

University of Oslo
Department of Economics

Professor Rampini
Duke University

Financial Contracting and the Business Cycle
August 20-23, 2007

Practice Problem: Financing with Costly State Verification

This is a suggested practice problem. Solving this problem should help you prepare for the course.

Problem. This problem studies the optimal contract between a risk neutral entrepreneur and a risk neutral (representative) lender when there is private information about the project outcome but the lender has access to a costly state verification (CSV) technology as in Townsend (1979). We assume that the lender can commit to stochastic monitoring as in Mookherjee and Png (1989).

There are two dates, 0 and 1, and n possible outcomes of the project, i.e., cash flows y_i , $i = 1, \dots, n$, where $0 \leq y_1 < y_2 < \dots < y_n$ and probability of cash flow i is π_i ($\pi_i > 0, \forall i$). The project requires an investment $I > 0$ and the entrepreneur has assets (or internal funds) $A \geq 0$, where $I > A$ so that there is a financing need. Assume w.l.o.g. that the entrepreneur contributes all his assets to the project. The entrepreneur consumes at date 1 only and is subject to limited liability, i.e., the entrepreneur's consumption has to be non-negative. The entrepreneur observes the cash flow y_i , i.e., state i , but the lender observes it only at a cost of $\kappa > 0$. By the revelation principle, we can restrict attention to direct truth-telling mechanisms, in which the entrepreneur announces the state, say j . We can assume that only announcements of the type $j \leq i$ are feasible in state i , e.g., because the entrepreneur has to show the cash to the investor and can only hide cash (which turns out to be w.l.o.g.).

Consider the optimal incentive-compatible contract which maximizes the utility of the entrepreneur. Notation: Let c_i be the entrepreneur's consumption when he announces i (truthfully) and is not monitored. Let c_i^m be his consumption when he announces i (truthfully) and is monitored. When the entrepreneur is monitored and found to be lying his consumption is 0 (why?). Let the probability that the agent is monitored in state i be p_i . Finally, assume the interest rate is r so that the lender needs to be repaid $(1 + r)(I - A)$.

[Remark: To prepare for the course, solve the questions below for $n = 2$. Of course, if you would like, you should feel free to (and be able to) solve the questions below for general n as well.]

(a) Write down the problem of maximizing the entrepreneur's expected utility, subject to (i) the participation constraint for the lender (with Kuhn-Tucker multiplier μ), (ii) incentive compatibility constraints (with multipliers λ_{ij} , $j < i$), (iii) non-negativity constraints on the entrepreneur's consumption in all states (with multipliers ν_i and ν_i^m , respectively), and subject to (iv) the constraints that p_i are between zero and one (with multipliers η_i^0 and η_i^1 , respectively). Write down the first order conditions.

(b) Prove that the optimal contract minimizes expected auditing costs subject to (i)-(iv).

(c) Prove that expected auditing costs under the optimal contract are nonincreasing in the entrepreneur's assets A .

(d) Note that the multiplier on the lender's participation constraint $\mu \geq 1$. (The multiplier μ can be interpreted as the shadow-value of internal funds. Why?) Thus, there are two cases either $\mu = 1$ or $\mu > 1$. Prove that the optimal contract involves no auditing if and only if the lender's required return is less than the value of the worst possible outcome of the project, i.e., $p_i = 0, \forall i, \Leftrightarrow y_1 \geq (1+r)(I - A)$.

(e) For this part and all following parts, consider the case where $(1+r)(I - A) > y_1$ and hence $\mu > 1$. Prove that in any state in which there is a positive probability of monitoring, the entrepreneur receives positive consumption only if he is audited, i.e., $p_i > 0 \Rightarrow c_i > 0$.

(f) Prove that the entrepreneur receives no consumption in the worst state $c_1^m = c_1 = 0$.

(g) Let $\bar{c}_i = p_i c_i^m + (1 - p_i) c_i$ be the entrepreneur's expected consumption in state i . Prove that \bar{c}_i is nondecreasing in i , i.e., the entrepreneur does better in better states.

(h) Prove that there is never any auditing in the highest state $p_n = 0$.

(k) Prove that the probability of auditing is nonincreasing in the announced state, i.e., p_i is nonincreasing in i .