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A new concept of mutually expected rationality in noncooperative games is 
proposed: joint coherence. This is an extension of the “no arbitrage opportunities” 
axiom that underlies subjective probability theory and a variety of economic 
models. It sheds light on the controversy over the strategies that can reasonably be 
recommended to or expected to arise among Bayesian rational players. Joint 
coherence is shown to support Aumann’s position in favor of objective correlated 
equilibrium, although the common prior assumption is weakened and viewed as a 
theorem rather than an axiom. An elementary proof of the existence of correlated 
equilibria is given, and relationships with other solution concepts (Nash equi- 
librium, independent and correlated rationalizability) are also discussed. Journal of 
Economic Literature Classification Numbers: 021, 022. 026, 213. ‘p’ 1990 Academic 

Press. Inc 

1. INTR~DUCTJ~N 

The central problem in noncooperative game theory is “how to translate 
the intuitive assumption of mutually expected rationality into mathemati- 
cally precise behavioral terms (solution concepts)” (Harsanyi [20] ). A 
continuing proliferation of solution concepts in the literature suggests that 
a consensus on how to perform this translation has not yet been reached. 
Nash’s [29] original concept of an equilibrium among independently ran- 
domized strategies is usually taken as a starting point, but it is held to be 
too weak in some circumstances (leading to proposals of refined forms of 
equilibrium such as subgame perfect, trembling-hand perfect, sequential, 
proper, strategically stable, divine, etc.) and too strong in others (leading 
to proposed coarsenings such as correlated equilibrium, rationalizability, 
correlated rationalizability, etc.). 

In the last few years, “Bayesian rational” axiomatic foundations have 
been constructed for many of these solution concepts (Tan and Werlang 
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[36], Brandenburger and Dekel [S, 91, Bernheim [6], Aumann [3]). 
These axiom systems extend Savage’s [33] axioms of Bayesian rational 
individual behavior to include consistency conditions on infinite hierarchies 
of reciprocal knowledge and beliefs and/or the assumption of a common 
prior distribution over an exogenous state space. While these constructs are 
mathematically interesting and have helped to elucidate the relationships 
among different solution concepts, they have not settled the argument as to 
which concept is “the” expression of Bayesian rationality in games, nor are 
any of them entirely satisfactory from a normative viewpoint. 

The treatment of prior distributions or even hierarchies of distributions 
as primitive elements in a theory of rational strategic behavior violates an 
important distinction between behavior and belief that is observed in the 
work of Bayesian decision theorists such as Savage and de Finetti. There, 
rationality is defined by axioms on observable events, consequences, and 
actions (assertions of preference, acceptance of gambles, etc.). The framing 
of axioms in terms of observable quantities is not arbitrary or unimportant: 
it ensures that they can be independently verified or enforced, at least in 
principle. Theorems are then derived to say that behavior is rational if and 
only if it is supported by consistent belief and preference structures (prob- 
ability distributions and utility functions). This demonstration of a duality 
between external standards of behavior and internal representations of 
beliefs and preferences is what gives normative force to the Bayesian model. 

In this paper we present a definition of rational behavior in non- 
cooperative games that is, we believe, more consistent in spirit with the 
decision-theoretic view of individual rationality, and thereby addresses 
some of the criticisms raised by Kadane and Larkey [22,23] concerning 
the schism between subjective probability theory and game theory. The 
central idea is an extension to the multi-player setting of de Finetti’s 
[ 12, 13) operational criterion of rationality, namely that choices under 
uncertainty should be cokerent in the sense of not presenting opportunities 
for arbitrage (“Dutch books”) to an outside observer who serves as betting 
opponent. That is, a rational individual should not let himself be used as 
a money pump. 

A noncooperative game is a joint decision problem in which each 
player’s strategies are lotteries whose payoffs depend on the uncertain 
actions of his opponents. The player’s choice of strategy implies a 
preference for the chosen strategy over any alternative strategy, which can 
be given the operational interpretation that he will accept a gamble in 
which the payoffs of any other available strategy are exchanged for the 
payoffs of the chosen one. Gambles accepted in this way may present 
arbitrage opportunities to an outside observer, and we suggest that a 
primitive characterization of rational behavior in the game can be given in 
terms of the avoidance of such arbitrage opportunities. This is analogous 
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to the use of no-arbitrage-opportunity assumptions elsewhere in economics 
and finance (e.g., Varian [37]) to characterize the collective behavior of 
rational agents in commodities and securities markets. Here, the 
“securities” being traded are, literally, shares of the players’ prospects in the 
game. 

A priori, we can distinguish several levels of assumptions about arbitrage 
opportunities the players might wish to avoid. In ascending order of 
strictness: 

(I) Individual coherence: Each player should avoid strategies that 
expose him individually to arbitrage. 

(II) Common knowledge of (I): Each player should avoid strategies 
that would expose him individually to arbitrage if the strategies already 
being avoided by his opponents under (I) and (II) were deleted from 
consideration. 

A joint strategy that violates (IT) but not (I) is one in which some player 
is effectively betting on his opponent to behave incoherently, or betting on 
his opponent to bet on him to behave incoherently, and so on. This creates 
an arbitrage opportunity requiring simultaneous transactions with two or 
more players: from the observer’s viewpoint, it is arbitrage against the 
group rather than a single player. There may also be opportunities for 
arbitrage against the group other than those characterized by (II). For 
example, such an opportunity may exist if the players choose strategies in 
which each is effectively betting on “outguessing” his opponents, and 
knows that they are betting on outguessing him, and so on. Therefore, we 
add: 

(III) Inductive extrapolation of (II): The players should avoid all 
strategies that expose the group to arbitrage. 

A strategy that satisfies (III) will be defined to be joindy coherent. Players 
who subscribe to the standard of joint coherence are those who do not let 
themselves be used collectively as a money pump. 

Our main result is that a strategy is jointly coherent if and only if it 
occurs with positive probability in some correlated equilibrium.’ Thus, 
correlated equilibrium is the dual of joint coherence, in the same sense that 
a supporting probability distribution is the dual of a system of coherent 
preferences in a nonstrategic decision problem, and a system of equilibrium 
prices is dual to the absence of arbitrage opportunities in a competitive 
market. This result lends support to Aumann’s [3] contention that 
correlated equilibrium is the (strongest) natural expression of Bayesian 

’ A self-enforcing specification of randomized strategies that, unlike Nash equilibrium 
strategies, may be correlated between players (Aumann [Z]). 
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rationality in noncooperative games. However, Aumann’s formulation 
depends on, among other things, the assumption of a common prior 
distribution over an exogenous state space to which the players’ strategies 
are pegged. In our formulation, the avoidance of all arbitrage opportunities 
against the group is viewed as an axiom from which it follows as a theorem 
that the players should behave as if they held solne such common prior. It 
will also be seen that strategies satisfying (II) are those participating in a 
posteriori equilibria (Aumann [2], Brandenburger and Dekel [lo]), a 
generalization of correlated equilibria in which the players may have 
different priors. Thus, the difference in implications between (II) and (III) 
is the existence of a supporting common prior. 

2. JOINT COHERENCE 

We consider the case of finite games among players whose utilities for 
consequences are known-or, equivalently, whose utility for money is 
linear. Our starting point for characterizing rational play will be a set of 
axioms for rational individual choice under uncertainty with respect to a 
finite set of states of nature. As is well known, such axioms can be 
formulated either in terms of acceptance of gambles or in terms of binary 
preferences. We will emphasize the former, while pointing out links with 
the latter. Let S be a finite set of states of nature, and let G, G,, G,, etc., 
denote gambles (lotteries) on S. 

DEFINITIONS. A gamble G is acceptable for an individual if he agrees to 
a transaction in which he will receive the payoff fiG(s) when state SE S 
obtains, where fl E (0, 1 ) is to be chosen by an opponent prior to the 
realization of s. G is conditionally acceptable given the occurrence of an 
event H if 1,G is acceptable, where 1, denotes the indicator function of 
H.’ G, dominates Gz if G,(S) > G,(s) V/s E S. 

Let & denote the set of all acceptable gambles for a particular 
individual. The following axioms are considered to characterize rational 
gamble acceptance: 

A 1 (Dominance). G dominates 0 * G E .(I( 

A2 (Linearity). G E .d 3 crG E d VU30 

A3 (Additivity). G, , G? E .d * G, + G, E ,c&’ 

A4 (No arbitrage opportunities). - 1 $ .d. 

’ Addition and multiplication are defined pointwise: if G, and Gz are gambles and I, and 
z2 are scalars, then G(, G, + %>G2 is the gamble whose payoff in state s is c(, G,(s) + r,Gz(,~). 
l,,G yields the payoB G(s) if SE H. otherwise 0. When used in expressions referring to 
gambles, the numbers I. 0. and ~ 1 denote constant gambles having these values. A positive 
payoff is considered as a gain for the individual, a negative payoff is a loss, 
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A set of acceptable gambles satisfying A4 given Al-A3 is one in which the 
individual neither explicitly nor implicitly accepts a uniformly negative 
payoff: such a set of gambles is defined to be coherent. 

Equivalently, define a binary preference relation “ 2” on lotteries, subject 
to the following axioms: 

Bl (Dominance). G, dominates G,*G, kG, 

B2 (Linearity). G, zGG,+aG, ~cxG~VCX>O 

B3 (Transitivity). G, 2 Gz, G, 2 G, 3 G, 2 G, 

B4 (Independence or cancellation). G, 2 G, * G, + G k Gz + G V/G 

B5 (No arbitrage opportunities). - 1 2 0. 

With the identification GE do G 20, the A and B axioms imply each 
other (de Finetti 1121, Buehler [ll], Walley [38]). 

The well-known coherence theorem (de Finetti [ 131, Buehler [ 111) sates 
that a set of acceptable gambles [preferences] is coherent if and only if 
there exists some probability distribution on S that assigns nonnegative 
expected value to every acceptable gamble. This result follows from a linear 
duality argument. Thus, an individual must act CIS zj’ his preferences were 
derived from an internal probability distribution if he is to avoid being 
used as a money pump. This is generally considered to be the most 
persuasive normative argument in favor of the existence of subjective 
probabilities. 

Unlike de Finetti, we have not made any assumption about the com- 
pleteness of preferences over a continuous spectrum of gambles-that is, 
the existence of exact indifference points. For example, we have not 
assumed that, for any gamble G, either G or -G must be acceptable, nor 
that there exists a constant p such that both G-p and p - G are accept- 
able. Such assumptions distinguish the conventional theory of sharp (point- 
valued) probabilities and expectations from theories of lower and upper 
(interval-valued) probabilities and expectations (Koopman [24], Smith 
[34], Good [17], Suppes [35], Williams [39], Walley [38]). Arguably, 
they are excess baggage in a decision-making context with only finitely 
many states and decisions, such as an n-person matrix game. More impor- 
tantly, there appears to be a growing consensus among Bayesians that the 
assumption of completeness on infinite sets is not merely a harmless 
idealization; that subjective probabilities are in practice ambiguous or 
numerically indeterminate; and that decision models and statistical 
methods should accordingly be robust against this indeterminacy.3 If the 

‘See, for example, Giron and Rios 1161, Berger 147. Learner 1251, or Bewley [7]. The 
completeness assumption with respect to utility measurement has also been questioned. e.g., 
by Aumann [ 11. 
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idea of sharply defined first-order subjective probabilities cannot be taken 
seriously, the credibility of game-theoretic results built on infinite 
hierarchies of subjective distributions is obviously compromised. Therefore, 
one goal of the present paper is to establish a foundation for discussing 
rationality in finite games that does not depend on the completeness 
assumption. 

We now extend the axiom system given above to a strategic setting. 
Consider a noncooperative game of complete information defined by a set 
N = ( 1, . . . . n 1 of players; a finite set S of joint strategies, with Si denoting 
the strategy set of player i, and Si denoting the joint strategy set of all 
players other than i; and a function ui(s,, spi) denoting the payoff to player 
i when he plays s, E S, and his opponents play s-, E S,. To characterize 
mutually expected rationality in the game, we will adopt the viewpoint 
of an observer of the game (“she”) who serves as the common betting 
opponent of the players. That is, rather than focusing on the introspective 
processes used by the players in formulating their strategies, we will 
consider only the implications of their overt behavior for the observer. The 
observer’s view is the lowest common denominator among views of the 
game that the players themselves can adopt, and this fact is common 
knowledge. The definition of an “acceptable” gamble given above is hence- 
forth reinterpreted from the observer’s viewpoint: an acceptable gamble is 
one that has been made available to the observer by any player. Provided 
that the currency in which gambles are expressed is transferable between 
the players and the observer, the identity of the player who accepts a 
particular gamble is unimportant: as far is the observer is concerned, the 
gamble has been accepted by the group. 

We embed the game in a larger universe which includes the observer by 
assuming the players accept conditional gambles which “reaffirm” their 
choices of strategies in the game. For player i, whose state space is Si, 
this means that his choice of strategy j is assumed to imply acceptance of 
a gamble whose payoff in state SL; is u;(j, s ,) - u,(li, spi), for every kE Si, 
k #j. By de Finetti’s theorem, the acceptance of these gambles is 
individually coherent if and only if there is a probability distribution on 
S, under which each of them has nonnegative expected value-that is, a 
distribution on S mi against which j is a “best response.” Therefore, 
Assumption (I) from Section 1 implies that each player should choose a 
strategy which is a best response to some distribution over the actions of 
his opponents in the original game. Assumption (11) is that each player 
should choose a strategy that is individually coherent in every subgame 
that remains following the iterative deletion of individually incoherent 
strategies. By the preceding result, these are the strategies that remain 
following the iterative deletion of all players’ strategies that are not best 
responses to any distributions over their opponents’ strategies. Such 
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strategies are, by definition, those that satisfy the condition of correlated 
rationalizability (Brandenburger and Dekel [S, IO]). Thus, assumption (II) 
is the dual definition of correlated rationalizability. Brandenburger and 
Dekel also show that the correlated rationalizable strategies are those 
which participate in a posteriori equilibria (Aumann [2]), subjective 
correlated equilibria that are self-enforcing ex post as well as ex ante. 

To characterize the strategies satisfying assumption (III), the gambles 
implicitly accepted by the players must be rewritten in the form of uncondi- 
tional gambles on the observer’s state space, S. Let uii denote a gamble 
whose payoff in state s = (s,, sP,) is the payoff that player i would have 
received by playing strategy in S, given that the other players had chosen 
s -i, regardless of the actual value of s,: 

ui,(s) = Uj(j, SC,). 

Also, let 1 (,(s) denote the indicator function for player i choosing strategy j: 

if s,=j 

otherwise. 

We now assume 

A5 (Implicitly accepted gambles). (uii - uik) 1 ii E d for all i E N and 
all j, k E Si. 

In other words, conditional on the “event” that player i chooses strategy j, 
we assume the acceptability [for him] of a gamble in which the payoffs of 
any other strategy k are exchanged for those ofj. 

From the observer’s viewpoint, A5 together with A2 and A3 implies that 
the players will accept any nonnegative linear combination of the gambles 
{(u,-u,k) lg>. Th e o b server’s decision problem is to determine which of 
these she will enforce. (Al implies that the players will also accept any 
gamble that dominates another acceptable gamble, but these are inefficient 
for the observer.) Accordingly, she chooses a nonnegative coefficient crVk for 
the acceptable gamble (uii-- uik) 1, for every iE N and every j, kE Si. For 
concreteness, we might suppose that these coefficients are deposited with 
the players in sealed envelopes to be opened conditional on their individual 
choices of strategies. Thus, player i receives an envelope labeled “to be 
opened in the event you choose strategy j,” for each in S,. Inside this 
envelope are the coefficients atik for all k E S;. After they have chosen their 
strategies in the game, the players open the appropriate envelopes and the 
gambles are settled. 

Let CI denote the triply indexed vector whose (i,j, k)th element is aiJkr 
and let A denote the matrix whose columns are the payoff vectors for the 
acceptable gambles defined in A5. That is, A is the matrix whose columns 
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are indexed by (i, j, li), whose rows are indexed by s, and whose element 
in column (i, j, k) and row s is 

(1) 

The sth row of A will be denoted A(s). The vector of payoffs from observer 
to players under all states may now be expressed as Aa, and the specific 
payoff in state s is A(s) CX.~ Then, given Al-A3 and A.5, GE d if G 
dominates Act for some nonnegative CC Formally, the matrix A describes the 
observer’s view of the game, and so may be considered to summarize the 
features of the game’s structure that are common knowledge among the 
players. Since the elements of A depend only on differences in utility 
between strategies of the same player, and since the scaling of the elements 
of c1 is arbitrary, it follows that the payoff structure is unaffected by non- 
negative linear transformations of the individual utility functions. 

To complete the characterization of strategies satisfying (III), it will be 
necessary to modify our original no-arbitrage-opportunity axiom (A4). In 
the discussion of individual coherence, we held the individual responsible 
for the set of gambles he accepted, not the specific outcome which resulted, 
and the no-arbitrage-opportunity axiom was therefore a restriction on the 
set of acceptable gambles. Here the situation is reversed: we hold the 
players responsible for the outcome (i.e., the joint strategy that is played) 
rather than the set of gambles that were accepted, so the no-arbitrage- 
opportunity axiom must refer to the outcome of the game. It will be proved 
later (as Proposition 1) that the acceptance of the gambles defined in A5 
can never imply, via Al-A3, the acceptance of a uniformly negative gamble 
in violation of A4. However, these assumptions will generally imply the 
acceptance of some semi-negative gambles (negative in some outcomes of 
the game, zero in others), and the observer may be expected to enforce 
these gambles since they carry no risk for her. If the players choose an out- 
come that is one of the losing outcomes in an acceptable semi-negative 
gamble, they will have “deliberately” allowed arbitrage to be achieved 
against them. Our modified no-arbitrage-opportunity assumption is 
precisely that this should not happen. Let d denote the outcome of the 
game (the strategy actually played), and let 1, denote the indicator 

4 In a discussion of refinements of correlated equilhbrium, Myerson [27] introduces a 
vector a: whose (i. j. k) element is called a “shadow price” for the incentive constraint that 
player i should not expect to gain by using strategy k instead of,j when ,j is recommended to 
him. The quantity we have defined as the total payoff from observer to players is described 
by Myerson as the “aggregate incentive value of s for [the set of all players] with respect to 
z.” It will be seen that a ultimately plays the same role in our analysis. The difference is that 
we have a prior interpretation of it as a vector of coefficients for gambles between the players 
and an observer. From this and the joint coherence assumption. the constraints defining a 
correlated equilibrium will be derived. 
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function of d on the set S (i.e., Id(s) = 1 if s = d, zero otherwise). Then we 
assume: 

A4’ (No arbitrage opportunities). - 1 d# .d. 

DEFINITION. An outcome d of the game is jkzrly coherent if it satisfies 
A4’ given Al-A3 and A.5. 

We will say that c( ac9zieere.s arbitvuge against an outcome d if a is non- 
negative and - 1 d dominates Act or some positive multiple theoreof-i.e., if 
A(s) M < 0 for all s E S, and A(d) c1< 0. In these terms, the jointly coherent 
outcomes of the game are those against which arbitrage cannot be 
achieved. Note that if c1 and a’ achieve arbitrage against distinct strategies 
d and d’, respectively, then in view of the linearity of the payoff function, 
a + a’ achieves arbitrage against both d and d’.’ It follows that there is a 
single a that achieves arbitrage against all jointly incoherent strategies. 
Therefore the players might reasonably assume that they will certainly lose 
money (as a group) to the observer if any jointly incoherent strategy is 
played. 

3. RESULTS 

It is intuitively clear that the set of jointly coherent strategies is not 
empty. If strategy d is played, and player i finds that aGk > 0 for j = dj and 
some k # d;, this can be interpreted as a judgment by the observer that the 
player should have chosen k instead of j. This judgment is vindicated if a 
in fact achieves arbitrage against d. Yet, in a finite game, it cannot be true 
that, no matter what the players do, some of them should have done 
otherwise-or else life would be terribly unfair! Formally, we have the 
following: 

PROPOSITION 1. There is at least one jointly coherent strategy. 

ProoJ If all strategies were jointly incoherent, then there would exist a 
such that A(s) a < 0 for all s. Even if this tl were revealed to the players in 
advance, they would be unable to find objectively randomized strategies 
(independent or correlated) yielding nonnegative expected gain to every 
player. We will demonstrate a contradiction, namely that for any a there 
exists an independently randomized strategy for each player yielding an 

‘If a and 0~’ achieve arbitrage against d and d’. respectively, then Aa and Aol’ are semi- 
negative vectors with strictly negative elements in positions d and d’, respectively. Since 
A(a + a’) = AG( + Aa’, it follows that A(a + a’) is semi-negative with strictly negative elements 
in both positions d and d’; i.e.. a + a’ achieves arbitrage against both d and d’. 
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expected gain of exactly zero. Consider the situation that CI presents to 
player i: each strategy available to him defines a lottery over the uncertain 
actions of his opponents, and cliik is the multiple of the lottery defined by 
strategy k that the observer will ask him to give up in return for the same 
multiple of the lottery defined by strategy j if he should choose strategy j 
in the game. Without loss of generality, assume Ck:l;f,~i,X- < 1, and define 
@i/j= 1 -Ck:k+, clt,k, whence cka,,k = 1 for all Jo S;. (The exchange of a 
lottery for itself yields no net transaction, so tliii is arbitrary.) Suppose now 
that player i employs an independently randomized strategy characterized 
by a probability vector p. Then the e.upected multiple of the lottery defined 
by strategy k that he will give up is C, cxiil,pj, and the expected multiple of 
it that he will receive is simply px ( =c, rikipk), independent of the actions 
of his opponents. The player’s net expected gain or loss in multiples of the 
lottery defined by strategy k will be zero if these are equal. That is, if p 
satisfies 

his net expected transaction in every strategy will be zero, and hence his 
overall expected gain will be zero regardless of the strategies chosen by his 
opponents. It remains to show that such a distribution p always exists. Let 
M be the square matrix whose element in row k and column j is c(,~~. Note 
that M is a stochastic matrix (i.e., nonnegative with columns summing to 
unity) with positive diagonal elements; hence it may be considered as the 
transition matrix for a finite, aperiodic Markov chain. The system of 
equations (2) can now be written as Mp=p, which is seen to be the 
equation defining p as a stationary distribution of the Markov chain whose 
transition matrix is M. As is well known, every finite, aperiodic Markov 
chain has a stationary distribution, which can be constructed as 
p=lim m - % M”‘p* for an arbitrary initial distribution P*.~ 1 

We now come to our main result, namely that the existence of a 
correlated equilibrium distribution supporting the strategy actually played 

‘The Markov chain argument has the following intuitive interpretation: player i begins 
with an initial distribution p* and then observes c(. For each j and k he interprets rrlk as a 
fraction of the time that (in the observer’s judgment) he should have played X- instead ofj. and 
he attempts to reallocate probability mass accordingly. Thus, an amount czYlp,! of probability 
mass is shifted from strategy j to strategy k, for every j and k, yielding the new distribution 
Mp*. He then repeats this process on the new distribution, obtaining M*p*. and so on. As 
he continues to make transitions to new distributions in this way in response to the same set 
of judgments by the observer (i.e.. the same a). he eventually achieves an equilibrium in which 
the net inflow of probability mass into any strategy is equal to the net outflow. His distribu- 
tion now “agrees” with the observer’s judgments, and there is no net transaction. 
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is the dual of the requirement that it be jointly coherent, in the same sense 
that the existence of a probability distribution supporting a set of accept- 
able gambles is dual to the requirement that it be individually coherent. It 
is based on a separating-hyperplane lemma (Gale [ 15 Theorem 2.81) that 
is a variant of Farkas’ lemma, the basis. of the duality theorem of linear 
programming: 

LEMMA. Exactly one of the ,following two systems qf linear inequalities 
has a solution: 

(i) Axdh, x 3 0, 

(ii) &A 3 0, R’h < 0, n >, 0, 

where, without loss of generality, the vector 7~ satisfying (ii) is scaled so that 
it is a probability distribution. 

The coherence theorem for noncooperative games now follows: 

PROPOSITION 2. A strategy is jointl-y coherent if and only tf there exists 
a correlated equilibrium distribution in which it has positive probability. 

Proof: A strategy d is jointly coherent if and only if there does not exist 
a nonnegative vector tl satisfying Aa 6 b, where A is the matrix defined in 
(1) and b is a vector whose dth element is negative and whose remaining 
elements are zero. By the lemma, this is true if and only if (ii) has a 
solution for this matrix A and vector b. Such a solution is a distribution rr 
satisfying the system of inequalities 

1 n(~)[u!~(s)-u,(s)] l,(s)>0 ViEN,jESi,kESi, 
s t s 

n(d) > 0. 

This is merely the system of inequalities defining a correlated equilibrium 
distribution’ that assigns positive probability to d. Conversely, if there 

’ Letting P, denote the probability measure on subsets of S induced by K, the system of 
inequalities implies that either P,(s,=j) =0 or else, on dividing through by P,(s, =,j), we 
obtain 

Hence, if n is a commonly known joint distribution for generating strategy recommendations 
in which strategy j of player i occurs with positive probability, then upon receiving the recom- 
mendation S, = j and updating his distribution over his opponent’s strategies to P,(s _, 1 s, =j), 
he finds that j has at least as great an expected payoff as any alternative strategy k-i.e., the 
recommendation is self-enforcing. 
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exists a correlated equilibrium distribution assigning positive probability to 
d, it constitutes a solution to system (ii), ruling out the existence of a 
solution to system (i)-i.e., ruling out the achievement of arbitrage 
against d. 1 

From Propositions 1 and 2, it follows that the set of correlated equilibria 
is nonempty. Of course this is also guaranteed by the existence of Nash 
equilibria, which are special cases of correlated equilibria. But, since 
correlated equilibria are “computationally simpler objects,” it is of interest 
to note that their existence can be established by more elementary methods 
than those generally used to prove the existence of Nash equilibria.s,9 

The correlated equilibrium distribution supporting a jointly coherent 
outcome of the game will in general not be unique-which is to say, the 
players’ beliefs may be to some extent indeterminate-unless an additional 
assumption is made concerning the completeness of preferences among 
gambles. For the reasons noted earlier, we do not feel that such an assump- 
tion is either necessary or desirable in the context of finite games. However, 
it can be easily incorporated into our framework as follows. In a first-order 
description of the game, player i is uncertain about the joint strategy spi 
that will be played by his opponents. If he is required to reveal an exact 
probability distribution on S _ i for purposes of betting, we must be careful 
that this revelation does not perturb the game. For example, he may have 
a prior distribution that will be revised on receipt of private information 
before the start of play. In this case, he will not wish to gamble with the 
observer according to his prior, since these gambles are to be conditioned 
on the strategy that he plays in light of his posterior-but neither will he 
wish to reveal his actual posterior, since this would divulge his information 
(and perhaps his strategy selection). We should therefore restrict ourselves 
to asking for a set of conditional distributions, given the strategies he might 
play. ‘O 

“The proof of Proposition 1 depends on the existence of a stationary distribution for a 
finite Markov chain, which is a fixed point of a linear mapping of the simplex into itself. This 
is a weaker result than the existence of a fixed point for an arbitrary continuous mapping of 
a compact set into itself, on which the Nash proof is commonly based. Of course, the existence 
of Nash equilibria could have been used directly in the proof of Proposition 1: any Nash 
equilibrium will yield nonnegative expected gain for every player against any r chosen by the 
observer. 

9 Since the first draft of this paper was completed in December 1987, it has come to our 
attention that another elementary proof of the existence of correlated equilibria was developed 
independently and somewhat earlier by Hart and Schmeidler [Zl]. Their proof is structurally 
similiar. insofar as it introduces an outside observer (who plays a 2-person game against the 
set of all players), invokes linear duality (via the minimax theorem), and relies on a technical 
lemma similar to our Proposition 1. 

‘* Note that by asking for unconditional distributions, we would implicitly be imposing the 
Nash solution concept. 
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Let h denote an index for the elements of S ;, and let 1 pih(~) denote the 
indicator function for the event that s i = h: 

ifs ;=/I 

otherwise. 

Following de Finetti [ 12, 131, we can now introduce: 

A6 (Completeness). 3plill such that both (1~ ;,, -prlh) 1 i, E .d and 
(Ptjh- ’ -Ih) li,Ecd ViEN,jES;, heELi. 

Here, the constant p,+ is, by definition, player i’s subjective conditional 
probability for his opponents choosing s pi = h given that he has chosen 
si=j, and this is to be articulated prior to the start of play. The observer 
may now choose a coefficient fir/,,, positive or negative, for the acceptable 
gamble (lpih-pijh) 1, for every iEN,jESi, and /zES_,. Let p and fl 
denote the triply indexed vectors whose (i,j, h)th elements are piih and fiijh, 
respectively; and let B be the matrix whose (i, j, 11) th column is the payoff 
vector (1 ;,? -pijh) l,j introduced in A6. (Note that B depends on p). Then 
the total payoff from observer to players due to all gambles is Aa + Bj. 
Joint coherence can now be defined for a strategy-probability pair (d, p), 
and the obvious generalization of Proposition 2 is that (d, p) is jointly 
coherent if and only if there exists a correlated equilibrium distribution n 
in which d has positive probability and in which, for all (i,j, h), either 
P,(s, =j) = 0 or else P,(s , = h / s, =j) =P,,~. 

Technically there is no loss of generality in making the completeness 
assumption, insofar as it does not change the set of correlated equilibria 
supporting the jointly coherent strategies in the original game. But if it 
were enforced in practice, it would change the dynamics of the game by 
increasing the demands on the players for information processing and 
pre-play communication. They would have to reach agreement on which 
correlated equilibrium they were playing, even if this were unimportant in 
the original game, in order to avoid arbitrage opportunities due merely to 
inconsistent beliefs. They might well expend more effort in articulating and 
coordinating their choices of distributions than in determining their choices 
of strategies. 

4. COMPARISON WITH ALJMANN'S FORMULATION 

The results of section 3 provide support for Aumann’s [3] contention 
that correlated equilibrium is the strongest natural expression of Bayesian 
rationality in noncooperative games-with some subtle but important 
qualifications. Aumann assumes that there exists an exogenous set Q of 
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states of nature on which the players have a common prior distribution, 
and that player i’s strategy is a commonly known function of w that is 
mesurable with respect to a commonly-known partition z. This arrange- 
ment is then shown to be Bayesian rational (payoff-maximizing for each 
player given his information) if and only if the distribution of outcomes of 
the game is a correlated equilibrium distribution. 

Aumann justifies the common prior assumption (CPA) by appeal to the 
arguments originally presented by Harsanyi [ 191 and the large body of 
economic literature in which the CPA has subsequently appeared (rational 
expectations, signalling, etc. ). But the no-arbitrage-opportunity assumption 
is also a familiar tool in economic analysis (e.g., in deriving the existence 
of competitive equilibria), and we have shown that if it is applied directly 
to the original game with a minimum of other structural assumptions, it 
follows immediately that the players must choose their strategies as if they 
had implemented sor~e correlated equilibrium. The distinctions “as if” and 
“some” are important: they allow that the game may be played rationally 
without the players inquiring more deeply into each other’s beliefs (or even 
their own) than is minimally necessary to determine strategy selections 
from within their respective finite sets. Indeed, our framework suggests a 
somewhat different concept of a “solution” of the game: a rational solution 
is any arrangement among the players that leads to a jointly coherent 
outcome, with or without a precise articulation of probabilities. 

For the sake of comparison, we can recast our results in Aumann’s for- 
mulation with the exogenous state space, and infer both the common prior 
and the correlated equilibrium distribution. Suppose that the players 
commit themselves in advance to letting their strategy choices in the game 
be determined by commonly known functions of their information about W. 
Let 8; denote the jth element of player i’s information partition, and let Ji 
denote the set of index numbers for elements of $. Let S(U) = 
(sI(w), . . . . S,,(W)) be a function that maps states into strategies, where s,(w) 
is measurable with respect to ;9 for all i. It is desired to characterize the 
conditions under which the players’ commitment to the strategy function 
s(o) is rational. As before, we assume that the players’ participation in the 
game implies that certain gambles will be accepted. In this case, we assume 
that player i accepts a gamble in which, conditional on observing OE$,, 
he receives the payoffs of his recommended strategy s,(w) in exchange for 
those of any other strategy k E S,, assuming that his opponents have played 
their recommended strategies. This is formalized as follows, where ~2 now 
denotes the set of acceptable gambles on 52, and l,, now denotes the 
indicator function for the event that w E z$,: 

A5’ (Implicitly accepted gambles). [~,(s(w))-uu,(k, SK,(W)] I,,(o) 
E& ViGN, jEJ,,kfS,. 
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Since the players are now gambling with respect to states of nature they do 
not control, the relevant no-arbitrage-opportunity assumption is now A4 
rather than A4’: they should not accept a gamble with payoffs uniformly 
negative in w. 

DEFINITION. The strategy function s(o) is jointly coherent if A4 is 
satisfied given Al-A3 and A5’. 

PROPOSITION 3. s(w) is jointly coherent tf and only if there exists a 
distribution on Q under which: 

(a) Each player’s strategy function maximizes his expected payoff 
given his information, and given that the other players adhere to their 
strategy functions; and 

(b) The distribution of outcomes in the original game is a correlated 
equilibrium distribution. 

Proof Let A be the matrix with rows indexed by o and columns 
indexed by (i, j, k) whose columns are payoff vectors for the acceptable 
gambles in A5’, and let b be the column vector indexed by w whose 
elements are all - 1. Then the strategy functions are jointly coherent if and 
only if system (i) of the separating-hyperplane lemma has no solution for 
this A and this b. By the lemma, this is true if and only if system (ii) has 
a solution, which is a probability distribution E satisfying 

C Tc(w)[u,(s(o))-u,(k,s~,(o))] l,(w)20 ViEN,jEJi,kESi. 
,” E n 

Let P, denote the probability measure on subsets of Q induced by 7~. Then 
this system of inequalities implies that, for all (i, j, k), either P,(o E sj) = 0 
or else s;(o) yields an expected payoff as great as any other strategy k E Si, 
conditional on observing o E C?$. This proves part (a). For part (b), note 
that since the strategy functions {si(w)} are payoff-maximizing, it suffices 
for player i to be informed only of the value of si(o), not the element of 
his partition in which o fell: his expected payoff is still maximized by 
following the recommended strategy. This means that, by definition, 
the distribution of recommended strategies is a correlated equilibrium 
distribution. 1 

5. EXAMPLES 

A strategy d is obviously and trivially jointly incoherent if any player’s 
strategy di is individually incoherent, in violation of assumption (I) in 
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Section 1. The following example shows that a strategy is also jointly 
incoherent if some players’ strategies are rational only on the presumption 
that others are individually incoherent, in violation of assumption (II). 

EXAMPLE 1. The numbers in parentheses denote payoffs to the row 
player and column player, respectively: 

L R 

T (292) (1, 1). 

B (1, 1) (62) 

Here, if column chooses R, he is effectively betting on row to behave 
incoherently and choose B, which is strongly dominated by T. Let the 
observer choose E,,,,~, 7= 2, acolumn R L = 1, and aiik =0 for all other 
(i,j, k). She then wins 2 units from row if B is played, regardless of 
column’s choice; loses 1 unit to column if BR is played; wins 1 unit from 
column if TR is played; and there is no transaction if TL is played. This 
is arbitrage against every strategy except TL. In particular, any joint 
strategy in which column plays R is jointly incoherent because in this case 
either row has behaved incoherently (so that the observer can win more 
from row than she loses to column), or else column would have done 
better by playing L (so that the observer has no transaction with row but 
can win something from column). 

The following is an example of a game in which some strategies are 
jointly incoherent due to a violation of assumption (III), and is taken from 
Bernheim [ 51: 

EXAMPLE 2. The payoff matrix is 

L C R 

T to,71 t&5) (730) 

A4 (5,2) (323) (5,2). 

B (7,o) (2,5) (0~7) 

Here, the unique jointly coherent strategy (and hence the unique Nash 
equilibrium) is MC: if the observer chooses a,jk = 1 for all (i, j, k) in which 
j # 2 and k #j, and alik = 0 otherwise, she wins 3 if both players choose 
their first or third strategies, and wins 1 if exactly one player chooses his 
first or third strategy. However, the strategies T, B, L, and R would also 
be permitted under the alternative solution concepts of either independent 
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or correlated rationalizability: row would play T if he thought column 
would play R, which column would play if he thought row would play B, 
which row would play if he thought column would play L, which column 
would play if he thought row would play T. Since each of these four 
strategies is a best response to one of the others, none can be the first 
eliminated. These are examples of strategies that can only be justified by 
each player believing he is capable of outguessing the other, which can 
occur if their strategies are known to be pegged to events to which they 
assign different prior probabilities, as in an a posteriori equilibrium. 

In the special case of two-person games, there is no distinction 
between correlated and independent rationalizability; hence independent 
rationalizability, like correlated rationalizability, is weaker than joint 
coherence. However, in some games with three or more players, the set of 
independently rationalizable strategies may be strictly smaller than the set 
of jointly coherent strategies, due to the restrictiveness of the independence 
assumption. Consider the following adaptation of a game presented by 
Aumann [ 21: 

EXAMPLE 3. The payoff matrix is 

I C r 

L R L R L R 
T (0, 133) (O,O, 1) (2, 2, 2) (O,O, 0) (0, 1,O) (O,O, 1). 

B (1,1, 1) (l,O,O) (0, 0, 0) (2. 2, 2) (1, 1, 1) (LO,31 

Here no profile of independently randomized strategies for row and column 
renders c a best response for matrix. It follows by simple domination 
arguments that the only Nash strategies are those in which row and 
column play BL and matrix plays either I or Y. B, L, and (I, Y} are also the 
only rationalizable individual strategies. However, all strategies are jointly 
coherent, and an obviously desirable solution is for matrix to play c while 
row and column choose randomly (from matrix’s perspective) between TL 
and BR with probability at least f each. Such a correlated strategy yields 
a higher certain payoff to all players than any Nash strategy, and it is 
therefore difficult to believe that players who were capable of informing 
each other that they understood the game and knew each other to be 
rational would not consider it. For example, the matrix player might 
simply say to the others: “I am going to play c. You two go off and decide 
whether to play TL or BR." It is not necessary for row and column to 
explicitly randomize their choice, as long as matrix is given no reason to 
subjectively assign either alternative a probability less than f. This is a 
“solution” of the game that leaves some probabilities partly indeterminate. 
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The preceding example illustrates that a game may have jointly coherent 
strategies that do not participate in any Nash equilibrium. This can occur 
even in two-person games, such as:” 

EXAMPLE 4. The payoff matrix is 

u h c d 

A (O,O) (10,5) (5, 10) (66) 

B (5,lO) (60) (1% 5) (66) 

c (10% 5) (5,101 (O,O) (661 

D (636) (636) (636) (737) 

Here, the unique Nash equilibrium is Dd, yet all strategies are jointly 
coherent, and there is a Pareto superior correlated equilibrium assigning 
probability i to each of Ah, Ac, Ba, Bc. Ca, and Ch. 

The preceding two examples illustrate the general undesirability of 
assuming statistical independence, since it may eliminate solutions that are 
otherwise attractive, self-enforcing, and even focal. We therefore share 
Aumann’s [3] puzzlement that Nash equilibrium rather than correlated 
equilibrium has heretofore been accepted as the “fundamental” solution 
concept for noncooperative games, and also take issue with Bernheim’s 
[S, 6] and Pearce’s [32] emphasis on statistical independence in defense of 
their alternative concept of rationalizability. The independence assumption 
concentrates on the fact that the players are free to vary their own 
strategies independently of what their opponents are doing, while ignoring 
the fact that they may not always wish to do so, and that they will usually 
have opportunities for preplay communication-otherwise, they could 
never arrive at a state of common knowledge concerning the structure 
of the game and each others’ rationality. This remains true even if 
communication is modeled as part of the formal game: there must still be 
an informal communication stage in which the formal communication 
mechanism is selected. 

On a deeper level, regardless of whether the players have opportunities 
for deliberate correlation, the independence assumption is incompatible 
with a truly subjectivistic view of probability. Events which are physically 
independent or unrelated may still be perceived as subjectively dependent, 
which is the basis of de Finetti’s [ 121 concept of exchangeability and 
Harrison’s [lS] critique of independence assumptions in the context of 
single-person decision analysis. 

” This example was provided by Professor Aumann, and is based on Moulin and 
Vial [26]. 
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6. CONCLUSIONS AND FUTURE DIRECTIONS 

We have shown that the strategies which avoid arbitrage opportunities 
against the group of all players, which we designate as jointly coherent, are 
precisely those strategies supporting the set of correlated equilibria. (A 
weaker no-arbitrage-opportunity criterion has also been shown to support 
the set of correlated rationalizable strategies, or a posteriori equilibria.) 
This result can be viewed as a natural game-theoretic extension of 
de Finetti’s coherence theorem for the individual decision-maker, and it 
provides a somewhat more elementary defense of correlated equilibrium as 
a standard of rationality than that of Aumann [3], since the CPA is 
viewed as a theorem rather than an axiom. It is also somewhat weaker, 
since a particulur correlated equilibrium need not always be specified. 

Joint coherence is more restrictive than independent rationalizability in 
two-person games, while it may be less restrictive in games with three or 
more players. We have argued that a general standard of rational behavior 
in noncooperative games should not exclude the possibility of unobserved 
communication between the players, since implicit communication is 
needed to construct the pre-play state of joint knowledge of the structure 
of the game and of each other’s credentials as rational players. Hence, the 
assumption of statistically independent choices that underlies both Nash 
equilibrium and independent rationalizability is viewed as excessive. 

The assumption of complete information (exactly and commonly known 
payoffs and utilities) is certainly unrealistic, but there are several directions 
along which the concept of joint coherence can be extended to more 
general settings. One approach is to adopt Harsanyi’s [19] framework in 
which players have “types” characterized by different payoffs and/or states 
of knowledge, from which nature randomly chooses at the first stage of 
the game, and where players may or may not engage in observable 
communication. In this context, it can be shown (Nau [31] ) that joint 
coherence supports a correlated generalization of Harsanyi’s Bayesian 
equilibrium concept; with the addition of a formal communication 
mechanism, it supports the concept of communication equilibrium 
(Myerson [28], Forges 1141). Here again, the CPA is viewed as a 
theorem. 

Another approach would be to allow utilities to be indeterminate in a 
nonprobabilistic way. Operationally, the players might assert buying and 
selling prices (bid-ask spreads, as it were) for each of their game payoffs in 
terms of a common utility currency consisting of lottery tickets offering 
objective changes of winning a single desirable prize. Thus, a player’s utility 
for some outcome would be represented by an interval rather than a point. 
More generally, the players might also assert preferences among different 
objectively-randomized lotteries over their possible payoffs, establishing 
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other kinds of inequality bounds on their utilities. (A similar characteriza- 
tion of jointly indeterminate probability and utility in nonstrategic settings 
has already been developed by Nau [30].) In this context, an arbitrage 
opportunity would be a system of exchanges yielding the observer a net 
gain in the common currency and no net transaction in the other payoffs, 
and joint coherence would presumably require the support of a correlated 
equilibrium distribution with respect to some consistent specification of 
utility functions. This would be a correlated generalization of the equi- 
librium concept characterized by Aumann [ 1 ] under utility theory without 
the completeness assumption. 

Finally, we have also raised a more basic issue, namely that to adhere to 
the spirit of the normative theories of Savage and de Finetti, and to achieve 
robustness against potential violations of the completeness axiom, 
“Bayesian rationality in games” should be defined in terms of axioms that 
do not refer explicitly to probabilities and utilities, but rather to observable 
events, consequences, and actions. We have suggested one path along 
which this appears to be possible-there may be others. 
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