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JOINT COHERENCE IN GAMES OF INCOMPLETE
INFORMATION *

ROBERT F. NAU
The Fuqua School of Business, Duke University, Durham, North Carolina 27706

Decisions are often made under conditions of uncertainty about the actions of supposedly-
rational competitors. The modeling of optimal behavior under such conditions is the subject of
noncooperative game theory, of which a cornerstone is Harsanyi’s formulation of games of in-
complete information. In an incomplete-information game, uncertainty may surround the attributes
as well as the strategic intentions of opposing players. Harsanyi develops the concept of a Bayesian
equilibrium, which is a Nash equilibrium of a game in which the players’ reciprocal beliefs about
each others’ attributes are consistent with a common prior distribution, as though they had been
jointly drawn at random from populations with commonly-known proportions of types. The
relation of such game-theoretic solution concepts to subjective probability theory and nonstrategic
decision analysis has been controversial, as reflected in critiques by Kadane and Larkey and
responses from Harsanyi, Shubik, and others, which have appeared in this journal. This paper
shows that the Bayesian equilibrium concept and common prior assumption can be reconciled
with a subjective view of probability by (i) supposing that players elicit each others’ probabilities
and utilities through the acceptance of gambles, and (ii) invoking a multi-agent extension of de
Finetti’s axiom of coherence (no arbitrage opportunities, a.k.a. “Dutch books”). However, the
Nash property of statistical independence between players is weakened, and the probability dis-
tributions characterizing a solution of the game admit novel interpretations.

(ARBITRAGE; COHERENCE; SUBJECTIVE PROBABILITY; NONCOOPERATIVE GAMES;
BAYESIAN EQUILIBRIUM; CORRELATED EQUILIBRIUM; COMMUNICATION EQUI-
LIBRIUM; COMMON PRIOR ASSUMPTION)

1. Introduction

In the tradition established by von Neumann and Morgenstern (1944 ) and extended
by Harsanyi (1967), analyses of rational strategic behavior begin with a careful description
of the “rules of the game.” The rules specify a set of players, a set of strategies available
to the players, a set of states of nature representing uncertainty about the fypes (utility
functions and information states) of the players, and a common prior probability dis-
tribution quantifying that uncertainty. The rules of the game are assumed to be common
knowledge among the players, as is the fact that all players are Bayesian rational subjective-
expected-utility maximizers, although specific allowances are sometimes made for errors
or irrational play. Given this exogenously determined common-knowledge structure,
game theory seeks to endogenously determine the strategy or set of strategies that should
be played.

Various authors (Armbruster and Boge 1979, Boge and Eisele 1979, Mertens and
Zamir 1985, Tan and Werlang 1988) have established that common knowledge of the
rules of a game and common knowledge of the players’ rationality can be formalized in
mathematically tractable ways. By pursuing the mathematics of infinite regress to its
limits, it can be shown that a postulated hierarchy of reciprocal beliefs among the players
“terminates” at a single order of infinity, and, moreover, the set of such infinite-order
beliefs contains belief-closed subsets in which uncertainty about the game’s structure is
summarized by a common prior distribution over a finite set of types, as proposed by
Harsanyi (1967). However, this demonstration that common knowledge is a mathe-
matically well-defined concept does not provide an operational method of determining
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whether or to what extent it is achieved in a specific game situation: the assumptions on
which it rests are beyond possibility of empirical verification.

The objects of common-knowledge assumptions are subjective attributes of the players,
namely their personal probability distributions and utility functions. It is well known
that such attributes are difficult to elicit in practice, even from isolated individuals in
nonstrategic situations, and decision theorists have increasingly questioned whether the
underlying assumptions of subjective expected utility theory are appropriate even as
idealizations of rational behavior (e.g., Aumann 1962, Machina 1982, Fishburn 1982,
Seidenfeld 1988, Schmeidler 1989). Problems of elicitation are magnified where strategic
interactions are present or where probability and utility are measured jointly: for example,
strategic considerations may affect the precision with which probabilities can be measured
(Ellsberg 1961, Leamer 1986, Nau 1992), and unobservability of prior wealth distri-
butions may render it difficult to separate personal probabilities from utilities (Kadane
and Winkler 1988). For these reasons it is of interest to determine the extent to which
game-theoretic concepts of common knowledge and mutually expected rationality can
be reformulated in terms of first-order observable behavior without presupposing the
existence of sharply-defined hierarchies of reciprocal beliefs.

This paper describes an operational method through which, in principle, the players
might achieve common knowledge of the subjective parameters of a noncooperative
game, and which leads to an extremely simple characterization of mutually expected
rationality. It is assumed that there is a set of events representing possible outcomes of a
game and a market in which monetary claims (lottery tickets or gambling contracts) can
be written and enforced on those events. The market serves as the medium of commu-
nication among the players and is interpreted as a canonical model of the institutional
or cultural context of the game. The parameters of the game—including the players’
utilities, probabilities, and the structures of their strategy sets and information partitions—
are subjectively revealed through transactions in the market prior to the official start of
play. Thus, preplay communication is to some extent endogenized. The market framework
allows a natural primal characterization of rational preplay communication and intraplay
decision-making to be given in terms of observable behavior. Game-theoretic concepts,
such as common prior distributions, incentive-compatibility constraints, and equilibria
among strategy selections, will be shown to emerge as elements of a dual characterization.

The behavior of the players is defined to be strategically rational if the outcome of the
game, in the context of the market which defines its rules, creates no arbitrage oppor-
tunities. This can be viewed as a multi-agent extension of the axiom of coherence proposed
by de Finetti (1937, 1974) as a basis for subjective probability theory; hence it is dubbed
Jjoint coherence. The concept of joint coherence will be applied here to games of incomplete
information, extending results previously obtained for games of complete information
by Nau and McCardle (1990). In the complete-information case, the dual characterization
of joint coherence was shown to be a correlated generalization of Nash equilibrium,
namely Aumann’s (1974, 1987) concept of correlated equilibrium. In the case of incom-
plete-information games without observable communication (i.e., without mechanical
coordination devices), the dual characterization will be shown to be a correlated gen-
eralization of Harsanyi’s (1967) Bayesian equilibrium concept. In games with observable
communication, the dual characterization will be shown to be the concept of commu-
nication equilibrium (Myerson 1985, Forges 1986).

These results provide a constructive resolution of the controversy between “‘subjective”
and “‘game-theoretic” views of rational decision-making under uncertainty that was
sparked in this journal by the papers of Kadane and Larkey (1982,! 1983) and the

' “I'W e do not understand the search for solution concepts that do not depend on the beliefs of each player

about the others’ likely actions and yet are so compelling that they will become the obvious standard of play
for all those who encounter them.”
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responses of Harsanyi (1982), Shubik (1983), Kahan (1983), Roth and Schoumaker
(1983), and Rothkopf (1983). It is seen that there is no essential difference between
strategic and nonstrategic rationality: both are characterized by the same criterion of
coherence, appropriately tailored to agents’ endowments of information and control.
This criterion, otherwise known as the ““arbitrage principle,” also characterizes rational
competitive behavior in a variety of other economic contexts (Nau and McCardle 1991).

Throughout this paper, it will be assumed for the sake of brevity and simplicity that
the players’ marginal utilities for money are constant across outcomes of the game, as
though they were risk-neutral, so that their true probabilities and comparative utilities
for outcomes can be directly elicited via the acceptance of monetary gambles. However,
the results obtained here generalize in an interesting way to the more realistic case of
risk aversion and state-dependent marginal utilities. The nature of this generalization
will be sketched briefly in the concluding section and is treated in more detail by Nau
(1990, 1991a, b).

2. The Rules of the Game

Consider a finite noncooperative game among N players, and let Q denote its set of
distinct outcomes. Q will be assumed to be objectively given (exogenously determined )
in the sense that it provides a basis for enforceable gambling contracts. All other aspects
of the game—including its payoffs, information partitions, and probability distributions
on states or strategies—will be considered to be subjectively revealed (endogenously
determined ) by the players. To conform with standard game-theoretic notation, the out-
come set will be decomposed as Q@ = S X T, where S is interpreted as a set of joint
strategies available to the players and 7 is interpreted as a set of states of nature representing
exogenous uncertainty.? The strategy set in turn will be decomposed as S = S; X « -« -
X Sy, where S, is interpreted as the strategy set of player ». Similarly, the state set will
be decomposed as 7= T, X -+ X Ty, where the elements of T, are interpreted as
information states (types) of player #, upon which his choice of strategies may be con-
ditioned. s = (sy,...,sv)and = (1,,. .., ty) will denote elements of S'and 7', respectively.
Finally, S_, and T—, will denote the sets of strategies and types available to all players
other than », with generic elements s_, and ¢_,, respectively.

The game is “noncooperative’ insofar as the players may be unable or unwilling to
communicate or to enter binding contracts concerning the strategies they will play. How-
ever, the environment is not devoid of communication or contractual obligations: it is
assumed that money is available as a medium of exchange; that there is contingent-
claims market in which monetary gambling contracts can be written and enforced with
respect to outcomes of the game; and that this is the mechanism through which the rules
of the game become common knowledge. The market assumption merely extends de
Finetti’s (1937) operational definition of probability to the situation in which two or
more agents elicit each others’ probabilities simultaneously through gambling.

DEFINITIONS. A gambleis a monetary payoff function (vector) defined on the outcome
set S X T'. A gamble g is acceptable to some player if he asserts that he is willing to
receive the payoff Bg(s, t) when strategy s € S is played and state ¢ € T obtains, where
@ is any small® nonnegative number chosen by an opponent (e.g., an observer of the
game or another player) after the announcement of g but prior to the realization of s

2 This decomposition of the outcome set is itself subjective. The extent to which outcomes of the game are
believed to be controlled by different players or by nature will ultimately be revealed through the structure of
gambles accepted by the players.

% Note that acceptance of a gamble commits a player to transactions whose payoffs are only small multiples
of those of the gamble itself, hence the scale of an acceptable gamble is arbitrary. If necessary for technical
reasons—e.g., to explicitly accommodate strict risk aversion—*‘‘small” can be defined to mean “infinitesimal”
(Nau 1991a).
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and t. g, dominates g, if g,(s, t) = g,(s, t) for all (s, t). The set of all gambles acceptable
to one or more players will be denoted A. 0 and 1 will denote payoff vectors whose
elements are identically 0 and 1, respectively. The symbols E and F will denote arbitrary
events (subsets of S X T') and also the indicator functions thereof. That is, E(s, t) = 1
if E is true in outcome (s, ¢), and E(s, t) = 0 otherwise. The symbol 1, will denote the
particular event that player # is of type r and plays strategy j. That is, 1,;(s, t) = 1 if s,
=jand ¢, = r, and 1,,(s, t) = 0 otherwise. Addition and multiplication are defined
pointwise. Thus, o,g, + a,g; is the payoff function whose value is «; g,(s, ) + ax£2(s,
t) in outcome (s, t), and (E — p)F is the function whose value is (E(s, t) — p)F(s, t)
in outcome (s, f).

The players’ beliefs and preferences are revealed to each other by the gambles they
accept in the market. For example, if p is a number between 0 and 1 and E is an event,
then acceptance of the gamble E — p indicates a belief that the probability of E is at least
p. If x and y are lotteries (arbitrary payoff functions on S X T') and F is an event, then
acceptance of the gamble (x — y)F indicates that x is preferred to y given knowledge
that F has occurred.

The following structural assumptions are imposed on the set A of acceptable gambles:

Al (Dominance). g dominates 0 = g € A,

A2 (Linearity). g€ A = ag € A Va > 0;

A3 (Additivity). g, g, €E A =g, + g € A.

In other words, gambles are infinitely divisible, additive, and measured in a common
currency of which more is preferred to less. The set A is therefore a convex cone which
includes the nonnegative orthant. If transactions based on acceptable gambles are un-
derstood to be small, these assumptions are consistent with the axioms of subjective
expected utility, but weaker: they do not require subjective probability distributions and
utility functions to be separable nor uniquely determined (Nau 1991a).

The subjective structure of the game is assumed to be revealed through two kinds of
gambles accepted by the players, preference gambles and belief gambles, which generate
the set A via A1-A3. Preference gambles reveal the relative differences in payoffs the
players perceive between the strategies they choose and those they do not choose, given
their information. This idea is formalized as follows: for any s € S'let s_,j = (s¢, .. .,
Su—isJs Sn+1> - - - » Snv). That is, s_,j denotes the situation in which players other than n
adhere to the joint strategy s while player # chooses his jth strategy. Now let u, : .S
X T+ R denote a hypothetical payoff function for player #, expressed in units of personal
utility. Following Nau and McCardle (1990), let u,; : S X T+ R denote the corresponding
function specifying the payoffs the player would have received by playing strategy j, as a
function of nature’s and his opponents’ actions. That is, u,; is derived from u, according
to:

unj(sat)Euiz(Sﬂzj: t) V(Sa [)EQ- (1)

If player n’s marginal utility for additional monetary wealth is assumed to be constant
across outcomes of the game, then he should be willing to accept the gamble (u,; — u,4) 1,
for every j, k € S, and every r € T,. This merely affirms that, in the event he is observed
to play strategy j given information r, player n prefers the relative payoffs yielded by
strategy j (as a function of nature’s and his opponents’ actions) to those which would
have been yielded by any other strategy k.* We now assume that for each player there
are acceptable gambles which are consistent in this way with some underlying payoff

4 In the event strategy j is chosen by player n, this gamble yields increments of utility proportional to the
differences in utility he perceives between strategies j and k. On the assumptions that (i) his chosen strategy
maximizes expected utility with respect to some probability distribution over nature’s and his opponents’ actions,
and (ii) he will accept any gamble which yields nonnegative incremental expected utility with respect to the
same distribution, it follows that a gamble constructed in this way is acceptable. A decomposed method of
eliciting such a gamble is described by Nau (1991a).
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function, and that this is the method by which payoff functions are effectively revealed.
Formally, we adopt:

A4 (Acceptance of preference gambles). For every n, there exists a function u, : S
X T~ R such that for every j and k € S;,, and every r € T,: (u,; — ui) 1, € A, where
u,,; and u,, are derived from u, according to (1).

The preference gambles of player n reveal the structure of his strategy set (.S,) and
type set (T},) as well as his payoff function (u, ). The latter is uniquely determined only
up to positive affine transformations and/ or the addition of terms which are independent
of his own actions. The symbol 4 will henceforth denote the matrix whose columns,
indexed by (n, j, k, r), are the payoff vectors of the acceptable preference gambles
in A4.

The subjective description of the game is completed through the acceptance of belief
gambles, which directly establish bounds on the players’ conditional probabilities for
events. For each n, let H, denote a finite set of index numbers, and for all # € H,, let
E,, and F,;, denote events; and let p}, denote a number between 0 and 1. Then:

A3 (Acceptance of belief gambles). For every n, there exist events { E,;,, F,,|h € H,,}
and numbers {p}, |k € H,} such that: (E,;, — p¥)F., € A.

Thus, p%, is asserted by player 7 to be a lower probability® for the conditional event
E,;|F,... Let B henceforth denote the matrix whose columns are payoff vectors of the
acceptable belief gambles in AS.

A probability distribution = on S X T will be called a supporting probability distribution
for player # if it assigns nonnegative expected value to every belief gamble he accepts—
1.e., if it satisfies:

7"'T(Enh _p::h)FnhZO thHn’
or equivalently:
P.(Eu|F.) =p¥  orelse P(F,)=0 VhEH,,

where P.(E|F) denotes the conditional probability (or expectation) of E given F under
the distribution 7.6 In typical models of incomplete-information games, players are not
assumed to reveal probabilities they attach to their own information states or strategies;
rather, they are assumed only to reveal their probabilities for information states and/or
strategies of their competitors conditional on their own possible information states and /
or strategies. That is, the events E,;, and F,;, are typically assumed to be measurable with
respect to S_,, X T_, and S, X T,, respectively. If this is the case, the belief gambles
accepted by any one player will not uniquely determine a supporting probability distri-
bution on S X T even if his conditional probabilities are uniquely determined.

As an example, consider the following game of incomplete information discussed by
Myerson (1985): there are two players (1 = row, 2 = column) whose strategy sets are
{T, B} and {L, R}, respectively, and two states of nature, {a, b}, whose “prior”
probabilities are 0.6 and 0.4, respectively. The state will be revealed to player 2 before
strategies are selected, but not to player 1—i.e., a and b are “types” of player 2. The
payoff functions of the players are shown in Table 1. The numbers in each pair of pa-
rentheses are the payoffs to 1 and 2, respectively. Let Q@ = {aTL, aBL, aTR, ..., bBR}

5 Note that the #th gamble in AS yields a payoff of 1 — p,; if both E,; and F,;, occur, a payoff of — p,;, if F,,;,
occurs but not E,;, and a payoff of 0 if F,;, does not occur. This is merely de Finetti’s (1937) operational
definition of a subjective conditional probability, as generalized by Smith (1961) to the case of lower and upper’
probabilities. For our purposes, it will suffice to consider only lower probabilities, since an upper probability
for an event can be expressed as a lower probability for the complementary event. The use of lower probabilities
rather than “sharp” probabilities allows for indeterminacy in the commonly known beliefs due to strategic
interactions in the measurement process—cf. Nau (1992).

6 That is, for any lottery (arbitrary payoff function) E and any event (indicator function) F, P(E) = =’E
= Zenee (S, 1)E(s, t), and P(E|F) = P(EF)/P(F) if P.(F)> 0.
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TABLE 1
Payoff Functions for Game Example

a b

L R L R

T (1,2) o, 1) (1, 3) 0, 4)
B ©, 4) (1, 3) o, 1) (1,2)

denote the set of eight distinct outcomes of the game, and let u,, denote the payoff function
of player n—i.e., u;(aTL) = 1, u,(aTL) = 2, etc.

To construct the preference gambles which encode this payoff structure as provided
in A4, let u; denote the function on Q whose value in state w is the payoff player 1 would
have received by playing T given that nature and his opponent played in accordance
with w. (Here, for notational simplicity, we omit the subscript for the player’s number,
writing uy instead of u,7.) Thus, for example, u7(aTL) = ur(aBL) = 1, ur(aTR)
= ur(aBR) = 0, etc. The function up for player 1 and the functions u; and uy for player
2 are defined similarly. Since player 1 is assumed to have no information about the state
of nature when he makes his move, his preference gambles are conditioned only on his
own actions. He therefore should accept the preference gamble (ur — ug)17, reflecting
his preference for uy over ug in the event that he is observed to play 7. Similarly, he
should also accept the preference gamble (ug — uy)1p. Player 2 is assumed to know the
true state of nature at the time he makes his move, so his preference gambles are con-
ditioned on this information as well as his own actions. He therefore should accept the
preference gamble (u; — uz)1,;, reflecting a preference for u; over uz when he is observed
to play L while knowing that the state is a, and similarly for other strategy-state com-
binations. The payoff vectors for the preference gambles of both players are assembled
in the matrix “A4” (Table 2).

The belief gambles for this game must encode the information that the prior probabilities
of states a and b are 0.6 and 0.4, respectively, and that player 1 will receive no additional
information concerning the state before making his move. In other words, it is asserted
(presumably by player 1) that the lower conditional probabilities of a and b are 0.6 and
0.4, respectively, given any move of player 1. This is conveyed by the acceptance of four
gambles whose payoff vectors are (1, — p¥*)17, (1, — p¥)1z, (1, — pi)17 and (1,
— p¥)1p, where p* = 0.6 and py = 0.4. These constitute the matrix “B” (Table 3).

Altogether, the subjective rules of the game (strategy sets, payoff functions, information
partitions, and prior probabilities) are encoded in the matrices 4 and B. The columns
of these matrices are the payoff vectors of the acceptable preference and belief gambles
defined in A4 and A5, which generate (via A1-A3) the set A of all acceptable gambles.

TABLE 2
Preference Gambles through Which Payoff Functions Are Revealed

Outcome (ur—up)ly  (up—uply  (u —up)ly (up —up)lyy  (ug —up)ler (ur — up )l
aTL 1 0 1 0 0 0
aBL 0 -1 1 0 0 0
aTR -1 0 0 0 -1 0
aBR 0 1 0 0 -1 0
bTL 1 0 0 -1 0 0
bBL 0 -1 0 -1 0 0
bTR -1 0 0 0 0 1
bBR 0 1 0 0 0 1
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TABLE 3
Belief Gambles through Which Prior Probabilities Are Revealed

Outcome (La—pHlr (Aa—pHls Ay —plr (1, —pi)ls

aTL 0.4 0 -0.4 0
aBL 0 0.4 0 -0.4
aTR 0.4 0 -0.4 0
aBR 0 0.4 0 -0.4
bTL -0.6 0 0.6 0
bBL 0 -0.6 0 0.6
bTR —-0.6 0 0.6 0
bBR 0 -0.6 0 0.6

An acceptable gamble is any gamble which dominates a gamble of the form A« + Bg,
where « and 8 are nonnegative vectors.

3. Joint Coherence

The rationality of the players’ behavior in the game will now be analyzed from the
perspective of an outside observer (“she’”) who is completely naive concerning the rep-
utations of the players, their stakes in the game, or the probabilities of states of nature.
Suppose that the observer chooses to enforce some of the gambles the players have offered
to accept at the conclusion of their preplay communication. Then the criterion for a
“rational” outcome of the game is quite simple: the observer should not succeed in
extracting money from the players without putting any money at risk. In other words,
she should not be able to find an acceptable gamble which yields a nonpositive aggregate
payoff to the players under every outcome of the game and which yields a strictly negative
aggregate payoff under the outcome actually observed. Such a gamble constitutes an
arbitrage opportunity against the observed outcome. To formalize this criterion, let (s*,
t*) denote the observed outcome and let 1+, denote the corresponding indicator vector.
Then we assume:

A6 (No arbitrage opportunities). —1x,« € A.

DEFINITION. The outcome (s*, t*) is jointly coherent if A6 holds given A1-A5—
i.e., if there do not exist (¢, B) such that [Aa -+ BB](s,t) <0 forall (s, ) €S X T and
[Aa + BBI(s*, t*) <O.

Notice that A6 is a joint restriction on the set A and the outcome (s*, t*): the strategy
chosen by the players given their information must “cohere” with the beliefs they have
previously revealed about the game’s structure. In the case of a nonstrategic decision
problem (N = 1), this is merely de Finetti’s standard of individual rationality.” In the
strategic case (N > 1), it captures the intuitive idea of mutually expected rationality,
namely that the players should not behave incoherently as individuals, nor bet on each
other to behave incoherently, nor bet on each other to bet on each other to behave
incoherently, and so on (Nau and McCardle 1990). Necessary and sufficient conditions
for joint coherence are summarized in:

THEOREM 1. The outcome (s*, t*) is jointly coherent if and only if there exists a
probability distribution = on S X T which:

(1) assigns positive probability to (s*, t*),

(i1) is a supporting probability distribution for every player; and

7 Actually, in the case where N = 1, A6 is a slight strengthening of de Finetti’s standard: it requires the
avoidance of arbitrage opportunities ex post, not merely ex ante. The ex post version is appropriate in the
presence of information and control over events. Here, the players jointly know ¢* at the time they jointly
choose s*, so we can say “they should have known better or else acted otherwise™ if arbitrage is possible against
(s*, t*).
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(ii1) has the property that, if it is interpreted as the joint distribution of types and
“recommended” strategies for the players,® then each player’s recommended strategy
maximizes his expected payoff given his information and given that the other players
Sfollow their own recommendations—i .e.:

Pw(unjl lnjr) = Pw(unkl lnjr) or else P-zr(lnjr) = 0 V], k € Sm r e Tn-

PROOF. By linear duality (e.g., Gale 1960, Theorem 3.10), either there exist « = 0,
B = 0 such that Aa + BB < —1,,, or else there exists = = 0 such that: (i) 7 1«,« > 0,
(ii) #"B = 0, and (iii) 774 = 0. Then the “either” condition is the existence of («, 8)
constituting an arbitrage opportunity against (s*, *); and the “or else” condition is the
existence of a 7 satisfying parts (i), (i1), and (iii), respectively, of the theorem. O

The distribution 7 can be factored as «(s, t) = p(t)u{s|t), where p is what Harsanyi
(1967) calls a basic probability distribution of the game (a “common prior” distribution);
and u is a correlated Bayesian equilibrium distribution. The latter can be viewed as a
coordination mechanism used by a mediator for generating self-enforcing randomized
strategy recommendations (possibly correlated between players) conditioned on states
of nature. Such a mediator may be omniscient—i.e., know the true state of nature.

The theorem can be restated more informally as follows: joint coherence requires the
players to act as if they held some common prior distribution over states of nature,
consistent with their revealed beliefs, and employed a coordination mechanism ( possibly
requiring their true information as input) from whose recommendations they would not
have incentive to deviate unilaterally given their information. Joint coherence is thus
seen to be dual to a correlated analog of Harsanyi’s Bayesian equilibrium concept® for
games of incomplete information, just as it is dual to a correlated analog of Nash equi-
librium (namely, correlated equilibrium) in the complete-information case. Once again,
joint coherence does not presume that distributions (over states and/or strategies) are
uniquely determined. Rather, the game must be played only as if some such distributions
existed.

As an illustration of Theorem 1, the game introduced in §2 has exactly two ouicomes
which are jointly coherent, namely ¢TL and bTR. The unique supporting common prior
distribution is p(a) = 0.6, p(b) = 0.4, and the unique supporting strategy-recommendation
mechanism is u(TL|a) = w(TR|b) = 1. This is also a Bayesian equilibrium in the sense
of Harsanyi because the recommended strategies of the players are (trivially ) independent.
This occurs because the belief gambles constituting the B matrix indicate that the players
believe independence to hold. If the players had not believed independence to hold, they
could have indicated this by accepting only the two unconditional gambles 1, — p¥ and
1, — p} rather than the four conditional gambles (1, — p¥)14, (1, — p¥)1p, (1,
— pH)1rand (1, — pi)1p. In this case, the outcomes aBL and bBR would also have
been jointly coherent, supported (for example) by the correlated strategy-recommendation
mechanism u(7TL|a) = 4, w(BL |a) = %, and u(BR|b) = 1. However, the latter mech-
anism could be implemented only by an omniscient mediator, since it gives player 2 an
incentive to lie in order to induce player 1 to play T in state b.

This example illustrates an important difference between joint coherence and alternative
concepts such as rationalizability (Bernheim 1984, Pearce 1984) or Nash equilibrium
and its refinements: assumptions about independence are embedded not in an objective
standard of rational play, but rather in the subjectively revealed rules of the game. The

8 If « is interpreted as a distribution for jointly determining types and recommended strategies, then P,(1,,)
is the joint probability that player # will be of type r and receive recommendation j, and P.(u,|1,;) is player
n’s conditional expected payoff for playing strategy k given that his type is r and he has received recommendation
J, given that other players follow their own recommendations.

° Harsanyi’s concept requires the strategy-generating mechanism to maintain statistical independence between
the players given their information—i.e., it must have the factorization u(s|?) = wu;(s;]6) X « « + X un(sy|tn).
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players are expected to act independently only to the extent they reveal that they believe
their actions will be independent. We do not rule out a priori the possibility that they
might correlate their actions through direct communication or through employment of
a possibly-omniscient mediator. (Omniscient mediation may be possible if, for example,
there exist institutional mechanisms for punishing untruthful reporting of types.) In the
example just discussed, there would be no advantage to either player in employing a
mediator, but the payoff structure could be modified so as to create such an advantage.
For example, if the payoff to player 2 in outcome aBL were raised from 4 to 5, a sto-
chastically dominant unconditional payoff distribution could be achieved for player 2
by employing an omniscient mediator.

The criterion of joint coherence can be applied even in the absence of uniquely de-
termined probabilities or payoff functions. For example, the common prior may be in-
determinate: with p* = 0.5 and p} = 0.4 in the example of §2, the outcomes aBL and
bBR would also be jointly coherent, supported by an alternative prior distribution p(a)
= p(b) = 0.5 and coordination mechanism w(BL|a) = wW(BR|b) = 1.

4. Games with Observable Communication

If the players desire to coordinate their actions but omniscient mediation is believed
to be impossible, this must somehow be written into the rules of the game before it can
be asserted that outcomes supportable only by omniscient guidance are irrational. One
way to do this is to suppose that the players employ a mechanical communication device
with commonly known properties. This idea has been used by numerous authors (Myerson
1985, 1986; Farrell 1985; Forges 1986) to extend Harsanyi’s model of a Bayesian game,
allowing strategies to be correlated in ways which are incentive compatible—i.e., which
encourage truthful reporting of types and obedience to recommended strategies. When
the Nash solution concept is applied to the extended game, it yields the concept of a
communication equilibrium: a correlated equilibrium that could in principle be imple-
mented by a nonomniscient mediator who relies on the players to report their private
information. Thus, by adding a communication mechanism to the game, the set of
Bayesian equilibrium outcomes can be enlarged to include outcomes supported by cor-
related strategies which would otherwise be ruled out by the Nash assumption of statistical
independence.

Here, the concept of communication equilibrium will be approached from the opposite
direction: by introducing a communication mechanism into the rules of the game, the
set of jointly coherent outcomes can be restricted to those which are achievable without
omniscient guidance. The incorporation of a formal communication mechanism does
not obviate the need for preplay communication, but merely removes it to a higher level.
Indeed, more elaborate unobserved communication is needed in this setting to achieve
common knowledge of the rules, because the extended game has a much larger strategy
set than the original game. To establish the duality between joint coherence and com-
munication equilibrium in a game with observable communication, an objective de-
scription of a communication game will first be given, and it will then be shown how its
structure can be subjectively revealed through the acceptance of gambles.

The objective description of a game with observable communication begins with a
strategy set S =.S; X + + + X Sy, a set of states of nature 7= T X « « « X Ty, and payoff
functions (uy, .. ., uy). Add to this a deterministic communication mechanism m = (m,,
..., my) which receives inputs i = (i, ..., iy) from the players and returns outputs o
=(o0y,..., oy)to them, where o0, = m,(i). (The output to player » may depend on the
inputs of all players.) The sets of inputs { i, } and outputs { 0, } available to player »n will
be denoted I,, and O,, respectively, with I = I; X «+«+« X Iyand O = O; X + + + X Oy.
It is usually assumed that each player has at least one input for each of his possible states
of information and at least one output for each of his available strategies.
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In the presence of such a mechanism, the players’ choices of strategies in the original
game are replaced by choices of decisions, where a decision d, for player #n consists of a
function f,: T,, — I, mapping information states into inputs, and a function g,: 7T,
X 0, — S, mapping information states and outputs into strategies. Henceforth, let d,
= (f,, &) denote a decision of player #n; let d = (d,, . . ., dy) denote a joint selection of
decisions by all players; let d_,, denote a joint selection of decisions by all players other
than #n; and let D and D_, denote the sets of all {d} and {d_,}, respectively. Let f(¢)
=(fi(t1), ..., fn(ty)), and let s*(d, m, t) denote the strategy in the original game which
results from the players’ choice of decision d and the selection of mechanism m when
the state of nature is ¢: that is, s¥ (d, m, t) = g,(t,, m,(f(1))). The payoff to player » as
a function of d, ¢, and m is then u,(s*(d, m, t), t).

To allow randomization of strategies, either independently or with correlation, the
choice of the communication mechanism is allowed to be objectively randomized. Let
M denote the set of all deterministic mechanisms, i.e., the set of all mappings {m : I+
O}. Then let a particular mechanism m be chosen from M by objective randomization
using a known distribution g, independent of s and ¢, so that the identity of #2 is unknown
to the players at the time they give their inputs or receive their outputs. Henceforth, the
distribution p will itself be referred to as the (random) mechanism employed by the
players.

The objective of introducing observable communication is to enable the players to
implement a self-enforcing, correlated strategy which does not require an omniscient
mediator, presumably in order to achieye a mutually desired distribution of payoffs which
would otherwise be unreachable in a noncooperative setting. It may therefore be assumed
that the players wish to avoid vagueness, and that their preplay communication accord-
ingly leads to (among other things) the selection of a unique mechanism p* and a unique
joint decision d* to be employed with it. (Of course, the joint decision cannot be enforced;
it is merely proposed as a focal point. The question is whether it is rational even to assert
the intention of adhering to decision d* with respect to mechanism p*.) Without loss of
generality, the joint decision may be assumed to be deterministic, since a randomized
decision with respect to one mechanism would be equivalent to a deterministic decision
with respect to some other mechanism.'® For all # and all k € D,, let d*,k = (dY, ...,
d¥ ., k, d¥., ..., d%) and let u¥ denote the vector whose elements, indexed by states
of nature, are the expected payoffs to player n» when d*,k is implemented. That is, u?¥,
is the expected payoff to player » when he implements decision k while his opponents
implement d*,, where expectation is with respect to the distribution p*. Formally:

uk(t) = 2 pm)u,(s¥(d*,k, m,t),1).

meM

The subjective description of the communication game can now be given. Let 1,,
denote the indicator function defined on 7 alone (rather than S X T) for the event that
player # is of type r. Then let information about the players’ expected payoffs be revealed
through the acceptance of preference gambles defined on 7" in the following way:

A4’ (Acceptance of preference gambles). For every n, every k € D, every r € T,,,
and j = d¥: (uf —u¥)l, € A

In other words, given that his type is r, player » prefers the expected payoffs he obtains
by adhering to decision j = d} to those he would obtain by defecting to decision k, given
that his opponents are adhering to d*,. (The condition that his opponents adhere to

10 Indeed, by the same reasoning, we could assume that u* is a “canonical” mechanism for which 7, is a copy
of T, and O, is a copy of S, for all n, and that d* is the unique decision in which each player is truthful and
obedient—i.e., f ¥(t,) = t, and g¥ (¢, 0,) = 0, for all n, ¢, and o,. This ability to restrict attention to canonical
mechanisms and truthful-and-obedient behavior is known as the “revelation principle” (Myerson 1985, Forges
1986).
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d*, means that the payoffs in the gamble depend on what the other players would have
done as a function of their information if they had adhered, not on the decisions they
actually implemented if they defected.) If A4’ holds, it is as if the outcome set of the
game is S X T, the payoff functions are (uy, ..., uy), and decision d* is employed in
conjunction with mechanism p*, and this is common knowledge. Notice, however, that
the details of u* and d* (and, indeed, the details of the sets I and O) have been integrated
out of the description of the game insofar as the observer is concerned: the payoffs between
the players and the observer depend only the state ¢, not on d, s, or m. This is a con-
sequence of the revelation principle, which establishes that many different combinations
of mechanisms and decisions are equivalent, and the fact that we have integrated over
m to operationalize the players’ agreement on the distribution u*. The situation is anal-
ogous to Aumann’s (1987) formulation of a game of complete information, in which
the pegging of strategies to exogenous states is used as a means to achieve intra-play
communication.

Let A henceforth denote the matrix whose column in the (#, k, r) position is the
preference-gamble payoff vector (uf; — u)1,,, where j = d} , and whose rows are indexed
(only) by ¢. a will henceforth denote the corresponding vector of nonnegative gamble
coeflicients chosen by an observer. Also, since the players are pegging their strategies to
their types through a known mechanism and decision, it will be assumed henceforth that
the events {E,; } and {F,,, } to which belief gambles refer are measurable with respect to
T (rather than S X 7). The matrix B, whose columns are the payoff vectors for the
belief gambles, will now also have rows indexed by 7. Assumption A5 (acceptable belief
gambles) is otherwise retained. Under these new definitions, the set A of acceptable
gambles is once again the set of all gambles that equal or dominate a gamble of the form
Aa + BB, where a and § are nonnegative vectors.

As before, the standard of rationality applied to the players is that an observer should
not succeed in winning money from them without having put money at risk. In this
case, the outcome of the extended game is ¢*, the observed vector of types, insofar as
the observer is concerned. We therefore modify A6 to require that there should be no
acceptable gamble which yields a strictly negative aggregate payoff in state t* and non-
negative aggregate payoffs in all other states:

A6’ (No arbitrage opportunities). —1,« ¢ A.

DEFINITION. The outcome of the communication game is jointly coherent if A6’ is
satisfied given A1-A2-A3-A4’-A5—i.e., if there do not exist («, 3) such that [Aa + BB](¢)
<O0forall t € Tand [Aa + BB](t*) < 0.

THEOREM 2. The outcome of the communication game is jointly coherent if and only
if there exists a distribution p on T which:

(1) assigns positive probability to t*;

(i1) is consistent with the asserted beliefs p*; and

(iii) has the property that each player’s expected payoff is maximized by adhering to
decision d* with respect to the mechanism u*, given that all the other players do likewise.

PROOF. By linear duality, either there exist a« > 0, 8 = 0 such that Ao + B8 < —1,«,
or else there exists a distribution p such that p74 = 0, p"B = 0, and p”1,« > 0. The
system of inequalities p74 = 0 can be written out in full as:

2 2 A (m)[u,(s¥(d*, m, 1), 1) — u,(s¥(d*,k, m, 1), )] = 0 (2)

€T meM

for all n and all k € D,,, which expresses the condition that the expected payoff to player
n is greater for adhering to decision d} than for defecting to decision k, given that the
other players adhere. The system p? B = 0 can be written as:

z p(t)[Enh(Z)_p;'l‘/z]Fnh(t)ZO Vn andhEHn.

teT
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Letting P,(-) denote the probability measure on subsets of 7" induced by p, this means
that either P,(F,;,) = 0 or else P,(E,;,|F,;,) = p¥, for every n and A. That is, the distribution
p is consistent with the announced lower probabilities p*. Finally, the inequality p 1,
> 0 is equivalent to p(¢*) > 0. O

Thus, joint coherence requires the existence of a distribution on states of nature under
which p* in conjunction with d* constitutes a communication equilibrium as defined
by Forges (1986) and Myerson (1985, 1986). Moreover, this distribution must agree
with the announced beliefs and must assign positive probability to the state of nature
that is actually observed. Theorem 2 thus supports the concept of communication equi-
librium in games with observable communication, absent the assumption that the basic
distribution of the game is fully revealed. In particular, equation (2) expresses the condition
that the mechanism u* in conjunction with the decision d* must be incentive compatible
with respect to the distribution p. (This is equivalent to equation (5.4) in Myerson 1985.)
Forges (1986) has given a characterization of the set of expected payoffs achievable by
all mechanisms and decisions yielding communication equilibria with respect to a given
state-distribution p: this set of expected payoffs is a convex polyhedron, being defined by
a system of linear inequalities. Theorem 2 inversely characterizes the set of all state-
distributions { p } which support a given mechanism and decision and are also consistent
with whatever beliefs have been announced: this set of distributions is also a convex
polyhedron, being defined by the systems of inequalities given above, which are bilinear
in p and p*. For fixed p, the inequalities always have a canonical (i.e., truthful-and-
obedient) solution in u*, since there is always at least one Bayesian equilibrium: a “non-
communicative” communication equilibrium. However, for fixed u* and d*, there need
not be a solution in p. This could occur, for example, if d* prescribed strategy choices
which were individually incoherent.

5. Discussion

It has been shown that the solution concepts of (correlated ) Bayesian equilibrium and
communication equilibrium, and the related concepts of common prior distributions
and incentive-compatible mechanisms, can be derived from a subjective model of a
noncooperative game. In this model, the players elicit each other’s probabilities and
payoffs by the operational method of de Finetti, and strategic rationality is defined as
the avoidance of arbitrage opportunities against the group. Closely related arbitrage ar-
guments also characterize competitive equilibria in securities markets and exchange
economies (Nau and McCardle 1991). These results suggest that there is a deeper unity
among subjective probability theory, noncooperative game theory, and competitive mar-
ket theory than is commonly appreciated—a unity that does not depend on explicit or
highly determinate cognitive models. They also suggest that, in the application of game-
theoretic reasoning to economic decision-making, the preplay communication process
is an essential object of study. Without a model of preplay communication, there is no
sound basis for asserting that common knowledge exists, nor for predicting or prescribing
how the players should choose among multiple strategies that may meet the requirement
of mutually expected rationality.

Throughout this paper, the simplifying assumption has been made that players’ marginal
utilities for monetary wealth are constant across outcomes of the game, in which case
their “true” probabilities and relative utilities are in principle directly revealed by their
acceptance of monetary gambles. Under the more realistic assumption of risk-averse
(concave) utility for money, state-dependence of wealth will imply state-dependence of
marginal utilities, leading to distortions of gambling-based measurements of probability
and utility. The apparent probabilities revealed by a player’s acceptance of belief gambles
must in this case be interpreted as renormalized products of his “true” probabilities and
his marginal utilities, as pointed out by Kadane and Winkler (1988). This phenomenon



386 ROBERT F. NAU

is in fact central to the argument that communication-through-gambling will produce
convergence to an apparent common prior distribution (Nau 1990). Its implications
for coherent behavior in games are analyzed in Nau (1991b), where it is shown that the
revealed utilities of risk-averse players are distorted in a fashion reciprocal to that of their
probabilities: the players’ apparent utility differences, as revealed by their acceptance of
preference gambles, must be interpreted as their true utility differences divided by their
marginal utilities. Fortunately, these reciprocal distortions cancel out when expected
utilities are computed, so that it remains valid to use the revealed probabilities and
utilities in determining rational outcomes of the game. The rational outcomes are those
which occur with positive probability in an objective correlated equilibrium of the revealed
game (in which it is common knowledge that the players hold the same prior distribution
on states), and this corresponds to a subjective correlated equilibrium of the underlying
“true” game (in which it is common knowledge that the players hold different priors—
¢f. Aumann 1974). This establishes a relativity between objective and subjective correlated
equilibria as expressions of strategic rationality: the former are what can be observed,
the latter are what may be imagined as the “truth.”'!

! The author is grateful for comments on earlier drafts of this paper by Francoise Forges, Doug Foster, Jim
Friedman, Dan Graham, Kevin McCardle, Hervé Moulin, David Schmeidler, Peter Wakker, Bob Winkler, the
editors, and several anonymous referees. The opinions expressed herein and any remaining errors are the sole
responsibility of the author. This research was supported by the Business Associates Fund at the Fuqua School
of Business.
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