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1 Introduction

In this paper, we develop a revealed preference theory for the risk premium for pre-scheduled

macroeconomic announcements. We demonstrate that the premium around macroeconomic

announcements provides asset-market-based evidence that establishes the importance of

incorporating non-expected utility analysis in macro and asset pricing models.

Macroeconomic announcements, such as the release of the employment report and the

Federal Open Market Committee (FOMC) statements, resolve uncertainty about the future

course of the macroeconomy, and therefore asset prices react to these announcements

instantaneously. Empirically, a large fraction of the market equity premium is realized within

a small number of trading days with significant macroeconomic announcements. In the 1961-

2014 period, during the thirty days per year with significant macroeconomic announcements,

the cumulative excess returns of the S&P 500 index averaged 3.36%, which accounts for 55% of

the total annual equity premium of 6.19%. The average return on days with macroeconomic

announcements is 11.2 basis points (bps), which is significantly higher than the 1.27 bps

average return on non-announcement days. High-frequency-data-based evidence shows that

much of this premium is realized within hourly windows around announcements, or within a

few trading hours prior to the announcements.

To understand the above features of the financial markets, we develop a theoretical model

that allows macroeconomic announcements to carry information about the prospect of future

economic growth. In this setup, we characterize the set of intertemporal preferences for the

representative consumer under which macroeconomic announcements are associated with

realizations of the market equity premium.

Throughout the paper, we focus on a representative-agent model and assume

that aggregate consumption does not instantaneously respond to the macroeconomic

announcements, whereas asset prices do. This assumption is well motivated because the

announcement returns are realized in hourly windows around the announcements and the

consumption response, if any, at this frequency is not likely to be significant enough to

rationalize the magnitude of the premium.1

We follow Strzalecki (2013) and consider intertemporal preferences that can be represented

recursively as Vt = u (Ct)+βI [Vt+1] , where u maps current-period consumption into utility,

and I maps the next-period continuation utility into its certainty equivalent. Our main

result is that announcements are associated with realizations of the premium if and only

1This assumption, as further discussed in section 3.1, is also consistent with the empirical findings that
consumption does not co-move contemporaneously with the stock market return (e.g., see Hall (1978)).
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if the certainty equivalent functional, I, is non-decreasing with respect to second-order

stochastic dominance, a property we define as generalized risk sensitivity. This theorem

has two immediate implications. First, intertemporal preferences have a time-separable

expected utility representation if and only if the announcement premium is zero for all assets.

Second, announcement premiums must be compensation for generalized risk sensitivity in

the certainty equivalent functional, I, and not compensation for the risk aversion of the Von

Neumann–Morgenstern utility function, u.

The macroeconomic announcement premium, therefore, provides asset-market-based

evidence that identifies a key aspect of investors’ preferences not captured by the time-

separable expected utility. Non-expected utilities, such as the recursive utility (Kreps

and Porteus (1978), Epstein and Zin (1989)), the maximin expected utility (Gilboa and

Schmeidler (1989)), the robust control model (Hansen and Sargent (2007)), and the smooth

ambiguity model (Klibanoff, Marinacci, and Mukerji (2005)), among others, are widely

applied in asset pricing studies to enhance the model-implied market price of risk. We show

that generalized risk sensitivity is the key property of these models that distinguishes their

asset pricing implications from expected utility. The large magnitude of the announcement

premium in the data can be interpreted as strong empirical evidence for a broad class of

non-expected utility models.

From an asset pricing perspective, the stochastic discount factor under non-expected

utility generally has two components: the intertemporal marginal rate of substitution that

appears in standard expected utility models and an additional term that can often be

interpreted as the density of a probability distortion. We demonstrate that the probability

distortion component is a valid stochastic discount factor for announcement returns. In

addition, under differentiability conditions, generalized risk sensitivity is equivalent to the

probability distortion being pessimistic; that is, it assigns higher weights to states with low

continuation utility and lower weights to states with high continuation utility. Our results

imply that the empirical evidence of the announcement premium is informative about the

relative importance of the two components of the stochastic discount factor for quantitative

asset pricing models. We find that the Sharpe ratio on announcement days is significantly

higher than that on non-announcement days. Therefore, a substantial fraction of the volatility

of the stochastic discount factor must come from generalized risk sensitivity.

Generalized risk sensitivity is precisely the property of preferences that requires a risk

compensation for news. The long-run risks literature typically uses the Epstein and Zin

(1989) utility with a preference for early resolution of uncertainty to generate a risk premium

for news shocks. We show that preference for early resolution of uncertainty is not a necessary

2



condition for generalized risk sensitivity and provide examples of preferences that require a

compensation for news shocks but do not exhibit a preference for early resolution.

Our theoretical framework also provides an explanation for the difference between

the timing of the realization of the premiums for FOMC announcements and that for

other macroeconomic announcements. Using high-frequency data, Lucca and Moench

(2015) document a pre-announcement drift for FOMC announcements, but not for other

macroeconomic announcements. Specifically, equity premiums start to materialize a few

hours prior to the official FOMC announcements, but there is no such pattern in other

announcements. Our theorem implies the existence of a pre-announcement drift if investors

receive informative signals before the announcements. Based on this idea, we present a

continuous-time model to account for the pre-announcement drift in FOMC announcements

and its absence in other macroeconomic announcements.

Our theoretical framework does not allow for several models of time-non-separable utilities

widely applied in the asset pricing literature, so we study them separately. We establish that

the external habit model of Campbell and Cochrane (1999) generates a zero announcement

premium, and the internal habit model of Constantinides (1990) and Boldrin, Christiano, and

Fisher (2001) produces a negative announcement premium. The consumption substitutability

model of Dunn and Singleton (1986) and Heaton (1993) is consistent with a positive

announcement premium, although this feature of the utility function smooths the marginal

utility process and has difficulty in accounting for many aspects of the asset market data, as

highlighted in Gallant, Hansen, and Tauchen (1990).

Related literature Our paper builds on the literature that studies decision-making

under non-expected utility. We adopt the general representation of dynamic preferences

of Strzalecki (2013). Our framework includes most of the non-expected utility models in

the literature as special cases. We show that examples of dynamic preferences that satisfy

generalized risk sensitivity include the maxmin expected utility of Gilboa and Schmeidler

(1989); its dynamic version studied by Chen and Epstein (2002) and Epstein and Schneider

(2003); the recursive preference of Kreps and Porteus (1978) and Epstein and Zin (1989);

the robust control preference of Hansen and Sargent (2005, 2007) and the related multiplier

preference of Strzalecki (2011); the variational ambiguity-averse preference of Maccheroni,

Marinacci, and Rustichini (2006a,b); the smooth ambiguity model of Klibanoff, Marinacci,

and Mukerji (2005, 2009); the disappointment aversion preference of Gul (1991); and the

recursive smooth ambiguity preference of Hayashi and Miao (2011). We also discuss the

relationship between our notion of generalized risk sensitivity and the related decision
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theoretic concepts, such as uncertainty aversion and preference for early resolution of

uncertainty.

A vast literature applies the above non-expected utility models to the study of asset

prices and the equity premium. We refer the readers to Epstein and Schneider (2010) for a

review of asset pricing studies with the maxmin expected utility model; Ju and Miao (2012)

for an application of the smooth ambiguity-averse preference; Hansen and Sargent (2008)

for the robust control preference; Routledge and Zin (2010) for an asset pricing model with

disappointment aversion; and Bansal and Yaron (2004), Bansal (2007), and Hansen, Heaton,

and Li (2008) for the long-run risks model that builds on recursive preferences. Skiadas (2009)

provides an excellent textbook treatment of recursive-preferences in asset pricing theory.

Unlike the calibration methodology used in the above papers, our paper takes a revealed

preference approach. Earlier work on the revealed preference approach for expected utility

includes Green and Srivastava (1986) and Epstein (2000). More recently, Kubler, Selden, and

Wei (2014) and Echenique and Saito (2015) develop asset-market-based characterizations

of the expected utility model. None of the above papers focus on the macroeconomic

announcement premium and generalized risk sensitivity.

Quantitatively, our findings are consistent with the literature that identifies large

variations in marginal utilities from the asset market data (see, e.g., Hansen and Jagannathan

(1991), Bansal and Lehmann (1997), and Alvarez and Jermann (2004, 2005)). Our theory

implies that most of the variations in marginal utility must come from generalized risk

sensitivity and not from risk aversion of the Von Neumann–Morgenstern utility function.

This observation likely has sharp implications for the research on macroeconomic policies.

Several recent papers study optimal policy design problems in non-expected utility models.

For example, Farhi and Werning (2008) and Karantounias (2015) analyze optimal fiscal

policies with recursive preferences, and Woodford (2010), Karantounias (2013), Hansen and

Sargent (2012), and Kwon and Miao (2013b,a) focus on preferences that are averse to model

uncertainty. In the above studies, the non-linearity in agents’ certainty equivalent functionals

implies a forward-looking component of variations in their marginal utilities that affects policy

makers’ objectives. Our results imply that the empirical evidence of the announcement

premium can be used to gauge the magnitude of this deviation from expected utility and to

quantify the importance of robustness in the design of macroeconomic policies.

Our empirical results are related to the previous research on stock market returns on

macroeconomic announcement days. This literature documents that stock market returns

and Sharpe ratios are significantly higher on days with macroeconomic news releases in the

United States (Savor and Wilson (2013)) and internationally (Brusa, Savor, and Wilson
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(2015)). Lucca and Moench (2015) find similar patterns and document a pre-FOMC

announcement drift. Mueller, Tahbaz-Salehi, and Vedolin (2017) document an FOMC

announcement premium on the foreign exchange market and attribute it to compensation to

financially constrained intermediaries.

The rest of the paper is organized as follows. We document some stylized facts for the

equity premium for macroeconomic announcements in Section 2. In Section 3, we present

two simple examples to illustrate how the announcement premium can arise in models that

deviate from expected utility. We present our theoretical results and discuss the notion of

generalized risk sensitivity in Section 4. We present a continuous-time model in Section 5

to quantitatively account for the evolution of the equity premium around macroeconomic

announcement days. Section 6 concludes.

2 Stylized facts

To demonstrate the significance of the equity premium for macroeconomic announcements

and to highlight the difference between announcement days and non-announcement days,

we focus on a relatively small set of pre-scheduled macroeconomic announcements that

are released at monthly or lower frequencies. Within this category, we select the top five

announcements ranked by investor attention by Bloomberg users. This procedure yields, on

average, thirty announcement days per year for the period of 1961-2014. We summarize our

main findings below and provide details about the data construction in Appendix A.

(i) A large fraction of the market equity premium is realized on a relatively small number

of trading days with pre-scheduled macroeconomic announcements.

In Table I, we report the average market excess returns on macroeconomic

announcement days and non-announcement days during the 1961-2014 period. In

this period, on average, thirty trading days per year have significant macroeconomic

announcements. At the daily level, the average stock market excess return is 11.21

bps on announcement days and 1.27 bps on days without major macroeconomic

announcements. As a result, the cumulative stock market excess return on the thirty

announcement days averages 3.36% per year, accounting for about 55% of the annual

equity premium (6.19%) during this period.

In Table II, we report the average market excess return on announcement days (0) and

the same moments for the market return on the day before (-1) and the day after (+1)
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announcement days. The difference in mean returns between announcement days and

non-announcement days is statistically and economically significant with a t-statistic

of 3.36. This evidence is consistent with the previous literature (see e.g., Savor and

Wilson (2013)).

(ii) Most of the premiums for FOMC announcements are realized in several hours prior to

the announcements. Premiums for other macroeconomic announcements are realized

upon the release of these announcements.

In Table III, we report the point estimates with standard errors for average hourly

excess returns around announcements. We normalize the announcement time as hour

zero. For k = −5,−4, · · · , 0,+1,+2, the announcement window k in the table is defined

as hour k − 1 to hour k. The hourly returns typically peak at the announcement, as

reflected in row 1 of the table. The mean return during the announcement hour is

economically important: 6.46 bps with a standard error of 2.71. The difference in mean

excess returns in announcement hours compared to non-announcement hours, like in

the daily returns data, is significant with a t-statistic of 2.06. In the case of FOMC

announcements, consistent with Lucca and Moench (2015), the mean returns prior to

the announcement window are statistically significant (see row 2 of Table III); this pre-

announcement drift is not reflected in other macroeconomic announcements, as shown

in row 3 of Table III. In Figure 1, we plot the average hourly stock market excess

returns for FOMC announcements (top panel) and those for other macroeconomic

announcements (bottom panel) in the hours around the announcements. There is a

“pre-announcement drift” for FOMC announcements, but not for other macroeconomic

announcements. The premiums for non-FOMC announcements are mainly realized at

the announcement.2

In addition, Lucca and Moench (2015) document that there is no statistically significant

pre-FOMC announcement drift for Treasury bonds in the 1994-2011 period, and Savor

and Wilson (2013) present evidence of a moderate level of announcement premiums for

Treasury bonds, which averages about 3 bps on announcement days during the longer

sample period of 1961-2009.

2The evidence reported in Table III is robust to using 30-minute windows as opposed to hourly windows.
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Figure 1. Hourly return around announcements
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Figure 1 plots the average hourly excess returns around macro announcements for the period of 1997-2013.

The top panel is for FOMC announcements and the bottom panel includes all other macro announcements.

The horizontal axis marks announcement windows, and the vertical axis is the average hourly excess return

for the announcement windows, measured in basis points. We normalize the announcement time to hour

zero. For k = −5, −4, · · · , 0, 1, 2, announcement window k is defined as the interval between hour k − 1

and hour k.

3 Intuition from a two-period setup

In this section, we use a two-period setup to illustrate intuitively the conditions under which

resolutions of uncertainty are associated with realizations of the equity premium and to

motivate the key ingredients in the fully dynamic model, which we formally develop in Section

4.

3.1 Asset market for announcements

We consider a representative-agent economy with two periods, 0 and 1. Period 0 has

no uncertainty and the aggregate consumption is a known constant, C0. The aggregate

consumption in period 1, denoted by C1, is a random variable. We assume a finite number

of states: n = 1, 2, · · ·N and denote the possible realizations of C1 as {C1 (n)}n=1,2,···N and

the possible realizations of asset payoff as {X (n)}n=1,2,···N . The probability of each state is

π (n) > 0 for n = 1, 2, · · · , N .
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Period 0 is further divided into two subperiods. In period 0−, before any information

about C1 is revealed, the pre-announcement market opens and asset prices at this point

are called pre-announcement prices and are denoted by P−. P− cannot depend on the

realization of C1, which is unknown at this point. In period 0+, the agent receives an

announcement s that carries information about C1. Immediately after the announcement,

the post-announcement asset market opens. The post-announcement asset prices depend on

s and are denoted by P+ (s). In period 0+, prices are denominated in current date-and-

state-contingent consumption units, and the agent makes both optimal consumption and

investment decisions given prices. In period 0−, there is only investment decisions but no

consumption decision. We denominate asset prices at 0− in units of consumption goods

delivered non-contingently in period 0+.

For simplicity, we assume that announcements fully reveal the true state, that is,

s ∈ {1, 2, · · · , N}, although this assumption is not necessary in the fully dynamic model we

develop in Section 4. In addition, we assume complete markets and differentiability of utility

functions, so that Arrow-Debreu prices can be computed from marginal rates of substitution.

In Figure 2, we illustrate the timing of information and consumption (top panel) and that of

asset prices (bottom panel), assuming N = 2.3

The announcement return of an asset, denoted by RA (s), is defined as the return of a

strategy that buys the asset before the pre-scheduled announcement and sells immediately

afterwards (assuming no dividend payment at 0+):

RA (s) =
P+ (s)

P− . (1)

The risk-free announcement return is the announcement return on an asset that delivers one

unit of state-non-contingent consumption in period 0+. Because of our choice of consumption

numeraire, the risk-free announcement return must be one by no arbitrage. We say that an

asset requires a positive announcement premium if E [RA (s)] > 1. We also define the post-

announcement return conditioning on announcement s as RP (X| s) = X(s)
P+(s)

.

The assumption of the absence of a consumption decision at time 0− and our choice of

the consumption numeraire guarantees a zero risk-free announcement return and simplify our

analysis. Allowing consumption at 0− implies that the risk-free announcement return is in

general different from one but does not affect our analysis of the announcement premium

3We provide details of the Arrow-Debreu market setup Section S. 1 of the Supplemental Material and
formally establish that the Arrow-Debreu setup leads to the same asset pricing equations as the sequential
market setup, which is a more convenient modeling choice for the fully dynamic model in Section 4.
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Figure 2. consumption and asset prices in the two-period model

as long as consumption at 0+ does not depend on the content of the announcements.

The key element of our assumption is that the arrival of announcements is not associated

with a resolution of uncertainty about current-period consumption, but with that of future

consumption.

We note two important properties of announcements in our model. First, announcements

affect the conditional distribution of future consumption, but rational expectations imply

that surprises in announcements must average to zero by the law of iterated expectation.

Second, as mentioned above, we make the simplifying assumption that consumption does

not instantaneously respond to macroeconomic announcements. This captures the well-

established empirical findings of Hall (1978) and Parker and Julliard (2005), among

others, that contemporaneous consumption co-move very little with stock market returns.

Additionally, Bansal and Shaliastovich (2011) document that even large movements in

stock prices are not associated with any significant immediate adjustment in aggregate

consumption. This lack of contemporaneous covariance of stock returns and consumption

implies that the contribution of the consumption covariance with asset returns over very

short intervals (daily and hourly), if any, is too small to affect the observed announcement

premiums discussed in Section 2.

The assumption that consumption does not instantaneously respond to macroeconomic

announcements is also well motivated from the perspective of production-based models,
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where consumption is endogenous. In standard production-based models, the response of

consumption to news is generally quantitatively small and yields a negative announcement

premium. The response of consumption is quantitatively small because risk-averse agents

dislike large consumption adjustments over short intervals. Further, the announcement

premium that results, if at all, from the immediate response of consumption to news is,

in general, negative. In reality, it is difficult to instantaneously adjust aggregate output upon

announcements. Beaudry and Portier (2004, 2014) show that if output cannot respond to

news, consumption and Tobin’s q (and therefore asset returns) typically move in opposite

directions regardless of whether the income or the substitution effect dominates. As a

result, the negative co-movement of consumption and Tobin’s q contributes negatively to

the announcement premium. Our assumption, therefore, allows us to focus on the properties

of preferences that generates a positive announcement premium.

3.2 Simple examples

Expected utility We first consider the case in which the representative agent has

expected utility:4 E [u (C0 (s)) + βu (C1 (s))], where u is strictly increasing and continuously

differentiable.5 The period 0− price of one unit of period 1 consumption goods, which is

measured in units of period 0+ state-non-contingent consumption goods, can be computed

from the ratio of marginal utilities: π (s) βu
′(C1(s))
u′(C0)

.6 Therefore, the pre-announcement price

of an asset with payoff {X (s)}Ns=1 is given by:

P− = E

[
βu′ (C1 (s))

u′ (C0)
X (s)

]
. (2)

In period 0+, because s fully reveals the true state, the agent’s preference is represented by

u (C0 (s)) + βu (C1 (s)) . (3)

4We use the term “expected utility” to mean utility functions that are additively separable with respect
to both time and states.

5Because the decision for C0 is made at 0+ after the announcement is made, from the agent’s point of
view, C0 (s) is allowed to depend on s.

6From the agent’s perspective, the marginal utility of one unit of period 0+ state non-contingent
consumption is E [u′ (C0 (s))]. In equilibrium, the market clearing condition implies that C0 (s) cannot
depend on s. Therefore, the expectation sign is not necessary: E [u′ (C0 (s))] = u′ (C0). In the rest of
this section, we will use the notation C0 (s) when describing preference to emphasize that individual agent’s
consumption choice is allowed to depend on s. In the expressions of stochastic discount factors, we will
impose market clearing and write C0. Please see Section S. 1 in the Supplemental Material for a detailed
derivation.
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As a result, for any s, the post-announcement price of the asset is

P+ (s) =
βu′ (C1 (s))

u′ (C0)
X (s) . (4)

Clearly, the expected announcement return is E [RA (s)] =
E[P+(s)]

P− = 1. There can be no

announcement premium on any asset under expected utility.

Robust control Consider an agent with the constraint robust control preference of

Hansen and Sargent (2001):

min
{m(s)}ns=1

E [m (s) {u (C0 (s)) + βu (C1 (s))}] , (5)

subject to : E [m (s) lnm (s)] ≤ η,

E [m (s)] = 1.

The above expression can also be interpreted as the maxmin expected utility of Gilboa and

Schmeidler (1989). The agent treats the reference probability measure, under which the

equity premium is evaluated (by econometricians), as an approximation. As a result, the

agent takes into account of a class of alternative probability measures, represented by the

density m, close to the reference probability measure, and evaluates utility using the worst-

case probability. The inequality E [m lnm] ≤ η requires that the relative entropy of the

alternative probability models is less than η.

In this case, the pre-announcement price of an asset with payoff {X (s)}Ns=1 is:

P− = E

[
m∗ (s)

βu′ (C1 (s))

u′ (C0)
X (s)

]
, (6)

where m∗ is the density of the minimizing probability for (5) and can be expressed as a

function of s:

m∗ (s) =
e−

u(C1(s))
θ

E
[
e−

u(C1(s))
θ

] . (7)

The positive constant in the above expression, θ, is determined by the binding relative entropy

constraint E [m∗ lnm∗] = η.

In period 0+, after the resolution of uncertainty, the agent’s utility reduces to (3). As a

result, the post-announcement price of the asset is the same as that in (4). Therefore, we
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can write the pre-announcement price as:

P− = E
[
m∗ (s)P+ (s)

]
. (8)

Because m∗ is a decreasing function of the period 1 utility u (C1), it is straightforward to

prove the following claim.

Claim 1. Consider post-announcement prices that are co-monotone with C1 (s), that is, ∀s
and s′, C1 (s) ≥ C1 (s

′) if and only if P (s) ≥ P (s′).7 Equation (8) implies P− ≤ E [P+ (s)].

As a result, the announcement premium is non-negative.

The intuition of the above result is clear. Because uncertainty is resolved after the

announcement, asset prices are discounted using marginal utilities. Under the expected

utility, the pre-announcement price is computed using probability-weighted marginal utilities,

and therefore the pre-announcement price must equal the expected post-announcement prices

and there can be no announcement premium under rational expectations. Under the robust

control preference, the pre-announcement price is not computed by using the reference

probability, but rather by using the pessimistic probability that overweighs low-utility states

and underweighs high-utility states as shown in equation (7). As a result, uncertainty aversion

applies extra discounting to payoffs positively correlated with utility, and therefore the asset

market requires a premium for such payoffs relative to risk-free returns.

Because the probability distortion m∗ discounts announcement returns, we call it

the announcement stochastic discount factor (SDF), or A-SDF, to distinguish it from

the standard SDF derived from agents’ marginal rate of intertemporal substitution of

consumption. In our model, there is no intertemporal consumption decision before the

announcement at 0−. The term m∗ reflects investors’ uncertainty aversion and identifies

the probability distortion relative to rational expectation.

Recursive utility The last example we discuss here is the recursive utility of Kreps and

Porteus (1978) and Epstein and Zin (1989) with constant elasticity of substitution (CES).

Because all uncertainties are fully resolved after the announcement, in period 0+, the agent

first aggregates utility across time to compute continuation utility given announcement s:

1

1− 1
ψ

C
1− 1

ψ

0 (s) + β
1

1− 1
ψ

C
1− 1

ψ

1 (s) ,

7See also equation (21) for the definition of co-monotonicity.
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where ψ is the intertemporal elasticity of substitution parameter. Before the announcement,

in period 0−, the agent computes the certainty equivalent of the continuation utility:8

{
E

[{
C

1− 1
ψ

0 (s) + βC
1− 1

ψ

1 (s)

} 1−γ
1−1/ψ

]} 1
1−γ

. (9)

Again, the period 0− Arrow-Debreu price of one unit of period 1 consumption goods can

be computed from the ratio of marginal utilities: m∗ (s) β
[
C1(s)
C0

]− 1
ψ
, where

m∗ (s) =

{
C

1− 1
ψ

0 + βC
1− 1

ψ

1 (s)

} 1/ψ−γ
1−1/ψ

E

[{
C

1− 1
ψ

0 + βC
1− 1

ψ

1 (s)

} 1/ψ−γ
1−1/ψ

] . (10)

can be interpreted as A-SDF as in the case of the robust control preference. Clearly, m∗ is

a decreasing function of continuation utility if and only if γ > 1
ψ
, which coincides with the

condition for preference for early resolution of uncertainty for this class of preferences.9

3.3 A-SDF for general preferences

In this section, we provide an intuitive discussion of the A-SDF for general preferences in

the two-period setup. Because there is no uncertainty after the announcement at time

0+, we assume that the agent ranks consumption streams according to a time-separable

utility function, and we denote the continuation utility conditioning upon announcement s

by Vs = u (C0 (s)) + βu (C1 (s)). At time 0−, prior to the announcement, the agent ranks

uncertain outcomes according to a general certainty equivalent functional I [V ], where I
maps random variables into the real line.10 Because there are N states of the world, we use

the vector notation V = [V1, V2, · · · , VN ] and think of I as a mapping from the N -dimensional

Euclidean space to the real line.

8Here, we choose a convenient normalization of the recursive utility so that it fits the general representation
assumed in the theorems in Section 4. See also Section S. 1.3 in the Supplemental Material.

9Note that the announcement leads uncertainty about C1 to resolve before its realization, which
corresponds to the case of early resolution of uncertainty in Kreps and Porteus (1978). See Section S.
1.3 in the Supplemental Material for a comparison between SDF computed from consumption plans with
early resolution of uncertainty and that with late resolution of uncertainty, respectively.

10We follow Strzalecki (2013) and call I the certainty equivalent functional. However, we note that I [V ]
is measured in utility terms, not in consumption terms.
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To compute Arrow-Deberu prices, note that from the perspective of period 0−, the

marginal utility of one unit of state-non-contingent consumption delivered in period 0+ is∑N
s=1

∂
∂Vs

I [V ] · u′ (C0). The marginal utility of one unit of period 1 consumption good in

state s is ∂
∂Vs

I [V ] · βu′ (C1 (s)). The pre-announcement price of an asset can therefore be

computed as the marginal utility weighted payoffs:

P− =
N∑
s=1

∂
∂Vs

I [V ] · βu′ (C1 (s))∑N
s=1

∂
∂Vs

I [V ] · u′ (C0)
X (s) = E

[
m∗ (s) β

u′ (C1 (s))

u′ (C0)
X (s)

]
, (11)

where

m∗ (s) =
1

π (s)

∂
∂Vs

I [V ]∑N
s=1

∂
∂Vs

I [V ]
. (12)

Clearly, the asset pricing equation (8) holds with the A-SDF m∗ defined by (12).

If we focus on assets with pro-cyclical payoffs, in the sense that they are increasing

functions of the representative agent’s continuation utility, Vs, then, as we show in Claim

1, a sufficient condition for a non-negative announcement premium is that m (s), and,

equivalently, ∂
∂Vs

I [V ] is co-monotone with respect to Vs. That is, for all s and s′,

∂

∂Vs
I [V ] ≥ ∂

∂Vs′
I [V ] if and only if Vs ≤ Vs′ . (13)

Condition (13) is known to be a characterization of Schur concavity. Under the

assumption that all states occur with equal probabilities, that is, π (s) = 1
N

for s =

1, 2, · · · , N , the above property is equivalent to monotonicity with respect to second-order

stochastic dominance (see, e.g., Marshall, Arnold, and Olkin (2011) and Muller and Stoyan

(2002)). This is key insight of our paper: non-negative announcement premiums for payoffs

that are co-monotone with respect to continuation utility are equivalent to the certainty

equivalent functional being increasing in second-order stochastic dominance.

In the following section, we formally develop the above results in a fully dynamic model

with a continuous probability space, which allows us to dispense with the assumptions of

fully revealing announcements and finite states with equal probabilities.
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4 Risk preferences and the announcement premium

4.1 A dynamic model with announcements

Preferences The setup of our model follows that of Strzalecki (2013), but we extend

his framework to allow for announcements. Let S be a non-atomic measurable space, and

Σ the associated Borel σ-field. Let (Ω,F) = (S,Σ)2T be the product space. We index

the 2T copies of (S,Σ) by j = 0+, 1−, 1+, 2−, · · · , T − 1+, T− with the interpretation that

t− is the pre-announcement period at time t and t+ is the post-announcement period at

time t. A typical element in Ω is therefore denoted by ω =
{
s+0 , s

−
1 , s

+
1 , s

−
2 , · · · , s+T−1, s

−
T

}
.

Let z+t−1 =
{
s+0 , s

−
1 , s

+
1 , s

−
2 , · · · , s−t−1, s

+
t−1

}
and z−t =

{
s+0 , s

−
1 , s

+
1 , s

−
2 , · · · , s+t−1, s

−
t

}
denote the

history of the realizations until t − 1+ and until t−, respectively. Let F+
t−1 = σ

(
z+t−1

)
, and

F−
t = σ

(
z−t

)
be the σ-fields generated by the history of realizations, for t = 1, 2, · · ·T . The

filtration
{
F+
t−1,F−

t

}T
t=1

represents public information. We use Z to denote the set of all

histories, and let z ∈ Z denote a generic element of Z.

We endow the measurable space (Ω,F) with a non-atomic probability measure P , under

which the distribution of
{
s+0 , s

−
1 , s

+
1 , s

−
2 , · · · , s+T−1, s

−
T

}
is stationary. The interpretation is

that P is the probability measure under which all expected returns are calculated. We

assume that consumption takes value in Y, an open subset of R, endowed with the Borel

σ-field B. Let L2 (Ω,F , P ) be the Hilbert space of square-integrable real-valued random

variables defined on (Ω,F , P ). A consumption plan is an
{
F+
t

}T
t=1

-adapted process {Ct}Tt=1,

such that Ct is a Y-valued square-integrable random variables for all t. C denotes the space

of all such consumption plans, and a typical element in C is denoted by C ∈ C.

The aggregate endowment of the economy, denote as C̄ ∈ C is required to be
{
F−
t

}T
t=1

-

adapted. As in the two-period model, individual consumption choices are allowed to be made

contingent on the announcements,
{
s+t−1

}T
t=1

. However, announcements carry information

about future endowments but do not affect current-period endowments. That is, ∀t, the
aggregate consumption C̄t, must be F−

t measurable. The above setup allows us to model

announcements as revelations of public information associated with realizations of
{
s+t−1

}T
t=1

,

separately from the realizations of consumption. As a result, our theory is able to separate

the property of preferences that requires premiums for assets with a payoff correlated with

resolutions of uncertainty from the property of preferences that demands excess returns for

assets that co-move with realizations of consumption.

Strzalecki (2013) shows that most of the non-expected utility models can be represented
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as

Vt = u (Ct) + βI [Vt+1] . (14)

Below, we adapt representation (14) to allow for announcements and describe a recursive

procedure to construct a system of conditional preferences, {%z}z∈Z on C, such that C %z C
′

if Vz (C) ≥ Vz (C
′). Formally, the representative agent’s dynamic preference is defined by a

triple {u, β, I}, where u : Y → R is a strictly increasing Von Neumann–Morgenstern utility

function, and β ∈ (0, 1] is the subjective discount rate. The certainty equivalent functional

I is a family of functions, {I [ ·| z]}z∈Z, such that ∀z ∈ Z, I [ ·| z] : L2 (Ω,F , P ) → R is a

(conditional) certainty equivalent functional that maps continuation utilities into the real

line. Given {u, β, I}, the agent’s utility function is constructed recursively as follows.

• At the terminal time T , Vz−T
(C) = u (CT ).

• For t = 0, 1, 2, · · ·T − 1, given Vz−t+1
(C), in period t after the signal st is revealed,

Vz+t (C) is calculated according to:

Vz+t (C) = u (Ct) + βI
[
Vz−t+1

(C)
∣∣∣ z+t ] . (15)

• For t = 1, 2, 3, · · ·T − 1, given a continuation utility Vz+t (C), in period t before the

signal st is received, Vz−t (C) is defined as

Vz−t (C) = I
[
Vz+t (C)

∣∣∣ z−t ] . (16)

Here, there is no consumption decision at z−t before the signal st is received, and we

simply use the certainty equivalent functional I to aggregate utility across states.

In Section S. 2 of the Supplemental Material, we show that the above representation

incorporates the following dynamic preferences under uncertainty and provide expressions

for the A-SDF implied by these preferences:

(i) The recursive utility of Kreps and Porteus (1978) and Epstein and Zin (1989).

(ii) The maxmin expected utility of Gilboa and Schmeidler (1989). The dynamic version

of this preference is studied in Epstein and Schneider (2003) and Chen and Epstein

(2002).

(iii) The variational preferences of Maccheroni, Marinacci, and Rustichini (2006a), the

dynamic version of which is studied in Maccheroni, Marinacci, and Rustichini (2006b).

16



(iv) The multiplier preferences of Hansen and Sargent (2008) and Strzalecki (2011).

(v) The second-order expected utility of Ergin and Gul (2009).

(vi) The smooth ambiguity preferences of Klibanoff, Marinacci, and Mukerji (2005), and

Klibanoff, Marinacci, and Mukerji (2009).

(vii) The disappointment aversion preference of Gul (1991).

(viii) The recursive smooth ambiguity preference of Hayashi and Miao (2011) can also be

represented as (14) with some additional assumptions on the intertemporal aggregator.

We discuss the A-SDF for this class of preferences in Section S. 2 of the Supplemental

Material.

Asset markets Because preferences are defined recursively, it is more convenient to

model the asset market as one with sequential trading. We assume that asset markets open

after each history z ∈ Z. We interpret the realizations of
{
s+t

}T
t=1

as announcements, because

they carry information about future consumption but are not associated with realizations of

current-period consumption. Markets at period t− are called pre-announcement markets.

Here, agents can trade a vector of J + 1 returns:
{
RA,j

(
·| z−t

)}
j=0,1,··· ,J , where RA,j

(
·| z−t

)
represents an announcement-contingent return that is traded at history z−t and that pays off

RA,j

(
s+t

∣∣ z−t ) at all subsequent histories
{(
z−t , s

+
t

)}
s+t

(The notation
{(
z−t , s

+
t

)}
s+t

denotes

the vector of histories for a fixed z−t and for all possible realizations of s+t after z−t ). Similarly,

agents can trade a vector of post-announcement returns,
{
RP,j

(
·| z+t

)}
j=0,1,··· ,J on the post-

announcement market at history z+t . In general, we use Rj ( ·| z) to denote the return on

asset j traded at history z ∈ Z with the understanding that it is an announcement return

if z is of the form z−t and a post-announcement return if z is of the form z+t . We adopt the

convention that R0 ( ·| z) is the risk-free return at history z ∈ Z, and we write it as R0 (z)

whenever convenient.

Given the recursive nature of the preferences, the optimal consumption-portfolio choice

problem of the agent can be solved by backward induction. For any z ∈ Z, we use Vz (W ) to

denote the agent’s continuation utility as a function of wealth at history z, and call them value

functions. We denote ξ = [ξ0, ξ1, ξ2, · · · ξJ ] as the vector of investment in the J +1 securities

on the post-announcement asset market. In the last period T , agents simply consume their

total wealth, and therefore Vz−T
(W ) = u (W ). For t = 1, 2, · · · , T − 1, given Vz−t+1

(W ), the
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value function at the history z+t that precedes z−t+1 can be constructed by

Vz+t (W ) = max
C,ξ

{
u (C) + βI

[
Vz−t+1

(W ′)
∣∣∣ z+t ]} (17)

C +
∑J

j=0
ξj = W

W ′ =
∑J

j=0
ξjRP,j

(
s−t+1

∣∣ z+t ) , all s−t+1.

Similarly, given the post-announcement value function, Vz+t (W ), the optimal portfolio choice

problem on the pre-announcement market is

Vz−t (W ) = max
ζ

I
[
Vz+t (W ′)

∣∣∣ z−t ] (18)

W ′ = W −
∑J

j=0
ζj +

∑J

j=0
ζjRA,j

(
s+t

∣∣ z−t ) , all s+t ,

where ζ = [ζ0, ζ1, ζ2, · · · ζJ ] is a vector of investment in announcement returns.

Like in our two-period model, asset prices and wealth are measured in current-period

consumption goods on the post-announcement market (see equation (17)). On the pre-

announcement market, the agent makes portfolio allocation decisions, but not intertemporal

consumption choices. Prices on the pre-announcement market at history z−t are denominated

in units of state-non-contingent consumption goods delivered at history
(
z−t , ·

)
: as shown in

(18), one unit of wealth at history z−t , if not invested, becomes one unit of wealth at
(
z−t , s

+
t

)
for all s+t . Our convention implies that the return on the risk-free asset that pays one unit

of consumption goods non-contingently upon announcement must be one by no arbitrage:

R0

(
z−t

)
= 1 for all z−t .

We assume that for some initial wealth level, W0 and a sequence of returns{
{Rj ( ·| z)}j=0,1,··· ,J

}
z∈Z

, an interior competitive equilibrium with sequential trading exists

in which all markets clear. For simplicity, we start with returns directly in our description of

the equilibrium with the understanding that returns can always be constructed from prices.

Below, we provide a formal definition of the announcement premium.

Definition 1. Announcement premium:

The announcement premium for asset j at history z−t is defined as

E
[
RA,j

(
·| z−t

)∣∣ z−t ]− 1.
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4.2 The announcement SDF

To relate the announcement premium to the properties of the certainty equivalent functional,

I [·], we first provide some definitions. The certainty equivalent functional I is said to be

monotone with respect to first-order (second-order) stochastic dominance if X1 ≥FSD X2

(X1 ≥SSD X2) implies that ∀z ∈ Z, I [X1| z] ≥ I [X2| z]. It is strictly monotone with respect

to first-order (second-order) stochastic dominance if X1 >FSD X2 (X1 >SSD X2) implies

that ∀z ∈ Z, I [X1| z] > I [X2| z], where ≥FSD and ≥SSD stand for first- and second-order

stochastic dominance, respectively.11 In what follows, we assume that I is normalized; that

is, I [X| z] = X a.s. whenever X is a measurable function of z.

Conceptually, the property of asset prices imposes restrictions on the derivatives of utility

functions. Our theoretical exercise amounts to recovering the property of utility functions

from their derivatives and is related to the ”local utility” analysis in Machina (1982), Wang

(1993), and Ai (2005). In our setup, the certainty equivalent functional is a mapping from

L2 (Ω,F , P ) into the real line. We therefore need a notion of differentiability in infinite

dimensional spaces. We use ∥·∥ for the L2 norm on L2 (Ω,F , P ), and |·| for absolute value,

and we introduce the concept of Fréchet differentiability as follows.

Definition 2. Fréchet Differentiability with Lipschitz Derivatives:

The certainty equivalent functional I is Fréchet differentiable if ∀z ∈ Z, ∀X ∈
L2 (Ω,F , P ), there exists a unique continuous linear functional, DI [X| z] ∈ L2 (Ω,F , P )
such that for all ∆X ∈ L2 (Ω,F , P ),

lim
∥∆X∥→0

∣∣I [X +∆X| z]− I [X| z]−
∫
DI [X| z] ·∆XdP

∣∣
∥∆X∥

= 0.

A Fréchet differentiable certainty equivalent functional I is said to have Lipschitz

derivatives if ∀X,Y ∈ L2 (Ω,F , P ), ∀z ∈ Z, ∥DI [X| z]−DI [Y | z]∥ ≤ K ∥X − Y ∥ for

some constant K.12

Given a (conditional) certainty equivalent functional I [ | z] and X ∈ L2 (Ω,F , P ), the
Fréchet derivative of I [ | z] at X is a continuous linear functional on L2 (Ω,F , P ), which
has a unique representation in L2 (Ω,F , P ) by the Riesz representation theorem. In what

11The definitions of first- and second-order stochastic dominance are standard and are provided in Appendix
B.1.

12The definition of Fréchet differentiability requires the existence of the derivative as a continuous linear
functional. Because we focus on functions defined on the Hilbert space L2 (Ω,F , P ), we apply the Riesz
representation theorem and denote DI [X| z] as the representation of the derivative in L2 (Ω,F , P ).
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follows, we denote DI [X| z] as (the Riesz representation of) the Fréchet derivative of I [ | z]
at X. To simplify notations, for any pre-announcement history z−t , and any announcement

s+t that follows z−t , we denote V
(
s+t

∣∣ z−t ) ≡ Vz+t

(
Wz+t

)
, where z+t =

(
z−t , s

+
t

)
, and Wz+t

is

the equilibrium level of wealth of the representative agent at history z+t . That is, V
(
s+t

∣∣ z−t )
is the representative agent’s equilibrium continuation utility at announcement s+t following

history z−t . The following theorem provides an existence result for the A-SDF.

Theorem 1. (Existence of an A-SDF) 13

Suppose both u and I are Lipschitz continuous, Fréchet differentiable with Lipschitz

derivatives. Suppose that u has strictly positive first-order derivatives on its domain and I
is strictly monotone with respect to first-order stochastic dominance, then in any interior

competitive equilibrium with sequential trading, ∀z−t ∈ Z, there exists a non-negative

measurable function m∗ : R → R+ such that

E
[
m∗ (V (

·| z−t
)) {

RA,j

(
·| z−t

)
− 1

}∣∣ z−t ] = 0 for all j = 0, 1, 2, · · · J. (19)

Under the regularity condition (54) in Appendix B.2, E
[
m∗ (V (

·| z−t
))∣∣ z−t ] = 1 and (19)

can be written as:

E
[
m∗ (V (

·| z−t
))
RA,j

(
·| z−t

)∣∣ z−t ] = 1 for all j = 0, 1, 2, · · · J. (20)

To provide a precise statement about the sign of the announcement premium, we focus

our attention on payoffs that are co-monotone with continuation utility. Let
{
f
(
s+t

∣∣ z−t )}s+t
be an asset traded at history z−t with a payoff contingent on the announcement s+t . The

payoff f is said to be co-monotone with continuation utility if[
f
(
s| z−t

)
− f

(
s′| z−t

)] [
V
(
s| z−t

)
− V

(
s′| z−t

)]
≥ 0 for all s, s′ almost surely. (21)

Intuitively, co-monotonicity captures the idea that the payoff f is non-decreasing in

continuation utility V . The following theorem formalizes our discussion in Section 3.3 and

provides necessary and sufficient conditions for the announcement premium.

Theorem 2. (Announcement Premium) Under the assumptions of Theorem 1,

13To avoid overly technical conditions, we assume the Fréchet differentiability of I in Theorems 1 and 2.
The proofs in Appendix B remain valid under weaker conditions. In particular, we do not need the Fréchet
derivative of I [V ] to be unique, we only need the projection of the gradient, DI [V ] onto L2 (Ω, σ (V ) , P ) to
be unique. This latter condition allows for multiple prior preferences and robust control preferences that do
not satisfy Fréchet differentiability.
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(i) The A-SDF m∗ (V ) = 1 for all V if and only if I is the expectation operator.

(ii) The following conditions are equivalent:

(a) The certainty equivalent functional I is monotone with respect to second-order

stochastic dominance.

(b) The A-SDF m∗ (V ) is a non-increasing function of continuation utility V .

(c) The announcement premium is non-negative for all payoffs that are co-monotone

with continuation utility.

Theorem 2 is our revealed preference characterization of the announcement premium. The

presence of the announcement premium imposes restrictions on preferences because according

to Theorem 1, the A-SDF that prices announcement returns is constructed from marginal

utilities. Therefore, data on announcement returns impose restrictions on the marginal

utilities of investors, and marginal utilities can be integrated to obtain the utility function

itself. Like any revealed preference exercise, richer data allows more precise statements about

preferences. Here, the assumption of non-atomic probability space is important, as it allows

us to construct a rich enough set of test assets and to use the pricing information on these

assets to infer the properties of investors’ utility functions.

The key insight from Theorem 2 is that the announcement premium is informative about

how agents aggregate continuation utilities to compute their certainty equivalent. From the

examples in Section 3.2, there can be no announcement premium under expected utility. The

first part of the above theorem implies that the converse of the statement is also true: if we

have enough test assets and the announcement premiums for all test assets are zero, we can

infer that the representative agent must be a time-separable expected utility maximizer.

The second part of the theorem provides a necessary and sufficient condition for non-

negative announcement premiums. In particular, if the announcement premiums for all

payoffs that are co-monotone with continuation utility are non-negative, then we can conclude

that the certainty equivalent functional I must be monotone with respect to second-order

stochastic dominance.

To conclude that I is increasing in second-order stochastic dominance, we only need the

announcement premium to be non-negative for a relatively small class of assets, that is,

assets that satisfy the co-monotonicity condition in (21). However, if we already know that

I is increasing in second-order stochastic dominance, it is straightforward to show that the

announcement premium must be non-negative for a much larger set of assets. In particular,
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any payoff of the form f
(
s| z−t

)
+ ε, where E

[
ε| z−t , s

]
= 0 must require a non-negative

announcement premium. This observation is useful in asset pricing applications in which

payoffs may not be measurable functions of the continuation utility.14

4.3 Generalized risk-sensitive preferences

Theorem 2 motivates the following definition of generalized risk sensitivity.

Definition 3. Generalized Risk Sensitivity:

An intertemporal preference {u, β, I} is said to satisfy (strict) generalized risk sensitivity,

if the certainty equivalent functional I is (strictly) monotone with respect to second-order

stochastic dominance.

Under the assumptions of Theorem 1, generalized risk sensitive preferences are precisely

the class of preferences that require a non-negative risk compensation for all assets with

announcement payoffs co-monotone with investors’ continuation utility.

Loosely speaking, generalized risk sensitivity is a “concavity” property of the certainty

equivalent functional. The decision theory literature has studied related properties of the

certainty equivalent functional, for example, uncertainty aversion (Gilboa and Schmeidler

(1989)), and preference for early resolution of uncertainty (Kreps and Porteus (1978)). To

clarify the notion of generalized risk sensitivity, in this section, we discuss its relationship with

the above decision theoretic concepts. Throughout, we will assume that the intertemporal

preference, {u, β, I} is normalized and satisfies the assumptions of Theorem 1. Also, we

assume that either u (Y) = R or u (Y) = R+ like in Strzalecki (2013).

Generalized risk sensitivity and uncertainty aversion As in Strzalecki (2013), we

define uncertainty aversion as the quasiconcavity of the certainty equivalent functional I:

Definition 4. Uncertainty Aversion:

An intertemporal preference {u, β, I} is said to satisfy uncertainty aversion, if the

certainty equivalent functional I is quasiconcave, that is, ∀X1, X2 ∈ L2 (Ω,F , P ), ∀λ ∈ (0, 1),

I [λX1 + (1− λ)X2] ≥ min {I [X1] , I [X2]}.

We make the following observations about the relationship between uncertainty aversion

and generalized risk sensitivity. We provide formal proofs in Appendix C.1.

14We thank an anonymous referee for pointing this out.
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(i) The quasiconcavity of I is sufficient, but not necessary, for generalized risk sensitivity.

A direct implication of the above result is that all uncertainty-averse preferences can

be viewed as ways to formalize generalized risk sensitivity. Under the assumptions of

Theorem 1, they all require a non-negative announcement premium (for all assets with

payoffs co-monotone with continuation utility). These preferences include the maxmin

expected utility of Gilboa and Schmeidler (1989); the second-order expected utility of

Ergin and Gul (2009); the smooth ambiguity preference of Klibanoff, Marinacci, and

Mukerji (2005); the variational preference of Maccheroni, Marinacci, and Rustichini

(2006a); the multiplier preference of Hansen and Sargent (2008) and Strzalecki (2011);

and the confidence preference of Chateauneuf and Faro (2009).

In Appendix C.1, we provide a proof for the sufficiency of quasiconcavity for generalized

risk sensitivity. To illustrate that quasiconcavity is not necessary, in the same

appendix, we also provide an example that satisfies generalized risk sensitivity, but

not quasiconcavity.

(ii) If I is of the form I [V ] = ϕ−1 (E [ϕ (V )]), where ϕ is a continuous and strictly

increasing function, then generalized risk sensitivity is equivalent to quasiconcavity,

which is also equivalent to the concavity of ϕ.

The certainty equivalent functional of many intertemporal preferences takes the above

form, for example, the the second-order expected utility of Ergin and Gul (2009) and

the recursive preferences of Kreps and Porteus (1978) and Epstein and Zin (1989). For

these preferences, generalized risk sensitivity is equivalent to the concavity of ϕ.

(iii) Assume the ϕ function in the representation (22) below is continuous and strictly

increasing. Within this class of smooth ambiguity-averse preferences, uncertainty

aversion is equivalent to generalized risk sensitivity.

The smooth ambiguity-averse preference of Klibanoff, Marinacci, and Mukerji (2005,

2009) can be represented in the form of (14) with the following choice of the certainty

equivalent functional:

I [V ] = ϕ−1

{∫
∆

ϕ (Ex [V ]) dµ (x)

}
. (22)

Here, ∆ denotes a set of probability measures indexed by x, denoted by Px. The notation

Ex [·] stands for expectations under the probability Px, and µ (x) is a probability

measure over ∆. In Appendix C, we show that generalized risk sensitivity is equivalent

to the concavity of ϕ, which is also equivalent to uncertainty aversion.
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Generalized risk sensitivity and preference for early resolution of uncertainty

Our definition of preference for early resolution directly follows from Strzalecki (2013). We

first introduce a binary relation, ≥t on a subspace of C (see also definition 1 of Strzalecki

(2013)). In the following definition, let Č : (S,Σ) → (Y,B) be a measurable function that

specifies consumption as a function of the state s ∈ S. We also use yj ∈ Y to denote a

constant consumption plan that is measurable with respect to the trivial σ-field, {∅,Ω}.

Definition 5. Early Resolution:

Let C,C′ ∈ C, then C ≥−
t C′ if there exists {yj}j ̸=t+1 such that Cj = C ′

j = yj, for

j = 1, 2, · · · , t, t+ 2, · · · , T , and Ct+1 = Č
(
s+t

)
, C ′

t+1 = Č
(
s−t+1

)
.

Intuitively, C and C′ are consumption plans that have no uncertainty other than in period

t+ 1. Consumption in period t+ 1 have identical distributions under C and C′, except that

Ct+1 depends on the realization of state s+t , whereas C
′
t+1 depends on s−t+1. In other words,

under plan C′, uncertainty in C ′
t+1 is not known until t+1−, and under plan C, uncertainty

in Ct+1 is known earlier, at t+. Preference for early resolution of uncertainty is defined as

follows.

Definition 6. Preference for Early Resolution of Uncertainty:

A system of conditional preferences {%z}z∈Z is said to satisfy preference for early

resolution of uncertainty if ∀C,C′ ∈ C, C ≥−
t C′ implies C %z−t

C′.

We summarize our main results for the relationship between preference for early resolution

of uncertainty and generalized risk sensitivity as follows. The formal proofs for these

statements can be found in Appendix C.2 of the paper.

(i) Concavity of the certainty equivalent functional I is sufficient for both generalized risk

sensitivity and preference for early resolution of uncertainty.

Note that concavity implies quasiconcavity and therefore generalized risk sensitivity.

Theorem 2 of Strzalecki (2013) also implies that these preferences satisfy preference

for early resolution of uncertainty. As a result, Theorems 2 and 3 of Strzalecki

(2013) imply that the variational preference of Maccheroni, Marinacci, and Rustichini

(2006a) satisfies both generalized risk sensitivity and preference for early resolution of

uncertainty.

(ii) If I is of the form I [V ] = ϕ−1 (E [ϕ (V )]) or it is the smooth ambiguity preference,

I [V ] =
∫
∆
ϕ (Ex [V ]) dµ (x), where ϕ is strictly increasing and twice continuously
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differentiable, then generalized risk sensitivity implies preference for early resolution

of uncertainty if either of the following two conditions hold:

(i) u (Y) = R and there exists A ≥ 0 such that −ϕ′′(a)
ϕ′(a)

∈ [βA,A] for all a ∈ R.

(ii) u (Y) = R+ and β
[
−ϕ′′(k+βa)

ϕ′(k+βa)

]
≤ −ϕ′′(a)

ϕ′(a)
for all a, k ≥ 0.

The above two conditions are the same as Conditions 1 and 2 in Strzalecki (2013).

Intuitively, they require that the Arrow-Pratt coefficient of the function ϕ does not

vary too much. In both cases, generalized risk sensitivity implies the concavity of ϕ.

By Theorem 4 of Strzalecki (2013), either of the above conditions implies preference for

early resolution of uncertainty.

Because the CES recursive utility can be represented in the form of (14) with

u (C) =
1

1− 1
ψ

C1− 1
ψ , I [V ] = ϕ−1 (E [ϕ (V )]) , (23)

where ϕ (x) =

[
1− 1

ψ

1−γ x

] 1−γ
1−1/ψ

, it follows from Condition (b) that I is quasiconcave and

therefore requires a non-negative announcement premium if and only if γ ≥ 1
ψ
. That is,

for this class of preferences, preference for early resolution of uncertainty and generalized

risk sensitivity are equivalent.

(iii) In general, preference for early resolution of uncertainty is neither sufficient nor

necessary for generalized risk sensitivity.

In Appendix C, we provide an example of a generalized risk-sensitive preference that

violates preference for early resolution of uncertainty, as well as an example of a utility

function that prefers early resolution of uncertainty, but does not satisfy generalized

risk sensitivity.

(iv) Generalized risk sensitivity and indifference toward the timing of resolution of

uncertainty imply the following “maxmin expected utility” representation:

I [V ] = inf
m∈M(FV )

∫
mV dP. (24)

In the above expression, FV stands for the distribution of V , and M (FV ) is a family of

densities that depends on FV . In the maxmin expected utility of Gilboa and Schmeidler

(1989), the set of priors are typically specified without referencing the distribution of
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V . Therefore, the above representation (24) contains preferences not allowed in Gilboa

and Schmeidler (1989). If we further require I to be quasiconcave, then Theorem 1 in

Strzalecki (2013) implies that M (FV ) cannot depend on FV and I [V ] is the maxmin

expected utility in the sense of Gilboa and Schmeidler (1989).

In the above sections, we have set up our model in a finite-horizon setting. Extending

our results to the infinite-horizon setting will be an important topic for future research. It

will require imposing conditions on u and I so that infinite repetitions of the recursion in

(15) and (16) converge to a limit in an appropriately defined functional space. One will

also need to show that doing so preserves differentiability of the value function V , as we

establish in our finite-horizon setting in Appendix B. Given the differentiability of the value

function, Theorem 2 above can be directly applied to establish the equivalence of generalized

risk sensitivity and the non-negativity of the announcement premium.

We now turn to the asset pricing implications of our theory.

4.4 Asset pricing implications

Risk compensation for news Compared to traditional consumption-based asset

pricing models, our setup decomposes intertemporal returns into an announcement return

and a post-announcement return. At all pre-announcement history z−t , we have

E
[
m∗ (V (

·| z−t
))
RA,j

(
·| z−t

)∣∣ z−t ] = 1, (25)

and at all post-announcement history z+t =
(
z−t , s

+
t

)
, where s+t is an announcement after the

history z−t ,

E
[
y∗

(
·| z+t

)
RP,j

(
·| z+t

)∣∣ z+t ] = 1. (26)

y∗
(
·| z+t

)
in the above equation is an SDF that, given information at history z+t , prices all

assets that pay off in the next period at history
{(
z+t , s

−
t+1

)}
s−t+1

. Using the law of iterated

expectations, the above two equations can be combined to write

E
[
m∗y∗

−→
R j

(
·| z−t

)∣∣∣ z−t ] = 1, (27)

where
−→
R j

(
·| z−t

)
= RA,j

(
·| z−t

)
· RP,j

(
·| z+t

)
is the cumulative return for asset j on the pre-

and post-announcement markets. The A-SDF only depends on the curvature of the certainty

equivalent functional I, and the SDF y∗ depends on both the curvature of u and the curvature

of I.
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Theorem 2 implies that generalized risk sensitivity is precisely the class of preferences

under which m∗ is a decreasing function of continuation utility and therefore enhances

risk compensation. That is, it is the class of preferences under which news about future

continuation utility requires a risk compensation. Hansen and Sargent (2008) use a risk-

sensitive operator to motivate an additional component in the SDF that increases its

volatility. In this sense, our theory generalizes the notion of risk sensitivity of Hansen and

Sargent (2008).

In the literature, risk compensation for news about the future is often attributed to

uncertainty aversion in the maxmin expected utility model and preference for early resolution

of uncertainty in the CES recursive utility model. These intuitions are valid because,

as we discussed in Section 4.3, uncertainty aversion and preference for early resolution of

uncertainty provide sufficient conditions for generalized risk sensitivity, respectively, in the

context of the maxmin expected utility model and in the context of the CES recursive utility

model. In general, however, as we demonstrated in Section 4.3, preference for early resolution

of uncertainty is neither necessary nor sufficient for generalized risk sensitivity. It is possible

to model risk compensation for news without assuming any preference for early resolution of

uncertainty, because generalized risk sensitivity is the essential property of preferences that

is responsible for this asset pricing implication.

Quantifying the importance of generalized risk sensitivity Just like asset market

returns are informative about the property of SDFs, announcement returns are informative

about the quantitative magnitude of the A-SDF. We make the following observations:

(i) Theorem 2 implies that the announcement premium must be compensation for

generalized risk sensitivity and cannot be compensation for risk aversion associated

with the Von Neumann–Morgenstern utility function u. This is because the A-SDF,

m∗, depends only on the curvature of the certainty equivalent functional I [·], and not

that of the u (·) function.

(ii) The entropy bounds of Bansal and Lehmann (1997) and Alvarez and Jermann (2005)

provide some insights about the contribution of m∗ to equity risk premiums. To save

notation, we focus on unconditional expectations here and suppress the dependence of

SDF and returns on history. For any variable X, let L (X) = lnE [X] − E [lnX] be

the entropy of its distribution. The entropy bound implies that L (m∗) ≥ E [lnRA,j] for

announcement returns, and L (m∗y∗) ≥ E
[
ln
−→
R j − lnR0

]
for the cumulative returns

on the pre- and post-announcement markets. Using the average annual market return
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in Table I, L (m∗) ≥ 3.17% per annum and L (m∗y∗) ≥ 5.08% per annum. The

announcement returns are large and compose about 55% of the total equity premium.

This clearly suggests a large contribution of m∗ to the market price of risk. On a daily

basis, the equity premium on announcement days is 11.2 bps, whereas the average daily

return in the entire sample period is 2.5 bps. The lower bound on the entropy of the

SDF on announcement days is roughly five times of that on an average trading day.

This evidence implies that L(m∗) is sizable and that models in which announcement

returns are absent or small are mis-specified from the perspective of asset market data.

(iii) The Hansen and Jagannathan (1991) bound for the SDF’s leads to a similar conclusion.

Equation (13) implies that for any announcement return, RA,j, σ [m
∗] ≥ E[RA,j]−1

σ[RA,j]
.Using

the Sharpe ratio for the announcement-day returns reported in Table I, we have

σ [m∗] ≥ 9.85% at the daily level. This bound is much tighter than the Hansen-

Jaganathan bound derived from the annualized market returns for the SDFm∗y∗ during

the same period: σ [m∗y∗] ≥ 2.55%.

Pre-FOMC announcement drift The theoretical notion of announcements in our

model can be interpreted as pre-scheduled macroeconomic announcements or informative

signals before the officially scheduled announcements. As a result, Theorem 2 is also a

statement about the pre-announcement drift. That is, if the contents of announcements

are communicated to the public before the pre-scheduled announcements, then these

communications will be associated with realizations of risk premiums under generalized risk

sensitivity. In the continuous-time example in the next section, we demonstrate our model’s

implications for both the announcement premium and the pre-announcement drift.

5 Continuous-time examples

In this section, we use a continuous-time setup to discuss the implications of several examples

of dynamic preferences for the announcement premium. We first provide an example of

generalized risk sensitivity by using the continuous-time version of the recursive preference

developed by Duffie and Epstein (1992). The continuous-time model allows us to highlight the

high-frequency nature of announcement returns by distinguishing between the compensation

for generalized risk sensitivity that is instantaneously realized upon announcements and

the risk premium that accumulates incrementally over time as shocks to consumption

materialize. We also use this example to analyze the pre-FOMC announcement drift,
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assuming information is communicated hours before the scheduled announcement. Finally,

we use the continuous-time setup to provide characterizations of the announcement premium

implied by some time-non-separable utilities that our representation (14) does not allow for.

5.1 Consumption and information

We consider a continuous-time representative agent economy, where the growth rate of

aggregate consumption contains a predictable component, xt, and an i.i.d. component

modeled by increments of a Brownian motion:

dCt
Ct

= xtdt+ σdBC,t.

Similar to the model of Ai (2010), we assume that xt is a continuous-time AR(1) process (an

Ornstein-Uhlenbeck process) unobservable to the agent in the economy. The law of motion

of xt is

dxt = ax (x̄− xt) dt+ σxdBx,t, (28)

where BC,t and Bx,t are independent standard Brownian motions.

We assume that the prior belief of the representative agent about x0 can be represented

by a normal distribution. The agent can use two sources of information to update beliefs

about xt. First, the realized consumption path contains information about xt, and second,

at pre-scheduled discrete time points T, 2T, 3T, · · · , additional signals about xt are revealed

through announcements. For n = 1, 2, 3, · · · , we denote sn as the signal observed at time nT

and assume sn = xnT + εn, where εn is i.i.d. over time, and normally distributed with mean

zero and variance σ2
S.

Because the posterior distribution of xt is Gaussian, it can be summarized by the first

two moments. We define x̂t = Et [xt] as the posterior mean and qt = Et
[
(xt − x̂t)

2] as the

posterior variance, respectively, of xt given information up to time t. At time t = nT , where

n is an integer, the agent updates his beliefs using Bayes’ rule:

x̂+nT =
1

q+nT

[
1

σ2
S

sn +
1

q−nT
x̂−nT

]
;

1

q+nT
=

1

σ2
S

+
1

q−nT
, (29)

where x̂+nT and q+nT are the posterior mean and variance after announcements, and x̂−nT and

q−nT are the posterior mean and variance before announcements, respectively.

In the interior of (nT, (n+ 1)T ), the agent updates his beliefs based on the observed
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consumption process using the Kalman-Bucy filter:

dx̂t = ax [x̄− x̂t] dt+
q (t)

σ
dB̃C,t, (30)

where the innovation process, B̃C,t is defined by dB̃C,t = 1
σ

[
dCt
Ct

− x̂tdt
]
. The posterior

variance, q (t) satisfies the Riccati equation:

dq (t) =

[
σ2
x − 2axq (t)−

1

σ2
q2 (t)

]
dt. (31)

5.2 Generalized risk sensitive preferences

Preferences and the stochastic discount factor We first consider a simple example

of generalized risk sensitivity. We assume that the representative agent has a Kreps-Porteus

utility with γ > 1
ψ
, and we specify the continuous-time preference as the limit of the discrete-

time recursion in (14). Over a small time interval ∆ > 0,

Vt =
(
1− e−ρ∆

)
u (Ct) + e−ρ∆I [Vt+∆| x̂t, qt] , (32)

where u and I [ ·| x̂t, qt] are given in equation (23). To derive closed-form solutions, we focus

on the limiting case of ψ = 1, where u (C) = lnC and I [V ] = 1
1−γ lnE

[
e(1−γ)V

]
.

Like in previous discrete-time examples, the stochastic discount factor over a small interval

(t, t+∆) is given by

SDFt,t+∆ = e−ρ∆
u′ (Ct+∆)

u′ (Ct)

e(1−γ)Vt+∆

Et [e(1−γ)Vt+∆ ]
. (33)

Clearly, the term m∗
t+∆ = e(1−γ)Vt+∆

Et[e(1−γ)Vt+∆ ]
is a density and can be interpreted as a probability

distortion.

Announcement premiums We assume that the stock market is the claim to the

following dividend process:

dDt

Dt

= [x̄+ ϕ (xt − x̄)] dt+ ϕσdBC,t, (34)

and we allow the leverage parameter ϕ > 1 so that dividends are more risky than

consumption, as in Bansal and Yaron (2004).
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In the interior of (nT, (n+ 1)T ), all state variables, Ct, x̂t, and qt in (33) are continuous

functions of t. As a result, as ∆ → 0, SDFt,t+∆ → 1 and the equity premium on any asset

must converge to zero. In fact, using a first-order approximation, we show in Section S. 3.1

of the Supplemental Material that the equity premium over the interval (t, t+∆) must be

proportional to the holding period ∆:[
γσ +

γ − 1

ax + ρ

qt
σ

] [
ϕσ +

ϕ− 1

ax + e−ϱ̄
qt
σ

]
∆, (35)

where ϱ̄ is the steady-state log price-to-dividend ratio.

In contrast, let t = T − 1
2
∆, so that the interval (t, t+∆) always contains an

announcement. As ∆ → 0, the term e−ρ∆ u′(Ct+∆)

u′(Ct)
converges to 1, but m∗

t+∆ does not. Because

the value function Vt+∆ depends on the announcement, and Et
[
e(1−γ)Vt+∆

]
does not, the

probability distortion does not disappear as ∆ → 0. In Section S. 3.1 of the Supplemental

Material, we show that in the limit, the announcement premium can be approximated by

γ − 1

ax + ρ

ϕ− 1

ax + e−ϱ̄
(
q−T − q+T

)
. (36)

We make the following two observations.

(i) As ∆ → 0, the market equity premium vanishes without announcements, but stays

strictly positive if an announcement is made during the interval (t, t+∆), as shown in

Equations (35) and (36).

Figure 3. Average hourly return around announcements
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Figure 3 plots the model implied average hourly return around pre-scheduled announcements.
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In Figure 3, we plot the average hourly market return around announcements. We

choose standard parameters used in the long-run risks literature, the details of which are

provided in Section S. 3.2 of the Supplemental Material. The premium realized during

the announcement hour is 17 bps, whereas the average return during non-announcement

hours is much smaller by comparison. This pattern is consistent with the bottom panel

of Figure 1.

(ii) As shown in Equation (36), the magnitude of the announcement premium is

proportional to the amount of uncertainty reduction, q−T − q+T , and is increasing in

the persistence of the xt process. Increases in the persistence of xt, which is inversely

related to ax, have two effects.15 First, they imply that revelations of xt have a stronger

impact on continuation utility Vt+∆ and therefore m∗
t+∆. Second, more persistence

in the expected growth rate of cash flow is also associated with a stronger effect of

announcements on the price-to-dividend ratio of the equity. Together, they imply

that the announcement premium must increase with the persistence of xt. The above

observation implies that the heterogeneity in the magnitude of the premium for different

macroeconomic announcements can be potentially explained by the differences in their

informativeness and the significance of their welfare implications.

(iii) In our endowment economy model, although instantaneous consumption CT does not

respond to the announcement made at time T , future consumption does, as xT is the

expected consumption growth rate. Our results below for the announcement premium

and the pre-announcement drift will continue to hold in neoclassical production

economies, where xt is interpreted as expected productivity growth and consumption is

allowed to respond instantaneously to announcements about xt. As we remarked earlier,

in production economies, the instantaneous reaction of consumption to announcements

contributes to a small and negative premium, but the overall announcement premium is

positive as long as we allow for significant generalized risk sensitivity in the preferences.16

Pre-FOMC announcement drift As discussed earlier in the paper, the

announcement in our theory represents a resolution of macroeconomic uncertainty. It can

be due to pre-scheduled macroeconomic announcements, informal communications from Fed

officials to the public, or information leakage. In our continuous-time model, we simply

assume that the agent receives informative signals prior to the FOMC announcements and

15The autocorrelation between xt and xt+∆ is roughly 1− ax∆ for small values of ∆.
16We have solved a model with neoclassical production technology and obtained similar results for

announcement premiums and the pre-announcement drift. The results are available upon request.
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Figure 4. Pre-FOMC announcement drift
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Figure 4 plots the probability density of communication before announcement (top panel) and the average

hourly return around announcements (bottom panel).

explore its implications for the pre-announcement drift. Recent research provides suggestive

evidence of information leakage as a plausible channel for these signals assumed in our

model. Cieslak, Morse, and Vissing-Jorgensen (2015) provide evidence of systematic informal

communication of Fed officials with the media and financial sector as the information

transmission channel. In a similar vein, Bernile, Hu, and Tang (2016) find evidence consistent

with informed trading during a very short window (approximately 30 minutes) of news

embargoes prior to the FOMC scheduled announcements and not of other macroeconomic

announcements.17 While the timing of the above empirical evidence of leaks does not exactly

match the timing of the pre-announcement drift reported in Lucca and Moench (2015), it is

generally indicative of the possibility of information leaks.

In Figure 4, we plot the implication of our model for the pre-FOMC announcement

drift, assuming communications occur before announcements. For simplicity, we assume that

communication, whenever it occurs, fully reveals xt, and, we plot the probability density

of communication at time t (y-axis) as a function of t (x-axis) in the top panel of Figure

4. In the bottom panel, we plot the model-implied average hourly market return around

17In the transcripts of the October 15, 2010 FOMC conference call, then Chairman Ben Bernanke also
expressed concerns about information leaks to market participants. See
https://www.federalreserve.gov/monetarypolicy/files/FOMC20101015confcall.pdf.
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announcements. We provide the details of the calculation of the pre-announcement drift in

Section S. 3.2 of the Supplemental Material. Note that the magnitude of the announcement

premium is proportional to the probability of the occurrence of communication. The

announcement premium peaks during hours with the highest probability of communication

and converges to zero as t → 0, because communication occurs with probability one before

the pre-scheduled announcement time. This pattern of the pre-announcement drift implied

by our model is very similar to its empirical counterpart in Figure 1.

To evaluate the dynamics of nominal bond returns and the announcement premium in

the bond markets, we also solve a more extensive model related to Piazzesi and Schneider

(2006) and Bansal and Shaliastovich (2013) with growth and inflation dynamics. We show

that consistent with the data, the bond announcement premium in our calibrated model is

about 3 bps. We also demonstrate that in small samples comparable to those used in earlier

empirical work, the pre-announcement drift is present in the equity markets but statistically

absent in bond returns, because the announcement premium for bonds is substantially smaller

in magnitude than is that for equity.18

5.3 Time-non-separable preferences

In this section, we analyze several examples of time-non-separable preferences that are

not allowed by representation (14). We continue to use the specification of consumption

and information structure in Section 5.1. We assume that the representative agent ranks

intertemporal consumption plans according to the following utility function:

E

[∫ ∞

0

e−ρtu (Ct + bHt) dt

]
, (37)

for some appropriately defined habit process {Ht}∞t=0, which we specify below. The above

representation includes the external habit model of Campbell and Cochrane (1999); the

internal habit model of Constantinides (1990) and Boldrin, Christiano, and Fisher (2001);

and the consumption substitutability model (see Dunn and Singleton (1986) and Heaton

(1993)) as special cases. In this section, we denote the marginal utility of Ct as

Λt =
∂

∂Ct
Et

[∫ ∞

0

e−ρ(t+s)u (Ct+s + bHt+s) ds

]
.

18This evidence is available from the authors on request.
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The sign of the announcement premium depends on how the marginal utility, Λt reacts to

the announcement at time t. We make the following observations and provide the detailed

proofs in Section S. 3.2 of the Supplemental Material.

(i) The external habit model has zero announcement premium.

Suppose b ∈ (−1, 0) and Ht is a habit process defined as

Ht =

(
1−

∫ t

0

ξ (t, s) ds

)
H0 +

∫ t

0

ξ (t, s)Csds, (38)

where {ξ (t, s)}ts=0 is a non-negative weighting function that satisfies the regularity

conditions (S. 3.16)-(S. 3.18) in Section S. 3.2 of the Supplemental Material. In the

external habit model, the consumption, {Cs}ts=0 in equation (38), is interpreted as

aggregate consumption, which is exogenous to the choice of the agent. Our specification

is therefore a generalization of the Campbell and Cochrane (1999) model in continuous

time. Because the habit stock Ht is exogenous, like in expected utility models, marginal

utilities depend on current-period consumption only:

Λt = e−ρtu′ (Ct + bHt) .

Clearly, news about the future does not affect Λt and the announcement premium must

be zero.

Strictly speaking, the external habit model is time-separable. Because individuals take

the habit stock as given, the external habit preference is essentially an expected utility

with time-varying risk aversions. It has a zero announcement premium for the same

reason that the expected utility model does.

(ii) The internal habit model generates a negative announcement premium.

We continue to assume b ∈ (−1, 0) and (38), except that {Cs}ts=0 in equation (38) is

interpreted as the agent’s own consumption choice. This model is a generalized version

of the Constantinides (1990) model. The marginal utility of Ct for the internal habit

model can be written as:

Λt = e−ρt
{
u′ (Ct + bHt) + bE

[∫ ∞

0

e−ρsξ (t+ s, t)u′ (Ct+s + bHt+s) ds

∣∣∣∣ x̂t, qt]} . (39)

We show in Section S. 3.2 of the Supplemental Material that Λt in (39) is an increasing
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function of x̂t. Therefore, the internal habit model implies a negative premium for any

return positively correlated with x̂t.

The marginal utility Λt increases with x̂t because good news about the future lowers the

negative impact of accumulating habit stock. While investors with an external habit

preference take the habit process as exogenous to their choices, internal habit utility

maximizers take into account the effect of current-period consumption on future habit

stocks when computing marginal utilities. As shown in equation (39), an increase in Ct

has a positive effect on the current-period utility, which is u′ (Ct + bHt), but a negative

impact on utility in all future periods, because it raises the level of Ht+s for all s ≥ 0.

The negative impact of accumulating the habit stock is captured by the expectation

of marginal utilities in the future: E
[∫∞

0
e−ρsξ (t+ s, t)u′ (Ct+s + bHt+s) ds

∣∣ x̂t, qt]
in equation (39). Good news about consumption growth leaves the current-period

marginal utility, u′ (Ct + bHt), unchanged, but lowers the marginal utility in all future

periods. As b < 0, this reduction in future marginal utilities in response to positive

innovations in x̂t raises the overall marginal utility, Λt.

(iii) The consumption substitutability model produces a positive announcement premium.

Suppose the agent’s preference is defined by (37) and (38) with b > 0. In this case,

past consumption increases current-period utility. Opposite of the internal habit model,

the marginal utility (39) is a decreasing function of x̂t. Therefore, the announcement

premium is positive for any asset with a return positively correlated with x̂t. Even

though the presence of consumption substitutability produces a positive announcement

premium, it lowers the agent’s effective risk aversion and exacerbates the equity

premium puzzle, as emphasized by Gallant, Hansen, and Tauchen (1990).

6 Conclusion

Motivated by the fact that a large fraction of the market equity premium is realized on

a small number of trading days with significant macroeconomic announcements, in this

paper, we provide a revealed preference analysis of the equity premium for macroeconomic

announcements. Assuming that consumption does not respond instantaneously to

announcements, we show that a non-negative announcement premium is equivalent to

generalized risk sensitivity; that is, investors’ certainty equivalent functional is monotone

in second-order stochastic dominance. We demonstrate that generalized risk sensitivity is

exactly the class of preferences that demands a risk compensation for news that affects
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continuation utilities, or “long-run risks.” As a result, our theoretical framework implies that

the announcement premium can be interpreted as asset-market-based evidence for a broad

class of non-expected utility models that have this feature.

Because of its high-frequency nature, continuous-time models are particularly convenient

for studying the announcement premium and the pre-announcement drift in the FOMC

announcements. We show in a continuous-time model that the pre-announcement drift can

arise in environments in which information about announcements is communicated to the

market prior to the scheduled announcement.

We assume a representative agent throughout the paper; however, some of our results

may extend to more general setups. For example, the result that the expected utility implies

a zero announcement premium on all assets should also hold in complete-market economies

where agents’ preferences are heterogenous, but all have an expected utility representation.

Standard aggregation results imply that asset prices in these economies are observationally

equivalent to a representative-agent economy with time-separable expected utility. This

observation should also apply to the external habit model.

Several related topics may provide promising directions for future research. A natural

extension of the current paper is to provide a characterization for generalized risk sensitivity

in the continuous-time framework. Such conditions may bear interesting connections with

Skiadas (2013), who provides a continuous-time analysis of certainty equivalent functionals

for non-expected utilities. Another idea worth careful exploration is to evaluate whether asset

market frictions related to liquidity or slow-moving capital, as emphasized in Duffie (2010),

may contribute to the announcement premium and the pre-announcement drift. Finally, our

theory has several implications that may be tested empirically. For example, our analysis

implies that the magnitude of the announcement premium is determined by how informative

an announcement is about the future course of the economy. In addition, a sizable literature

documents significant excess returns at the firm level around earnings announcements (see

e.g., Chari, Jagannathan, and Ofer (1988) and Ball and Kothari (1991)). To the extent that

these earnings announcements carry news about the macroeconomy, premiums associated

with earnings announcements can be consistent with our theory. Further exploration of this

issue may be an interesting direction for future research.
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APPENDICES

The following appendices provide details of the data construction for the stylized facts in

Section 2 and the proofs of the main results in Section 4. Appendix A is the data appendix.

Appendix B contains the proofs of Theorem 1 and Theorem 2. Appendix C provides

the omitted proofs for the results on the relationship between generalized risk sensitivity,

uncertainty aversion, and preference for early resolution in Section 4.3.

Appendix A Data Description

Macroeconomic announcements We focus on the top five macroeconomic news

ranked by investor attention among all macroeconomic announcements at the monthly

or lower frequencies. They are unemployment/non-farm payroll (EMPL/NFP) and the

producer price index (PPI) published by the U.S. Bureau of Labor Statistics (BLS), the

FOMC statements, gross domestic product (GDP) reported by the U.S. Bureau of Economic

Analysis, and the Institute for Supply Management’s Manufacturing Report (ISM) released

by Bloomberg.19

The EMPL/NFL and the PPI are both published monthly and their announcement dates

come from the BLS website. The BLS began announcing its scheduled release dates in

advance in 1961, which is also the starting date for our EMPL/NFL announcements sample.

The PPI data series starts in 1971.20 There are a total of eight FOMC meetings each calendar

year, and the dates of FOMC meetings are taken from the Federal Reserve’s web site. The

FOMC statements began in 1994, when the Committee started announcing its decision to

the markets by releasing a statement at the end of each meeting. For meetings lasting two

calendar days, we consider the second day (the day the statement is released) as the event

date. GDP is released quarterly beginning from 1997, which is the first year that full data

are available, and the dates come from the BEA’s website.21 Finally, ISM is a monthly

19Both unemployment and non-farm payroll information are released as part of the Employment Situation
Report published by the BLS. We treat them as one announcement.

20While the CPI data are also available from the BLS back to 1961, once the PPI starts being published
it typically precedes the CPI announcement. Given the large overlap in information between the two macro
releases, much of the news content in the CPI announcement is already known to the market at the time of
its release. For this reason, we opt in favor of using the PPI.

21GDP growth announcements are made monthly according to the following pattern: in April the advance
estimate for Q1 GDP growth is released, followed by a preliminary estimate of the same Q1 GDP growth in
May and a final estimate given in the June announcement. Arguably, most uncertainty about Q1 growth is
resolved once the advance estimate is published, and most learning by the markets will occur prior to this
release. For this reason, we focus only on the four advance estimate release dates every year.
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announcement with dates coming from Bloomberg starting from 1997. Our sample ends in

2014.

High-frequency returns In Table III and Figure 1, we report the average stock market

excess returns over one-hour intervals before and after news announcements in event time.

Here, we use high-frequency data for the S&P 500 SPDR that runs from 1997 to 2013 and

comes from the TAQ database. For each second, the median price of all transactions occurring

in that second is computed. Prices at lower frequency intervals (e.g. hourly prices) are then

constructed as the price for the last (most recent) second in that interval when transactions

were observed. The exact times at which the announcements are released are reported by

Bloomberg.

Appendix B Proof of Theorems 1 and 2

B.1 Preliminaries

We first state the definition of a non-atomic probability space, which is an assumption

maintained throughout Section 4.

Definition B.1. Non-atomic probability space:

A probability space (Ω,F , P ) is said to be non-atomic if ∀ω ∈ Ω, P (ω) = 0.

Next, we state the definition of first-order stochastic dominance (FSD) and second-order

stochastic dominance (SSD).

Definition B.2. First-order stochastic dominance:

X1 first-order stochastic dominates X2, or X1 ≥FSD X2, if there exists a random variable

Y ≥ 0 a.s. such that X1 has the same distribution as X2+Y . X1 strictly first-order stochastic

dominates X2, or X1 >FSD X2, if P (Y > 0) > 0 in the above definition.

Definition B.3. Second-order stochastic dominance:

X1 second order stochastic dominates X2, orX1 ≥SSD X2, if there exists a random variable

Y such that E [Y |X1] = 0 and X2 has the same distribution as X1 + Y . X1 strictly second

order stochastic dominates X2, or X1 >SSD X2, if P (Y ̸= 0) > 0 in the above definition.22

22Our definition of SSD is the same as the standard concept of increasing risk (see Rothschild and Stiglitz
(1970) and Werner (2009)). However, it is important to note that in our model, the certainty equivalent
functional I is defined on the space of continuation utilities rather than consumption.
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FSD and SSD are typically defined as stochastic orders on the space of distributions.

Here, it is more convenient to define FSD and SSD as binary relations on the space of

random variables. Our definitions are equivalent to the standard definitions of FSD and SSD

due to the assumption of a non-atomic probability space (See Muller and Stoyan (2002)).

Our strategy for proving Theorem 1 and 2 consists of two steps. First, we apply the

envelope theorems in Milgrom and Segal (2002) to establish the differentiability of the

value functions. Second, we compute the derivatives of I to construct the A-SDF and use

derivatives of I to integrate back to recover the certainty equivalent functional.23

Most of our analysis below is on the conditional certainty equivalent functional I [ ·| z].
To save notation, whenever it does not cause confusion, we suppress the dependence of

I [ ·| z] on z and simply write I [·]. We often use the following operation to relate the

certainty equivalent functional I and its derivatives. ∀ X,Y ∈ L2 (Ω,F , P ), we can define

g (t) = I [X + t (Y −X)] for t ∈ [0, 1] and compute I [Y ]− I [X] as

I [Y ]− I [X] = g (1)− g (0)

=

∫ 1

0

g′ (t) dt

=

∫ 1

0

∫
Ω

DI [X + t (Y −X)] (Y −X) dPdt, (40)

where DI [X + t (Y −X)] is understood as the representation of the Fréchet derivative

of I [·] evaluated at X + t (Y −X). The Riesz representation theorem implies that

DI [X + t (Y −X)] is an element of L2 (Ω,F , P ), and DI [X + t (Y −X)] applied to

(Y −X) can be computed as the dot product,
∫
Ω
DI [X + t (Y −X)] (Y −X) dP .

We note that Fréchet Differentiability with Lipschitz Derivatives guarantees that the

function g (t) is continuously differentiable. The differentiability of g is straightforward (see

for example, Luenberger (1997)). To see that g′ (t) is continuous, note that

g′ (t1)− g′ (t2) =

∫
Ω

{DI [X + t1 (Y −X)]−DI [X + t2 (Y −X)]} (Y −X) dP

≤ ∥DI [X + t1 (Y −X)]−DI [X + t2 (Y −X)]∥ · ∥Y −X∥ .
23A weaker notion of differentiability, Gâtteaux differentiability is enough to guarantee the existence of

A-SDF. However, the converse of Theorem 1 requires a stronger condition for differentiability, which is what
we assume here.
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The Lipschitz continuity of DI implies that, for some positive constant K,

∥DI [X + t1 (Y −X)]−DI [X + t2 (Y −X)]∥ ≤ K (t1 − t2) ∥(Y −X)∥ ,

and the latter vanishes as t2 → t1. This proves the validity of (40).

For later reference, it is useful to note that we can apply the mean value theorem on g

and apply (40) to write for some t̂ ∈ (0, 1),

I [Y ]− I [X] =

∫
Ω

DI
[
X + t̂ (Y −X)

]
(Y −X) dP. (41)

Much of our analysis below relies on the theory of differentiability for nonlinear operators

defined on infinite dimensional spaces, for example, in Tapia (1971) and Luenberger (1997).

B.2 Existence of A-SDF

In this section, we provide a proof for Theorem 1 and establish the existence of A-SDF.

Differentiability of value function We establish the differentiability of value

functions recursively. In particular, we show that the value functions are elements of D,

which is defined as:

Definition B.4. D is the set of differentiable functions on the real line, denoted by f , that

satisfy the following two properties.

(i) f is Lipschitz continuous and f ′ (x) > 0.

(ii) ∀x ∈ R, as h → 0, 1
h
[f (x+ h− a)− f (x− a)] converges uniformly to f ′ (x− a)

in a. That is, ∀ε > 0, there exists δ > 0 such that |h| < δ implies that∣∣ 1
h
[f (x+ h− a)− f (x− a)]− f ′ (x− a)

∣∣ < ε for all a ∈ R.

We first introduce some notations. For any v ∈ D, we define fv and gv as functions of

(W, ξ), where W is the wealth level, and ξ ∈ RJ+1 is a portfolio strategy, by:

fv (W, ξ) = u
(
W −

∑J

j=0
ξj

)
+ βI

[
v
(∑J

j=0
ξjRj

)]
, (42)

gv (W, ξ) = I
[
v
(
W +

∑J

j=0
ξj (Rj − 1)

)]
. (43)
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Because Rj ∈ L2 (Ω,F , P ) and v is Lipschitz continuous, for a fixed ξ, v
(∑J

j=0 ξjRj

)
and

v
(
W +

∑J
j=0 ξj (Rj − 1)

)
are both square-integrable and equations (42) and (43) are well-

defined.

We define two operators on D. For any v ∈ D, let T+v and T−v be defined by:[
T+v

]
(W ) = sup

ξ
fv (W, ξ) , (44)[

T−v
]
(W ) = sup

ξ
gv (W, ξ) . (45)

Clearly, the value functions Vz+t (W ) and Vz−t (W ) can be constructed recursively as Vz+t (W ) =[
T+Vz−t+1

]
(W ), and Vz−t (W ) =

[
T−Vz+t

]
(W ) (with the understanding that the certainty

equivalent functionals in the definition of fv (W, ξ) and gv (W, ξ) are appropriately chosen

conditional certainty equivalent functionals). Because we start with the assumption of the

existence of an interior equilibrium, the maximization problems (44) and (45) are well defined,

and the maximums are achieved.

Below, we prove that Vz+t and Vz−t are elements of D in two steps. First, Lemma B.1 below

establishes the equi-differentiability of the family of functions {fv (W, ξ)}ξ and {gv (W, ξ)}ξ
so that we can apply the envelope theorem in Milgrom and Segal (2002). Second, in Lemma

B.2, we apply the envelope theorem repeatedly to show that the operators T+ and T− map

D into itself.

Lemma B.1. Suppose u, v ∈ D, as h → 0, both 1
h
[fv (W + h, ξ)− fv (W, ξ)] and

1
h
[gv (W + h, ξ)− gv (W, ξ)] converge uniformly for all ξ.

Proof: First, as h→ 0,

1

h
[fv (W + h, ξ)− fv (W, ξ)] =

1

h

[
u
(
W + h−

∑J

j=0
ξj

)
− u

(
W −

∑J

j=0
ξj

)]
converges uniformly because u ∈ D. Next, we need to show that

1

h
[gv (W + h, ξ)− gv (W, ξ)] →

∂

∂W
gv (W, ξ) (46)

and the convergence is uniform for all ξ. Note that

∂

∂W
gv (W, ξ) =

∫
Ω

DI
[
v
(
W +

∑J

j=0
ξj (Rj − 1)

)]
· v′

(
W +

∑J

j=0
ξj (Rj − 1)

)
dP
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and

gv (W + h, ξ)− gv (W, ξ) = I
[
v
(
W + h+

∑J

j=0
ξj (Rj − 1)

)]
− I

[
v
(
W +

∑J

j=0
ξj (Rj − 1)

)]
=

∫
Ω

DI
[
v̄
(
t̂
)]

(v̄ (1)− v̄ (0)) dP, for some t̂ ∈ (0, 1) ,

where we denote v̄ (t) = tv
(
W + h+

∑J
j=0 ξj (Rj − 1)

)
+ (1− t) v

(
W +

∑J
j=0 ξj (Rj − 1)

)
and applied equation (41). Also, denote v̄′ (0) = v′

(
W −

∑J
j=0 ξj (Rj − 1)

)
, then the right

hand side of (46) can be written as
∫
Ω
DI [v̄ (0)] v̄′ (0) dP , we have:∣∣∣∣1h

∫
Ω

DI
[
v̄
(
t̂
)]

(v̄ (1)− v̄ (0)) dP −
∫
Ω

DI [v̄ (0)] v̄′ (0) dP

∣∣∣∣
=

∣∣∣∣∣ 1
h

∫
Ω
DI

[
v̄
(
t̂
)]

(v̄ (1)− v̄ (0)) dP −
∫
Ω
DI

[
v̄
(
t̂
)]
v̄′ (0) dP

+
∫
Ω
DI

[
v̄
(
t̂
)]
v̄′ (0) dP −

∫
Ω
DI [v̄ (0)] v̄′ (0) dP

∣∣∣∣∣
≤

∫
Ω

∣∣DI
[
v̄
(
t̂
)]∣∣ ∣∣∣∣1h (v̄ (1)− v̄ (0))− v̄′ (0)

∣∣∣∣ dP +

∫
Ω

∣∣DI
[
v̄
(
t̂
)]

−DI [v̄ (0)]
∣∣ |v̄′ (0)| dP

≤
∥∥DI

[
v̄
(
t̂
)]∥∥ ∥∥∥∥1h (v̄ (1)− v̄ (0))− v̄′ (0)

∥∥∥∥+
∥∥DI

[
v̄
(
t̂
)]

−DI [v̄ (0)]
∥∥ ∥v̄′ (0)∥ (47)

Because v ∈ D, for h small enough,
∣∣ 1
h
(v̄ (1)− v̄ (0))− v̄′ (0)

∣∣ ≤ ε with probability one. Also,

because DI is Lipschitz continuous,
∥∥DI

[
v̄
(
t̂
)]

−DI [v̄ (0)]
∥∥ ≤ K

∥∥v̄ (t̂)− v̄ (0)
∥∥ ≤ K2h,

where the second inequality is due to the Lipschitz continuity of v. This proves the uniform

convergence of (47).

Lemma B.2. Suppose u ∈ D, then both T+ and T− map D into D.

Proof: It follows from Lemma B.1 that for any v ∈ D, we can apply Theorem 3 in

Milgrom and Segal (2002) and establish that both T+v and T−v are differentiable, and

d

dW
T+v (W ) = u′

(
W −

∑J

j=0
ξj (W )

)
d

dW
T−v (W ) =

∫
DI

[
v
(
W +

∑J

j=0
ξj (W ) (Rj − 1)

)]
· v′

(
W +

∑J

j=0
ξj (W ) (Rj − 1)

)
dP,

where ξ (W ) denotes the utility-maximizing portfolio at W .

To see that T+v (W ) is Lipschitz continuous, note that

fv (W1, ξ (W2))−fv (W2, ξ (W2)) ≤ T+v (W1)−T+v (W2) ≤ fv (W1, ξ (W1))−fv (W2, ξ (W1)) .

(48)

43



Because ∀ξ, |fv (W1, ξ)− fv (W2, ξ)| =
∣∣∣u(W1 −

∑J
j=0 ξj

)
− u

(
W2 −

∑J
j=0 ξj

)∣∣∣ ≤
K |W1 −W2|, where K is a Lipschitz constant for u, |T+v (W1)− T+v (W2)| ≤ K |W1 −W2|.
We can prove that T−v (W ) is Lipschitz continuous in a similar way:

gv (W1, ξ (W2))−g v (W2, ξ (W2)) ≤ T−v (W1)−T−v (W2) ≤ gv (W1, ξ (W1))−gv (W2, ξ (W1)) .

(49)

Note that ∀ξ,

|gv (W1, ξ)− g v (W2, ξ)| =
∣∣∣I [

v
(
W1 +

∑J

j=0
ξj (Rj − 1)

)]
− I

[
v
(
W2 +

∑J

j=0
ξj (Rj − 1)

)]∣∣∣
≤ K

∥∥∥v (W1 +
∑J

j=0
ξj (Rj − 1)

)
− v

(
W2 +

∑J

j=0
ξj (Rj − 1)

)∥∥∥
≤ K2 |W1 −W2| ,

where the inequalities are due to the Lipschitz continuity of I and v, respectively.

In addition, equations (48) and (49) can be used to show that the family of functions

{T+v (W − a)}a and {T−v (W − a)}a are equi-differentiable. For example, let W1 → W2,

1

W1 −W2

[fv (W1, ξ)− fv (W2, ξ)]

converges uniformly by Lemma B.1, and by equation (48), 1
W1−W2

[T+v (W1)− T+v (W2)]

must also converge uniformly.

Finally, we note that if v′ (x) > 0 for all x ∈ R, then [T+v] (W ) and [T−v] (W ) must

satisfy the same property by the envelope theorem.

Proof of Theorem 1 In this section, we establish the existence of SDF as stated in

Theorem 1. To save notation, whenever convenient, we denote Rj (z) to be the one-period

return of asset j that payoff at history z. That is, if z = z+t =
(
z−t , s

+
t

)
is a post-announcement

history, then Rj (z) ≡ RA,j

(
s+t

∣∣ z−t ) is an announcement return, and if z is of the form

z = z−t+1 =
(
z+t , s

−
t+1

)
, then Rj (z) ≡ RP,j

(
s−t+1

∣∣ z+t ) is a post-announcement return. We

write the portfolio selection problem at z−t as

max
ζ

I
[
Vz+t

(
W +

∑J

j=0
ζj

(
Rj

(
z+t

)
− 1

))∣∣∣ z−t ] . (50)

Clearly, no arbitrage implies that the risk-free announcement return R0

(
z+t

)
= 1. Because

Vz+t and I
[
·| z−t

]
are (Fréchet) differentiable, I

[
Vz+t

(
W +

∑J
j=0 ζj

(
Rj

(
z+t

)
− 1

))∣∣∣ z−t ] is
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differentiable in ζ.24 Therefore, the first order condition with respect to ζj implies that

E

[
DI

[
Vz+t (W ′)

] d

dW ′Vz+t (W ′)
(
Rj

(
z+t

)
− 1

)∣∣∣∣ z−t ] = 0, (51)

where we denote W ′ = W +
∑J

j=0 ζ̂j
(
Rj

(
z+t

)
− 1

)
and ζ̂ is the optimal portfolio choice.

The value function Vz+t (·) in (50) is determined by the the agent’s portfolio choice problem

at z+t after the announcement s+t is made:

Vz+t (W ) = max
ξ

{
u
(
W −

∑J

j=0
ξj

)
+ βI

[
Vz−t+1

(∑J

j=0
ξjRj

(
z−t−1

))∣∣∣ z+t ]} . (52)

The envelope condition for (52) implies

d

dW
Vz+t (W ) = u′

(
W −

∑J

j=0
ξj

)
= u′ (Ct) = u′

(
C̄t
)
,

where the last equality uses the market clearing condition. Because consumption at time

t must equal to total endowment, C̄t, and because C̄t must be z−t measurable, so must
d
dW
Vz+t (W ).

By our results in Appendix B.2, d
dW
Vz+t (W ) = u′

(
C̄t
)
> 0 is z−t measurable, as a result,

(51) implies:

E
[
DI

[
Vz+t (W )

] (
Rj

(
z+t

)
− 1

)∣∣∣ z−t ] = 0. (53)

As we show in Lemma B.4 in the next section, monotonicity of I guarantees that DI ≥ 0

with probability one. To derive an expression for A-SDF, we need to assume the following

slightly stronger regularity condition:

DI [X] > 0 with strictly positive probability for all X.25 (54)

In this case, the A-SDF can be constructed as:

m∗ (s+t ∣∣ z−t ) = DI
[
Vz+t

(
Wz−t ,s

+
t

)]
E
[
DI

[
Vz+t

(
Wz−t ,s

+
t

)]∣∣∣ z−t ] , (55)

24This is a version of the chain rule. See Proposition 1 in Chapter 7 of Luenberger (1997).
25Note that monotonicity with respect to FSD implies that DI [X] ≥ 0 with probability one for all X. If

condition (54) does not hold, we must have DI [X] = 0 with probability one. If I is strictly monotone with
respect to FSD, then this cannot happen on an open set in L2. Therefore, even without assuming (54), our
result implies that the A-SDF exists generically.
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where Wz denote the equilibrium wealth of the agent at history z. Because

E
[
m∗ (s+t ∣∣ z−t )∣∣ z−t ] = 1, we can write (53) as an asset pricing equation with A-SDF:

E
[
m∗ ( ·| z−t )RA,j

(
·| z−t

)∣∣ z−t ] = 1.

Now we constructed the A-SDF as the Fréchet derivative of the certainty equivalent

functional. Because DI
[
V +
t (W )

]
is a linear functional on L2

(
Ω,F+

t , P
)
, it has a

representation as an element in L2
(
Ω,F+

t , P
)
by the Riesz representation theorem. To

complete the proof of Theorem 1, we only need to show that m∗ (s+t ∣∣ z−t ) can be represented

as a measurable function of continuation utility: m∗ (s+t ∣∣ z−t ) = m∗ ◦ Vz+t
(
Wz−t ,s

+
t

)
for some

measurable function m∗ : R → R.26 That is, m∗ (s+t ∣∣ z−t ) depends on s+t only through the

continuation utility. Note that our definition of monotonicity with respect to FSD implies

invariance with respect to distribution, that is, I [X] = I [Y ] whenever X and Y have the

same distribution (If X has the same distribution of Y then both X ≤FSD Y and Y ≥FSD X

are true). The following lemma establishes that invariance with respect to distribution implies

that m∗ (s+t ∣∣ z−t ) is measurable with respect to the σ-field generated by Vz+t

(
Wz−t ,s

+
t

)
.

Lemma B.3. If I is invariant with respect to distribution, then DI [X] can be represented

by a measurable function of X.

Proof: Take any X ∈ L2 (Ω,F , P ), to prove that DI [X] is a measurable function of

X, it is enough to show that DI [X] is measurable with respect to the σ−field generated by

X (which we denote as σ (X)). Let T be a measure-preserving transformation such that the

invariant σ−field of T differ from σ (X) only by measure zero sets (The assumption of a non-

atomic probability space guarantees the existence of such measure-preserving transformations.

See exercise 17.43 in Kechris (1995)). Below, we show that DI [X] is measurable with respect

to the invariant σ−field of T by deomonstrating DI [X] ◦ T = DI [X] with probability one.27

Because the Fréchet derivative of I [X] is unique, to establish DI [X] = DI [X] ◦ T , we
show that DI [X] ◦ T is also a Fréchet derivative of I [·] at X. Because I [·] is Fréchet

differentiable, to show DI [X] ◦ T is the Fréchet derivative of I at X, it is enough to verify

that DI [X] ◦ T is a Gâteaux derivative, that is,

lim
α→0

1

α
[V (X + αY )− V (X)] =

∫
Ω

(DI [X] ◦ T ) · Y dP (56)

26In general, m∗ may depend on z−t . Here, with a slight abuse of notation, we denote m∗ both as the
A-SDF, which is an element of L2, and as a measurable function R → R.

27By Proposition 6.17 of Brieman (1992), the statement that DI [X] is measurable with respect to the
invariant σ−field of T is equivalent to DI [X] ◦ T = DI [X] with probability one.
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for all Y ∈ L2 (Ω,F , P ).

Because T is measure preserving and X is measurable with respect to the invariance

σ−field of T , X = X ◦ T with probability one. Therefore, V (X + αY ) = V (X ◦ T + αY ) =

V (X + αY ◦ T−1), where the second equality is due to the fact that T−1 is measure preserving,

and [X ◦ T + αY ] ◦ T−1 = X + αY ◦ T−1 has the same distribution with X ◦ T + αY . As a

result,

1

α
[V (X + αY )− V (X)] =

1

α

[
V
(
X + αY ◦ T−1

)
− V (X)

]
=

∫
Ω

DI [X] ·
(
Y ◦ T−1

)
dP,

=

∫
Ω

DI [X] ◦ T · Y dP,

where the last equality uses the fact that [DI [X] · (Y ◦ T−1)] ◦ T = DI [X] ◦ T · Y have the

same distribution with DI [X]× Y ◦ T−1. This proves (56).

B.3 Generalized Risk Sensitivity and the Announcement

Premium

We prove Theorem 2 in this section. Part 1 is straightforward given our results in the proof

of Theorem 1 in Appendix B.2. From equation (55), if I is expected utility, then m∗ (s+t ∣∣ z−t )
must be a constant. Conversely, if m∗ (s+t ∣∣ z−t ) is a constant, then I is linear and must have

an expected utility representation.

We prove part 2) of theorem 2 in three steps. First, we use Lemma B.4 to establish that

m∗
(
Vz+t

)
is non-negative if and only if I is monotone with respect to FSD. Second, we prove

the equivalence between (a) and (b). Lemma B.5 and B.6 jointly establish that generalized

risk sensitivity of I is equivalent to m∗
(
Vz+t

)
being a non-increasing function of Vz+t . Finally,

we use Lemma B.7 to establish the equivalence between (b) and (c).

Lemma B.4. I is monotone with respect FSD if and only if DI [X] ≥ 0 a.s.

Proof: Suppose DI [X] ≥ 0 a.s. for all X ∈ L2 (Ω,F , P ). Take any Y such that Y ≥ 0

a.s., using (40), we have:

I [X + Y ]− I [X] =

∫ 1

0

∫
Ω

DI [X + tY ]Y dPdt ≥ 0.

Conversely, suppose I is monotone with respect to FSD, we can prove DI [X] ≥ 0 a.s. by
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contradiction. Suppose the latter is not true and there exist an A ∈ F with P (A) > 0 and

DI [X] < 0 on A. Because DI is continuous, we can assume that DI [X + tχA] < 0 on A

for all t ∈ (0, ε) for ε small enough, where χA is the indicator function of A. Therefore,

I [X + χA]− I [X] =

∫ 1

0

∫
Ω

DI [X + tχA]χAdPdt < 0,

contradicting monotonicity with respect to FSD.

Next, we show that I is monotone with respect to SSD if and only if m∗
(
Vz+t

)
is non-

increasing in Vz+t . We first prove the following lemma.

Lemma B.5. I is monotone with respect SSD if and only if ∀X ∈ L2 (Ω,F , P ), for any

σ−field G ⊆ F , ∫
Ω

DI [X] · (X − E [X| G]) dP ≤ 0. (57)

Proof: Suppose condition (57) is true, by the definition of SSD, for any X and Y such

that E [Y |X] = 0, we need to prove

I (X) ≥ I (X + Y ) .

Using (40),

I (X + Y )− I (X) =

∫ 1

0

∫
Ω

DI [X + tY ]Y dPdt

=

∫ 1

0

1

t

∫
Ω

DI [X + tY ] {tY +X −X − tE [Y |X]} dPdt

=

∫ 1

0

1

t

∫
Ω

DI [X + tY ] {[X + tY ]− E [X + tY |X]} dPdt

≤ 0,

where the last inequality uses (57).

Conversely, assuming I is increasing in SSD, we prove (57) by contradiction. if (57) is

not true, then by the continuity of DI [X], for some ε > 0, ∀t ∈ (0, ε),∫
Ω

DI [(1− t)X + tE [X| G]] · (X − E [X| G]) dP > 0.
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Therefore,

I [(1− ε)X + εE [X| G]]−I [X] =

∫ ε

0

∫
Ω

DI [(1− t)X + tE [X| G]] {E [X| G]−X} dPdt < 0.

However, (1− ε)X + εE [X| G] ≥SSD X, a contradiction.28

Due to Lemma B.3, DI [X] can be represented by a measurable function of X, we denote

DI [X] = η (X). To establish the equivalence between monotonicity with respect to SSD

and the negative monotonicity of m∗
(
Vz+t

)
, we only need to prove that condition (57) is

equivalent to η (·) being a non-increasing function, which is Lemma B.6 below.

Lemma B.6. Condition (57) is equivalent to η (X) being a non-increasing function of X

with probability one.

Proof: First, we assume η (X) is non-increasing with probability one. To prove (57),

note that E [X| G] is measurable with respect to σ (X), and we can use the law of iterated

expectation to write:∫
DI [X] · (X − E [X| G]) dP = E [η (X) · (X − E [X| G])]

≤ E [η (E [X| G]) · (X − E [X| G])]
= 0,

where the inequality follows from the fact that η (X) ≤ η (E [X| G]) when X ≥ E [X| G] and
η (X) ≥ η (E [X| G]) when X ≤ E [X| G].

Second, to prove the converse of the above statement by contradiction, we assume (57) is

true, but η (x) is not non-decreasing with probability one. That is, there exist x1 < x2, both

occur with positive probability such that η (x1) < η (x2). Under this assumption, we construct

a random variable Y :

Y =

{
0, if X = x1 or x2

X, otherwise
,

28An easy way to prove the statement, (1− ε)X + εE [X| G] ≥SSD X is to observe that an equivalent
definition of SSD is X1 ≥SSD X2 if E [ϕ (X1)] ≥ E [ϕ (X2)] for all concave functions ϕ (see Rothschild and
Stiglitz (1970) and Werner (2009)). To see (1− ε)X + εE [X| G] ≥SSD X, take any concave function ϕ,
we have ϕ ((1− ε)X + εE [X| G]) ≥ (1− ε)ϕ (X) + εϕ (E [X| G]). Taking conditional expectation on both
sides, E [ϕ ((1− ε)X + εE [X| G])| G] ≥ (1− ε)E [ϕ (X)| G] + εϕ (E [X| G]). Note that (1− ε)E [ϕ (X)| G] +
εϕ (E [X| G]) = E [ϕ (X)| G]+ε {ϕ (E [X| G])− E [ϕ (X)| G]} ≥ E [ϕ (X)| G], because ϕ is concave. Therefore,
E [ϕ ((1− ε)X + εE [X| G])| G] ≥ E [ϕ (X)| G]. Taking unconditional expectation on both sides, we have
E [ϕ ((1− ε)X + εE [X| G])] ≥ E [ϕ (X)], as needed.
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and denote P1 = P (X = x1), P2 = P (X = x2). Note that∫
DI [X] · (X − E [X|Y ]) dP

=

∫
η (X) · (X − E [X|Y ]) dP

= P1η (x1)

[
x1 −

P1x1 + P2x2
P1 + P2

]
+ P2η (x2)

[
x2 −

P1x1 + P2x2
P1 + P2

]
=

P1P2 (x2 − x1) [η (x2)− η (x1)]

P1 + P2

> 0,

which contradict condition (57).

The following lemma establishes the equivalence between (b) and (c).

Lemma B.7. That m∗ (V ) is a non-increasing function of V is equivalent to (c).

Proof: If m∗ (·) is a non-decreasing function, then for any payoff f
(
·| z−t

)
that is co-

monotone with V
(
·| z−t

)
, we have

E
[
m∗ (V (

·| z−t
))
f
(
·| z−t

)]
≤ E

[
m∗ (V (

·| z−t
))]

E
[
f
(
·| z−t

)]
= E

[
f
(
·| z−t

)]
,

because m∗ (V (
·| z−t

))
and f

(
·| z−t

)
are negatively correlated.29

We prove that (c) implies (b) by contradiction. Suppose that the announcement premium

is non-negative for all payoffs that are co-monotone with V
(
·| z−t

)
, but m∗ (v1) < m∗ (v2) for

some v1 < v2, both of which occur with positive probability. Consider the payoff g
(
V
(
·| z−t

))
,

where g is a function defined on the real line:

g (v) =


1 if v = v2

−1 if v = v1

0 otherwise

.

Note that g
(
V
(
·| z−t

))
is co-monotone with V

(
·| z−t

)
and yet E

[
m∗ (V (

·| z−t
))
g
(
V
(
·| z−t

))]
> E

[
g
(
V
(
·| z−t

))]
, contradicting a non-negative

premium for g
(
V
(
·| z−t

))
.

29Note that the same argument implies that if m∗ (·) is a non-decreasing function, then the announcement
premium must be non-negative for the following more general class of payoffs: f

(
s+t

∣∣ z−t )
+ ε, where

E
[
ε| z−t , s+t

]
= 0.
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Appendix C Generalized Risk-Sensitive Preferences

C.1 Generalized risk sensitivity and uncertainty aversion

In this section, we provide proofs for results for the relationship between generalized risk

sensitivity and uncertainty aversion discussed in Section 4.3 of the paper.

• Quasiconcavity implies generalized risk sensitivity.

The following lemma formalizes the above statement.

Lemma C.1. Suppose I : L2 (Ω,F , P ) → R is continuous and invariant with respect

to distribution, then quasiconcavity implies generalized risk sensitivity.

Proof. Suppose I is continuous, invariant with respect to distribution, and

quasiconcave. Let X1 ≥SSD X2, we need to show that I [X1] ≥ I [X2]. By the

definition of second order stochastic dominance and the assumption of a non-atomic

probability space, there exists a random variable Y such that E [Y |X1] = 0 and X2 has

the same distribution as X1 + Y . Because I is invariant with respect to distribution,

I [X1 + Y ] = I [X2]. Let T : Ω → Ω be any measure preserving transformation such

that the invariant σ−field of T differs from the σ−field generated by X only by sets of

measure zero (see exercise 17.43 in Kechris (1995)), then quasiconcavity implies that

I
[
1

2
(X1 + Y ) +

1

2
(X1 + Y ) ◦ T

]
≥ min {I [X1 + Y ] , I [(X1 + Y ) ◦ T ]} .

Note that because T is measure preserving and I is distribution invariant, we

have I [X1 + Y ] = I [(X1 + Y ) ◦ T ] . Therefore, I
[
1
2
(X1 + Y ) + 1

2
(X1 + Y ) ◦ T

]
≥

I [X1 + Y ]. It is therefore straightforward to show that I
[

1
N

∑N−1
j=0 (X1 + Y ) ◦ T j

]
≥

I [X1 + Y ] for all N by induction. Note that 1
N

∑N−1
j=0 (X1 + Y ) ◦ T j →

E [X1 + Y |X1] = X1 by Birkhoff’s ergodic theorem (note that the invariance σ−field of

T is σ (X) by construction). Continuity of I then implies I [X1] ≥ I [X1 + Y ] = I [X2],

that is, I satisfies generalized risk sensitivity.

• Qusiconcavity is not necessary for generalized risk sensitivity.

It is clear from Lemma C.1 that under continuity, the following condition is sufficient
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for generalized risk sensitivity:

I [λX + (1− λ)Y ] ≥ I [X] for all λ ∈ [0, 1] if X and Y have the same distribution.

(58)

Clearly, this condition is weaker than quasiconcavity.

Here, we provide a counterexample of I that satisfies generalized risk sensitivity but

is not quasiconcave. We continue to use the two-period example in Section 3, where

we assume π (H) = π (L) = 1
2
. Given there are two states, random variables can be

represented as vectors. We denote X = {(xH , xL) : 0 ≤ xH , xL ≤ B} to be the set of

random variables bounded by B. Let I be the certainty equivalent functional defined

on X such that

∀X ∈ X, I [X] = ϕ−1

{
min
m∈M

E [mϕ (X)]

}
, with ϕ (x) = ex, (59)

whereM =
{
(mH ,mL) : mH +mL = 1, max

{
mH
mL
, mL
mH

}
≤ η

}
is a collection of density

of probability measures and the parameter η ≥ eB. Note that I defined in (59) is not

concave because ϕ (x) is a strictly convex function. Below we show that I satisfies

generalized risk sensitivity, but is not quasiconcavity.

Using (58), to establish generalized risk sensitivity, we need to show that for any X,

Y ∈ X such that X and X have the same distribution, I [λX + (1− λ)Y ] ≥ I [X].

Without loss of generality, we assume X = [xH , xL] with xH > xL. Because Y has the

same distribution with X, Y = [xL, xH ]. We first show that for all λ ∈
[
1
2
, 1
]
,

I [λX + (1− λ)Y ] ≥ I [X] .

Because ϕ is strictly increasing, it is enough to prove that for all λ ∈
[
1
2
, 1
]
,

d

dλ
ϕ (I [λX + (1− λ)Y ]) ≤ 0. (60)

Because xH > xL, for all λ ≥ 1
2
, λxH + (1− λ)xL ≥ λxL + (1− λ)xH and

ϕ (I [λX + (1− λ)Y ]) =
1

2
m∗
Hϕ (λxH + (1− λ)xL) +

1

2
m∗
Lϕ (λxL + (1− λ)xH) ,
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where mH +mL = 1 and mH
mL

= 1
η
. Therefore,

d

dλ
ϕ (I [λX + (1− λ)Y ]) =

1

2
[m∗

Hϕ
′ (λxH + (1− λ)xL)−m∗

Lϕ
′ (λxL + (1− λ)xH)] (xH − xL)

=
1

2
(xH − xL)

{
m∗
He

λxH+(1−λ)xL −m∗
Le

λxL+(1−λ)xH
}
.

Note that
m∗
He

λxH+(1−λ)xL

m∗
Le

λxL+(1−λ)xH
=

1

η
e(2λ−1)(xH−xL) ≤ 1

η
eB ≤ 1.

This proves (60). Similarly, one can prove I [λX + (1− λ)Y ] ≥ I [Y ] for all λ ∈
[
0, 1

2

]
.

This established generalized risk sensitivity.

To see I is not quasiconcave, consider X1 = [1, 0], and X2 = [x, x], where x = ln η+e
η+1

.

One can verify that I [X1] = I [X2], but I
[
1
2
X1 +

1
2
X2

]
< I [X1], contradicting

quasiconcavity.

• For second-order expected utility, the concavity of ϕ is equivalent to generalized risk

sensitivity.

Proof. certainty equivalent functionals of the form I [V ] = ϕ−1 (E [ϕ (V )]), where ϕ

is strictly increasing is called second-order expected utility in Ergin and Gul (2009).

For this class of preferences, generalized risk sensitivity is equivalent to quasiconcavity,

which is also equivalent to the concavity of ϕ. To see this, suppose ϕ is concave,

it is straightforward to show that I [·] is quasiconcave and satisfies generalized risk

sensitivity by Lemma C.1. Conversely, suppose I [·] satisfies generalized risk sensitivity

then E [ϕ (X)] ≥ E [ϕ (Y )] whenever X ≥SSD Y . By remark B on page 240 of

Rothschild and Stiglitz (1970), ϕ is concave.

• Within the class of smooth ambiguity-averse preferences, uncertainty aversion is

equivalent to generalized risk sensitivity.

Proof. Using the results in Klibanoff, Marinacci, and Mukerji (2005, 2009), it

straightforward to show that for the class of smooth ambiguity preferences, concavity

of ϕ is equivalent to the quasiconcavity of I. As a result, quasiconcavity implies

generalized risk sensitivity by Lemma C.1. The nontrivial part of the above claim

is that generalized risk sensitivity implies the concavity of ϕ. To see this is true, note

that invariance with respect to distribution implies that the probability measure µ (x)
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must satisfy the following property: for all A ∈ F ,∫ ∫
A

dPxdµ (x) = P (A) .

Clearly, generalized risk sensitivity implies that I [E [V ]] ≥ I [V ], for all V ∈
L2 (Ω,F , P ). That is, ∫

ϕ (Ex [V ]) dµ (x) ≤ ϕ (E [V ]) .

The fact that the above inequality has to hold for all V and E [V ] =
∫
Ex [V ] dµ (x)

implies that ϕ must be concave.

C.2 Generalized risk sensitivity and preference for early resolution

of uncertainty

Below, we provide detailed examples and proofs for the discussions on the relationship

between preference for early resolution of uncertainty and generalized risk sensitivity in

Section 4.3.

• An example that satisfies generalized risk sensitivity but strictly prefers late resolution

of uncertainty.

Example 1. Consider the following utility function in the two period example:

u (C) = C − b, where b = 2; I (X) =
(
E
√
X
)2

; and β = 1.

It straight forward to check that I is quasiconcave therefore satisfy generalized risk

sensitivity. Below we verify that this utility function prefers late resolution of

uncertainty when the following consumption plan is presented: C0 = 1, CH = 3.21,

and CL = 3, where the distribution of consumption is given by π (H) = π (L) = 1
2
.

The utility with early resolution of uncertainty is given by:

V E = I [u (C0) + u (C1)] .

It is straightforward to show that:

u (C0) + u (CH) = 0.21; u (C0) + u (CL) = 0
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Therefore,

V E =
[
0.5×

√
0.21 + 0.5×

√
0
]2

= 0.0525

The utility for late resolution of uncertainty is given by:

V L = u (C0) + I [u (C1)] = 0.1025.

• An example of I that prefers early resolution of uncertainty but is strictly decreasing

in second order stochastic dominance.

Example 2. Consider the following preference:

u (C) = C − b with b = 2; I (X) =
√
E [X2]; and β = 1.

Because X2 is a strictly convex function, the certainty equivalent functional I is strictly

decreasing in second-order stochastic dominance. To see that the agent prefers early

resolution of uncertainty, we consider the same numerical example as in Example 1. It

is straightforward to verify that the utility for early resolution of uncertainty is

V E = I [u (C0) + u (C1)] = 0.1485,

and the utility for later resolution is:

V L = u (C0) + I [u (C1)] = 0.11.

• Generalized risk sensitivity and indifference toward the timing of resolution of

uncertainty implies representation (24).

Proof. By Lemma 1 and the proof of Theorem 1 in Strzalecki (2013), indifference

between timing of resolution of uncertainty implies that I satisfies that for all X ∈
L2 (Ω,F , P ), all a ≥ 0, I [a+X] = a + I [X]. Take derivatives with respect to a and

evaluate at a = 0, we have: ∫
DI [X] dP = 1. (61)
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Note that because I is normalized, I [0] = 0. Therefore, ∀X ∈ L2 (Ω,F , P ),

I [X] = I [X]− I [0]

=

∫ 1

0

∫
DI [tX]XdPdt

=

∫ ∫ 1

0

DI [tX] dtXdP.

Note that
∫ ∫ 1

0
DI [tX] dtdP = 1 is a density, because of (61). In addition, generalized

risk sensitivity implies that for each t,

[DI [tX] (ω)−DI [tX] (ω′)] [X (ω)−X (ω′)] ≤ 0. (62)

Therefore,
∫ 1

0
DI [tX] dt must satisfy (62) as well. By the result of Carlier and Dana

(2003),
∫ ∫ 1

0
DI [tX] dtXdP can be represented by minimization with respect to the

core of a convex distortion of P .
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Wang, T. (1993): “Lp-Fréchet Differentiable Preference and ”Local Utility” Analysis,” Journal of

Economic Theory, 61(1), 139–159.

Werner, J. (2009): “Risk and Risk Aversion When States of Nature Matter,” Economic Theory,

41, 231–246.

Woodford, M. (2010): “Robustly Optimal Monetary Policy with Near-Rational Expectations,”

American Economic Review, 100(1), 274–303.

62



Table I

Market Return on Announcement and Non-announcement Days

# days p. a. daily prem. daily std. premium p.a.

Market 252 2.46 bps 98.2 bps 6.19%

Announcement 30 11.21 bps 113.8 bps 3.36%

No Announcement 222 1.27 bps 95.9 bps 2.82%

This table documents the mean and the standard deviation of the market excess return during the

1961-2014 period. The column “# days p.a.” is the average number of trading days per annum, the

second column is the daily market equity premium on all days, that on announcement days, and that

on days with no announcement. The column “daily std.” is the standard deviation of daily returns.

The column “premium p.a.” is the cumulative market excess returns within a year, which is computed

by multiplying the daily premium by the number of event days and converting it into percentage

points.

63



Table II

Average Daily Return around Announcements (Basis Points)

-1 0 +1

All Announcements 1.77 11.21 0.84

(2.86) (2.96) (3.22)

All w/o FOMC 0.69 9.28 0.99

(2.78) (3.05) (3.24)

No Announcement −−− 1.27 −−−

(0.91)

This table documents the average daily return during the 1961-2014 period in basis

points on event days (column “0”), that before event days (column “-1”), and

that after event days (column “+1”) with standard errors of the point estimates

in parenthesis. The row “All announcements” is the average event day return on

all announcement days; “All w/o FOMC” is the average event day return on all

announcement days except FOMC announcement days; and “No announcements” is

the average daily return on non-announcement days.
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Table III

Average hourly return around announcements

Announcement window −5 −4 −3 −2 −1 0 +1 +2

All Announcements 0.78 3.25 2.00 −0.17 −1.51 6.16 −2.32 2.11

(0.26) (2.34) (1.85) (0.02) (−1.64) (1.64) (−1.24) (0.90)

FOMC 13.35 13.54 7.65 3.37 4.78 0.19 5.84 −5.1

(2.43) (2.45) (3.08) (1.43) (2.92) (0.20) (0.82) (−1.08)

All w/o FOMC −0.37 0.42 0.94 −0.69 −2.96 6.88 −3.22 2.72

(−0.16) (0.72) (0.37) (−0.30) (−2.53) (1.26) (−1.43) (2.56)

This table reports the average hourly excess return around announcements during the 1997-2013 period, with

standard errors of the point estimates in parenthesis. The announcement time is normalized as hour zero. For

k = −5, −4, · · · , 0, +1, +2, announcement window k stands for the interval between hour k − 1 and hour k. The

row “All announcements” is the average hourly return on all announcement days; “FOMC” is the average hourly

return on FOMC announcement days, and “All w/o FOMC” is the average hourly return on all announcement days

except FOMC announcement days.
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Appendix: Risk Preferences and The Macro Announcement
Premium

Hengjie Ai and Ravi Bansal

A The two-period model

In this section, we provide a formal derivation of the A-SDF in the two-period model. We also

establish the equivalence between Arrow-Debreu markets and sequential markets in the context of

our model. We show that both formulations lead to the same set of asset pricing equations.

A.1 The Arrow-Debreu market

We use
{
C̄0,

{
C̄1 (s)

}N
s=1

}
to denote aggregate endowment in our two-period model and use

{C0 (s) , C1 (s)}Ns=1 as the consumption choice of the agent. From an individual agent’s perspective,

the decision for C0 is made after the announcement, and therefore can depend on s. Trading on the

Arrow-Debreu market happens in period 0−. Let q0 (s) be the period 0− price of an Arrow-Debreu

security that delivers one unit of consumption good in period 0+ and state s, for s = 1, 2, · · · , N .

Similarly, let q1 (s) be the Arrow-Debreu price of one unit of consumption good in period one and

state s. Because markets are complete, the utility maximization problem of the representative agent

can be written as:

max I [u (C0 (s)) + βu (C1 (s))]

subject to :
N∑
s=1

[q0 (s)C0 (s) + q1 (s)C1 (s)] ≤
N∑
s=1

[
q0 (s) C̄0 + q1 (s) C̄1 (s)

]
In the above setup, because the announcement is made at time 0+, from the agent’s perspective,

consumption at time 0+ is allowed to depend on s, which we write as C0 (s). To save notation, as

in the paper, we denote Vs = u (C0 (s)) + βu (C1 (s)). Optimality implies that,

q0 (s) = λ
∂I [V ]

∂Vs
u′ (C0 (s)) , q1 (s) = λ

∂I [V ]

∂Vs
βu′ (C1 (s)) ,

where λ is the Lagrangian multiplier of the budget constraint. In equilibrium, market clearing

implies that C0 (s) = C̄0 for all s. If we normalize the price of one unit state-non-contingent

consumption at time 0+ to be one, that is,
∑N

s=1 q0 (s) = 1; then, for all s,

q0 (s) =

∂I[V ]
∂Vs∑N

s=1
∂I[V ]
∂Vs

, (A.1)

and q1(s)
q0(s)

= β u
′(C1(s))
u′(C0)

. That is, we can simply use ratios of marginal utilities to compute Arrow-
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Debreu prices. Clearly, (A.1) implies the expression of the A-SDF in equation (12) of the paper.

A.2 The sequential market

Here, we show that the two-period version of the sequential market setup described in Section 4

leads to the same asset pricing equation, (12). In period 0−, there is no consumption decision and

the agent chooses investment in a vector of announcement returns to maximize:

max
{ξj}Jj=1

I
[
V
(
W ′)]

subject to : W
′
=W −

J∑
j=1

ξj +
J∑
j=1

ξjRA,j (s) , all s, (A.2)

where V (W ) = {Vs (W )}Ns=1 is a vector of value functions. For each s, the value function Vs (W ) is

defined by the optimal portfolio choice problem on the post-announcement market:

Vs (W ) = max
C0,C1

u (C0) + βu (C1)

subject to : C1 = (W − C0)RP,s. (A.3)

Note that RP,s is the return from period 0+ to period 1 after announcement s. Because the

announcement fully reveals the true state of the world, RP,s is a risk-free return.

The first order condition for (A.2) with respect to ξj implies that for any announcement returns

RA,j ,
N∑
s=1

∂

∂Vs
I
[
V
(
W ′)] ∂Vs (W ′

s)

∂W ′
s

[RA,j (s)− 1] = 0, (A.4)

where W ′
s denote the equilibrium wealth of the agent in period 0+ after announcement s. The

envelope condition for (A.3) implies that ∂Vs(W ′
s)

∂W ′
s

= u′ (C0 (s)) = u′
(
C̄0

)
, where the second equality

uses the market clearing condition. As u′ > 0, equation (A.4) implies

N∑
s=1

∂
∂Vs

I [V (W ′)]∑N
s=1

∂
∂Vs

I [V (W ′)]
RA,j (s) = 1,

as in equation (11) of the paper.

A.3 The example of recursive utility

Here, we provide details of the computation of the A-SDF for the recursive utility in Section 3.2 of

the paper. We illustrate that because the announcement in our model leads uncertainty to resolve

before the realization of consumption shocks, the computation of utilities and therefore, marginal

utilities differ from that in models in which resolution of uncertainty happens at the same time of

2



the realization of the consumption shocks.

Figure 1: Early and Late Resolution of Uncertainty

Figure 1 plots a consumption plan with early resolution of uncertainty (top panel) and a consumption plan with late

resolution of uncertainty.

Figure 1 illustrates a two-period model with announcement and one without announcement.

The top panel is the same as that in Figure 2 in our main text, where the announcement at time

0+ fully reveals the true state and leads to early resolution of uncertainty. In the bottom panel

of Figure 1, due to the absence of announcement, the uncertainty is resolved in period 1 when

consumption is realized; that is, it is a case of late resolution of uncertainty.1

We denote the utility at 0− in the case of early resolution as V E (C0, {C1 (s)}ns=1). In the case

of late resolution, 0− and 0+ have the same utility level, which we denote as V L (C0, {C1 (s)}ns=1).

In the case of early resolution, because there is no uncertainty in period 0+, we first aggregate

over time to compute the continuation utility as 1
1− 1

ψ

C
1− 1

ψ

0 + β 1
1− 1

ψ

C
1− 1

ψ

1 , and then aggregate over

uncertain realizations of the announcement to compute its certainty equivalent at 0− as:

V E =

{
n∑
s=1

π (s)

[{
C

1− 1
ψ

0 + βC
1− 1

ψ

1 (s)

} 1−γ
1−1/ψ

]} 1
1−γ

. (A.5)

In the case of late resolution, we first aggregate over uncertain period 1 consumption to compute

1The comparison between early and late resolution of uncertainty here is the same as that in Figure 2 of Kreps
and Porteus [14]. Our top panel corresponds to node d0 (a) and the bottom panel corresponds to node d0 (b) in that
Figure.
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its certainty equivalent:
{
E
[
C1−γ
1

]} 1
1−γ

, and then aggregate over time to compute V L as:

V L =

 1

1− 1
ψ

C
1− 1

ψ

0 + β
1

1− 1
ψ

{
n∑
s=1

π (s)
[
C1−γ
1 (s)

]} 1−1/ψ
1−γ


1

1−1/ψ

. (A.6)

The Arrow-Debreu price for one unit of consumption in period one measured in period-0

consumption numeraire can be computed as follows.2 In the case of early resolution, the marginal

rate of substitution between C1 (s) and C0 is:

∂V E

∂C1(s)

∂V E

∂C0

= π (s)β

(
C1

C0

)− 1
ψ

{
C

1− 1
ψ

0 + βC
1− 1

ψ

1 (s)

} 1/ψ−γ
1−1/ψ

∑n
s=1 π (s)

{C1− 1
ψ

0 + βC
1− 1

ψ

1 (s)

} 1/ψ−γ
1−1/ψ

 . (A.7)

In the case of late resolution,

∂V L

∂C1(s)

∂V L
∂C0

= π (s)β

(
C1 (s)

C0

)− 1
ψ

 C1 (s)[∑n
s=1 π (s)C

1−γ
1 (s)

] 1
1−γ


1
ψ
−γ

. (A.8)

Clearly, the SDF for the early resolution case, (A.7) can be decomposed into the m∗ in equation

(10) and an SDF that discounts period 1 cash flow into period 0+ consumption units: β
(
C1
C0

)− 1
ψ
.

The SDF in (A.8) takes a familiar from as in many consumption-based asset pricing models where

uncertainty is assumed to resolve at the same time of the realization of consumption shocks. In

general, the term

{
C1(s)

[
∑n
s=1 π(s)C

1−γ
1 (s)]

1
1−γ

} 1
ψ
−γ

does not integrate to one unless in the special case

of unit IES.

B Examples of Dynamic Preferences and A-SDF

In this section, we show that most of the non-expected utility proposed in the literature can be

represented in the form of (14). We also provide an expression for the implied A-SDF.3

• The recursive utility of Kreps and Porteus [14] and Epstein and Zin [5]. The recursive

2As in the paper, in the case with announcement, the period-0 consumption numeraire is interpreted as one unit
of period-0 consumption delivered non-contingently at time 0+.

3Depending on the model, additional conditions may be needed so that the assumptions of Theorem 1 can be
verified. We provide the expressions for A-SDF assuming appropriate conditions on the primitive utility functions
can be imposed to guarantee its existence.
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preference can be generally represented as:

Ut = u−1
{
(1− β)u (Ct) + βu ◦ h−1E [h (Ut+1)]

}
. (B.1)

For example, the well-known recursive preference with constant IES and constant risk aversion

is the special case in which u (C) = 1
1−1/ψC

1−1/ψ and h (U) = 1
1−γC

1−γ . With a monotonic

transformation,

V = u (U) , (B.2)

the recursive relationship for V can be written in the form of (14) with the same u function

in equation (B.1) and the certainty equivalence functional:

I (V ) = ϕ

(∫
ϕ−1 (V ) dP

)
,

where ϕ = h ◦ u−1. the A-SDF can be written as:

m∗ (V ) ∝ ϕ′ (V ) , (B.3)

where we suppress the normalizing constant, which is chosen so that m∗ (V ) integrates to one.

• The maxmin expected utility of Gilboa and Schmeidler [7]. The dynamic version of this

preference is studied in Epstein and Schneider [4] and Chen and Epstein [2]. This preference

can be represented as the special case of (14) where the certainty equivalence functional is of

the form:

I (V ) = min
m∈M

∫
mV dP,

where M is a family of probability densities that is assumed to be convex and closed in the

weak∗ topology. As we show in Section 3.2 of the paper, the A-SDF for this class of preference

is the Radon-Nikodym derivative of the minimizing probability measure with respect to P .

• The variational preferences of Maccheroni, Marinacci, and Rustichini [17], the dynamic

version of which is studied in Maccheroni, Marinacci, and Rustichini [18], features a certainty

equivalence functional of the form:

I (V ) = min
E[m]=1

∫
mV dP + c (m) ,

where c (π) is a convex and weak∗−lower semi-continuous function. Similar to the maxmin

expected utility, the A-SDF for this class of preference is minimizing probability density.

• The multiplier preferences of Hansen and Sargent [8] and Strzalecki [22] is represented by the

certainty equivalence functional:

I (V ) = min
E[m]=1

∫
mV dP + θR (m) ,
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where R (m) denote the relative entropy of the density m with respect to the reference

probability measure P , and θ > 0 is a parameter. In this case, the A-SDF is also

the minimizing probability that can be written as a function of the continuation utility:

m∗ (V ) ∝ e−
1
θ
V .

• The second order expected utility of Ergin and Gul [6] can be written as (14) with the following

choice of I:
I (V ) = ϕ−1

(∫
ϕ (V ) dP

)
,

where ϕ is a concave function. In this case, the A-SDF can be written as a function of

continuation utility:

m∗ (V ) ∝ ϕ′ (V ) .

• The smooth ambiguity preference of Klibanoff, Marinacci, and Mukerji [12] and Klibanoff,

Marinacci, and Mukerji [13] can be represented as:

I (V ) = ϕ−1

(∫
M
ϕ

(∫
Ω
mV dP

)
dµ (m)

)
, (B.4)

where µ is a probability measure on a set of probabilities densities M . The A-SDF can be

written as :

m∗ (ω) ∝
∫
M
ϕ′

(∫
mV dP

)
m (ω) dµ (m) . (B.5)

• The certainty equivalence functional I for the disappointment aversion preference is implicitly

defined as I [V ] = µ, where µ is the unique solution to the following equation:

ϕ (µ) =

∫
ϕ (V ) dP − θ

∫
µ≥V

[ϕ (µ)− ϕ (V )] dP,

where ϕ is a concave function. The A-SDF can be written as:

m∗ (V ) =

{
ϕ′(V )

ϕ′(µ)[1+θP (V≤µ)] if V > µ
(1−θ)ϕ′(V )

ϕ′(µ)[1+θP (V≤µ)] f V ≤ µ
,

whenever I [V ] is differentiable at V .

• Hayashi and Miao [10] develop a class of generalized recursive smooth ambiguity model that

takes the following form:4

V̄t = u−1

{
(1− β)u (Ct) + β

[
u ◦ ν−1

](∫
M

[
ν ◦ ϕ−1

](∫
mϕ

(
V̄t+1

)
dP

)
dµ (m)

)}
, (B.6)

where u, v, and ϕ are all smooth and monotone functions. As in the Klibanoff, Marinacci,

4The model in Hayashi and Miao [10] is more general than (B.6) and may not permit a representation of the form
Vt = u (Ct)+βI [Vt+1]. However, the applied examples of this preference are often special cases of (B.6). See also the
related generalized recursive multiple-priors model of Hayashi [9], which can be obtained as a limiting case of (B.6).
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and Mukerji [12] model, M is a set of probability densities that represent ambiguous beliefs,

and µ is a measure on the set of densities. With a monotonic transformation, Vt = u
(
V̄t
)
, the

above can be written in the form of (14) with

I (V ) =
[
u ◦ ν−1

](∫
M

[
ν ◦ ϕ−1

](∫
m

[
ϕ ◦ u−1

]
(V ) dP

)
dµ (m)

)
.

The A-SDF for this class of preferences can be written as:

m∗ (ω) ∝
∫
M

[
ν ◦ ϕ−1

]′(∫
m

[
ϕ−1 ◦ u

]
V dP

)
m (ω)

[
ϕ ◦ u−1

]′
(V (ω)) dµ (m) .

C Proofs for Theorem 1 and 2

C.1 Preliminaries

In this section, we provide formal definitions of some relevant concepts and introduce the basic

methodology to prove Theorem 1 and 2. We first state the definition of a non-atomic probability

space, which is an assumption maintained throughout Section 4.

Definition A.1. Non-atomic probability space: A probability space (Ω,F , P ) is said to be non-

atomic (or continuous) if ∀ω ∈ Ω, P (ω) = 0.

Next, we state the definition of first-order stochastic dominance (FSD) and second-order

stochastic dominance (SSD).

Definition A.2. First-order stochastic dominance: X1 first-order stochastic dominates X2, or

X1 ≥FSD X2, if there exists a random variable Y ≥ 0 a.s. such that X1 has the same distribution

as X2 + Y . Strict monotonicity, X1 >FSD X2 holds if P (Y > 0) > 0 in the above definition.

Definition A.3. Second-order stochastic dominance: X1 second order stochastic dominates X2, or

X1 ≥SSD X2, if there exists a random variable Y such that E [Y |X1] = 0 and X2 has the same

distribution as X1 + Y . Strict monotonicity, X1 >SSD X2 holds if P (Y ̸= 0) > 0 in the above

definition.5

FSD and SSD are typically defined as stochastic orders on the space of distributions. Here, it is

more convenient to define FSD and SSD as binary relations on the space of random variables. Our

definitions are equivalent to the standard definitions of FSD and SSD due to the assumption of a

non-atomic probability space (See Muller and Stoyan [20]).

Our strategy for proving Theorem 1 and 2 consists of two steps. First, we apply the envelope

theorems in Milgrom and Segal [19] to establish the differentiability of the value functions. Second,

5Our definition of SSD is the same as the standard concept of increasing risk (see Rothschild and Stiglitz [21] and
Werner [25]). However, it is important to note that in our model, the certainty equivalence function I is defined on
the space of continuation utilities rather than consumption.
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we compute the derivatives of I to construct the A-SDF and use derivatives of I to integrate back

to recover the certainty equivalence functional.6

Most of our analysis below is on the conditional certainty equivalence functional I [ ·| z]. To

save notation, whenever it does not cause confusion, we suppress the dependence of I [ ·| z] on z and

simply write I [·]. We often use the following operation to relate the certainty equivalence functional

I and its derivatives. ∀ X,Y ∈ L2 (Ω,F , P ), we can define g (t) = I [X + t (Y −X)] for t ∈ [0, 1]

and compute I [Y ]− I [X] as

I [Y ]− I [X] = g (1)− g (0)

=

∫ 1

0
g′ (t) dt

=

∫ 1

0

∫
Ω
DI [X + t (Y −X)] (Y −X) dPdt, (C.1)

where DI [X + t (Y −X)] is understood as the representation of the Fréchet derivative of I [·]
evaluated at X + t (Y −X). The Riesz representation theorem implies that DI [X + t (Y −X)] is

an element of L2 (Ω,F , P ), and DI [X + t (Y −X)] applied to (Y −X) can be computed as the

dot product,
∫
ΩDI [X + t (Y −X)] (Y −X) dP .

We note that Fréchet Differentiability with Lipschitz Derivatives guarantees that the function

g (t) is continuously differentiable. The differentiability of g is straightforward (see for example,

Luenberger [16]). To see that g′ (t) is continuous, note that

g′ (t1)− g′ (t2) =

∫
Ω
{DI [X + t1 (Y −X)]−DI [X + t2 (Y −X)]} (Y −X) dP

≤ ∥DI [X + t1 (Y −X)]−DI [X + t2 (Y −X)]∥ · ∥Y −X∥ .

The Lipschitz continuity of DI implies that

∥DI [X + t1 (Y −X)]−DI [X + t2 (Y −X)]∥ ≤ (t1 − t2) ∥(Y −X)∥ ,

and the latter vanishes as t2 → t1. This proves the validity of (C.1).

For later reference, it is useful to note that we can apply the mean value theorem on g and write

for some t̂ ∈ (0, 1),

I [Y ]− I [X] =

∫
Ω
DI

[
X + t̂ (Y −X)

]
(Y −X) dP. (C.2)

Much of our analysis below relies on the theory of differentiability for nonlinear operators defined

on infinite dimensional spaces, for example, in Tapia [24] and Luenberger [16].

6A weaker notion of differentiability, Gâtteaux differentiability is enough to guarantee the existence of A-SDF.
However, the converse of Theorem 1 requires a stronger condition for differentiability, which is what we assume here.
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C.2 Existence of A-SDF

In this section, we provide a proof for Theorem 1 and establish the existence of A-SDF.

Differentiability of value function We establish the differentiability of value functions

recursively. In particular, we show that the value functions are elements of D, which is defined as:

Definition A.4. D is the set of differentiable functions on the real line, denoted by f , that satisfy

the following two properties.

1. f is Lipschitz continuous and f ′ (x) > 0.

2. ∀x ∈ R, as h → 0, 1
h [f (x+ h− a)− f (x− a)] converges uniformly to f ′ (x− a)

in a. That is, ∀ε > 0, there exists δ > 0 such that |h| < δ implies that∣∣ 1
h [f (x+ h− a)− f (x− a)]− f ′ (x− a)

∣∣ < ε for all a ∈ R.

We first introduce some notation. For any v ∈ D, we define fv and gv as functions of (W, ξ),

where W is the wealth level, and ξ ∈ RJ+1 is a portfolio strategy, by:

fv (W, ξ) = u

(
W −

∑J

j=0
ξj

)
+ βI

[
v

(∑J

j=0
ξjRj

)]
, (C.3)

gv (W, ξ) = I
[
v

(
W +

∑J

j=0
ξj (Rj − 1)

)]
. (C.4)

Because Rj ∈ L2 (Ω,F , P ) and v is Lipschitz continuous, for a fixed ξ, v
(∑J

j=0 ξjRj

)
and

v
(
W −

∑J
j=0 ξj (Rj − 1)

)
are both square integrable and equations (C.3) and (C.4) are well-

defined.

We define two operators on D. For any v ∈ D, let T+v and T−v be defined by:

[
T+v

]
(W ) = sup

ξ
fv (W, ξ) , (C.5)[

T−v
]
(W ) = sup

ξ
gv (W, ξ) . (C.6)

Clearly, the value functions Vz+t
(W ) and Vz−t

(W ) can be constructed recursively as Vz+t
(W ) =[

T+Vz−t+1

]
(W ), and Vz−t

(W ) =
[
T−Vz+t

]
(W ) (with the understanding that the certainty

equivalence functionals in the definition of fv (W, ξ) and gv (W, ξ) are appropriately chosen

conditional certainty equivalence functionals). Because we start with the assumption of the existence

of an interior equilibrium, the maximization problems (C.5) and (C.6) are well defined, and the

maximums are achieved.

Below, we prove that Vz+t
and Vz−t

are elements of D in two steps. First, Lemma A.1 below

establishes the equi-differentiability of the family of functions {fv (W, ξ)}ξ and {gv (W, ξ)}ξ so that
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we can apply the envelope theorem in Milgrom and Segal [19]. Second, in Lemma A.2, we apply

the envelope theorem repeatedly to show that the operators T+ and T− map D into itself.

Lemma A.1. Suppose u, v ∈ D, as h → 0, both 1
h [fv (W + h, ξ)− fv (W, ξ)] and

1
h [gv (W + h, ξ)− gv (W, ξ)] converge uniformly for all ξ.

Proof: First,

1

h
[fv (W + h, ξ)− fv (W, ξ)] =

1

h

[
u

(
W + h−

∑J

j=0
ξj

)
− u

(
W −

∑J

j=0
ξj

)]
converges uniformly because u ∈ D. Next, we need to show that

1

h
[gv (W + h, ξ)− gv (W, ξ)] →

∂

∂W
gv (W, ξ) (C.7)

and the convergence is uniform for all ξ. Note that

∂

∂W
gv (W, ξ) =

∫
DI

[
v

(
W −

∑J

j=0
ξj (Rj − 1)

)]
· v′

(
W −

∑J

j=0
ξj (Rj − 1)

)
dP

and

gv (W + h, ξ)− gv (W, ξ) = I
[
v

(
W + h+

∑J

j=0
ξj (Rj − 1)

)]
− I

[
v

(
W +

∑J

j=0
ξj (Rj − 1)

)]
=

∫
Ω
DI

[
v̄
(
t̂
)]

(v̄ (1)− v̄ (0)) dP, for some t ∈ (0, 1) ,

where we denote v̄ (t) = tv
(
W + h−

∑J
j=0 ξj (Rj − 1)

)
+ (1− t) v

(
W −

∑J
j=0 ξj (Rj − 1)

)
and

applied equation (C.2). Also, denote v̄′ (0) = v′
(
W −

∑J
j=0 ξj (Rj − 1)

)
, then the right hand side

of (C.7) can be written as
∫
ΩDI [v̄ (0)] v̄′ (0) dP , we have:∣∣∣∣1h

∫
Ω
DI

[
v̄
(
t̂
)]

(v̄ (1)− v̄ (0)) dP −
∫
Ω
DI [v̄ (0)] v̄′ (0) dP

∣∣∣∣
=

∣∣∣∣∣ 1
h

∫
ΩDI

[
v̄
(
t̂
)]

(v̄ (1)− v̄ (0)) dP −
∫
ΩDI

[
v̄
(
t̂
)]
v̄′ (0) dP

+
∫
ΩDI

[
v̄
(
t̂
)]
v̄′ (0) dP −

∫
ΩDI [v̄ (0)] v̄′ (0) dP

∣∣∣∣∣
≤

∫
Ω

∣∣DI
[
v̄
(
t̂
)]∣∣ ∣∣∣∣1h (v̄ (1)− v̄ (0))− v̄′ (0)

∣∣∣∣ dP +

∫
Ω

∣∣DI
[
v̄
(
t̂
)]

−DI [v̄ (0)]
∣∣ ∣∣v̄′ (0)∣∣ dP

≤
∥∥DI

[
v̄
(
t̂
)]∥∥ ∥∥∥∥1h (v̄ (1)− v̄ (0))− v̄′ (0)

∥∥∥∥+
∥∥DI

[
v̄
(
t̂
)]

−DI [v̄ (0)]
∥∥∥∥v̄′ (0)∥∥ (C.8)

Because v ∈ D, for h small enough,
∣∣ 1
h (v̄ (1)− v̄ (0))− v̄′ (0)

∣∣ ≤ ε with probability

one and
∥∥ 1
h (v̄ (1)− v̄ (0))− v̄′ (0)

∥∥ ≤ ε. Also, because DI is Lipschitz continuous,∥∥DI
[
v̄
(
t̂
)]

−DI [v̄ (0)]
∥∥ ≤ K ∥v̄ (1)− v̄ (0)∥ ≤ K2h, where the second inequality is due to the

Lipschitz continuity of v. This proves the uniform convergence of (C.8).

Lemma A.2. Suppose u ∈ D, then both T+ and T− map D into D.
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Proof: It follows from Lemma A.1 that for any v ∈ D, we can apply Theorem 3 in Milgrom

and Segal [19] and establish that both T+v and T−v are differentiable, and

d

dW
T+v (W ) = u′

(
W −

∑J

j=0
ξj (W )

)
d

dW
T−v (W ) =

∫
DI

[
v

(
W −

∑J

j=0
ξj (W ) (Rj − 1)

)]
· v′

(
W −

∑J

j=0
ξj (W ) (Rj − 1)

)
dP,

where ξ (W ) denotes the utility-maximizing portfolio at W .

To see that T+v (W ) is Lipschitz continuous, note that

fv (W1, ξ (W2))− fv (W2, ξ (W2)) ≤ T+v (W1)− T+v (W2) ≤ fv (W1, ξ (W1))− fv (W2, ξ (W1)) .

(C.9)

Because ∀ξ, |f (W1, ξ)− f (W2, ξ)| =
∣∣∣u(W1 −

∑J
j=0 ξj

)
− u

(
W2 −

∑J
j=0 ξj

)∣∣∣ ≤ K |W1 −W2|,
where K is a Lipschitz constant for u, |Tv (W1)− Tv (W2)| ≤ K |W1 −W2|. We can prove that

T−v (W ) is Lipschitz continuous in a similar way:

gv (W1, ξ (W2))− g v (W2, ξ (W2)) ≤ T−v (W1)− T−v (W2) ≤ gv (W1, ξ (W1))− gv (W2, ξ (W1)) .

(C.10)

Note that ∀ξ,

|gv (W1, ξ)− g v (W2, ξ)| =

∣∣∣∣I [
v

(
W1 +

∑J

j=0
ξj (Rj − 1)

)]
− I

[
v

(
W2 +

∑J

j=0
ξj (Rj − 1)

)]∣∣∣∣
≤ K

∥∥∥∥v(W1 +
∑J

j=0
ξj (Rj − 1)

)
− v

(
W2 +

∑J

j=0
ξj (Rj − 1)

)∥∥∥∥
≤ K2 |W1 −W2| ,

where the inequalities are due to the Lipschitz continuity of I and v, respectively.

In addition, equations (C.9) and (C.10) can be used to show that the family of functions

{T+v (W − a)}a and {T−v (W − a)}a are equi-differentiable. For example, let W1 →W2,

1

W1 −W2
[fv (W1, ξ)− fv (W2, ξ)]

converges uniformly by Lemma A.1, and by equation (C.9), 1
W1−W2

[T+v (W1)− T+v (W2)] must

also converge uniformly.

Finally, we note that if v′ (x) > 0 for all x ∈ R, then [T+v] (W ) and [T−v] (W ) must satisfy the

same property by the envelope theorem.

Proof of Theorem 1 In this section, we establish the existence of SDF as stated in Theorem

1. To save notation, whenever convenient, we denote Rj (z) to be the one-period return of asset

j that payoff at history z. That is, if z = z+t =
(
z−t , s

+
t

)
is a post-announcement history, then
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Rj (z) ≡ RA,j
(
s+t

∣∣ z−t ) is an announcement return, and if z is of the form z = z−t+1 =
(
z+t , s

−
t−1

)
,

then Rj (z) ≡ RP,j
(
s−t+1

∣∣ z+t ) is a post-announcement return. We write the portfolio selection

problem at z−t as

max
ζ

I
[
Vz+t

(
W +

∑J

j=0
ζj

(
Rj

(
z+t

)
− 1

))∣∣∣∣ z−t ] . (C.11)

Clearly, no arbitrage implies that the risk-free announcement return R0

(
z+t

)
= 1. Because Vz+t

and

I
[
·| z−t

]
are (Fréchet) differentiable, I

[
Vz+t

(
W +

∑J
j=0 ζj

(
Rj

(
z+t

)
− 1

))∣∣∣ z−t ] is differentiable in

ζ.7 Therefore, the first order condition with respect to ζj implies that

E

[
DI

[
Vz+t

(
W ′)] d

dW
Vz+t

(
W ′) (Rj (z+t )− 1

)∣∣∣∣ z−t ] = 0, (C.12)

where we denote W ′ =W +
∑J

j=0 ζ̂j
(
Rj

(
z+t

)
− 1

)
and ζ̂ is the optimal portfolio choice.

The value function Vz+t
(W ) in (C.11) is determined by the the agent’s portfolio choice problem

at z+t after the announcement s+t is made:

Vz+t
(W ) = max

ξ

{
u

(
W −

∑J

j=0
ξj

)
+ βI

[
Vz−t+1

(∑J

j=0
ξjRj

(
z−t−1

))∣∣∣∣ z+t ]} . (C.13)

The envelop condition for (C.13) implies

d

dW
Vz+t

(W ) = u′
(
W −

∑J

j=0
ξj

)
= u′ (Ct) = u′

(
C̄t

)
,

where the last equality uses the market clearing condition. Because consumption at time t must

equal to total endowment, C̄t, and because C̄t must be z−t measurable, so must d
dW Vz+t

(W ).

By our results in Section C.2, d
dW Vz+t

(W ) = u′
(
C̄t

)
> 0. Because d

dW Vz+t
(W ) is z−t measurable,

(C.12) implies:

E
[
DI

[
Vz+t

(W )
] (
Rj

(
z+t

)
− 1

)∣∣∣ z−t ] = 0. (C.14)

As we show in Lemma A.4 in the next section, monotonicity of I guarantees that DI ≥ 0 with

probability one. To derive an expression for A-SDF, we need to assume a slightly stronger condition:

DI [X] > 0 with strictly positive probability for all X.8 (C.15)

In this case, the A-SDF can be constructed as:

m∗ (s+t ∣∣ z−t ) = DI
[
Vz+t

(
Wz−t ,s

+
t

)]
E
[
DI

[
Vz+t

(
Wz−t ,s

+
t

)]∣∣∣ z−t ] , (C.16)

7This is a version of the chain rule. See Proposition 1 in Chapter 7 of Luenberger [16].
8Note that monotonicity with respect to FSD implies that DI [X] ≥ 0 with probability one for all X. If condition

(C.15) does not hold, we must have DI [X] = 0 with probability one. If I is strictly monotone with respect to FSD,
then this cannot happen on an open set in L2. Therefore, even without assuming (C.15), our result implies that the
A-SDF exists generically.
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whereWz denote the equilibrium wealth of the agent at history z. Because E
[
m∗ (s+t ∣∣ z−t )∣∣ z−t ] = 1,

we can write (C.14) as an asset pricing equation with A-SDF:

E
[
m∗ ( ·| z−t )RA,j ( ·| z−t )∣∣ z−t ] = 1.

Now we constructed the A-SDF as the Fréchet Derivative of the certainty equivalence functional.

Because DI
[
V +
t (W )

]
is a linear functional on L2

(
Ω,F+

t , P
)
, it has a representation as an element

in L2
(
Ω,F+

t , P
)
by the Riesz representation theorem. To complete the proof of Theorem 1, we only

need to show that m∗ (s+t ∣∣ z−t ) can be represented as a measurable function of continuation utility:

m∗ (s+t ∣∣ z−t ) = m∗◦Vz+t
(
Wz−t ,s

+
t

)
for some measurable functionm∗ : R → R.9 That is, m∗ (s+t ∣∣ z−t )

depends on s+t only through the continuation utility. Note that our definition of monotonicity with

respect to FSD implies invariance with respect to distribution, that is, I [X] = I [Y ] whenever X

and Y have the same distribution (If X has the same distribution of Y then both X ≤FSD Y and

Y ≥FSD X are true). The following lemma establishes that invariance with respect to distribution

implies that m∗ (s+t ∣∣ z−t ) is measurable with respect to the σ-field generated by Vz+t

(
Wz−t ,s

+
t

)
.

Lemma A.3. If I is invariant with respect to distribution, then DI [X] can be represented by a

measurable function of X.

Proof: Take any X ∈ L2 (Ω,F , P ), let T be a measure-preserving transformation such that the

invariant σ−field of T differ from the σ−field generated by X (which we denote as σ (X)) only by

measure zero sets (The assumption of a non-atomic probability space guarantees the existence of

such measure-preserving transformations. See exercise 17.43 in Kechris [11]). Let DI [X] be the

L2 (Ω,F , P ) representation of the Fréchet derivative of the certainty equivalence functional I at X.

Below, we first show that DI [X] ◦ T must also be a Fréchet derivative of I at X. Because the

Fréchet derivative is unique, we must have DI [X] = DI [X] ◦ T with probability one; therefore,

DI [X] must be measurable with respect to the invariant σ-field of T and therefore, also measurable

with respect to σ (X).

Because I [·] is Fréchet differentiable, to show DI [X] ◦ T is the Fréchet derivative of I at X, it

is enough to verify that DI [X] ◦ T is a Gâteaux derivative, that is,

lim
α→0

1

α
[V (X + αY )− V (X)] =

∫
(DI [X] ◦ T ) · Y dP (C.17)

for all Y ∈ L2 (Ω,F , P ).

Because T is measure preserving and X is measurable with respect to the invariance σ−field of T ,

X = X ◦ T with probability one. Therefore, V (X + αY ) = V (X ◦ T + αY ) = V
(
X + αY ◦ T−1

)
,

where the second equality is due to the fact that T−1 is measure preserving, and [X ◦ T + αY ]◦T−1 =

9In general, m∗ may depend on z−t . Here, with a slight abuse of notation, we denote m∗ both as the A-SDF, which
is an element of L2, and as a measurable function R → R.
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X + αY ◦ T−1 has the same distribution with X ◦ T + αY . As a result,

1

α
[V (X + αY )− V (X)] =

1

α

[
V
(
X + αY ◦ T−1

)
− V (X)

]
=

∫
DI [X]× Y ◦ T−1dP,

=

∫
DI [X] ◦ T · Y dP,

where the last equality uses the fact that
[
DI [X] · Y ◦ T−1

]
◦ T = DI [X] ◦ T · Y have the same

distribution with DI [X]× Y ◦ T−1. This proves (C.17).

C.3 Generalized Risk Sensitivity and the Announcement Premium

We prove Theorem 2 in this section. Part 1 is straightforward given our results in the last section.

From equation (C.16), if I is expected utility, then m∗ (s+t ∣∣ z−t ) must be a constant. Conversely, if

m∗ (s+t ∣∣ z−t ) is a constant, then I is linear and must have an expected utility representation.

We prove part 2) of theorem 2 in three steps. First, we use Lemma A.4 to establish that

m∗
(
Vz+t

)
is non-negative if and only if I is monotone with respect to FSD. Second, we prove

the equivalence between (a) and (b). Lemma A.5 and A.6 jointly establish that generalized risk

sensitivity of I is equivalent to m∗
(
Vz+t

)
being a non-increasing function of Vz+t

. Finally, we use

Lemma A.7 to establish the equivalence between (b) and (c).

Lemma A.4. I is monotone with respect FSD if and only if DI [X] ≥ 0 a.s.

Proof: Suppose DI [X] ≥ 0 a.s. for all X ∈ L2 (Ω,F , P ). Take any Y such that Y ≥ 0 a.s.,

we have:

I [X + Y ]− I [X] =

∫ 1

0

∫
Ω
DI [X + tY ]Y dPdt ≥ 0.

Conversely, suppose I is monotone with respect to FSD, we can prove DI [X] ≥ 0 a.s. by

contradiction. Suppose the latter is not true and there exist an A ∈ F with P (A) > 0 and

DI [X] < 0 on A. Because DI is continuous, we can assume that DI [X + tχA] < 0 on A for

all t ∈ (0, ε) for ε small enough, where χA is the indicator function of A. Therefore,

I [X + χA]− I [X] =

∫ 1

0

∫
Ω
DI [X + tχA]χAdPdt < 0,

contradicting monotonicity with respect to FSD.

Next, we show that I is monotone with respect to SSD if and only if m∗
(
Vz+t

)
is non-increasing

in Vz+t
. We first prove the following lemma.

Lemma A.5. I is monotone with respect SSD if and only if ∀X ∈ L2 (Ω,F , P ), for any σ−field

G ⊆ F , ∫
DI [X] · (X − E [X| G]) dP ≤ 0. (C.18)
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Proof: Suppose condition (C.18) is true, by the definition of SSD, for any X and Y such that

E [Y |X] = 0, we need to prove

∀λ ∈ (0, 1) , I (X) ≥ I (X + Y ) .

Using (C.1),

I (X + Y ) ≥ I (X) =

∫ 1

0

∫
Ω
DI [X + tY ]Y dPdt

=

∫ 1

0

1

t

∫
Ω
DI [X + tY ] {tY +X −X − tE [Y |X]} dPdt

=

∫ 1

0

1

t

∫
Ω
DI [X + tY ] {[X + tY ]− E [X + tY |X]} dPdt

≤ 0,

where the last inequality uses (C.18).

Conversely, assuming I is increasing in SSD, we prove (C.18) by contradiction. if (C.18) is not

true, then by the continuity of DI [X], for some ε > 0, ∀t ∈ (0, ε),∫
DI [(1− t)X + tE [X| G]] · (X − E [X| G]) dP > 0.

Therefore,

I [(1− ε)X + εE [X| G]]− I [X] =

∫ ε

0

∫
DI [(1− t)X + tE [X| G]] {E [X| G]−X} dPdt < 0.

However, (1− ε)X + εE [X| G] ≥SSD X, a contradiction.10

Due to Lemma A.3, DI [X] can be represented by a measurable function of X, we denote

DI [X] = η (X). To establish the equivalence between monotonicity with respect to SSD and the

negative monotonicity of m∗
(
Vz+t

)
, we only need to prove that condition (C.18) is equivalent to

η (·) being a non-increasing function, which is Lemma A.6 below.

Lemma A.6. Condition (C.18) is equivalent to η (X) being a non-increasing function of X.

Proof: First, we assume η (X) is non-increasing. To prove (C.18), note that E [X| G] is

10An easy way to prove the statement, (1− ε)X + εE [X| G] ≥SSD X is to observe that an equivalent definition of
SSD is X1 ≥SSD X2 if E [ϕ (X1)] ≥ E [ϕ (X2)] for all concave functions ϕ (see Rothschild and Stiglitz [21] and Werner
[25]). If E [Z|V1] = 0, then for any concave function ϕ, ϕ (V1 + λZ1) ≥ λϕ (V1 + Z) + (1− λ)ϕ (V1). Therefore,
E [ϕ (V1 + λZ1)] ≥ λE [ϕ (V1 + Z)] + (1− λ)E [ϕ (V1)] ≥ E [ϕ (V1 + Z)], where the last inequality is true because
E [ϕ (V1)] ≥ E [ϕ (V1 + Z1)].
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measurable with respect to σ (X), and we can use the law of iterated expectation to write:∫
DI [X] · (X − E [X| G]) dP = E [η (X) · (X − E [X| G])]

≤ E [η (E [X| G]) · (X − E [X| G])]

= 0,

where the inequality follows from the fact that η (X) ≤ η (E [X| G]) when X ≥ E [X| G] and

η (X) ≥ η (E [X| G]) when X ≤ E [X| G].

Second, to prove the converse of the above statement by contradiction, we assume (C.18) is true,

but there exist x1 < x2, both occur with positive probability such that η (x1) < η (x2). Under this

assumption, we construct a random variable Y :

Y =

{
0, if X = x1 or x2

X, otherwise
,

and denote P1 = P (X = x1), P2 = P (X = x2). Note that∫
DI [X] · (X − E [X|Y ]) dP

=

∫
η (X) · (X − E [X|Y ]) dP

= P1η (x1)

[
x1 −

P1x1 + P2x2
P1 + P2

]
+ P2η (x2)

[
x2 −

P1x1 + P2x2
P1 + P2

]
> 0

because η (x1) < η (x2), a contradiction.

The following lemma establishes the equivalence between (b) and (c).

Lemma A.7. That m∗
(
Vz+t

)
is a non-increasing function of Vz+t

is equivalent to (c).

Proof: If m∗
(
Vz+t

)
is a non-decreasing function, then for any payoff f that is co-monotone

with Vz+t
, we have

E
[
m∗

(
Vz+t

)
f
(
Vz+t

)]
≤ E

[
m∗

(
Vz+t

)]
E
[
f
(
Vz+t

)]
= E

[
f
(
Vz+t

)]
,

because m∗
t

(
Vz+t

)
and f

(
Vz+t

)
are negatively correlated.11

We prove that (c) implies (b) by contradiction. Suppose that the announcement premium is

non-negative for all payoffs that are co-monotone with Vz+t
, but m∗ (v1) < m∗ (v2) for some v1 < v2,

11Note that the same argument implies that if m∗ (V +
t

)
is a non-decreasing function, then the announcement

premium must be non-negative for the following more general class of payoffs: f
(
s| z−t

)
+ ε, where E

[
ε| z−t , s

]
= 0.
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both of which occur with positive probability. Consider the following payoff f (·):

f (v) =

{
1 v = v2

0 v ̸= v2
.

Note that f
(
Vz+t

)
is co-monotone with Vz+t

and yet E
[
m∗
t

(
Vz+t

)
f
(
Vz+t

)]
> E

[
f
(
Vz+t

)]
,

contradicting a non-negative premium for f
(
Vz+t

)
.

D Generalized Risk-Sensitive Preferences

D.1 Generalized risk sensitivity and uncertainty aversion

In this section, we provide proofs for results for the relationship between generalized risk sensitivity

and uncertainty aversion discussed in Section 4.3 of the paper.

• Quasiconcavity implies generalized risk sensitivity.

The following lemma formalizes the above statement.

Lemma A.8. Suppose I : L2 (Ω,F , P ) → R is continuous and invariant with respect to

distribution, then quasiconcavity implies generalized risk sensitivity.

Proof. Suppose I is continuous, invariant with respect to distribution, and quasiconcave. Let

X1 ≥SSD X2, we need to show that I [X1] ≥ I [X2]. By the definition of second order

stochastic dominance, there exist a random variable Y such that E [Y |X1] = 0 and X2

has the same distribution as X1 + Y . Because I is invariant with respect to distribution,

I [X1 + Y ] = I [X2]. Let T : Ω → Ω be any measure preserving transformation such that the

invariant σ−field of T differs from the σ−field generated by X only by sets of measure zero

(see exercise 17.43 in Kechris [11]), then quasiconcavity implies that

I
[
1

2
(X1 + Y ) +

1

2
(X1 + Y ) ◦ T

]
≥ min {I [X1 + Y ] , I [(X1 + Y ) ◦ T ]} .

Note that because T is measure preserving and I is distribution invariant, we have

I [X1 + Y ] = I [(X1 + Y ) ◦ T ] . Therefore, I
[
1
2 (X1 + Y ) + 1

2 (X1 + Y ) ◦ T
]
≥ I [X1 + Y ]. It

is therefore straightforward to show that I
[

1
N

∑N−1
j=0 (X1 + Y ) ◦ T j

]
≥ I [X1 + Y ] for all N

by induction. Note that 1
N

∑N−1
j=0 (X1 + Y )◦T j → E [X1 + Y |X1] = X1 by Birkhoff’s ergodic

theorem (note that the invariance σ−field of T is σ (X) by construction). Continuity of I
then implies I [X1] ≥ I [X1 + Y ] = I [X2], that is, I satisfies generalized risk sensitivity.

• Qusiconcavity is not necessary for generalized risk sensitivity.
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It is clear from Lemma A.8 that under continuity, the following condition is sufficient for

generalized risk sensitivity:

I [λX + (1− λ)Y ] ≥ I [X] for all λ ∈ [0, 1] if X and Y have the same distribution.

(D.1)

Clearly, this condition is weaker than quasiconcavity.

Here, we provide a counterexample of I that satisfies generalized risk sensitivity but is not

quasiconcave. We continue to use the two-period example in Section 3, where we assume

π (H) = π (L) = 1
2 . Given there are two states, random variables can be represented as

vectors. We denote X = {(xH , xL) : 0 ≤ xH , xL ≤ B} to be the set of random variables

bounded by B. Let I be the certainty equivalence functional defined on X such that

∀X ∈ X, I [X] = ϕ−1

{
min
m∈M

E [mϕ (X)]

}
, with ϕ (x) = ex, (D.2)

where M =
{
(mH ,mL) : mH +mL = 1, max

{
mH
mL

, mLmH

}
≤ η

}
is a collection of density of

probability measures and the parameter η ≥ eB. Note that I defined in (D.2) is not concave

because ϕ (x) is a strictly convex function. Below we show that I satisfies generalized risk

sensitivity, but is not quasiconcavity.

Using (D.1), to establish generalized risk sensitivity, we need to show that for any X, Y ∈ X

such that X and X have the same distribution, I [λX + (1− λ)Y ] ≥ I [X]. Without loss of

generality, we assume X = [xH , xL] with xH > xL. Because Y has the same distribution with

X, Y = [xL, xH ]. We first show that for all λ ≥ 1
2 ,

I [λX + (1− λ)Y ] ≥ I [X] .

Because ϕ is strictly increasing, it is enough to prove that for all λ ∈
[
1
2 , 1

]
,

d

dλ
ϕ (I [λX + (1− λ)Y ]) ≤ 0. (D.3)

Because xH > xL, for all λ ≥ 1
2 , λxH + (1− λ)xL ≥ λxL + (1− λ)xH and

ϕ (I [λX + (1− λ)Y ]) =
1

2
m∗
Hϕ (λxH + (1− λ)xL) +

1

2
m∗
Lϕ (λxL + (1− λ)xH) ,

where mH +mL = 1 and mH
mL

= 1
η . Therefore,

d

dλ
ϕ (I [λX + (1− λ)Y ]) =

1

2

[
m∗
Hϕ

′ (λxH + (1− λ)xL)−m∗
Lϕ

′ (λxL + (1− λ)xH)
]
(xH − xL)

=
1

2
(xH − xL)

{
m∗
He

λxH+(1−λ)xL −m∗
Le

λxL+(1−λ)xH
}
.
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Note that
m∗
He

λxH+(1−λ)xL

m∗
Le

λxL+(1−λ)xH
=

1

η
e(2λ−1)(xH−xL) ≤ 1

η
eB ≤ 1.

This proves (D.3). Similarly, one can prove I [λX + (1− λ)Y ] ≥ I [Y ] for all λ ∈
[
0, 12

]
. This

established generalized risk sensitivity.

To see I is not quasiconcave, consider X1 = [1, 0], and X2 = [x, x], where x = ln η+e
η+1 . One

can verify that I [X1] = I [X2], but I
[
1
2X1 +

1
2X2

]
< I [X1], contradicting quasiconcavity.

• For second-order expected utility, the concavity of ϕ is equivalent to generalized risk sensitivity.

Proof. Certainty equivalence functionals of the form I [V ] = ϕ−1 (E [ϕ (V )]), where ϕ is strictly

increasing is called second-order expected utility in Ergin and Gul [6]. For this class of

preferences, generalized risk sensitivity is equivalent to quasiconcavity, which is also equivalent

to the concavity of ϕ. To see this, suppose ϕ is concave, it is straightforward to show that I [·]
is quasiconcave and satisfies generalized risk sensitivity by Lemma A.8. Conversely, suppose

I [·] satisfies generalized risk sensitivity then E [ϕ (X)] ≥ E [ϕ (Y )] whenever X ≥SSD Y . By

remark B on page 240 of Rothschild and Stiglitz [21], ϕ is concave.

• Within the class of smooth ambiguity-averse preferences, uncertainty aversion is equivalent to

generalized risk sensitivity.

Proof. Using the results in Klibanoff, Marinacci, and Mukerji [12, 13], it straightforward to

show that for the class of smooth ambiguity preferences, concavity of ϕ is equivalent to the

quasiconcavity of I. As a result, quasiconcavity implies generalized risk sensitivity by Lemma

A.8. The nontrivial part of the above claim is that generalized risk sensitivity implies the

concavity of ϕ. To see this is true, note that invariance with respect to distribution implies

that the probability measure µ (x) must satisfy the following property: for all A ∈ F ,∫ ∫
A
dPxdµ (x) = P (A) .

Clearly, generalized risk sensitivity implies that I [E [V ]] ≥ I [V ], for all V ∈ L2 (Ω,F , P ).
That is, ∫

ϕ (Ex [V ]) dµ (x) ≤ ϕ (E [V ]) .

The fact that the above inequality has to hold for all V and E [V ] =
∫
Ex [V ] dµ (x) implies

that ϕ must be concave.
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D.2 Generalized risk sensitivity and preference for early resolution of

uncertainty

Below, we provide detailed examples and proofs for the discussions on the relationship between

preference for early resolution of uncertainty and generalized risk sensitivity in Section 4.3.

• An example that satisfies generalized risk sensitivity but strictly prefers late resolution of

uncertainty.

Example A.1. Consider the following utility function in the two period example:

u (C) = C − b, where b = 2; I (X) =
(
E
√
X
)2
.

It straight forward to check that I is quasiconcave therefore satisfy generalized risk sensitivity.

Below we verify that this utility function prefers late resolution of uncertainty when the

following consumption plan is presented: C0 = 1, CH = 3.21, and CL = 3, where the

distribution of consumption is given by π (H) = π (L) = 1
2 .

The utility with early resolution of uncertainty is given by:

V E = I [u (C0) + u (C1)] .

It is straightforward to show that:

u (C0) + u (CH) = 0.21; u (C0) + u (CL) = 0

Therefore,

V E =
[
0.5×

√
0.21 + 0.5×

√
0
]2

= 0.0525

The utility for late resolution of uncertainty is given by:

V L = u (C0) + I [u (C1)] = 0.1025.

• An example of I that prefers early resolution of uncertainty but is strictly decreasing in second

order stochastic dominance.

Example A.2. Consider the following preference:

u (C) = C − b with b = 2, I (X) =
√
E [X2], and β = 1.

Because X2 is a strictly convex function, the certainty equivalence functional I is strictly

decreasing in second-order stochastic dominance. To see that the agent prefers early

resolution of uncertainty, we consider the same numerical example as in Example A.1. It
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is straightforward to verify that the utility for early resolution of uncertainty is

V E = I [u (C0) + u (C1)] = 0.1485,

and the utility for later resolution is:

V L = u (C0) + I [u (C1)] = 0.11.

• Generalized risk sensitivity and indifference toward the timing of resolution of uncertainty

implies representation (24).

Proof. By Lemma 1 and the proof of Theorem 1 in Strzalecki [23], indifference between timing

of resolution of uncertainty implies that I satisfies that for all X ∈ L2 (Ω,F , P ), all a ≥ 0,

I [a+X] = a+ I [X]. Take derivatives with respect to a and evaluate at a = 0, we have:∫
DI [X] dP = 1. (D.4)

Note that because I is normalized, I [0] = 0. Therefore, ∀X ∈ X ∈ L2 (Ω,F , P ),

I [X] = I [X]− I [0]

=

∫ 1

0

∫
DI [tX]XdPdt

=

∫ ∫ 1

0
DI [tX] dtXdP.

Note that
∫ ∫ 1

0 DI [tX] dtdP = 1 is a density, because of (D.4). In addition, generalized risk

sensitivity implies that for each t,

[
DI [tX] (ω)−DI [tX]

(
ω′)] [X (ω)−X

(
ω′)] ≤ 0. (D.5)

Therefore,
∫ 1
0 DI [tX] dt must satisfy (D.5) as well. By the result of Carlier and Dana [1],∫ ∫ 1

0 DI [tX] dtXdP can be represented by minimization with respect to the core of a convex

distortion of P .

E Details of the Continuous-time model

E.1 Asset Pricing in the Learning Model

Value function of the representative agent Because announcements fully reveal the value

of xt at nT , q
+
nT = 0. We start from q0 = 0. In the interior of (0, T ), the standard optimal filtering

implies that the posterior mean and variance of xt are given by equations (30) and (31). Here qt
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has a closed form solution:

q (t) =
σ2x

(
1− e−2ât

)
(â− a) e−2ât + a+ â

, (E.1)

where â =
√
a2 + (σx/σ)

2. In general, we can write qt = q (tmodT ) for all t.

Using the results from Duffie and Epstein [3], the representative consumer’s preference is

specified by a pair of aggregators (f,A) such that the utility of the representative agent is the

solution to the following stochastic differential equation (SDU):

dV̄t = [−f(Ct, V̄t)−
1

2
A(Vt)||σV (t)||2]dt+ σV (t)dBt,

for some square-integrable process σV (t). We adopt the convenient normalization A(v) = 0 (Duffie

and Epstein [3]), and denote f̄ the normalized aggregator. Under this normalization, f̄(C, V ) is:

f̄(C, V̄ ) = ρ
{
(1− γ) V̄ lnC − V̄ ln

[
(1− γ) V̄

]}
.

Due to homogeneity, the value function is of the form

V̄ (x̂t, t, Ct) =
1

1− γ
H (x̂t, t)C

1−γ
t , (E.2)

where H (x̂t, t) satisfies the following Hamilton–Jacobi–Bellman (HJB) equation:

− ρ

1− γ
lnH (x̂, t)H (x, t) +

(
x̂− 1

2
γσ2

)
H (x̂, t) +

1

1− γ
Ht (x̂t, t)

+

[
1

1− γ
ax (x̄− x̂) + qt

]
Hx (x̂, t) +

1

2

1

1− γ
Hxx (x̂, t)

q2t
σ2

= 0, (E.3)

with the boundary condition that for all n = 1, 2 · · ·

H
(
x̂−nT , nT

)
= E

[
H

(
x̂+nT , nT

)∣∣ x̂−nT , q−nT ] . (E.4)

A monotonic transformation of V̄ , Vt =
1

1−γ ln
[
(1− γ) V̄t

]
has the representation of (32).

The solution to the partial differential equation (PDE) (E.3) together with the boundary

condition (E.4) is separable and given by:

H (x̂, t) = e
1−γ
ax+ρ

x̂+h(t)
,

where h (t) satisfy the following ODE:

−ρh (t) + h′ (t) + f (t) = 0, (E.5)
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where f (t) is defined as:

f (t) =
(1− γ)2

ax + ρ
q (t) +

1

2

(1− γ)2

(ax + ρ)2
1

σ2
q2 (t)− 1

2
γ (1− γ)σ2 + axx̄

1− γ

ax + ρ
.

The general solution to (E.5) is of the form on (0, T ):

h (t) = h (0) eρt − eρt
∫ t

0
e−ρsf (s) ds.

We focus on the steady state in which h (t) = h (tmodT ) and use the convention h (0) = h (0+)

and h (T ) = h (T−). Under these notations, the boundary condition (E.4) implies h (T ) =

h (0) + 1
2

(
1−γ
ax+ρ

)2
q (T−).

Asset prices In the interior of (nT, (n+ 1)T ), the law of motion of the state price density,

πt satisfies the stochastic differential equation of the form:

dπt = πt

[
−r (x̂t, t) dt− σπ (t) dB̃C,t

]
,

where

r (x̂, t) = β + x̂− γσ2 +
1− γ

ax + ρ
qt

is the risk-free interest rate, and

σπ (t) = γσ +
γ − 1

ax + ρ

qt
σ

is the market price of the Brownian motion risk.

We denote p (x̂t, t) as the price-to-dividend ratio. For t ∈ (nT, (n+ 1)T ), the price of the claim

to the dividend process can then be calculated as:

p (x̂t, t)Dt = Et

[∫ (n+1)T

t

πs
πt
Dsds+

π(n+1)T

πt
p
(
x̂−(n+1)T , (n+ 1)T−

)
D(n+1)T

]
.

The above present value relationship implies that

πtDt + lim
∆→0

1

∆
{Et [πt+∆p (x̂t+∆, t+∆)Dt+∆]− πtp (x̂t, t)Dt} = 0. (E.6)

Equation (E.6) can be used to show that the price-to-dividend ration function must satisfy the

following PDE:

1− p (x̂, t)ϖ (x̂, t) + pt (x̂, t)− px (x̂, t) ν (x̂, t) +
1

2
pxx (x̂, t)

q2 (t)

σ2
= 0, (E.7)
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where the functions ϖ (x̂, t) and ν (x̂, t) are defined by:

ϖ (x̂, t) = ρ− µ+ ϕx̄+ (1− ϕ) x̂+ (ϕ− 1)

[
γσ2 +

1− γ

ax + ρ
q (t)

]
ν (x̂, t) = ax (x̂− x̄) + (γ − ϕ) q (t) +

1− γ

ax + ρ

(
q (t)

σ

)2

.

Alos, equation (E.6) can be used to derive the following boundary condition for p (x̂, t):

p
(
x̂−T , T

−) = E
[
e

1−γ
ax+ρ

x̂+T p
(
x̂+T , T

+
)∣∣∣ x̂−T , q−T ]

e
1−γ
ax+ρ

x̂−T+ 1
2

(
1−γ
ax+ρ

)2
[q−T −q+T ]

. (E.8)

Again, we focus on the steady-state and denote p (x̂, 0) = p (x̂, nT+), and p (x̂, T ) = p (x̂, nT−).

Under this condition PDE (E.7) together with the boundary condition can be used to determined

the price-to-dividend ratio function.

We define µR,t to the instantaneous risk premium, that is,

µR,tdt =
1

p (x̂t, t)Dt
{Dtdt+ Et d [p (x̂t, t)Dt]} . (E.9)

In the interior of (nT, (n+ 1)T ), the instantaneous risk premium, µR,t − r (x̂, t) can be computed

as [
µR,t − r (x̂, t)

]
dt = −Covt

[
d [p (x̂t, t)Dt]

p (x̂t, t)Dt
,
dπt
πt

]
.

We have:

µR,t − r (x̂, t) =

[
γσ +

γ − 1

ax + ρ

q (t)

σ

] [
ϕσ +

px (x̂, t)

p (x̂, t)

q (t)

σ

]
. (E.10)

To gain a better understanding on how the risk premium and the announcement premium

depend on the parameters, let ϱ (x̂, t) = ln p (x̂, t), then equation (E.7) can be written as:

e−ϱ(x̂,t) −ϖ (x̂, t) + ϱt (x̂, t)− ϱx (x̂, t) ν (x̂, t) +
1

2

[
ϱxx (x̂, t) + ϱ2x (x̂, t)

] q2 (t)
σ2

= 0. (E.11)

Note that x̂t is itself an Ornstein-Uhlenbeck process with steady state x̄. Using a log-linear

approximation around x̂ = x̄, we can replace the term e−ϱ(x̂,t) with e−ϱ(x̂,t) ≈ e−ϱ̄−e−ϱ̄ [ϱ (x̂, t)− ϱ̄],

where we denote ϱ̄ ≡ ϱ (x̄, t), and write

e−ϱ̄ [1 + ϱ̄− ϱ (x̂, t)]−ϖ (x̂, t)+ϱt (x̂, t)−ϱx (x̂, t) ν (x̂, t)+
1

2

[
ϱxx (x̂, t) + ϱ2x (x̂, t)

] q2 (t)
σ2

= 0. (E.12)

We conjecture that ϱ (x̂, t) = Ax̂+B (t), and equation (E.12) can be used to solve for A and B (t)

by the method of undetermined coefficients to get A = ϕ−1
ax+e−ϱ̄

.

Using the log-linearization result to evaluate equation (E.10) at x̂ = x̄, we obtain (35). In

addition, using p
(
x̂+T , T

+
)
≈ eAx̂

+
T+B(T

+), we can compute the expectation in (E.8) explicitly and
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obtain (36).

Numerical Solutions To solve the PDE (E.7) with the boundary condition (E.8), we consider

the following auxiliary problem:

p (xt, t) = E

[∫ T

t
e−

∫ s
t ϖ(xu,u)duds+ e−

∫ T
t ϖ(xu,u)dup (xT , T )

]
, (E.13)

where the state variable xt follows the law of motion;

dxt = −ν (x̂, t) dt+ q (t)

σ
dBt. (E.14)

Note that the solution to (E.13) and (E.8) satisfies the same PDE. Given an initial guess of the

pre-announcement price-to-dividend ratio, p− (xτ , τ), we can solve (E.13) by the Markov chain

approximation method (Kushner and Dupuis [15]):

1. We first start with an initial guess of a pre-announcement price-to-dividend ratio function,

p (xT , T ).

2. We construct a locally consistent Markov chain approximation of of the diffusion process

(E.14) as follows. We choose a small dx, let Q = |ν (x̂, t)| dx +
(
q(t)
σ

)2
, and define the time

increment ∆ = dx2

Q be a function of dx. Define the following Markov chain on the space of x:

Pr (x+ dx |x) =
1

Q

[
−ν (x̂, t)+ dx+

1

2

(
q (t)

σ

)2
]
,

Pr (x− dx |x) =
1

Q

[
−ν (x̂, t)− dx+

1

2

(
q (t)

σ

)2
]
.

One can verify that as dx → 0, the above Markov chain converges to the diffusion process

(E.14) (In the language of Kushner and Dupuis [15], this is a Markov chain that is locally

consistent with the diffusion process (E.14)).

3. With the initial guess of p (xT , T ), for t = T − ∆, T − 2∆, etc, we use the Markov chain

approximation to compute the discounted problem in (E.13) recursively:

p (xt, t) = ∆+ e−ϖ(x,t)∆E [p (xt+∆, t+∆)] ,

until we obtain p (x, 0).

4. Compute an updated pre-announcement price-to-dividend ratio function, p (xT , T ) using

(E.8):

p
(
x̂−T , T

−) = E
[
e

1−γ
ax+ρ

x̂+T p
(
x̂+T , 0

)∣∣∣ x̂−T , q−T ]
e

1−γ
ax+ρ

x̂−T+ 1
2

(
1−γ
ax+ρ

)2
[q−T −q+T ]

.
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Go back to step 1 and iterate until the function p (xT , T ) converges.

Our numerical example is based on the following choice of parameter values:

Choice of parameter values The numerical example we presented in the paper uses

parameter values in the standard long-run risk model:

ρ γ ψ x̄ ax σθ σ h0 ϕ σ2S
0.01 10 2 1.8% 0.10 0.026% 3% 5 3 0

All parameters are annual. We assume that announcements are made at the monthly frequency,

that is, T = 1
12 .

Pre-announcement drift The density of communication in the top panel of Figure 4 is

generated from a Beta distribution with parameter α = 2, δ = 3 on [−6, 0] hours before

announcement. The density of the Beta distribution is

f (y|α, δ) = B [σ, δ]−1 yα−1 (1− y)δ−1 , for y ∈ (0, 1) ,

where B [σ, δ] is the Beta function. In our example, the density of the occurrence of a communication

h hours before announcement is f
(
1− h

6

∣∣α, δ).
During a small interval dt, the expected return of the dividend claim is µR,tdt if the

announcement does not occur. The expected return is
E[p(x̂+T ,T

+)|x̂−T ,q−T ]
p(x̂−T ,T−)

if the announcement

return occurs during dt. Given that the probability of an announcement during hour (k − h, k)

is
∫ k
k−h f

(
1− t

6

∣∣α, δ) dt, the expected return of the dividend claim during hour (k − h, k) can be

written as

E

∫ k

k−h

f
(
1− t

6

∣∣∣∣α, δ) E
[
p
(
x̂+
T+ t

2880

,
(
T + t

2880

)+)∣∣∣ x̂−
T+ t

2880

, q−
T+ t

2880

]
p
(
x̂−
T+ t

2880

,
(
T + t

2880

)−) + µR,T+ t
2880

 dt

 .
(E.15)

The above calculation assumes that there are 360 days per year and 8 hours per day. Because

t is measured in hours, it needs to be divided by 360 × 8 = 2880 to translate into annual

unit. Numerically, because the pre-announcement drift happens within hours before T , replacing

T + t
2880 with T does not make any material difference in the evaluation of (E.15). In addition, the

term
∫ k
k−h µR,T+ t

2880
dt is negligible. We can therefore approximate the average return during hour

(k − h, k) as

E

[∫ k

k−h
f

(
1− t

6

∣∣∣∣α, δ) dt]× E

[
E
[
p
(
x̂+T , T

+
)∣∣ x̂−T , q−T ]

p
(
x̂−T , T

−
) ]

.
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E.2 Time-non-separable Utilities

To guarantee that the model is well defined, we make the following assumptions on the weighting

function {ξ (t, s)}ts=0. ∫ t

0
ξ (t, s) ds ≤ 1, for all t > 0. (E.16)∫ ∞

0
ξ (t+ s, t) ds <∞, for all t > 0. (E.17)(

1−
∫ t

0
ξ (t, s) ds

)
H0 +

∫ t

0
ξ (t, s)Csds < Ct, for all t > 0. (E.18)

The first assumption requires that {ξ (t, s)}ts=0 is an appropriate weighting function, that is,

total weights is less than one. The second assumption implies that the contribution of Ct to future

habit stock is finite, and the last assumption ensures Ct−Ht > 0 so that the utility function is well

defined.

External habit Under the assumption of complete markets, the state-price density can be

constructed from the marginal utility of the representative agent. In the external habit model,

πt = e−βtu′ (Ct + bHt) .

Internal habit In this case, the calculation of the state price density must take into account of

the impact of Ct on future habit stock. Therefore, the state price density is given by (39). Because

announcement fully reveals xt, we need to show that

E

[∫ ∞

0
e−βsξ (t+ s, t)u′ (Ct+s + bHt+s) ds

∣∣∣∣xt = x

]
(E.19)

is a decreasing function of x. Without loss of generality, we assume t = 0 in the following lemma.

Lemma A.9. Fixing the path of Brownian motions {BC,s, Bx,s}∞s=0,

∂

∂x0
[Ct + bHt] > 0 for all t > 0. (E.20)

Proof. Using the law of motion of Ct, we have

lnCt = lnC0 −
1

2
σ2t+

∫ t

0
σdBC,s +

∫ t

0
xsds.

Since xt is an Ornstein-Uhlenbeck process, we can solve
∫ t
0 xsds explicitly:∫ t

0
xsds = (x0 − x̄)

1

ax

[
1− e−axt

]
+ x̄t+

1

ax

∫ t

0

[
1− eax(s−t)

]
σxdBx,s.
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Therefore, for given realizations of the Brownian motion paths,

∂

∂x0
Ct = Ct

1

ax

[
1− e−axt

]
,

and

∂

∂x0
Ht =

∫ t

0
ξ (t, s)

∂Cs
∂x0

ds

=

∫ t

0
ξ (t, s)Cs

1

ax

[
1− e−axt

]
ds

<

∫ t

0
ξ (t, s)Csds

1

ax

[
1− e−axt

]
< Ct

1

ax

[
1− e−axt

]
,

where the first inequality is true because s < t, and the second is due to the fact that∫ t
0 ξ (t, s)Csds ≤ Ht < Ct. The inequality (E.20) follows because b < 1.

Consider two initial conditions, x0 = x and x0 = x′. The above lemma implies that x > x′

implies that Ct+s + bHt+s first order stochastic dominate C ′
t+s + bH ′

t+s. Because u
′ (·) is a strictly

decreasing function, we conclude that (E.19) must be a decreasing function of x.

Consumption substitutability Because (E.19) is decreasing function of x, with b > 0, the

state price density in (39) must be a decreasing function of xt as well. As a result, the announcement

premium must be positive for any payoff that is increasing in xt.
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