Collateral and Capital Reallocation

Adriano A. Rampini Duke University

Macro Finance Society Lecture

21st Macro Finance Society Workshop Georgia Tech

May 19, 2023

Role of Collateral in Macro Finance

Macro finance

- Interaction between finance and macro economy
- Needed: Tractable dynamic microfounded model of financing

Collateral

- (1) Model of collateralized finance based on limited enforcement
 - Insight: Fixed (esp. tangible) assets determine capital structure
- (2) Collateral assets key for secured and unsecured debt
 - Insight: Unsecured debt claim on unencumbered assets
- (3) Durability of collateral assets affects ability to finance
 - Insight: More durable (and new) assets harder to finance

Capital reallocation

(4) Reallocation of less durable, old assets to more constrained firms

■ Insight: Distributive effects of collateral price exceed collateral effects

Papers on Collateral and Capital Reallocation

Collateral

(1) Model of collateralized finance based on limited enforcement

- Rampini/Viswanathan (2013) Collateral and capital structure
- (2) Collateral assets key for secured and unsecured debt
 - Rampini/Viswanathan (2022) Collateral and secured debt
- (3) Durability of collateral assets affects ability to finance
 - Rampini (2019) Financing durable assets

Capital reallocation

(4) Reallocation of less durable, old assets to more constrained firms

Lanteri/Rampini (2023) Constrained-efficient capital reallocation

More related (and selected) literature

- Collateral: Rampini/Viswanathan (2019, 2022b), Lanteri/Rampini (2023b)
- Capital reallocation: Eisfeldt/Rampini (2006, 2007)

(1) Model of Dynamic Collateralized Finance

- Model (essentially stochastic growth model)
 - Environment: discrete time; infinite horizon: t = 0, 1, ...
 - Preferences: linear; discount factor $\beta \in (0,1)$; limited liability
 - Endowment: w₀ at time 0
 - Technology:
 - **Production** function f(k) with decreasing returns, Inada condition
 - Capital k depreciates at geometric rate $\delta \in (0,1)$

Limited enforcement – Rampini/Viswanathan (2010, 2013)

- Limited enforcement without exclusion implies collateral constraints
- Firms can abscond with
 - **a** all cash flows and fraction 1θ of (depreciated) assets (distinction!)
- No exclusion from future borrowing unlike Kehoe/Levine (1993)
- Implication: Optimal long-term contract can be implemented with

one-period ahead borrowing subject to collateral constraint

Nature of assets matters - (in)tangibility; durability; repossessability

Dynamic Collateralized Firm Financing

Firm's (recursive) problem: Given w and interest rate R, solve

$$v(w) \equiv \max_{\{d,k,b,w'\} \in \mathbb{R}^2_+ \times \mathbb{R}^2} d + \beta v(w')$$

subject to budget constraints

$$w+b \ge d+k$$

$$f(k)+k(1-\delta) \ge Rb+w'$$

and collateral constraint

$$\theta k(1-\delta) \geq Rb$$

Tractability: One-period ahead claims are sufficient

Extends to stochastic case – one-period ahead Arrow securities

Collateral vs. Net Worth

State variable is net worth $w' = f(k) + k(1 - \delta) - Rb$

- Assets (incl. current cash flow) minus liabilities
- Net worth matters because of collateral constraints

Collateral is endogenous

- Inside collateral: assets acquired for use in production
- Not: Outside collateral: additional pledgeable assets (≈ net worth)
- See, e.g., Bernanke/Gertler
 - Agency costs, collateral, and business fluctuations (1986)
 - Agency costs, net worth, and business fluctuations (AER 1989)

Related: Scheinkman/Weiss (1986)

Investment with Collateral Constraints

Investment Euler equation

$$1 \ge \beta \frac{\mu'}{\mu} \frac{f_k(k) + (1-\theta)q(1-\delta)}{\wp}$$

and $v_w(w) = \mu$ (using Benveniste/Scheinkman (1979))

Down payment

$$\wp = 1 - R^{-1}\theta(1-\delta) \quad [=\underbrace{R^{-1}(r+\delta)}_{\text{user cost } u} + R^{-1}(1-\theta)(1-\delta)]$$

- Internal funds required per unit of capital
- Debt per unit of capital $R^{-1}\theta(1-\delta)$
- Investment of constrained firm: $k = \frac{1}{\omega}w$
- Nature of assets determines collateralizability
- Stochastic version of model quantitatively plausible
 - Li/Whited/Wu (2016)
- Dynamic model allows analysis of
 - risk management; insurance; intermediation; rental markets/leasing

(2) Collateral vs. Secured Debt

So far: No distinction between secured and unsecured debt

Recent puzzles on secured debt

- Secured debt acyclical/countercyclical Azariadis/Kass/Wen (2016)
- Limited use of secured debt by large firms Lian/Ma (2021)
- Secular decline in secured debt Benmelech/Kumar/Rajan (2022)
- Need to consider other cash-flow or earnings based constraints?

Terminology

- Collateral (law): Assets pledged to secure loan
- **Collateral (economics):** Assets that facilitate enforcement

Insight: Collateral restricts both secured and unsecured debt

- Unsecured debt backed by unencumbered assets
- Collateral essential to understanding firm financing

Trade-off between Secured and Unsecured Debt

- Model as before but distinction between secured and unsecured debt
- Capital can be financed with secured and unsecured debt
 - Encumbered capital k_s explicitly pledged to secured lender
 - Unencumbered capital $k_u = k k_s$ backs unsecured debt
- Benefits of secured debt enforcement of payment $\theta_s > \theta_u$
 - Pledging assets explicitly facilitates enforcement
 - "increases the lender's ability to collect the debt forcibly through liquidation of the collateral" – Mann (1997)

• Costs of secured debt – (direct) cost $\kappa > 0$

- Alternative: indirect cost operating flexibility
 - Encumbered capital less efficient: $k = k_u + \phi k_s$ with $\phi < 1$
 - "you just don't have the same flexibility of dealing with your properties as if you owned them unencumbered" – Mann (1997)

Trade-off: cost of encumbering assets vs. ability to lever

Firm Financing with Secured and Unsecured Debt

Firm's problem

$$v(w) = \max_{\{d,k_s,k_u,w',b_s,b_u\} \in \mathbb{R}^4_+ \times \mathbb{R}^2} d + \beta v(w')$$

subject to budget constraints for current and next period

$$egin{array}{rcl} w+\sum_{j\in\mathcal{J}}b_j&\geq&d+\sum_{j\in\mathcal{J}}k_j+\kappa k_s\ f(k)+\sum_{j\in\mathcal{J}}k_j(1-\delta)&\geq&R\sum_{j\in\mathcal{J}}b_j+w' \end{array}$$

collateral constraints on secured and unsecured borrowing

$$\theta_j k_j (1-\delta) \ge R b_j, \qquad \forall j \in \mathcal{J},$$

where $k = \sum_{j \in \mathcal{J}} k_j$ and $\mathcal{J} \equiv \{s, u\}$.

Borrower incurs cost of secured debt; not reflected in interest rate

Choice between Secured and Unsecured Debt

Constrained firms use secured debt

Panel A: Secured debt/Total debt – Data

Panel B: Secured debt/Total debt - Model

Unconstrained firms have unsecured debt in model and data

- but nevertheless face collateral constraints
- as unencumbered assets back unsecured debt

(3) Effect of Durability of Assets

- Nature of assets matters one aspect: durability
 - New assets have longer useful life than old assets
 - Alternative: different quality assets depreciate at different rates
- New and old capital
 - Suppose capital lasts for two periods (one-horse shay depreciation)
 - New, durable assets k_N last two periods; price $q_N \equiv 1$ (exogenous)
 - **Old, non-durable assets** k_O one period of useful life left; price q_O
 - Perfect substitutes in production: $k \equiv k_N + k_O$
 - Price of old capital $q_O \equiv q$ determined in (stationary) equilibrium
- Otherwise economy as before but OLG with two-period lived firms
 - For simplicity; more generally stochastic over-lapping generations
 - \blacksquare Firms born with stochastic net worth w

Firm's Problem with Two-Period Assets

• Given net worth w, entrepreneur solves

$$v(w) \equiv \max_{\{d,k_N,k_O,b,w'\} \in \mathbb{R}^3_+ \times \mathbb{R}^2} d + \beta w'$$

subject to budget constraints for current and next period

$$w+b \geq d+k_N+qk_O$$

$$f(k)+qk_N \geq Rb+w'$$

and the collateral constraint

$$\theta q k_N \geq R b$$

and $k \equiv k_N + k_O$

Note: only new assets can serve as collateral

Choice between New and Old Capital

User cost of new and old assets for unconstrained firms

$$u_N \equiv 1 - R^{-1}q$$
 $[= R^{-1}(r + (1 - q))]$
 $u_O \equiv q$ $[= R^{-1}q(r + 1)]$

Down payment on new and old assets

$$\wp_N \equiv 1 - R^{-1} \theta q \quad [= u_N + R^{-1} (1 - \theta) q > u_N]$$

$$\wp_O \equiv q$$

Investment Euler equation (multiplier on collateral constraint λ')

$$u_j + \lambda' \wp_j \ge \beta f_k(k)$$

Basic trade-off: In equilibrium,

- $\wp_N > \wp_O$ new assets require higher down payment
- $u_N \leq u_O$ new assets have lower user cost

(Un)constrained firms buy old (new) assets

(4) Capital Reallocation and Efficiency

Constrained-efficient allocation?

Related: Lorenzoni (2008), Davila/Korinek (2018)

Model

- Economy as before
- Stochastic firm net worth w with distribution $\pi(w)$
- Firms can pay negative dividends to raise funds at cost

$$d_0 - \phi(-d_0) + \beta d_1$$

where cost of equity issuance $\phi(-d)$, increasing and convex for d < 0

Planner

- Choose allocation and prices subject to same constraints as firms
- Note: no redistribution except through induced price of old assets

Constrained-Efficient Price

First-order condition w.r.t. price q (in current period)

$$\int k_O(w) \left(1 + \phi_d(w)\right) d\pi(w) = \int k_N^-(w) \left(1 + \theta \lambda^-(w)\right) d\pi(w)$$

or

$$\int k_O(w) \left(1 + \phi_d(w)\right) d\pi(w) - \int k_N^-(w) d\pi(w)$$
$$= \int \theta k_N^-(w) \lambda^-(w) d\pi(w)$$

• Using market clearing for capital goods ($\int k_O d\pi = \int k_N^- d\pi$)

$$\int \underbrace{k_O(w)\phi_d(w)d\pi(w)}_{\text{distributive externality}} = \int \underbrace{\theta k_N^-(w)\lambda^-(w)d\pi(w)}_{\text{collateral externality}}$$

and note that $\phi_d(w) = \lambda(w)$

Externalities at Competitive Equilibrium

- At stationary competitive equilibrium
 - Distributive externality is larger than collateral externality $\int k_O(w)\phi_d(w)d\pi(w) > \theta \int k_N(w)\phi_d(w)d\pi(w)$
- CE price of old capital is higher than constrained-efficient one
 Intuition: constrained firms are net buyers of old capital

Essential Role of Heterogeneity and Reallocation

Distributive externality hinges on reallocation in equilibrium

Stationary equilibrium with reallocation

Representative entrepreneur in steady state – Kiyotaki/Moore (1997)

- Assets in fixed supply (land)
- Entrepreneur has constant amount of land in steady state
- Misallocation, but no reallocation
- Change in price of land has no effect on budget constraints
- Only collateral externality

Result obtains with assets in fixed supply and OLG firms

- Heterogeneity between young and old firms
- Reallocation of land from old to young firms
- Distributive externality dominates collateral externality

(5) Financing Adoption of Clean Technology

New paper: Lanteri/Rampini (2023b)

Choice between clean and dirty technologies

Capital requires energy to operate

$$x_j \equiv \min\left\{\frac{e_j}{\gamma_j}, k_j\right\}$$

where e_j is energy input for type j capital

- Two types of capital: clean and dirty $\gamma_C < \gamma_D$
- Production f(x) where $x = \sum_{j \in \mathcal{J}} x_j$

Insight: (Un)constrained firms adopt dirty (clean) technologies

- Clean capital is expensive reflecting lower energy costs
- Key: collateral only partially pledgeable

Conclusion

Collateral central to finance and hence macro finance

- Collateralizable assets matter for financing, not just secured debt
- Focus on firms but also applies to households

Useful laboratory for macro finance

- Models as laboratories Lucas
- Model is quantitatively and empirically plausible
- Strength: tractability
- Applications (today)
 - Choice between new (durable) vs. old (less durable) capital
 - Choice between clean vs. dirty technologies