Multiple Regression Analysis ----------------------------------------------------------------------------- Dependent variable: AUTOADJ/CPI ----------------------------------------------------------------------------- Standard T Parameter Estimate Error Statistic P-Value ----------------------------------------------------------------------------- CONSTANT 1.40164 0.709646 1.97513 0.0492 INCOME/CPI 0.0782192 0.0028257 27.6814 0.0000 ----------------------------------------------------------------------------- Analysis of Variance ----------------------------------------------------------------------------- Source Sum of Squares Df Mean Square F-Ratio P-Value ----------------------------------------------------------------------------- Model 3142.94 1 3142.94 766.26 0.0000 Residual 1173.08 286 4.10166 ----------------------------------------------------------------------------- Total (Corr.) 4316.02 287 R-squared = 72.8204 percent R-squared (adjusted for d.f.) = 72.7254 percent Standard Error of Est. = 2.02526 Mean absolute error = 1.64644 Durbin-Watson statistic = 0.449251 The StatAdvisor --------------- The output shows the results of fitting a multiple linear regression model to describe the relationship between AUTOADJ/CPI and 1 independent variables. The equation of the fitted model is AUTOADJ/CPI = 1.40164 + 0.0782192*INCOME/CPI Since the P-value in the ANOVA table is less than 0.01, there is a statistically significant relationship between the variables at the 99% confidence level. The R-Squared statistic indicates that the model as fitted explains 72.8204% of the variability in AUTOADJ/CPI. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 72.7254%. The standard error of the estimate shows the standard deviation of the residuals to be 2.02526. This value can be used to construct prediction limits for new observations by selecting the Reports option from the text menu. The mean absolute error (MAE) of 1.64644 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the DW value is less than 1.4, there may be some indication of serial correlation. Plot the residuals versus row order to see if there is any pattern which can be seen. In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 0.0000, belonging to INCOME/CPI. Since the P-value is less than 0.01, the highest order term is statistically significant at the 99% confidence level. Consequently, you probably don't want to remove any variables from the model.