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ABSTRACT. No-arbitrage is the fundamental principle of economic rationality which 
unifies normative decision theory, game theory, and market theory. In economic 
environments where money is available as a medium of measurement and exchange, 
no-arbitrage is synonymous with subjective expected utility maximization in personal 
decisions, competitive equilibria in capital markets and exchange economies, and 
correlated equilibria in noncooperative games. The arbitrage principle directly character- 
izes rationality at the market level; the appearance of deliberate optimization by 
individual agents is a consequence of their adaptation to the market. Concepts of 
equilibrium behavior in games and markets can thus be reconciled with the ideas that 
individual rationality is bounded, that agents use evolutionarily-shaped decision rules 
rather than numerical optimization algorithms, and that personal probabilities and 
utilities are inseparable and to some extent indeterminate. Risk-neutral probability 
distributions, interpretable as products of probabilities and marginal utilities, play a 
central role as observable quantities in economic systems. 
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I. I N T R O D U C T I O N  

Bayes ian  decision theory ,  game  theory ,  and compet i t ive  marke t  theory  

rest  on  c o m m o n  foundat iona l  assumptions  about  the rationality of  

individual  economic  agents.  These  assumptions tradit ionally have been  

expressed as axioms on preference  orderings (e.g.,  completeness ,  

transit ivity,  etc.) ,  implying that  each agent  possesses a well-defined 

subject ive probabi l i ty  distr ibution and utility funct ion and that  her  goal 

is the maximiza t ion  of  subjective expected utility. In  situations such as 

games  and markets ,  where  two or  more  agents interact,  addit ional  

assumpt ions  about  inter-agent  consistency are imposed:  e .g. ,  the 
agents  hold  c o m m o n  beliefs about  exogeneous  events and their  
ra t ional i ty  is c o m m o n  knowledge .  The  collective behavior  of  agents is 

a ssumed  to lead to  a state o f  equi l ibr ium in which each agent ' s  posi t ion 

is opt imal  (expected-ut i l i ty-maximizing) for  her  given the posit ions of  
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the other agents, and the existence of such equilibria is proved by 
recourse to fixed-point theorems. 

This idealized view of economic rationality is by no means universal- 
ly accepted. The assumption that beliefs and preferences are complete- 
ly ordered has been rejected by many decision theorists and 
philosophers (e.g., Koopman 1940, Good 1962, Smith 1961, Aumann 
1962, Suppes 1974, Levi 1980); the decision-making "paradoxes" first 
pointed out by Allais (1953, 1971) and Ellsberg (1961) are still a lively 
topic of debate; and the proposition that rationality is bounded by 
information-processing limitations (Simon 1955, 1976) or by evolution- 
ary considerations (Nelson and Winter 1982) has given rise to a 
"behavioralist" countermovement in economics. (For a dialogue be- 
tween rationalist and behavioralist views, see Hogarth and Reder 
1986.) An enormous body of psychological research has accumulated 
in the last few decades to establish that real agents can n o t -  or will 
n o t -  behave consistently as expected-utility maximizers even in lab- 
oratory experiments, inspiring a proliferation of theories of "non- 
expected utility." 

In this paper it will be argued that decision theory, game theory, and 
market theory can be placed on a more secure and parsimonious 
footing by appeal to the principle of no arbitrage rather than the usual 
ordering axioms on preferences. The arbitrage principle already has a 
long history: in the literature of Bayesian statistics and decision theory, 
it was introduced by de Finetti (1937) as a basis for defining subjective 
probability, resurfaced in debates between frequentist and Bayesian 
statisticians in the 1960's and 1970's, and has emerged again in recent 
arguments over the foundations of subjective expected utility (e.g, 
Yaari 1985, Seidenfeld 1988). In the finance literature, the arbitrage 
principle explicitly underlies the capital structure theorem (Modigliani 
and Miller 1958), the valuation of cash flows (Beja 1967, Rubinstein 
1976, Ross 1978), and the pricing of assets and options (Black and 
Scholes 1973, Merton 1973, Ross 1976, Breeden and Litzenberger 
1978, Brennan 1979). No-arbitrage is central to classical welfare 
economics, where it goes by the name of "Pareto optimality." In 
models of exchange economies, the relation between arbitrage and 
competitive equilibrium has been noted by Kreps (1981) and Werner 
(1987). More recently, the arbitrage principle has been proposed as a 
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foundation for noncooperative game theory through its dual relation 
with the concept of correlated equilibrium (Nau and McCardle 1990, 
Nau 1991a), and also as a foundation for modeling trade under 
conditions of asymmetric information (Nau 1990). Yet, the avoidance 
of arbitrage is usually perceived as a mere adjunct to more basic 
assumptions about individual and collective rationality: a supporting 
argument for (rather than the fundamental axiom of) Bayesian deci- 
sion theory, a by-product (rather than a definition) of equilibrium 
behavior in markets. 

It will be shown here that no-arbitrage is the core principle of 
rationality which remains after economic models are stripped of their 
excess baggage of intrinsically unverifiable or empirically disconfirmed 
assumptions about the perfectness of human cognition, particularly the 
assumption that belief and preference orderings are complete. The 
arbitrage principle still provides support for the most important con- 
cepts of equilibrium in games and markets, but with weaker informa- 
tion requirements. It is consistent with "procedural" or "cognitive" 
views of rationality (e.g., Simon 1976; Munier 1991) which emphasize 
that the information-processing capabilities of the individual are finite 
and tailored to the specific demands of her physical and cultural 
environment. 

The competitive market can be thought of as a decentralized compu- 
tational device in which myopic individual behavior serves to allocate 
production and consumption through a process closely resembling the 
simplex algorithm of linear programming (Scarf 1990). We will show 
that in a variety of economic contexts the primal optimization problem 
"solved" by the market can be framed as the mere exploitation of 
arbitrage opportunities, and the corresponding dual problem estab- 
lishes the existence of equilibrium probabilities, marginal utilities, 
and/or prices. This does not presume sophisticated optimizing be- 
havior on the part of individual agents: more plausibly, they inherit 
and propagate informal decision-making rules by a process akin to 
natural selection. Rationality rubs off on the agent - i.e., she acquires 
the appearance of sophistication - through her adaptation to the mar- 
ket. Thus, Bayesians are made, not born. 

The idea that predation by arbitrageurs will exert selective pressure 
in favor of "rational" agents, and that optimizing behavior should 
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therefore be most apparent in highly arbitraged markets, is itself 
neither new or controversial. Indeed, it is an article of conventional 
wisdom embraced by rationalists and behavioralists alike. However the 
full force of the arbitrage principle in both justifying and tempering the 
quantification of economic rationality seems to have been under- 
appreciated. The purpose of this paper is to demonstrate the scope of 
this principle in diverse contexts ranging from personal decisions to 
behavior in games and markets. 

In all of these settings, money will play a central role not only as a 
means of facilitating transfers of commodities and strategically decou- 
pling the actions of different agents, but also as the medium of 
communication through which they articulate their beliefs and values 
to each o t h e r -  and even to themselves. Knowledge-  and especially 
common knowledge - of an agent's beliefs and values will be signified 
by her willingness to engage in transactions in which goods (which may 
be distinct commodities or merely lottery tickets) are bought or sold at 
declared prices. This view of communication, in which the agent is 
expected to put her money where her mouth is, is admittedly narrow 
and stylized. Nonetheless, we argue that money becomes an indispens- 
able yardstick at precisely the point where numbers must be attached 
to beliefs and values in a credible and operationally meaningful way. 
Monetary systems are ubiquitous in human culture, and the framing of 
judgments in terms of acceptable prices is a familiar cognitive activity 
to most real economic agents. Prices are also typically addit ive- at 
least for small t ransact ions-and this property not only simplifies 
decision-making but also can be exploited to great advantage in the 
construction of analytical models. 

The use of money as the medium of communication has the non- 
trivial side effect that transfers of information may be accompanied by 
transfers of wealth, giving rise to market interactions between an agent 
and her observers. Throughout the analysis presented here, it will be 
assumed that such markets clear. This will be seen to have implications 
for the inseparability of probabilities from utilities, and for the 
homogeneity of revealed probabilities, which have been pointed out by 
Kadane and Winkler (1988). Unlike those authors, we do not view 
these effects as problematic. Rather, we argue that only in a cleared 
market are we on firm ground in asserting that numerical probabilities 
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and utilities are known (however imprecisely) to the agents, let alone 
that they are common knowledge. Although traditional subjective 
expected utility theory aims at prescribing behavior in arbitrary (e.g., 
non-equilibrium or non-market) situations, the detailed measurements 
needed to carry out such prescriptions are generally not obtainable. 

The next section of the paper introduces the basic duality theorem 
connecting the arbitrage principle with the existence of subjective 
probability distributions or, more generally, "risk-neutral" distribu- 
tions incorporating both probabilities and marginal utilities. Section 3 
discusses the separability of beliefs and risk preferences, and Section 4 
considers the question of completeness, at both the individual and 
market levels. Sections 5 ,  6, 7, and 8 consider applications of the 
arbitrage principle in decision analysis, securities markets, exchange 
economies, and noncooperative games. 

2. De F I N E T T I ' S  T H E O R E M  AND RISK-NEUTRAL P R O B A B I L I T I E S  

In a paper which strongly influenced Savage and other Bayesian 
statisticians, de Finetti (1937) proposed an operational definition of 
probability in terms of betting rates or prices placed on lottery tickets. 
Let p(E) denote the unit price at which you would indifferently buy or 
sell lottery tickets paying $1 if the event E occurs, and $0 otherwise. 
Similarly, let p(E I F) denote the unit price at which you would buy or 
sell tickets paying $1 if the events E and F both occur, $0 if F occurs 
without E, and a refund of the purchase price (i.e., a "called off bet") 
if F fails to occur. De Finetti showed that such a system of prices is 
coherent- i.e., does not admit arbitrage- if and only if it fulfills the 
requirements of a probability measure. In particular, the prices must 
satisfy p(E) i> 0, p(E) + p(E c) = 1, p(E U F) = p(E) + p(F) if E n F = 
~, and p(E n F) = p(E I F)p(F). On this basis, de Finetti proposed that 
the prices should be interpreted as your probabilities and that the 
concept o f  probability has no other meaning beyond this. 1 

De Finetti gave a separate proof of each probability law based on 
the existence of a solution to a system of linear equations. It was later 
realized these results were a special case (indeed, an exquisite illustra- 
tion) of the duality theorem of linear programming. The duality 
between a coherent gambling system and the existence of a supporting 
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probabili ty measure is commonly referred to as "de  Finetti 's 
t heo rem" ,  2 and can be formalized in the following way: 

DEFINITIONS.  Let  O denote a finite set of states of nature,  exactly 
one of which will occur. A gamble is a vector whose elements, indexed 
by states of nature,  represent monetary  payoffs assigned to states. If w 
denotes an agent's current  distribution of state-contingent wealth, then 
x is an acceptable gamble for her if she weakly prefers w + a x  to w for 
any small 3 positive a chosen "at  the discretion of an opponent . "  

In o ther  words, if an agent asserts that x is acceptable to her, then an 
opponent  may choose a small positive number  a,  and a contract will 
then be enforced in which there is a net payment  of ax(O) from the 
opponent  to the agent when state 0 E | occurs. This is a gain for the 
agent and a loss for the opponent  if x(O) is positive, and vice versa if 
x(O) is negative. For  example,  if $p is a price at which the agent will 
indifferently buy or sell a lottery ticket paying $1 if event E occurs, this 
means that the gambles whose payoff vectors are E - p and p - E are 
both acceptable. 4 Unlike de Finetti, we will not generally assume the 
existence of a single price at which an agent indifferently buys or sells: 
she may wish to buy at a price no greater than p and sell at no less than 
q, where p < q. That  is, we allow the possibility of distinct lower and 
upper probabilities for events (Smith 1961). 

If x is acceptable, it follows from the definition that a x  is also 
acceptable for sufficiently small a - i.e. acceptable gambles are linearly 
divisible. Fur thermore ,  we make the following: 

A S S U M P T I O N  (ADDITIVITY) .  If x and y are acceptable, then x + y 
is acceptable. 

In other  words, the purchase or sale of one lottery ticket does not 
affect preferences with respect to other  lottery tickets, if only because 
transactions are considered to be "small".  Thus, for example, if an 
agent is willing to buy lottery tickets on disjoint events E 1 and E 2 at 
prices pl  and P2, then she must also buy lottery tickets on their union 
Ea U E 2 at price Pl + P2. The additivity of prices is, as de Finetti (1974, 
p. 74) observes, " the  foundation of the whole t rea tment"  of subjective 
probability, since it allows linear duality theory to be invoked. 
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THEOREM 1. Let xk, k = 1, 2 , . . . ,  denote acceptable gambles. Then 
there is no acceptable gamble with a strictly negative payoff (an 
arbitrage opportunity for an opponent) if and only if there exists a 
probability distribution ~r on (9 such that ~'Txk~>0 for all k - i . e . ,  a 
distribution assigning non-negative expected value to every acceptable 
gamble. 

Proof: Let X denote the matrix whose kth column is x k. Then, by 
the linearity and additivity properties, Xa  is an acceptable gamble for 
any small, non-negative vector a. By a separating-hyperplane theorem 
of linear algebra (Gale 1960, Theorem 2.10, a variant of Farkas' 
lemma), either the system of equations Xte < 0 has a non-negative 
solution (i.e., there is an acceptable gamble whose payoff is uniformly 
negative) or else the system z rTx~  > 0 has a semi-positive solution, 
which w.l.o.g, can be scaled as a probability distribution. �9 

The preceding theorem establishes that the coherent agent is one 
whose acceptance of gambles appears to be predicated on calculations 
of expected value with respect to some probability distribution over 
states. Under such a distribution, the prices at which she will indiffer- 
ently buy or sell lottery tickets are just the probabilities of the 
corresponding events. 

Although no-arbitrage (a.k.a. "coherence" or "admissibility" or 
"Dutch book") arguments based on de Finetti's theorem were used by 
Bayesian statisticians in the 1960's and 1970's to demonstrate the 
illogicality of frequentist statistical methods (e.g., Freedman and Pur- 
ves 1969, Cornfield 1969, Lindley 1972, Heath and Sudderth 1972, 
Pierce 1973), his operational concept of probability was largely over- 
shadowed by Savage's (1954) joint axiomatization of subjective prob- 
ability and expected utility in terms of binary preferences. The lack of 
provision for a possibly-nonlinear utility function was portrayed by de 
Finetti himself as an apparent "limitation" of a theory of subjective 
uncertainty based on money bets (1937, footnote (a); 1974 pp. 77-81), 
and the (mis)conception that Dutch book arguments have limited 
economic realism still persists. For example, Yaari (1985) argues that, 
in the context of decision-making under risk, the avoidance of Dutch 
books requires risk-neutral behavior. Yaari's argument hinges on an 
implicit additivity-of-preference assumption, namely that "preference 
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pa t t e rn s . . ,  remain in force" whenever a more-preferred gamble is 
exchanged for a less-preferred one. However, this additivity assump- 
tion is reasonable only for gambles which are so small that they yield 
changes in wealth insufficient to affect other preferences. The appro- 
priate conclusion is that the avoidance of Dutch books requires the 
appearance of risk-neutrality with respect to s o m e  distribution (not 
necessarily one's "true" distribution, as will be seen) when gambles are 
sufficiently small. This is not inconsistent with risk-averse or risk- 
seeking behavior in-the-large, provided that preferences are smooth. 

Notwithstanding its peripheral status in subjective expected utility 
theory, de Finetti's theorem surfaced again under different aliases in 
the explosion of "arbitrage pricing" literature in finance in the 1970's: 
securities markets epitomize the gambling environment envisioned by 
de Finetti for the elicitation of personal probabilities, and there the 
avoidance of arbitrage opportunities is a tangible concern. For exam- 
ple, consider the two-period asset pricing problem in which risky assets 
(securities) are bought and sold at time 0 and yield uncertain returns at 
time 1. Let | denote the set of all possible joint returns, let z k denote 
the vector of returns for one share of security k, and suppose that a 
representative agent is willing to buy or sell shares of security k at 
prices Pk and q~, respectively, where Pk ~< qk.5 Let r denote 1 plus the 
risk-free interest rate between periods, meaning that riskless bonds 
paying $1 with certainty in period 2 can be bought or sold at price $r -I 
in period 1. For simplicity, assume that the buying or selling prices for 
riskless b o n d s -  i.e., borrowing and lending ra tes -  are the same. 

Under the preceding assumptions, a share of security k can effective- 
ly be bought [sold] with a net payment [receipt] of pkr  [qkr] at period 
2, and the "gambles" whose period-2 payoff vectors are zg - p k  r and 
qk r -- Z k are therefore "acceptable" to the agent in the terminology of 
Theorem 1. By application of the theorem, it follows that no arbitrage 
opportunities exist if and only if there exists a distribution ~" such that 
~T(z k - - p k  r) >i 0 and ~rT(qkr--  z~) >i O, or equivalently Pk ~< 
r-I~'Tzk ~ qk, for every k. In other words, there must exist a dis- 
tribution under which every security's expected value, discounted at 
the riskless rate, lies between its advertised buying and selling prices. 
Such a distribution is known as a risk neutral probabil i ty distribution, 

since a risk-neutral agent with these probabilities would judge the 
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securities to be fairly priced. The derivation of such "risk neutral 
valuation relationships" (a.k.a., linear valuation, state pricing, equiva- 
lent martingale measures) from no-arbitrage conditions via duality 
theorems has emerged as one of the most important tools in the 
modern theory of financial markets. 6 

An interesting feature of risk-neutral valuation is that in a complete 
and frictionless market (where Pk = qk for all k) every asset must 
appear to yield the same expected return per dollar invested, namely 
the riskless rate r. At first glance this seems to contradict the notion of 
a risk-return tradeoff, the very hallmark of prudent investment, and 
this has led to the somewhat misleading characterization of such results 
as "preference free" (Cox and Ross 1976). The contradiction dis- 
appears if ~- is interpreted not as the "true" distribution of the 
representative agent, but as the (renormalized) product of her true 
probabilities and marginal utilities (Beja 1967). That is, we interpret ~- 
as;  

(2.1) 

where p(O) is the agent's true subjective probability for state 0, w(O) is 
her wealth in state 0, u(w) is her utility for wealth w, and u'(w) is her 
marginal utility for wealth evaluated at w. In this way, rr encodes the 
agent's risk preferences as well as her beliefs. 

3. T H E  I N S E P A R A B I L I T Y  O F  B E L I E F S  A N D  R I S K  P R E F E R E N C E S  

It has recently been shown by Kadane and Winkler (1988) that 
virtually any transactional method of eliciting probabilities (e.g., lot- 
teries, scoring rules, promissory notes) will yield risk-neutral prob- 
abilities (~-'s) instead of "true" probabilities (p's) if the agent's wealth 
is correlated with the events under consideration, due to the confound- 
ing effect of state-dependent marginal utility. As they point out, the 
events for which an individual's probabilities are of interest - to herself 
or to o the r s -  are often precisely those in which she has a significant 
prior stake, either financially or reputationally. The implication is that 
we cannot separate personal probabilities from utilities without in- 
dependently knowing both the individual's utility function and her 
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current wealth distribution, which is generally impractical if not im- 
possible. 

This is not all: if the agent is embedded in an economy with 
complete markets for contingent claims, then market-clearing requires 
her risk-neutral probabilities to agree with those of all other agents! 
An efficient allocation of state-dependent wealth is not achieved until 
the renormalized product of every agent's probabilities and marginal 
utilities is the same. This fact, which follows by application of the 
arbitrage principle at the market level, will be discussed more fully in 
the next section. It was originally exploited by Wilson (1968) to derive 
Pareto optimal sharing rules for syndicates, and was also discussed by 
Dr6ze (1970, based on a 1965 lecture), before its emergence in the 
arbitrage literature of finance. Kadane and Winkler refer to this as a 
"startling and unreasonable" result, since it means that agents' "true" 
probabilities will be especially difficult to elicit in a market context, 
being confounded not only with their own marginal utilities but also 
with the probabilities and utilities of other agents. 

We take a somewhat less pessimistic view, namely that the epistemic 
separation of beliefs from preferences, while useful from a conceptual 
standpoint, is inessential to the characterization of economic rationali- 
ty in terms of observable behavior. A cleared market is the situation in 
which we are on firmest ground in quantifying any aspect of an agent's 
beliefs and preferences, since it is here that they have been most 
unequivocally translated into action. In the models discussed in later 
sections of this paper, it will be shown that through the very act of 
hedging herself against the market, an agent reveals everything which 
it is necessary to know about her personal beliefs and preferences. The 
market thereby serves as the fundamental instrument of reciprocal 
measurement among agents, rather than an obscuring influence. The 
fact that what we observe in the market are an agent's risk-neutral 
probabilities rather than her "true" probabilities and utilities, and that 
these may even be shared by other agents, is neither unnatural nor 
problematic. On the contrary, the interpretation of risk-neutral prob- 
abilities as an amalgam of beliefs and risk preferences is precisely what 
frees de Finetti's theorem from the apparent limitation of requiring 
"rigidity in the face of risk" (1974, p. 77), making it a completely 
general foundation for a theory of rational choice under uncertainty. 
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An analogous problem of measurement is found in classical thermo- 
dynamics, where the fundamental system variable, namely entropy, is 
not directly observable. Instead, the observable variables include the 
derivative of entropy with respect to energy, which is the reciprocal 
temperature. A composite system is in thermal equilibrium if the 
temperature is constant across its components, and this is the situation 
in which infinitesimal measurements of temperature and other system 
variables are most reliable. Indeed, classical thermodynamics is mainly 
concerned with describing the net change from one equilibrium state to 
another as constraints are removed or parameters varied; an axiomatic 
treatment is given by Callen (1960). 

In economic systems, expected utility plays the role of entropy, and 
state-dependent wealth plays the role of energy. For example, both 
entropy and expected utility are postulated to seek the maximum value 
allowed by constraints on the system; and expected utility is a monoto- 
nically increasing function of wealth, as is entropy with respect to 
energy. In welfare economics and group decision theory, expected 
utility is often considered to be, like entropy, additive across "sub- 
systems" (agents); and wealth is usually assumed to be, like energy, a 
conserved quantity. The derivative of an agent's expected utility with 
respect to her wealth in state 0* is: 

o Z p(O)u(w(o)) =p(O*)u'(w(o*)), 
ow(o*) o 

which is [proportional to] her risk-neutral probability for 0", and is the 
analog of a reciprocal temperature in that state. In the absence of 
barriers to trade, wealth (energy) in each state will tend to flow from 
agents with low risk-neutral probabilities (high temperature) to agents 
with high risk-neutral probabilities (low temperature), until an equilib- 
rium is reached in which the risk-neutral probabilities of all agents 
have been equalized. The analogy is of course imperfect - for example, 
the entropy-increase postulate must be enforced at the agent level, not 
just the system level-  yet the formal similarities are strong enough to 
suggest that the difficulty of directly measuring "true" probabilities 
and utilities is no more problematic than the difficulty of directly 
measuring entropy. 
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4. C O M P L E T E N E S S  A N D  T H E  R E P R E S E N T A T I V E  A G E N T  

Thus far is has been shown that rational (coherent) behavior under 
uncertainty requires the existence of a supporting risk-neutral prob- 
ability distribution under which every acceptable transaction has non- 
negative expected value. If the additional assumption is made that 
beliefs and preferences are completely o rde red -  i.e., that between any 
two alternatives an agent can always assert a direction of weak 
preference-  then it follows that the risk-neutral distribution must be 
unique. (In this case, for every state j, there must exist a unique price 
above which the agent is willing to sell a lottery ticket on j and below 
which she is willing to buy it, which is the unique risk-neutral 
probability of state j.) The completeness assumption is commonly 
invoked in normative decision theory, but it has also been emphatically 
rejected by a long line of researchers extending from Keynes (1921) to 
Walley (1991), 7 and it is the latter position which we endorse here. 
Completeness is certainly useful as a technical assumption if it is 
desired to obtain deterministic and analytically convenient representa- 
tions of agent behavior in special cases (examples of which will be 
given in later sections), but it is inessential to the general characteriza- 
tion of rationality provided by the arbitrage principle. 

An agent's greatest buying price and least selling price for a lottery 
ticket impose linear constraints on her set of supporting risk neutral 
distributions, and the intersection of these constraints is a convex set. 
This is illustrated in Figure 1 for the case of a 3-element state space. 
The set of all risk-neutral distributions is the simplex of non-negative 
~r = (7rl, 7rz, 7r3) satisfying ~1 + 7r2 + ~'3 = 1, which is shown in 2- 
dimensional space with coordinates (7rl, 7r2), and ~'3 ~- 1 - 7r 1 - ~'2- Let 
pj and qj denote the agent's greatest buying and least selling prices, 
respectively, for a lottery ticket paying $1 if state j occurs, for j = 1, 2. 
In other words, pj and qj are her lower and upper risk-neutral 
probabilities for state j. The set of risk-neutral distributions consistent 
with these prices is the set of all ~" satisfying pj ~< 7rj ~< qj for j = 1, 2, 
which is the intersection of the shaded bands in Figure 1. If the agent 
also assesses buying and selling prices on "mutual funds" composed of 
weighted sums of lottery tickets on different states, her set of risk- 
neutral distributions may be constrained even fur ther -say ,  to the 
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Fig. 1. Set of risk-neutral distributions revealed by an incomplete agent's buying and 
selling prices for lottery tickets on states 1 and 2. 

darkly shaded circular region in the center. If the completeness 
assumption holds - i.e.,  if the agent's greatest buying and least selling 
prices always coincide - her set of risk-neutral distributions reduces to 
a unique point in the simplex. In the absence of completeness, 
coherence merely requires that her set of risk-neutral distributions 
should be non-empty.  

In a market  with many agents, the additivity property of acceptable 
transactions naturally extends to inter-agent as well as intra-agent 
behavior,  giving rise to the appearance of a "representat ive" agent. 
For  example,  if agent 1 is willing to buy a lottery ticket on an event E 1 
at price p l ,  and agent 2 is willing to buy a ticket on a disjoint event E 2 
at price P2, then from the perspective of a third party it is possible to 
sell a ticket on E 1 U E 2 at price pl  + P2 to the representative agent. In 
general,  the set of acceptable gambles for the representative agent is 
the sum of the sets of acceptable gambles for the real agents. Dually, 
the representative agent's set of risk-neutral distributions is the inter- 
section of the sets of risk-neutral distributions of the real agents, and 
by Theorem 1 the market  admits no arbitrage opportunities if and only 
if this intersection is non-empty.  In this case, the market  is in 
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equilibrium, since every agent's preferences are in accord with market 
prices. 

For example, the representative agent's selling price for a lottery 
ticket on state j is no greater than the minimum selling price among the 
real agents, and may even be strictly smaller if a lottery ticket on state 
j can be constructed out of a portfolio of mutual funds sold to different 
agents. This is illustrated in Figure 2 for the case of three agents, 
whose sets of risk-neutral probabilities are labeled A, B, and C. The 
representative agent's buying and selling prices for lottery tickets on 
state j are shown as p~. and q~. for j = 1, 2. In this illustration, the 
beliefs and preferences of the real agents are incomplete, and so are 
those of the representative agent, although the latter are "more 
complete" than the former in the sense that they yield narrower 
spreads between buying and selling prices. 

Figure 3 illustrates the situation in which the beliefs and preferences 
of the representative agent are complete, despite the fact that those of 
the real agents are not: the representative agent's risk-neutral dis- 
tribution is uniquely determined. This situation might obtain in the 
presence of genuine vagueness in agent beliefs and preferences pro- 

rr 2 

q2 
2r 

P2 

P l q l re1 - ~  

Fig. 2. Set of risk-neutral distributions of an incomplete representative agent composed 
of three incomplete real agents. 



ARBITRAGE, RATIONALITY, AND EQUILIBRIUM 213 

~2 

A 
t 

P2 =q2 

r162 

P;= ql ~1 "~" 
Fig. 3. Unique risk-neutral distribution of a complete representative agent composed of 

three incomplete real agents. 

vided that they were sufficiently heterogeneous and the market suffici- 
ently frictionless. 

Figure 4 illustrates the situation in which every real agent's beliefs 
and preferences are complete, so that each has a unique risk-neutral 
distribution. The market no-arbitrage condition is that these must all 
coincide, in which case the representative agent is indistinguishable 
from any of the real agents. However, this homogeneity of risk neutral 
distributions does not necessarily imply homogeneity of "true" beliefs: 
the agents may have different true probabilities as long as the (re- 
normalized) products of these with their marginal utilities yield the 
same result. For example, we might imagine that the agents originally 
held different risk neutral distributions in the primordial disequilibrium 
state before the market was opened. Subsequently, through the trading 
of securities, they would have redistributed wealth or information 
among themselves until the differences were erased. Thus, agents with 
greater risk tolerance presumably would have ended up holding more 
risky portfolios, those who judged a certain state more likely would 
have bet more of their wealth on it, and so on. The discovery that their 
apparent probabilities were initially different, giving rise to trade, 
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Fig. 4. Unique risk-neutral distribution of a complete representative agent composed of 
three complete real agents. 

might have led to Bayesian updating as well as redistribution of 
wealth. However, as noted earlier, it would generally be difficult if not 
impossible for one agent to determine the extent to which changes in 
another's apparent probabilities - or her own - were due to acquisition 
of information, redistribution of wealth, or reassessed attitude toward 
risk: learning would be indistinguishable from hedging. 

The incomplete-markets situation depicted in Figure 2 should clearly 
be regarded as the norm, if only because of friction (transaction costs) 
and the impracticability of maintaining liquid markets in enough 
linearly independent securities to span the high-dimensional (indeed, 
infinite dimensional) state spaces encountered in practice. However, 
the dominant effect may be genuine incompleteness in the belief- and 
preference-orderings of individual agents: if individual beliefs and 
preferences were truly complete, every chance meeting between two 
different individuals would give rise to a flurry of barter and gambling, 
a securities market in miniature. The fact that individuals typically 
exhibit inertia and aversion to low-stakes gambles is strong evidence of 
incompleteness ("internal friction"). Indeed, real investment and con- 
sumption decisions are usually predicated not on exacting calculations 
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of personal expected utility, but rather on habits, traditions, rules of 
thumb, solicitation, peer pressure-  or impersonal attempts to exploit 
market inefficiencies (e.g., program trading in capital markets). The 
similarity of security price movements to Brownian motion is therefore 
not coincidental: prices are bumped upwards or downwards by unpre- 
dictable collisions with shifting cliques of agents, who are subject to 
untold personal influences. As suggested by Figures 2 and 3, the 
buying and selling prices of different securities will generally be 
influenced by different subsets of investors. 

Agents are not endowed at birth with probabilities, utilities, and 
computing machinery sufficient to determine a program of optimal 
lifetime investment and consumption, subject only to Bayesian updat- 
ing upon the receipt of new information. Rather, they gradually 
acquire decision-making rules and other norms of economic behavior 
through imitation and adaptation, and then contribute modestly to 
their propagation and mutation. Yet, the argument is often made that 
this evolutionary process will eventually produce complete and stable 
preference orderings at the individual level-  at least in competitive 
marke t s -  and on this basis the market is analyzed from the "bottom 
up" by explicitly solving the intertemporal optimization problem of the 
complete agent. The examples in this section are intended to make 
the case for a "top down" approach. The principles which justify the 
quantification of rationality at the individual level (linearity, additivity, 
and no arbitrage opportunities) are the same principles which apply 
even more forcefully at the market level, so that the market is 
generally more complete in its rationality than any of the individuals it 
comprises. Each real agent is (by definition) only an incomplete image 
of the representative agent, who in turn may be only an incomplete 
image of homo ~economicus rationalis. 

5. A R B I T R A G E  AND E Q U I L I B R I U M  IN D E C I S I O N  ANALYSIS  

In the remainder of the paper, we survey the application ,of arbitrage 
arguments and risk-neutral probabilities (or related kinds of dual 
variables) in different domains of economic modeling. We begin with 
decision analysis, where the "old time religion" of subjective expected 
utility theory finds its most direct application. In particular, we con- 
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sider the analysis of decisions which are made in a market context 
(e.g., capital budgeting decisions), where risk-neutral probabilities for 
the relevant events might be obtainable from observed prices of 
securities, commodities, and contingent claims. In the corporate fi- 
nance literature, it has been asserted (e.g., by Banz and Miller 1978 
and Trigeorgis and Mason 1987) that "contingent claims analysis" 
based on risk-neutral probabilities is superior to conventional dis- 
counted cash flow analysis or decision tree analysis in this context. In 
this section we examine the basis of this claim and consider some of 
the issues it raises. (A more thorough treatment of arbitrage in 
decision analysis is given by Nau 1991b.) 

As an example consider the capital budgeting problem whose deci- 
sion tree is shown in Figure 5. (This is adapted from an example given 
by Trigeorgis and Mason and also used by Copeland et  al.  1990.) The 
corporation has an opportunity to invest in a new plant whose returns 
depend on an uncertain state of the world, which will be "good" with 
probability p or "bad" with probability 1 - p  (as assessed by the 
decision maker). If SP is invested in year 1, the returns in year 2 will 
be $180 in a good state or $60 in a bad state. Alternatively, the 

I Defer( 

i $180 

$6O 

Invest $180-1.08P 

ecline $0 

~ $60-1.08P 

Decline $(9 

$0 
Peflod I cash flow Period 2 cash flow 

Fig. 5. Decision tree for capital budgeting problem. 
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company can pay $Q in year 1 for a license which allows them to defer 
making the investment decision until the state of nature becomes 
known. If they choose this option, then in year 2 they can invest 
$1.08P and reap a known return ($180 or $60), or else decline to 
invest, where the factor of 1.08 reflects a risk-free interest rate of 8%. 
The status quo (decline immediately, for a current and future payoff of 
$0) is also an option. 

A naive decision tree analysis based on discounted cash flows would 
begin with the selection of a discount rate, intended to reflect both the 
time value of money and a premium for risk. The decision with the 
highest expected net present value would then be selected. An appro- 
priate discount rate might simply be dictated by company policy, or it 
might be derived from market prices using a CAPM-type approach. In 
the latter regard, suppose that there exists a "twin security" whose 
returns are believed to be perfectly correlated with those of the plant 
in question: the value of the twin security in a good state will be, like 
that of the plant, three times its value in a bad state. (For example, the 
plant's return may depend on interest rates or prices of commodities 
for which active futures and options markets exist.) For concreteness, 
suppose that one share of this security will be worth $36 in a good state 
and $12 in a bad state, whereas its current price is $S. If p is 
considered the " t rue"  probability of a good state, the market rate of 
return on this security, r, satisfies r=(36(p)+12(1-p))/S= 
(24p + 12)/S. For example, if S = 20 and p = 0.5, we obtain r = 1.2: 
the message of the market is that a project with this kind of risk should 
earn a 20% return. Using this implied rate of return, the option of 
investing immediately has an expected net present value of 
$(180(p) + 60(1 -p))/r - P = $5S - e = $100 - P. If P = 104, for ex- 
ample, then investing immediately yields an expected NPV of $100-  
104 = -$4 ;  this is inferior to the status quo, which of course has an 
NPV of $0. Note that the derived rate of return, r, depends on the 
value assumed for the probability of a good state, p. However, in the 
final calculation, the contributions of p and r cancel between 
numerator  and denominator: the present value of the returns on the 
plant is simply proportional to the price of the twin security. 

Now consider the evaluation of the "defer"  option, and suppose, as 
before, that p = 0.5, S = 20 (whence r = 1.2), and P = 104. For what 
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values of Q will this option be preferred to the status quo? The naive 
decision tree analysis would observe that the optimal deferred decision 
is "invest" in a good state (for a year-2 return of $180 - (1.08)104 = 
$67.68) and "decline" in a bad state (for a year-2 return of $0); 
discounting these values back to the present at 20% yields an expected 
NPV of $((67.68(0.5) + 0(0 .5) ) /1 .2) -  Q = $28.20-  Q. Hence the 
"defer" option should be chosen if Q < 28.20. 

In contrast, the contingent-claims-analysis approach would discount 
the year-2 cash flows at the risk-free rate (here assumed to be 8%), 
while taking expectations with respect to risk-neutral probabilities 
inferred from market prices. Thus, the premium for risk would be 
impounded with the probability distribution rather than with the 
discount rate. In this example, the risk-neutral probability of a good 
state, denoted ~r, is obtained by equating the price of the twin security 
with its expected return discounted at the risk-free rate: $20= 
$(36(~-) + 1 2 ( 1 -  ~r))/1.08, whence ~" =0.4.  This leads to the same 
evaluation as the naive approach for the "invest immediately" option: 
its expected net present value is $(180(0.4) + 60(0.6))/ 
1.08 - P = $100 - P, as before. However, for the "defer" option, using 
P = 1 0 4 ,  we now obtain an expected net present value of 
$(67.68(0.4) + 0(0 .6)) /1 .08-  Q -- $25.07 - Q. Hence, this option has 
a positive expected net present value (and is superior to the status quo) 
only if Q < 25.07. Another way to obtain this last result is to go back 
to the arbitrage argument underlying the derivation of risk-neutral 
probabilities: by solving a system of two equations in two unknowns, it 
can be determined that buying 2.82 shares of the twin security and 
selling $31.33 worth of risk-free 8% bonds will exactly replicate the 
year-2 payoffs of the "defer" option, and the year-1 cost of this 
transaction is 2 .82($20)-  $31.33---$25.07. Hence, setting a value on 
the "defer" option other than $25.07 would violate the law of a single 
price, giving rise to profitable arbitrage opportunities. 

On the basis of examples such as this, it has been claimed that naive 
decision tree analysis using discounted cash flows tends to misjudge the 
value of "managerial flexibility" in sequential decision-making con- 
texts. It would be more accurate to say that the naive approach does 
not properly consider risk preferences (i.e., the decision maker's 
utilities), and hence overlooks the opportunities for hedging which are 
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implicitly considered in the contingent claims approach. The validity of 
the contingent claims approach rests on the assumption that the 
decision-maker can adopt the market's risk-neutral probabilities as her 
own. This, in turn, assumes that the decisions-maker maintains an 
equilibrium between herself and the market by augmenting her invest- 
ment decisions with transactions in marketed securities in such a way 
that her own risk-neutral probability distribution coincides with that of 
the market. 

A correct decision tree analysis of this situation would begin with the 
assessment of the decision-maker's utility function as well as her 
probability distribution-notwithstanding the caveats raised in the 
preceding sections about their determinacy or separability. The deci- 
sion-maker's risk preferences would thus be separated both from her 
time preferences and her beliefs, and the augmented capital- 
budgeting/hedging decision would be solved by maximizing her subjec- 
tive expected utility. This would necessarily lead to the same valua- 
tions of the capital-budgeting options that were obtained by contingent 
claims analysis, but they would be accompanied by the explicit con- 
struction of hedged positions in the surrounding market. 

For simplicity, suppose that no consumption will take place in year 
1, and that the decision maker's utility can be considered as a function 
of a single attribute, namely her net wealth in year 2. 8 Suppose that her 
utility function for year-2 wealth is exponential with an assessed risk 
tolerance of $200 - i.e., u(x) ~ 1 - exp(-x/200).  Given this informa- 
tion, together with the data above, it follows that in equilibrium the 
decision-maker should have some wealth invested in the twin security 
even under the status quo. A convenient property of the exponential 
utility function is that it exhibits constant absolute risk aversion 
(CARA),  and hence the optimal investment decision is independent of 
the initial wealth level. Let s denote the number of shares invested in 
the twin security. To determine the optimal value of s under the status 
quo, we solve: 

7"g p u'((36 - 1.08(20))s) 
1 - p  u ' ( ( 12 -  1.08(20))s) 

where u'(x)~ exp(-x/200)  is the marginal utility of money at wealth 
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level x. Plugging in p = 0.5 and ~r = 0.4, we obtain 2/3 = exp(-24s/  
200), s = -(200/24)1n(2/3)  = 3.38 shares. Note that the initial cost of 
the security investment, namely $20s, has been discounted forward at 
the risk-free rate of 8%, as though the money to buy the security had 
been borrowed at 8% and repayed in year 2. Although this term 
subsequently drops out of the calculation because of the CARA 
property of the exponential utility function, it emphasizes that in 
principle the net values of decision options in year 2 are computed by 
discounting at the risk-free rate. 

Now consider the option to invest in the new plant immediately, and 
note that the returns generated by the plant are exactly replicated by 5 
shares of the twin security, which currently sells for $20 per share. If 
the cost of this option ($P) is greater than the cost of 5 shares of the 
twin security ($100), the option is obviously unattractive. On the other 
hand, if P is less than $100, this presents an arbitrage opportunity to 
the decision-maker relative to the status quo: she can invest $P in the 
plant and sell 5 shares of the twin security for $100, ending up with 
3.38 - 5 = -1 .62  shares (a "short" position), thereby keeping the same 
profile of year-2 payoffs while increasing her initial wealth. The fact 
that it is optimal for her to sell exactly 5 shares, so as to maintain 
precisely the same profile of year-2 payoffs, is a consequence of the 
CARA property of the exponential utility function. Under a more 
general utility function, a more subtle hedging strategy would be called 
for. 

Next, consider the option to defer the investment decision for an 
initial payment of Q, assuming that P = 104. In year 2, this option 
yields at most $67.68 in the good state and $0 in the bad state, a 
position which (as noted earlier) can be replicated by buying 2.82 
shares of the twin security and selling $31.33 worth of risk-free bonds 
paying 8%, for a year-1 cash outlay of $25.07. Hence, if Q > 25.07, the 
deferral option is less attractive than what is already available in the 
market, and the decision-maker will prefer to adhere to her status quo 
investment. If Q <25.07, she will perceive an arbitrage opportunity 
and take the deferral option while divesting herself of 2.82 shares of 
the twin security, ending up with 3.38 - 2.82 = 0.56 shares, once again 
keeping her original profile of year-2 payoffs while increasing her 
initial wealth. 
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Several conclusions can be drawn from this example. One is that the 
problem with traditional decision tree analysis, as it is reportedly 
practiced in the corporate finance arena, is merely that it is practiced 
incorrectly: the decision-maker's risk preferences are erroneously con- 
founded with time preferences, and secondary decision-making oppor- 
tunities are consequently misvalued or overlooked. If these errors are 
corrected, decision tree analysis becomes equivalent to contingent 
claims analysis in problems for which the relevant markets exist. On 
the other hand, it can be argued that the contingent-claims approach 
provides a useful decomposition of the problem into two parts: (i) 
determining the primary decision which is optimal according to the 
market's risk-neutral valuation; and (ii) determining the secondary, 
portfolio-balancing decision which optimally hedges the primary deci- 
sion with respect to the decision-maker's own beliefs and preferences. 
Under this decomposition, the act of solving (ii), by whatever means, 
replaces the a priori measurement of personal probabilities and utilities 
in conventional decision analysis. Contingent claims analysis explicitly 
confines itself to problem (i) while leaving problem (ii) up to un- 
specified and perhaps qualitative solution methods (executive judg- 
ment, rules of thumb, etc.). This may be advantageous if numerical 
probabilities and utilities are difficult to elicit or awkward to reveal for 
political and/or legalistic reasons. For example, whose utility should be 
maximized: the executive's, the corporation's, or the shareholders'? If 
the shareholders' perspective is adopted, it may be argued that they 
can and should balance their own portfolios, which is the rationale 
underlying the capital structure theorem of Modigliani and Miller. 

Of course, perfectly correlated "twin securities" will generally not 
be available, although the existence of even imperfectly correlated 
securities would still enable contingent claims analysis to establish 
lower and upper bounds on the market valuation of decision options, 
and thereby provide some basis for hedging in a full-blown expected- 
utility analysis. However, many decision-making problems arise in 
settings where no relevant securities markets exist at all. In such cases, 
practitioners have found that the quantitative features of a decision 
model (i.e., the numerical expected utilities it produces) usually do not 
turn out to be pivotal: the greatest benefit is obtained from the 
qualitative process of structuring the problem, acquiring information, 
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clarifying ambiguities, generating options, identifying critical variables, 
fostering communication, reconciling conflicting judgments, etc. 9 This 
is not inconsistent with an evolutionary view of rationality: the formal 
analytic process serves to embed the primary decision problem in a 
richer context, in which the decision-maker's acquired heuristics- 
augmented by those of the decision analyst-  are more likely to find 
purchase. Of course, to the extent that formal decision analysis based 
on subjective expected utility theory is itself a useful heuristic, it 
should be expected to displace its normatively inferior competitors. 

6. A R B I T R A G E  AND E Q U I L I B R I U M  IN A S E C U R I T I E S  M A R K E T  

The example in the preceding section illustrates how the market acts as 
a kind of "heat sink," pulling the risk-neutral probabilities of an 
individual agent into line with those of the general population. In this 
section, we consider the question of how the market's risk-neutral 
probabilities are themselves formed by aggregation of the beliefs and 
risk preferences of its constituent agents-  i.e., we consider the nature 
of a competitive equilibrium in a securities market. This analysis will 
also serve to highlight some of the issues raised earlier concerning the 
separability of probability, utility, and wealth. For analytic tractability, 
we consider a discrete-time, two-period economy with a finite set of 
primary securities and complete markets for contingent claims, under 
restrictive assumptions about the shape of individual probability dis- 
tributions and utility functions. We put aside, for the moment, the 
question of completeness raised in Section 4. 

It is well known (at least among Bayesians) that certain families of 
probability distributions are conjugate to each other with respect to 
Bayesian updating: if the likelihood function is conjugate to the prior 
distribution, then the corresponding posterior distribution belongs to 
the same family as the prior. A similar useful conjugacy exists between 
two important families of probability distributions, utility functions and 
wealth functions with respect to the calculation of risk-neutral prob- 
ability distributions: if the agent's utility and wealth functions are 
conjugate to her true probability distribution, then her risk-neutral 
distribution belongs to the same family as her true distribution. These 
conjugacies have been explicitly discussed by Wilson (1968), Rubins- 
tein (1976), Breeden and Litzenberger (1978), Brennan (1979), and 



A R B I T R A G E ,  R A T I O N A L I T Y ,  A N D  E Q U I L I B R I U M  223 

Stapleton and Subrahmanyam (1984), and are implicitly at the root of 
many important closed-form results in financial economics. The conju- 
gate relationship we shall exploit here is that which exists between the 
normal probability distribution, exponential utility function, and quad- 
ratic wealth function: 

LEMMA. Consider an economy in which investments may be made in a 
finite number of  securities in period 1, yielding uncertain returns in 
period 2. Let the state of  nature in period 2, denoted 8, be defined as the 
vector of  returns per dollar invested in the primary securities, and 
suppose that: 

(a) agent i's "true" probability density function for 0 is multivariate 
normal with mean vector Izi and covariance matrix ~ -  that is: 

Pi(8) ~ exp(-  �89 - 8)a'~;l(/.~, - 8)) ; 

(b) her utility for terminal (period-2) wealth w is exponential with 
risk tolerance t~- that is: 

ui(w) o~ 1 - exp(-w/t~)  , whence u'j(w) o~ exp( -w/ t i )  ; 

and 

(c) her terminal wealth is a quadratic function of  8 - that is: 

1sT  ~ . wi(8 ) = a  i + b f 8 + ~  Cio 

(Here, a i is an amount of cash in period-2 dollars, bi is a vector 
specifying the amount of money invested in each primary security, and 
C i represents holdings of nonlinear contingent claims- such as op- 
t ions-  yielding a quadratic payoff in terms of the primary securi- 
ties. The explicit use of quadratic wealth functions in this context is 
novel.) I~ 

Then the agent's risk-neutral probability density, ~r, is multivariate 
normal with co-variance matrix ~ and mean i~, where: 

]~ = ( ~ - 1  _]._ Ci/ti)-x and 
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The proof follows by substitution in (2.1). A similar conjugate rela- 
tionship exists between the lognormal distribution, power (CRRA) 
utility function, and log-log quadratic wealth function. 

These formulae make explicit how the agent's risk tolerance and 
wealth distribution are impounded in the apparent probability dis- 
tribution revealed by her marginal investment behavior. In particular, 
the quadratic term (Ci) in the wealth distribution is directly associated 
with shifts in the apparent covariance, and the linear term (bi) is 
directly associated with shifts in the apparent mean, while the risk 
tolerance parameter, tg, serves as the natural unit of currency. Only the 
ratios of b~ and C i to t~ - i.e., the quantities invested in securities and 
contingent claims per unit of risk tolerance-  are ultimately relevant. 
(/x i and $i are, like 0, unitless; al, hi, Cg, and tg are measured in units 
of money.) 

Now consider the nature of an equilibrium in a two-period economy 
populated by agents with multivariate normal beliefs and exponential 
utility functions, as characterized by the lemma above. Since the 
beliefs and preferences of all agents are here assumed complete, 
equilibrium requires their risk-neutral probability distributions to be 
identical to the market risk-neutral distribution. (This is conceptually 
the same situation as depicted in Figure 4, although the state space 
here is infinite.) In addition to a finite number of risky securities, we 
assume that the market contains risk-free bonds, and let r denote 1 
plus the risk-free rate of re turn- i . e . ,  Sr -1 is the (endogenously 
determined) price of a bond paying $1 in period 2. We continue to 
assume complete markets for contingent claims so that arbitrary wealth 
functions may be constructed and the market risk-neutral distribution 
may be revealed in arbitrary detail. 11 It follows that the mean vector of 
the common risk-neutral distribution must be the vector whose ele- 
ments are identically equal to r -  i.e., the risk-neutral expected return 
per dollar invested in any security must equal the risk-free return, as 
noted in Section 2. Let/~i and $,. denote the mean and covariance of 

/ 

the "true" distribution of agent i, let tg denote her risk tolerance, and 
1 T let her wealth function be wi(O ) = a~ + bfO + ~0 C~O for some con- 

stant ai, vector bi, and matrix Cg. Then, from the results of the lemma, 
the risk-neutral distributions of all agents coincide (i.e., an equilibrium 
obtains) if and only if: 
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(~?1 q_ C i / t i ) - I  ~ ,  and (6.1a) 

~(~. ' l x i -b i / t i )=r  (6.1b) 

for all i, where ~ denotes the observed covariance of the market 
[ 

risk-neutral distribution and r denotes its mean vector (whose elements 
are identically equal to r). By rearrangement, it follows that C i and bi 
satisfy: 

Ci : t i ( $ - l  _ ]~;1) , (6.2a) 

b i : t i ( $ i l [ jL i -  ~ - l r ) ,  (6.2b) 

or equivalently: 

~i = (~-1 -- Ci/ t i ) - i  , 

~l~i : ~i(~-- lr + bi / t , )  " 

Thus, under the assumptions of multivariate normal beliefs and con- 
stant absolute risk aversion, the mean and covariance of agent i's 
"true" distribution are revealed up to a scaling factor by agent i's 
holdings of securities: /z i and $i can be computed from the observable 

/ 

quantities r, J~, bi, and Ci, but'only if we independently know agent i's 
risk tolerance, t i. (In particular, the term Ci/t ~ is the difference 
between agent i's inverse covariance matrix and that of the market.) 
Even in this highly idealized setting, in which complete preferences 
and observable wealth distributions have been assumed, agent i's 
beliefs are still confounded with her risk tolerance parameter. 

It remains to show how the market's risk-neutral covariance, $, is 
/ 

obtained by aggregating the "true" covariances of the agents. Toward 
this end, let t---~ti  denote the aggregate risk tolerance; let b - E i b ~  
denote the aggregate vector of wealth invested in the primary sec- 
urities; and let t, ~ b/Eekb~k be the vector of weights describing the 
"market por t fo l io"- i .e . ,  the proportions of aggregate wealth invested 
in different primary securities. (Here bi~ denotes the kth element of b~, 
i.e., the amount of wealth invested by i in security k.) Let 0 - vXo 
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denote the uncertain return on the market portfolio; and let O " 2 ~  

IJT~v denote the variance of the market portfolio derived from the 
risk-neutral co-variance matrix. Under these conditions, we obtain: 

T H E O R E M  2. In an equilibrium with zero net holdings of  contingent 
claims (E~C i = 0), the market's risk-neutral covariance is given by: 

]~-1= ~/(tilt)]~.l, (6.3) 

i.e., the risk-neutral precision (inverse covariance) matrix is a weighted 
average of  the agents' true precision matrices, with weights proportional 
to individual risk tolerances. Furthermore, if we define the aggregate 

12 vector of  "true" mean stock returns as the vector weighted average: 

#1 =- Z (t, l t )~7 ,  '#zi 
i 

then the aggregate expected return on the market portfolio is ~ ~ vTtt, 
and it follows that the aggregate mean, covariance, risk tolerance, and 
wealth invested in stocks satisfy: 

where: 

Ix - r = * b / t  = f l ( t z  - r )  

/~ = C o v ( 0 ,  0 ) / 0 .  2 - I 'T~ it# T]~ 1# " 

(6.4a) 

(6.4b) 

That is, fik (the kth element of  [3) is the slope coefficient in the simple 
regression of  security k's return (Ok) on the market return (0 ~ ~,TO), 
based on the risk-neutral covariance matrix of  the market. 

Proof: (6.3) is obtained by summing (6.2a) over i and equating the 
result to the zero matrix - i.e., enforcing the condition ~iCi = 0. (6.4a) 
is obtained by multiplying (6.1b) by ti/t, summing over i, and invoking 
the definitions of t, b, /z, and ~. �9 

Equations (6.4) define the ubiquitous capital asset pricing model 
(CAPM), stating that the expected excess return on security k is equal 
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to its "beta" times the expected excess return on the market portfolio. 
However, the parameters appearing in this derivation are all subjec- 
tive: they are not based on assumptions about an underlying "true" 
stochastic process or empirically measured returns and covariances, 
but rather on the aggregated beliefs and risk preferences of the market 
participants, as revealed in contingent claim prices and wealth dis- 
tributions. Equation (6.4a) allows us to infer the aggregate vector of 
expected returns,/~, but only if we independently know the aggregate 
risk tolerance, t, paralleling the result noted above for the individual 
expected returns. 

These convenient analytic results were obtained under strong as- 
sumptions about parametric forms of probability distributions and 
utility functions, but the same qualitative relationships would be 
expected to hold in practice: agents whose expectations deviated from 
those of the market would take long or short positions in the primary 
securities, while agents whose covariances (estimated volatilities) de- 
viated from those of the market would take positions in options; and, 
other things being equal, agents with higher risk tolerances would 
choose to bear more risk. However, it would be difficult to separate 
the absolute magnitude of an agent's risk tolerance from the absolute 
magnitude of her deviation from market beliefs, and neither the 
risk-neutral probabilities nor the wealth distribution of an individual 
agent would be observable with great precision. 

7. ARBITRAGE AND EQUILIBRIUM 
IN AN EXCHANGE ECONOMY 

The securities market considered in the preceding section is a special 
kind of exchange economy, characterized by a single commodity 
(money) and uncertainty about states of the world. A basic theorem of 
classical welfare economics holds that, in more general multi- 
commodity exchange economies, an allocation of wealth is optimal 
(jointly utility-maximizing) if and only if there exists a price system 
with respect to which it is competitive. (In the securities market 
model, the competitive price system happens to take the form of a 
risk-neutral distribution.) It was shown by Arrow (1951) and Debreu 
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(1954) that this result should be proved using linear programming 
rather than traditional calculus-based methods in order to take account 
of non-negativity constraints on consumption. Gale and Mas-Colell 
(1977) observe that such duality-based proofs do not require the 
assumption that preferences are complete and transitive (and hence 
representable by utility functions), merely that they are convex. In this 
section, we will show that the basic theorem identifying optimality with 
the existence of a competitive price system can be viewed (not 
surprisingly) as another application of the arbitrage principle: if prefer- 
ences are operationally defined in terms of willingness to trade, then 
Pareto optimality becomes synonymous with the absence of arbitrage 
opportunities. The relation between no-arbitrage and the existence of 
a competitive equilibrium has also been discussed by Kreps (1981) and 
Werner (1987), although those authors define arbitrage opportunities 
with respect to a given price system, rather than in terms of direct 
commodity trades. Here, prices emerge as variables in the dual 
problem, as in the Arrow-Debreu formulation. 

Consider an economy with finitely many agents and finitely many 
types of commodities, where commodity 1 is money. All commodities 
are considered to have non-negative intrinsic worth (i.e., more is 
preferred to less) and money is assumed to have positive worth (more 
money is strictly preferred to less). Suppose we find the economy in a 
state where agent i's wealth allocation is wi, a vector whose ]th 
element, wij, is the number of units she holds of commodity j. 
Furthermore, suppose that each agent has asserted preferences for 
various other wealth positions relative to her current position, meaning 
that she would be willing to trade her current wealth position for one 
of the others. In particular, agent i has asserted that w i + X~k is 
preferred to wi, for k = 1, 2 , . . . ,  where X~k is a vector of changes in 
commodity holdings whose jth element is x~j. xik will be called an 
a c c e p t a b l e  t rade  for agent i. (We make no assumption that these trades 
reflect the "complete and true" preferences of agent i, merely that 
they summarize the extent to which her preferences relative to her 
current wealth position have been publicly revealed.) Finally, assume 
that the set of acceptable trades for each agent is c o n v e x  13 - i.e., agent 
i also prefers w i + ~ a i k X i k  to W~ for any non-negative aik such that 
~ka~-k ~< 1. Within this framework, we adopt the following: 
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DEFINITIONS.  A marginal utility vector for agent i is a vector u e 
satisfying T u~ x/> 0 for every trade x acceptable to her. (That is, u~ is the 
normal vector of a supporting hyperplane for her set of acceptable 
trades.) An arbitrage opportunity is a sequence of acceptable trades 
with some or all agents such that: 

(i) each agent ends up with non-negative holdings of each com- 
modity; 

(ii) the aggregate amount of each commodity held by the agents is 
not increased; 

(iii) the aggregate amount of money held by the agents is decreased. 

A state of the economy which does not admit arbitrage opportunities is 
Pareto op t ima l -  at least insofar as can be determined from the 
revealed preferences-  and we expect to find the economy in such a 
state if only because the activities of a small number of arbitrageurs 
would suffice to drive it there. By linear duality we immediately 
obtain: 

T H E O R E M  3. There are no arbitrage opportunities if and only if there 
exist a price vector p and marginal utility vectors {ui} for all agents such 
that: 

(i) Pl = 1 (money is the numeraire of prices and marginal utilities); 
(ii) 0 ~< uij <~ pj for every commodity j and every agent i (no agent's 

marginal utility for a commodity exceeds its price); 
(iii) uij = pj if wij > 0 (an agent's marginal utility for a commodity 

equals its price if she holds a positive quantity of it). 
Proof: The arbitrageur's problem is described by the following 

linear program: 
Maximize z over all non-negative {aik } and unrestricted z 

subject to z + ~ ~ikXikl = 0 (Z is the amount of money extracted) 
ik 

Z OlikXikj 
ik 

• O~ikXikj 
k 

Z Olik ~ 1 
k 

~< 0 V J"/> 2 (aggregate commodity holdings do 
not increase) 

-wij  Vi, j (each agent ends up with non- 
negative holdings) 

Vi (convexity). 
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Arbitrage is achieved if the optimal objective value is positive. The 
corresponding dual program is: 

Minimize E l') i + E wijqij over all non-negative {pj}, {Vi} , {qij} 
i i] 

subject to v i "~- E (Pi  - qij)Xikj >~ 0 Vi, k 
] 

p l = l .  

The optimal objective value is zero in the dual solution (hence 
arbitrage is not achievable) if and only if (i) qij = 0 wherever w~j > 0, 
and (ii) all the {v~} are zero, in which case the dual constraints 
become: 

~ ( p j - -  q~j)X~kj ~ O  Vi, k . 
J 

Defining uij =-pj - qij, the conditions of the theorem follow. �9 

Thus, the economy is arbitrage-free if and only if the existing wealth 
allocation is a competitive equilibrium with respect to some system of 
prices and some specification of marginal utilities supporting the 
agents' revealed preferences: no agent can increase her utility by 
purchasing more of any commodities at those prices and financing the 
transaction (if necessary) through sales of commodities she already 
possesses. 

Notice that this result neither requires the completeness and trans- 
itivity of preferences, nor does it even require any specification of 
preferences in the vicinity of allocations other than the observed 
equilibrium allocation. Once again, the essential rationality postulate is 
a no-arbitrage condition which applies at the market level, and the 
result obtained is that individual agents must appear to be acting in a 
way which is consistent with utility-maximization, regardless of their 
"true" motivations. 

In the manner of Debreu (1959), uncertainty can be introduced into 
the exchange-economy model by defining commodities as physical 
goods contingent on states of the world. In this setting the marginal 
utilities are replaced by state-dependent marginal utilities, which may 
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be interpreted as products of "true" marginal utilities and state 
probabilities, a generalization of the concept of risk-neutral prob- 
abilities to the multi-commodity setting. 

8. A R B I T R A G E  AND E Q U I L I B R I U M  IN 

N O N C O O P E R A T I V E  GAMES 

In a recent discussion paper on the interrelationships of finance and 
economics, Ross (1987) comments on the intrusion of game-theoretic 
ideas (e.g., bidding, signalling, agency theory, etc.) into the finance 
arena and expresses discomfort at the "dilution of the arbitrage 
intuition in many applications of the economic theory of information to 
problems of modeling financial markets." However, if we examine the 
foundations of game theory more closely, we once again find the 
arbitrage principle staring back at us. The notion that strategic 
rationality is in some way essentially different from individual 
rationality, or that a strategic equilibrium has deeper structure than a 
competitive equilibrium, turns out to be largely illusory. 

The theory of noncooperative games takes for granted that the rules 
of the game and the rationality of the players are (somehow) common 
knowledge. The standard solution concept, Nash equilibrium, is de- 
fined as a profile of strategies which are best responses to each other 
and which are also statistically independent. Aumann (1974) objects to 
the independence requirement and proposes the alternative concept of 
correlated equilibrium, which is similar to Nash equilibrium except that 
it allows randomized strategies to be correlated between players. A 
distinction can be be made between objective correlated equilibrium, in 
which the players' beliefs about exogenous events are homogeneous, 
and subjective correlated equilibrium, in which they are not. 

Recently, Aumann (1987) has asserted that objective correlated 
equilibrium is "the" expression of Bayesian rationality in games 
because it precisely captures the idea that Bayesian rationality on the 
part of all players will be common knowledge in every outcome of the 
game, provided that one accepts the Harsanyi doctrine (Harsanyi 1967) 
of homogenous prior beliefs. Support for Aumann's claim is provided 
by Nau and McCardle (1990) who show that the objective correlated 
equilibrium concept follows from a no-arbitrage argument-  essential- 
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ly, a game-theoretic version of de Finetti's theorem. Nau (1991a) 
extends this result to games of incomplete information. The general 
structure of these results is as follows. 

Let common knowledge of the rules of the game be operationalized 
by supposing that the players' subjective probabilities and payoff 
functions are publicly revealed-  or at least affirmed- via the accept- 
ance of small monetary gambles. Their probabilities for exogenous 
states of nature are revealed through the acceptance of belief gambles 
(i.e., the purchase and sale of lottery tickets) exactly as discussed in 
Section 2. If arbitrage is to be avoided, as has been shown, the 
outcome of this process must be a "representative" risk-neutral dis- 
tribution (or set of distributions), which is an apparent common prior. 
The Harsanyi doctrine is therefore reinterpreted to apply to risk- 
neutral probabilities, not true probabilities. 

The players' payoff functions are revealed by their acceptance of 
preference gambles, which are conditioned on their own choices of 
strategies and information states, and which yield increments of utility 
proportional to the differences in utility they perceive between the 
chosen strategy and other strategies not chosen. The intuitive justifica- 
tion for this is as follows: if player i is observed to play strategy s i given 
that her information state ("type") is ti, then whatever her beliefs 
about the actions of nature and her opponents, she must feel that the 
conditional expected utility of playing ss given information t~ is greater 
than or equal to the conditional expected utility of playing any other 
strategy, say s'g. In this case, a monetary gamble whose payoff vector 
(indexed by nature's and her opponent's actions) yields increments of 
utility proportional to the differences in utility between s i and s~ must 
have non-negative conditional expected utility, and hence it should be 
acceptable. If the player's marginal utility for money is constant across 
outcomes of the game, then the monetary payoffs of such a gamble are 
simply proportional to her true utility differences. If her marginal 
utility for money is not constant, then the payoffs are proportional to 
utility differences divided by marginal utilities for money. In the latter 
case, what is revealed is not the player's "true" payoff function, but 
rather a "risk-neutral payoff function." (Nau 1991bc) 

Now suppose that all players have accepted gambles which are 
consistent with their beliefs and payoff functions in the ways just 
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described, TM and consider the position of an outside observer who 
attempts to construct an arbitrage portfolio. That is, the observer 
attempts to find a combination of acceptable gambles yielding a gain to 
himself (i.e., an aggregate loss to the players) which is non-negative in 
all outcomes of the game and strictly positive in as many ,outcomes as 
possible. Such an observer cannot lose, but may win, depending on the 
play of the game. An outcome in which the observer does not 
win - i.e., which does not allow arbitrage - is one that we designate as 
jointly coherent. The corresponding duality theorems (Nau and McCar- 
die 1990, Nau 1991ac) show that the jointly coherent outcomes are 
precisely those which occur with positive probability in objective 
correlated equilibria of the revealed game-  i.e., the game defined by 
the risk-neutral probabilities and risk-neutral payoff functions. 

The avoidance of arbitrage opportunities requires the players to act 
as if they had implemented an objective correlated equilibrium of the 
revealed game. This is not to say that the players must use a correla- 
tion device: correlation may exist only in the eyes of the observer if, 
for example, the players actually intend to play one of several Nash 
equilibrium strategies but have not bothered to reveal which one. On 
the other hand, correlation is never ruled out a priori in situations 
where it would appear to be beneficial. In the case where the revealed 
game is not the "true" game- i . e . ,  where the players' revealed 
probabilities and utilities have been distorted by outcome,-dependent 
marginal utilities for money - every objective correlated equilibrium of 
the revealed game corresponds to a subjective correlated of the true 
game, in which the players' probabilities may differ (Nau 1991c). 
Hence, the characterization of a correlated equilibrium as "objective" 
or "subjective" depends to some extent on the omniscience of the 
observer. The objective correlated equilibrium concept applies to the 
revealed game, while the subjective correlated equilibrium concept 
applies to the true game, but these lead to the same resul t - i .e . ,  the 
same set of jointly coherent outcomes. 

Far from being a hindrance to measurement, the market again 
serves as a medium through which requisite knowledge of probabilities 
and utilities can be disseminated, and the fact that the observable 
quantities may be risk-neutral rather than "true" values is ultimately 
unimportant. With the elicitation of the game's rules endogenized in 
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this way, strategic equilibrium becomes synonymous with the avoid- 
ance of arbitrage in a contingent-claims market whose distinctive 
feature is that the events are partly under the control of the agents. 
The arbitrage principle thereby provides a direct link between the 
concept of competitive market equilibrium and the noncooperative 
game-theoretic concept of correlated equilibrium, whereas competitive 
equilibrium has traditionally been viewed either as a close cousin of 
the Nash equilibrium concept (via the role of fixed-point theorems), or 
else as a limiting case of the cooperative concept of the core of a game. 

The fact that our basic rationality principle leads straight to corre- 
lated equilibrium raises questions about the additional assumptions 
(statistical independence even where correlation would be beneficial, 
robustness to irrational out-of-equilibrium behavior, etc.) that charac- 
terize the stronger Nash concept and its refinements. These assump- 
tions are, for the most part, not operat ional- they are a pr ior i  

unenforceable or else place implausible demands on the cognitive 
powers of the players-  and they are precisely the points on which 
game theory departs from the "arbitrage intuition" underlying the 
modem theory of financial markets. Of course, an objection which 
might be raised against the no-arbitrage characterization of strategic 
rationality is that (as in decision analysis) the hypothesized market 
usually does not exist. Yet, if such a market does not exist at least in a 
virtual sense- i . e . ,  if the players are unable even to imagine such a 
market and visualize their behavior in i t -  then the traditional game- 
theoretic assumption that they dwell in a state of numerically precise 
common knowledge of each other's probabilities and utilities appears 
dubious. Common knowledge of probabilities, payoffs, and utility 
functions would imply, among other things, common knowledge of 
whether-or-not the preplay allocation of state-dependent wealth is an 
equilibrium. If it is, the assumption of a "virtual market" is innocuous; 
if it is not, the requirement that the players' selection of strategies 
should itself constitute any kind of equilibrium appears inconsistent. 

9. C O N C L U S I O N  

It has been shown that the arbitrage principle is more fundamental to 
Bayesian decision theory, market theory, and game theory than is 
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commonly appreciated; that decision analysis and game theory can be 
informed by ideas of risk-neutral probabilities which originated in the 
theory of capital markets; that competitive markets serve not only to 
efficiently allocate production and consumption but also to articulate 
the subjective parameters of common knowledge; and that economic 
equilibrium models can survive without the assumption that agents 
have sharply defined probability distributions and utility functions with 
respect to which they consciously optimize. No-arbitrage is a realistic 
standard of rationality which is consistent with a view that optimization 
is carried out at the market level rather than the agent level, and that 
decision-making behavior evolves by a process of natural selection. 
This is not to absolve the individual of the responsibility to use 
intelligence and foresight, but it suggests that she will be able to do this 
most successfully within the comparatively narrow field of events with 
which she is most familiar, for which she has acquired appropriate 
decision-making rules shaped by the selective process. 
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N O T E S  

1 De Finetti's 1974 book begins with the preface: "PROBABILITY DOES NOT 
EXIST. The abandonment of superstitious beliefs about the existence of Phlogiston, the 
Cosmic Ether, Absolute Space and Time . . . .  or Fairies and Witches, was an essential 
step along the road to scientific thinking. Probability, too, if regarded as something 
endowed with some kind of objective existence, is no less a misleading conception, an 
illusory attempt to exteriorize or materialize our true probabilistic beliefs." 
2 The same label is sometimes applied to de Finetti's representation theorem for 
probability distributions on sequences of exchangeable events, also appearing in the 1937 
paper. 
3 The explicit restriction of gambling transactions to small amounts of money dis- 
tinguishes our treatment from de Finetti's, and admits the possibility that the agent ~s 
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risk-averse or risk-seeking. Small gambles are viewed here as the infinitesimal measure- 
ments through which the broad outlines of beliefs and preferences are revealed. A more 
thorough discussion of this point is given by Nau (1991b). 
4 Here the symbol E is used interchangeably to denote the name of an event and also 
the corresponding indicator vector. Thus, E - p  is the payoff vector whose element in 
the 0 position is E(O)- p, where E(O)= 1 if the event E includes the state O, and 
E(O) = 0 otherwise. 
5 The representative agent is in practice a composite of real agents: the representative 
agent's buying and selling prices are the maximum advertised buying price and minimum 
advertised selling price, respectively, among all real agents. This point will be taken up 
in more detail in Section 4. 
6 Varian (1987) observes: "One of the major advances in financial economics in the past 
two decades has been to clarify and formalize the exact meaning of 'no arbitrage' and 
apply this idea systematically to uncover hidden relationships in asset prices. Many 
important results of financial economics are based squarely on the hypothesis of no 
arbitrage, and it serves as one of the most basic unifying principles of the study of 
financial markets." For a rigorous synthesis of arbitrage results, see Garman (1979). 
7 In this tradition, Suppes (1976) asserts: "to insist that we assign sharp probability 
values to all of our beliefs is a mistake and a kind of Bayesian intellectual im- 
per ia l i sm. . .  [T]here seems to have been a 'natural line of theological succession' from 
the early belief that God ran the universe in a definite fashion, to the Laplacian belief 
that the universe ran itself in a definite fashion to [the Bayesian] belief that we all have 
access to a unique prior probability." 
8 More generally, we could permit consumption in year 1 and then consider utility to be 
a function of both year-1 consumption and year-2 wealth. In the solution of the joint 
consumption/investment problem, the decision-maker's marginal rate of substitution of 
wealth between periods would necessarily be brought into equilibrium with the market 
interest rate. 
9 Howard (1988) presents an eloquent defense of subjective expected utility theory as a 
guide to action in principle, but his survey of the state-of-the-art in decision analysis is 
notable for its emphasis on an evolving tool kit of qualitative decision aids: strategy- 
generation tables, decision quality checklists, influence diagrams, tornado diagrams, 
normative expert systems. On the quantification of utility, he notes: "While the ability to 
capture risk preference is an important part of our conceptual view of decision-making, I 
find it is a matter of real practical concern in only 5 percent to 10 percent of business 
decision problems. Of course, the situations that require risk preference, such as bidding 
or portfolio problems, use it seriously. In working with these problems, we have found 
both the use of generic forms for risk preferences and experience with similar situations to 
be most helpful." [Emphasis added] 
10 Quadratic dependence of wealth on the primary security returns can be achieved by 
purchasing "straddles" composed of uniform distributions of call [put[ options at all 
exercise prices greater [less[ than the current security price. 
11 The role of contingent claims in the revelation of continuous risk-neutral distributions 
is described by Breeden and Litzenburger (1978). The basic result is as follows: let 
Ck(X, T) denote the price at time 0 of an option to purchase one share of security k for 
price X at time T. (That is, X is the exercise price of the option and T is its time to 
maturity.) Then the risk-neutral probability density of the event that the security price is 
equal to x at time T is proportional to the second derivative of Ck(X, T) with respect to 
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X, evaluated at X = x. If options can be written at arbitrary exercise prices on arbitrary 
portfolios (e.g., mutual funds) of different securities, then in principle the marginal 
distribution of any function of the state 0 can be uniquely determined. Of course in 
practice this degree of market completeness is not realized: options are typically traded 
only at exercise prices which are multiples of $5, and only a minority of stocks and 
mutual funds support liquid options markets. 
12 Notice that (6.3) weights the contribution of agent i's mean vector in proportion to 
the product of her risk tolerance and her precision matrix, which~ intuitively measures~ her 
willingness bear risk. If we denote this product as H i = ti~,71 and H = t~  -1 for the to 

/ 

individual and the market, respectively, then the aggregation formulas take the simple 
form: 

H = E H ~ ,  and Htz=EH~tr 
i i 

The same aggregation formulas for means and covariances are obtained in the absence of 
contingent claims marke t s - i . e . ,  when agents' wealth distributions are required to be 
linear in the primary security returns (Lintner 1969) - although the market risk-neutral 
distribution is not directly observable in this case. More general aggregation formulas 
based on the exponential utility assumption, incorporating arbitrary probability dis- 
tributions and heterogenous time preferences, are given by Huang and Litzenberger 
(1988, pp. 146-147). 
13 The linear and additivity assumptions are replaced here by the convexity assumption, 
which is more familiar in this context: it explicitly admits the possibility of "large" trades 
among risk-averse traders, although only small trades are needed for the arbitrage 
argument. 
14 Although the acceptance of such gambles can be viewed as a canonical medium of 
preplay communication among the players, we hasten to point out that once the rules of 
the game have become common knowledge - by whatever means - the gambles have no 
bearing on the play of the game: their acceptability must itself be common knowledge at 
this point, and hence of no strategic importance. 
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