations we report are deterministic in

nature and hence not impacted by how we specify this exogenous contribution.

The simulations for the damages-in-preferences model used consumption and not dam-

aged consumption as the numeraire. Had we used damaged consumption, the time path for

damages inclusive of an initialization would have been an input into the SCC trajectory.

Our “back-of-the-envelope” calculations suggests that this difference is minor over the time

horizons we reported.
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