Collateral and Secured Debt

Adriano A. Rampini Duke University S. Viswanathan Duke University

European Winter Finance Summit

March 21, 2022

Theory to Distinguish between Secured Debt and Collateral

Secured debt

- Explicit collateralization: lien on specific assets, recovered in default
- Secured lenders' strong claim on assets enables higher leverage
- Entails costs: direct or indirect (operational flexibility)

Unsecured debt

Backed by unencumbered assets, implicitly collateralized

Key insights

- Collateral restricts both secured and unsecured debt
- Constrained firms use more secured debt within and across firms

Consistent with stylized facts and evidence from causal forest

- Bulk of debt secured for most firms
- Positive relation between secured debt and financial constraints
- Positive relation between leverage and tangible assets

Why Do We Care?

Collateral central to macro finance and corporate finance

- Kiyotaki/Moore (1997)
- Rampini/Viswanathan (2013)

Recent puzzles on secured debt

- Secured debt acyclical/countercyclical Azariadis/Kass/Wen (2016)
 - Relatedly: leasing countercyclical Gal/Pinter (2017)
- Limited use of secured debt by large firms Lian/Ma (2021)
- Secular decline in secured debt Benmelech/Kumar/Rajan (2021)
- No distinction between secured debt and collateral!

Terminology

- Collateral (law): Assets pledged to secure loan
- **Collateral (economics):** Collateralizable assets, esp. tangible assets

Punchline

Collateral is essential to understanding capital structure

Law Perspective on Secured Debt

Based on Mann (1997)

Benefits of secured debt: enforcement of payment

- "increases the lender's ability to collect the debt forcibly through liquidation of the collateral"
- "enhances the lender's remedy (so that the lender can coerce payment more quickly than it could if its debt were not secured)"

Costs of secured debt

- Direct costs, such as information and transactions costs
- Indirect costs, such as operating flexibility

"you just don't have the same flexibility of dealing with your properties as if you owned them unencumbered"

Very similar to basic trade-off in our model

Law Perspective on Secured Debt

Trade off depends on firms' financial condition

- "as a borrower's financial strength increases, secured credit becomes a less attractive alternative: its benefits decrease and its costs at best, remain constant" – Mann (1997)
- "borrowers exhibit an increasing tendency toward unsecured debt as their financial strength increases" - Mann (1997)
- "unsecured creditors frequently choose to waive negative pledge covenants in exchange for a quid pro quo, such as becoming equally and ratably secured" – Schwarcz (1997)

Contracting in the shadow of the law

 Borrowers and lenders are "reacting to the 'shadow' of the law – the parties' anticipation of what would happen if formal legal proceedings were to occur" – Mann (1997)

Outline

- (1) Stylized facts
- (2) Model
 - Key distinction between secured and unsecured debt
 - Simple, deterministic model
 - Stochastic model with quantitative evaluation
- (3) Secured debt and leasing (skipped today)
- (4) Evidence from causal forest

Stylized Facts on Secured Debt

Data

- Compustat; 1981-2018; annual; excluding SIC 6000-6999
- Secured debt: Debt/Mortgages & Other Secured (DM)
- **Debt:** Long-Term Debt (DLTT) + Debt in Current Liabilities (DLC)
- Assets: Assets (AT)
- Two key stylized facts
 - **Fact 1:** Secured debt increases with financial constraints
 - Fact 2: Leverage increases with tangible assets

0.4 0.2

0.0

(D.B)

■ Financial structure across rating deciles Model Long-term debt

Panel C: Unsecured debt/Assets

0.7

0.6

0.1

0.81

tq 0.4 0.3 0.2

Cross section: constrained firms have more secured debt Assets & Div

Adriano A. Rampini and S. Viswanathan

Credit rating deciles

Collateral and Secured Debt

Within-firm variation: heterogeneous effects of downgrades

Adriano A. Rampini and S. Viswanathan

Collateral and Secured Debt

Shift to secured debt, esp. low-rated firms

Financial structure and assets across size deciles

8 9

5

Assets deciles

0.3 0.2 0.1

1 2 3 4

Panel B: Secured debt/Total debt

Small (financially constrained) firms high fraction secured Assets & Div

Stylized Fact 2 – Financial Structure and Tangible Assets

Financial structure and assets across tangibility deciles

Panel C: Unsecured debt/Assets

Panel B: Secured debt/Total debt

Panel D: Debt/Assets

Secured debt and total leverage increase substantially with tangibility

Stylized Facts - Secured Long-Term Debt Ratio

Ratio of secured debt to long-term debt

Panel C: Δ Secured LT debt ratio

Panel B: Secured LT debt ratio by assets

Panel D: Secured LT debt ratio by tangibility

Patterns in secured LT debt still more pronounced

Adriano A. Rampini and S. Viswanathan

Collateral and Secured Debt

Model with Secured and Unsecured Debt

Environment

- Discrete time, infinite horizon: $t = 0, 1, 2, \ldots$
- Risk-neutral firm discounts at rate $\beta \in (0, 1)$; limited liability
- Net worth w_0 at time 0
- Two types of capital: tangible and intangible (fixed proportions)
- Leontief aggregator $k \equiv \min\{k_p/\varphi, k_i/(1-\varphi)\}; \ \varphi \in (0,1]$ tangible
- \blacksquare Capital k yields cash flow A(z')f(k) with productivity A(z')
- $\blacksquare \ z'$ follows Markov chain with transition function $\Pi(z,z')$ on $z'\in Z$
- \blacksquare Capital k depreciates at rate $\delta \in (0,1)$
- Production function
 - Decreasing returns and Inada condition
 - Assumption 1. Production function f strictly increasing, strictly concave, f(0) = 0, $\lim_{k\to 0} f'(k) = +\infty$, and $\lim_{k\to +\infty} f'(k) = 0$

Secured vs. Unsecured Debt

- Financing
 - \blacksquare Intangible capital $(1-\varphi)k$ internally financed
 - \blacksquare Tangible capital φk can be financed with secured and unsecured debt
 - \blacksquare Encumbered capital k_s explicitly pledged to secured lender
 - \blacksquare Unencumbered capital $k_u = \varphi k k_s$ backs unsecured debt
- Collateralizability θ_s and cost κ of secured debt Mann (1997)
 - Benefit: "increas[es] the lender's ability to collect the debt forcibly through liquidation of the collateral" and "enhanc[es] the lender's remedy (so that the lender can coerce payment more quickly than it could if its debt were not secured)"
 - Cost (direct and indirect): "[y]ou just don't have the same flexibility of dealing with your properties as if you owned them unencumbered"
 - Assumption 2. $1 > \theta_s > \theta_u \ge 0$ and $\kappa > 0$
- Benefits and costs of secured and unsecured debt
 - Assumption 3. $R^{-1}(\theta_s \theta_u)(1 \delta) > \kappa > (R^{-1} \beta)(\theta_s \theta_u)(1 \delta)$
- Alternative: encumbered capital less efficient (indirect cost)

•
$$\varphi k = k_u + \phi k_s$$
 with $\phi < 1$

Deterministic Model with Secured & Unsecured Debt

- Simplified model without uncertainty
 - No uncertainty (A' constant); no intangible capital ($\varphi = 1$)

Firm's problem

$$v(w) = \max_{\{d,k_s,k_u,w',b'_s,b'_u\} \in \mathbb{R}^4_+ \times \mathbb{R}^2} d + \beta v(w')$$
(1)

subject to budget constraints for current and next period

$$w + \sum_{j \in \mathcal{J}} b'_{j} \geq d + \sum_{j \in \mathcal{J}} k_{j} + \kappa k_{s}$$
(2)
$$A' f \Big(\sum_{j \in \mathcal{J}} k_{j} \Big) + \sum_{j \in \mathcal{J}} k_{j} (1 - \delta) \geq w' + \sum_{j \in \mathcal{J}} R b'_{j}$$
(3)

collateral constraints on secured and unsecured borrowing

$$\theta_j k_j (1-\delta) \ge R b'_j, \qquad \forall j \in \mathcal{J},$$
(4)

where $\mathcal{J} \equiv \{s, u\}$.

Deterministic Model - First-order Conditions

Notation

• Multipliers on constraints (2) to (4): μ , $\beta\mu'$, and $\beta\lambda'_j$

• Multipliers on non-negativity constraints for k_j and d: $\underline{\nu}_j$ and $\underline{\nu}_d$

• Let
$$k \equiv \sum_{j \in \mathcal{J}} k_j$$

First-order conditions

$$\mu = 1 + \underline{\nu}_d \tag{5}$$

$$\mu = \beta R \mu' + \beta R \lambda'_j, \qquad \forall j \in \mathcal{J},$$
(6)

$$\mu(1+\kappa) = \beta \mu' [A' f_k(k) + (1-\delta)] + \beta \lambda'_s \theta_s(1-\delta) + \underline{\nu}_s \quad (7)$$

$$\mu = \beta \mu' [A' f_k(k) + (1-\delta)] + \beta \lambda'_u \theta_u(1-\delta) + \underline{\nu}_u \quad (8)$$

$$\beta \mu' = \beta v_w(w') \quad (9)$$

• Envelope condition: $v_w(w) = \mu$ (marginal value of net worth)

Note:
$$\lambda'_u = \lambda'_s \equiv \lambda'$$

Model with Secured and Unsecured Debt

Down payments and investment Euler equation

• Down pmts: $\wp_s = 1 - R^{-1} \theta_s (1 - \delta) + \kappa$; $\wp_u = 1 - R^{-1} \theta_u (1 - \delta)$

Firm's investment Euler equation (IEE)

$$1 = \beta \frac{\mu'}{\mu} \frac{A' f_k(k) + (1 - \theta_j)(1 - \delta)}{\wp_j} + \frac{\underline{\nu}_j / \mu}{\wp_j}, \qquad \forall j \in \mathcal{J}.$$
(10)

Choice between secured and unsecured debt

Rewrite IEEs using Jorgenson's (1963) frictionless user cost $u \equiv r + \delta$

$$u + R\kappa + R \frac{\lambda'}{\mu'} \wp_s \geq A' f_k(k)$$
 (11)

$$u + R \frac{\lambda'}{\mu'} \wp_u \geq A' f_k(k),$$
 (12)

with equality if $k_j > 0$

- Trade-off between cost of encumbering assets and down payments
- Assumption 3 implies $\wp_s < \wp_u$ (otherwise secured debt dominated)
 - Secured debt enables more borrowing/higher leverage

Model with Secured and Unsecured Debt

Using IEEs we get

$$1 = \beta \frac{\mu'}{\mu} \frac{(\theta_s - \theta_u)(1 - \delta)}{\wp_u - \wp_s} + \frac{\underline{\nu}_u / \mu - \underline{\nu}_s / \mu}{\wp_u - \wp_s}$$
(13)

• Let
$$R_s \equiv \frac{(\theta_s - \theta_u)(1-\delta)}{\wp_u - \wp_s} > R$$
 (by Assumption 2)

- Secured debt is more costly
- Severely constrained firms ($w \rightarrow 0$) use secured debt only

• (2) & (4)
$$\Rightarrow w \ge \sum_{j \in \mathcal{J}} \wp_j k_j$$
 and $k_j \to 0$, $\forall j \in \mathcal{J} \Rightarrow k \to 0$

• IEE implies $\beta\mu'/\mu \rightarrow 0$; then (13) implies $\underline{\nu}_u > 0$

Dividend-paying firms (d > 0) use unsecured debt only

- \blacksquare Firm pays dividends in steady state: $\mu=\mu'=1,$ so $\beta\mu'/\mu=\beta$
- By Assumption 3 $R_s > \beta^{-1}$; then (13) implies $\underline{\nu}_s > 0$

■ IEE:
$$1 = \beta \frac{A' f_k(k) + (1 - \theta_u)(1 - \delta)}{\wp_u}$$
 implicitly defines \bar{k}

Firms indifferent between secured and unsecured debt

From (13):
$$\beta \mu' / \mu = R_s^{-1}$$
; IEE defines $\underline{k} < \overline{k}$

Model with Secured and Unsecured Debt: Characterization

Given Assumptions 1 to 3, \exists thresholds $0 < \underline{w}_s < \bar{w}_s < \bar{w} < +\infty$

Financing policy

- $w \leq \underline{w}_s$: issue only secured debt
- $w \in (\underline{w}_s, \overline{w}_s)$: substitute from secured debt to unsecured debt
- $w \geq \bar{w}_s$: use only unsecured debt
- Investment k increases in w; strictly if $w \leq \underline{w}_s$, $w \in [\overline{w}_s, \overline{w}]$
- **Payout policy:** firms with $w > \overline{w}$ pay dividends
- Firm life cycle
 - Over time, firms accumulate net worth, ...
 - ... increase investment,
 - ... substitute from secured debt to unsecured debt,
 - ... and eventually initiate dividends.

Model with Secured and Unsecured Debt with Uncertainty

Stochastic productivity

- Assumption 4. $\forall z_+, z \in Z \ni z_+ > z$, (i) $A(z_+) > A(z)$, (ii) A(z) > 0
- Firm's problem

$$v(w, z) = \max_{\{d, k_s, k_u, w', b'_s, b'_u\} \in \mathbb{R}^4_+ \times \mathbb{R}^{2S}} d + \beta E[v(w', z')|z]$$
(14)

subject to budget constraints for current and next period, $\forall z' \in Z,$

$$w + E\left[\sum_{j \in \mathcal{J}} b'_{j} \middle| z\right] \geq d + \frac{1}{\varphi} \sum_{j \in \mathcal{J}} k_{j} + \kappa k_{s} \quad (15)$$
$$A' f\left(\frac{1}{\varphi} \sum_{j \in \mathcal{J}} k_{j}\right) + \frac{1}{\varphi} \sum_{j \in \mathcal{J}} k_{j} (1 - \delta) \geq w' + \sum_{j \in \mathcal{J}} Rb'_{j} \quad (16)$$

and collateral constraints (4) $orall \{j, z'\} \in \mathcal{J} imes Z$

Model with Secured and Unsecured Debt

Investment Euler equation (IEE)

$$1 = E \left[\beta \frac{\mu'}{\mu} \frac{A' f_k(k) + (1 - \varphi \theta_j)(1 - \delta)}{\wp_j^{\varphi}} \middle| z \right] + \frac{\varphi \underline{\nu}_j / \mu}{\wp_j^{\varphi}}$$
(17)

where $\wp_{j}^{\varphi}\equiv1-\varphi+\varphi\wp_{j}$

- Severely constrained firms ($w \rightarrow 0$) use secured debt only
 - (15) & (4) $\Rightarrow w \geq \frac{1}{\varphi} \sum_{j \in \mathcal{J}} \wp_j^{\varphi} k_j \Rightarrow k_j \to 0, \forall j \in \mathcal{J}; k \to 0$
 - IEE implies $\beta \mu'/\mu \to 0$, $\forall z' \in Z$ since

$$1 \geq E\left[\beta\frac{\mu'}{\mu}\frac{A'f_k(k) + (1-\varphi\theta_j)(1-\delta)}{\wp_j^{\varphi}}\Big|z\right]$$
$$\geq \beta\frac{\mu'}{\mu}\frac{A'f_k(k) + (1-\varphi\theta_j)(1-\delta)}{\wp_j^{\varphi}}$$

- Analogous argument implies $\underline{\nu}_u > 0$
- Financially constrained firms borrow secured
- Dividend-paying firms use unsecured debt only

Quantitative Evaluation

Baseline calibration based on Li/Whited/Wu (2016)

- Structural estimate version of R/V (2013) model using SMM
- Calibrated parameters:
 - $\beta = 0.985$ avg. real 3m T-bill rate 1965-2012: 1.5%
 - $\blacksquare \ R^{-1} = 0.988$ difference due to tax wedge with $\tau = 20\%$
- Estimated parameters:

•
$$f(k) = k^{\alpha}$$
 and $\alpha = 0.6$

- $A(z') = \exp(z')$ with $\sigma_z = 0.5$ and $\rho_z = 0.5$
- Not used: $\delta = 0.04; \ \theta = 0.4$

Our parametrization

- Symmetric two-state Markov chain with $\Pi(z,z) = 0.75$ to match ρ_z
- $\bullet \ \delta = 0.1$
- $\varphi = 0.6$: Falato/Kadyrzhanova/Sim/Steri (forthcoming)
- Calibrated: $\theta_s = 0.8$; $\theta_u = 0.6$; $\kappa = 0.01$

Quantitative Evaluation

Secured debt and leverage decrease with net worth

Adriano A. Rampini and S. Viswanathan Collateral and Secured Debt

Secured Debt and Leasing (skipped today)

Effect of Downgrades – Inference using Causal Forest 🕬

- **Estimate heterogeneous treatment effects using causal forest**
 - Method: Wager/Athey (2018); Athey/Wager (2019)
 - Application to covenant violations: Gulen/Jens/Page (2021)

Primer on causal forest

- Non-parametric machine learning based estimation method
- Intuitively: nearest neighbor method with adaptive neighborhood
- Classification and regression trees (CARTs): tree with leaves
 - Grow tree by recursively splitting sample by covariates
 - Maximize variance of treatment effects across leaves
- Honest (causal) tree splits sample into training and estimation set
- Causal forest aggregates causal trees to allow inference
 - Obtain consistent, asymptotically normal treatment effect
- Our causal forest: 4000 trees using 50% of sample, 50% honesty
 - Outcome var: financial structure, assets, and payout policy; treatment: downgrade
 - Covariates: SecDebt, UnsecDebt, Debt, NetInc, MktCap, Div (all /Assets); SecDebt/Debt; Rating; MktCap; Assets; Tangibility

Causal Forest – Treatment Effect Densities

Density of conditional avg. treatment effects (CATEs)

- Treatment: ratings downgrades by one notch (or more)
- Effect on secured debt leverage and secured debt ratio
- Densities for treatment effects on the treated (TT) and control (TC)

Estimates of average treatment effects • ATE/ATT/ATC

Causal Forest – Heterogenous Treatment Effects

Treatment effect of one-notch (or more) downgrade by rating

Adriano A. Rampini and S. Viswanathan Collateral and Secured Debt

Secured Debt (Lease-adj.)

Conclusion

Secured debt enables higher leverage but entails costs

- Explicit collateralization gives secured lender strong claim on assets
- More constrained firms use more secured debt within and across firms

Collateral restricts both secured and unsecured debt

- Unsecured debt backed by unencumbered assets
- Consistent with stylized facts and evidence from causal forest

Collateral is essential to understanding capital structure

- Collateral constraints matter despite large firms borrowing unsecured
- Firms shift to secured debt when constrained
- Bulk of debt secured for small firms and lease-adj. for most firms
- Unsecured debt implicitly collateralized

Assets and dividend payout across rating deciles

- Firms with low ratings are smaller and pay lower (or no) dividends
 - Low rated firms seem more constrained

Within-firm variation: Assets & payout effect of downgrades

Downgraded firms downsize and reduce payout substantially

Assets and dividend payout across size deciles

Dramatic size pattern in dividends

Stylized Fact 1 – Secured Debt and Leasing

Panel A: Secured debt/Assets (lease-adj.) F

Panel C: Leasing debt/Assets (lease-adj.)

Panel D: Debt/Assets (lease-adj.)

Cross section: accentuated patterns and higher level

Adriano A. Rampini and S. Viswanathan

Stylized Fact 1 - Secured Debt and Leasing

Within-firm variation: heterogeneous effects of downgrades

0.08

Panel A: Secured debt/Assets (lease-adj.)

Panel C: Leasing debt/Assets (lease-adj.)

(ip 0.030

÷ 0.020

0.015

0.010

C 0.005

8 0.000

Panel B: Secured debt/Total debt (lease-adj.)

Firms that are downgraded shift to secured debt and leasing

Adriano A. Rampini and S. Viswanathan

Previous rating decile

Collateral and Secured Debt

Stylized Fact 1 – Secured Debt and Leasing

Shift to secured debt (incl. leasing), esp. low-rated firms

Stylized Fact 1 – Secured Debt and Leasing

Financial structure and leasing across size deciles

Panel C: Leasing debt/Assets (lease-adj.)

Panel B: Secured debt/Total debt (lease-adj.)

Panel D: Debt/Assets (lease-adj.)

Bulk of financing secured in all but largest firms

Stylized Fact 2 – Financial Structure and Tangible Assets

Financial structure and leasing across tangibility deciles

Panel C: Leasing debt/Assets (lease-adj.)

3 4 5 6 7 8 Tangible assets ratio (lease-adj.) deciles

0.7

2-0.5 0.4 0.3 0.2

9_{0.1}.

ż

- 0.6

Panel B: Secured debt/Total debt (lease-adj.)

Secured debt, leasing, and total leverage all increase with tangibility

10

Stylized Facts – Secured LT Debt Ratio (Lease-Adj.)

Ratio of secured debt to long-term debt (lease-adj.)

Panel C: Δ Secured LT debt ratio

Panel B: Secured LT debt ratio by assets

Panel D: Secured LT debt ratio by tangibility

Patterns in secured LT debt still more pronounced

Adriano A. Rampini and S. Viswanathan

Collateral and Secured Debt

Model with Secured and Unsecured Debt and Leasing

• Benefits and costs of leasing k_l

- Monitoring cost m > 0; leasing fee $\wp_l \equiv R^{-1}u + m$
- Assumption 5. $R^{-1}(1-\theta_s)(1-\delta) > m-\kappa > \frac{1-\theta_s}{\theta_s-\theta_u}\kappa$
- Implies $\wp_s > \wp_l$ and $R_l \equiv \frac{(1-\theta_s)(1-\delta)}{\wp_s (R^{-1}u+m)} > R_s$
- Repossession advantage: Eisfeldt/Rampini (2009); R/V (2013)

Firm's problem

$$v(w,z) = \max_{\{d,k_s,k_u,k_l,w',b'_s,b'_u\} \in \mathbb{R}^5_+ \times \mathbb{R}^{2S}} d + \beta E[v(w',z')|z]$$
(18)

subject to budget constraints for current and next period, $\forall z' \in Z$,

$$w + E\Big[\sum_{j \in \mathcal{J}} b'_j \Big| z\Big] \ge d + \frac{1}{\varphi} \sum_{j \in \mathcal{J}} k_j + \kappa k_s + \frac{1 - \varphi + \varphi(R^{-1}u + m)}{\varphi} k_l$$
$$A'f\Big(\frac{1}{\varphi}\Big(\sum_{j \in \mathcal{J}} k_j + k_l\Big)\Big) + \frac{1}{\varphi}\Big(\sum_{j \in \mathcal{J}} k_j + (1 - \varphi)k_l\Big)(1 - \delta) \ge w' + \sum_{j \in \mathcal{J}} Rb'_j$$

and collateral constraints (4) $\forall \{j,z'\} \in \mathcal{J} \times Z$

Prediction: Most constrained firms lease, then borrow secured < Back</p>

Average Treatment Effects from Causal Forest

- Effects on financial structure, investment, and payout policy
- ATE/ATT/ATC: Average Treatment Effect; on Treated; on Control

Outcome variable	ATE	ATT	ATC
Secured debt /Assets	0.021	0.016	0.022
	(6.973)	(5.602)	(6.962)
Secured debt/Total debt	0.032	0.025	0.033
	(5.629)	(4.914)	(5.563)
Unsecured debt/Assets	0.018	0.011	0.019
	(4.753)	(3.230)	(4.829)
Debt/Assets	0.040	0.027	0.042
	(9.740)	(7.340)	(9.803)
Log assets (level)	-0.101	-0.110	-0.099
	(-8.746)	(-11.220)	(-8.222)
Dividends/Assets	-0.004	-0.003	-0.004
	(-11.329)	(-12.098)	(-10.998)

Causal Forest – Treatment Effects (Lease-adj.)

Treatment effect of one-notch (or more) downgrade by rating

Secured debt/Assets (lease-adj.)

Secured debt/Total debt (lease-adj.)

Average Treatment Effects from Causal Forest

Treatment Effects on Financial Structure (Lease-adj.)

Outcome variable	ATE	ATT	ATC
Secured debt /Assets	0.024	0.020	0.025
	(8.753)	(7.415)	(8.719)
Secured debt/Total debt	0.016	0.019	0.015
	(3.464)	(4.453)	(3.236)
Unsecured debt/Assets	0.012	0.005	0.013
	(3.956)	(1.559)	(4.186)
Debt/Assets	0.038	0.026	0.040
	(10.620)	(8.059)	(10.703)
Leasing debt/Assets	0.014	0.016	0.014
	(7.677)	(9.153)	(7.328)

Causal Forest – Heterogenous Treatment Effects

Treatment effect of one-notch (or more) downgrade by rating

▲ Back

Causal Forest – Heterogenous Treatment Effects

Assets

Treatment effect of one-notch (or more) downgrade by rating

Dividends/Assets

Causal Forest – Treatment Effects (Lease-adj.)

Treatment effect of one-notch (or more) downgrade by rating

Unsecured debt/Assets (lease-adj.)

