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Valuing Risky Projects: Option Pricing
Theory and Decision Analysis

James E. Smith ¢ Robert F. Nau
Fuqua School of Business, Duke University, Box 90120 Durham, North Carolina 27708

In the academic literature and professional practice, there are a number of alternative and
apparently competing methods for valuing risky projects. In this paper, we compare and
contrast three different approaches: risk-adjusted discount-rate analysis, option pricing analysis,
and decision analysis, focusing on the last two. We show that, in contrast to some of the claims
made in the “'real options’”” literature, when both option pricing and decision analysis methods
are correctly applied, they must give consistent results. We also explore ways in which option
pricing and decision analysis methods can be profitably integrated. In particular, we show how
option pricing techniques can be used to simplify decision analyses when some risks can be
hedged by trading and, conversely, how decision analysis techniques can be used to extend
option pricing techniques to problems with incomplete securities markets.

(Valuation; Option Pricing Theory; Decision Analysis)

1. Introduction

In the usual MBA curriculum, students are presented
with a number of alternative and apparently competing
methods for valuing risky projects. In their decision
analysis course, students learn about decision trees and
utility theory and are taught to think of values in terms
of expected utilities and certainty equivalents. In their
finance course, they learn about the discounted cash
flow model and are taught to think of values in terms
of net present values computed using a discount rate
reflecting the risk of the project. In an advanced finance
course, they might learn about option pricing methods
and be taught to think of projects as being analogous
to put and call options on a stock. The result of all this
training is graduates who may understand each method
but fail to appreciate the relationships between them
and their relative strengths and weaknesses.

A similar gap between the decision analysis and fi-
nance disciplines exists in the academic literature and
professional practice. This gap has become increasingly
apparent with the development of option pricing tech-
niques for valuing projects in which managerial flexi-
bility or “‘real options” play an important role. As an
example of a real option, suppose a firm is considering
0025-1909,/95 /4105 /0795$01.25
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obtaining rights to a new chemical process. With these
rights they could invest now and build a plant using
the new process. Alternatively, they might obtain a one-
year option on these rights and wait a year before de-
ciding whether to build the plant. If conditions prove
favorable in one year, they can build the plant; if con-
ditions prove unfavorable, they can decline and avoid
losses they would have incurred had they built the plant
now. These kinds of options may have substantial value
and, it is argued, are often ignored or undervalued in
discounted cash flow analyses. (See, for example, Rob-
ichek and Van Horne 1968.)

In response to these criticisms, finance theorists have
proposed the use of option pricing’ techniques—like
those used to value puts and calls on stocks—for valuing
risky projects in which real options play an important
role (see Myers 1984; see Pindyck 1991 for a recent
review). Decision scientists, on the other hand, have
suggested that these options can be readily incorporated

! What we refer to as “option pricing analysis” is sometimes called
“contingent claims analysis” (see, for example, Mason and Merton
1985 and Trigeorgis and Mason 1987) or “valuation by arbitrage”
(see, for example, Huang and Litzenberger 1988).
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into decision tree or dynamic programming models (see
Bonini 1977). Now we find the advocates of option
pricing methods claiming superiority over decision
analysis methods: “. . . we have shown the option-
pricing approach is superior to both the NPV technique
and DTA [decision tree analysis] when naively applied”
(Copeland et al. 1990, p. 353; see also Mason and Mer-
ton 1985 and Trigeorgis and Mason 1987).

This paper has two goals. Our first goal is to. show
that the shortcomings of decision tree analysis noted
by Copeland et al. (and others) are artifacts of their
““naive’” analysis which overlooks market opportunities
to borrow and trade that are considered in the options
analysis, and which confounds time and risk preferences
by using a single risk-adjusted discount rate. If these
market opportunities are included in the decision tree,
and if time and risk preferences are captured using a
utility function, the two approaches give results that are
consistent in the following sense. When option pricing
methods give a unique project value and optimal strat-
egy (for example, when markets are complete), a correct
decision tree analysis will give the same value and op-
timal strategy. When option pricing methods give
bounds on the project value and identify a set of po-
tentially optimal strategies, a correct decision tree anal-
ysis will give a value that lies between these bounds
and an optimal strategy that is a member of this poten-
tially optimal set.

Our second goal is to describe ways in which decision
analysis and option pricing techniques can be profitably
integrated. If the securities market is complete in that
every project risk can be perfectly hedged by trading
securities, option pricing methods provide a convenient
means for separating (a la Fisher 1930) the decision
analysis problem into two simpler subproblems. The
first subproblem—the “investment problem”—focuses
exclusively on the project being valued (ignoring op-
portunities to borrow and trade) and is solved by option
pricing methods using only market information. The
second subproblem—the "“financing problem”—focuses
exclusively on opportunities to borrow and trade (ig-
noring the project), and is solved by decision analysis
methods using subjective beliefs and preferences.

While this completeness assumption may be quite
reasonable when valuing options on stocks or other de-
rivative securities, most “real” risky projects can only
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be partially hedged by trading securities. Though the
separation result does not (in general) apply with in-
complete markets, if we are willing to restrict preferences
and assume that markets are “'partially complete,” we
can develop a valuation procedure that integrates de-
cision analysis and option pricing methods and satisfies
consistency and separation properties analogous to
those obtained with complete markets. Here, unlike the
complete markets case, subjective beliefs and prefer-
ences play a critical role in both the investment and
financing decisions.

The paper is organized as follows. Section 2 intro-
duces the basic framework and definitions common to
all subsequent sections. In §3, we assume that securities
markets are complete. In this setting, option pricing
methods give precise values and we can state strong
versions of the consistency and separation results. In
§4, we consider the general case of incomplete markets.
Here the option pricing methods give bounds on the
project value and we can state only a weak version of
the consistency theorem. In §5, we restrict preferences
and consider “partially complete”” markets. Here our
integrated procedure gives precise values and we can
state strong versions of the consistency and separation
results. All proofs are in an appendix.

Sections 2—-4 build on Nau and McCardle (1991) and
integrate known results in decision analysis and finance.
The results in §5 appear to be new.

2. Basic Framework and Definitions
Our basic model of the securities market is a discrete-
time, discrete-space version of the standard models in
the option pricing literature (see, e.g., Huang and Litz-
enberger 1988, pp. 223-257). Our main departure from
the option pricing literature is that we explicitly model
the beliefs of a single market participant, hereafter re-
ferred to as the “firm.” We attribute beliefs and pref-
erences to this firm as if it were privately owned and
operated by a single owner /manager or, equivalently,
as if its owners /managers were ‘of one mind.” This is
consistent with the decision analysis approach where
the analyst works with the firm’s top officers to develop
a corporate utility function that [is] viewed as a policy
statement by top management’’ (Spetzler 1968, p. 299)
and works with the firm’s designated experts to assess

MANAGEMENT SCIENCE/Vol. 41, No. 5, May 1995
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probabilities for relevant uncertainties. We reconsider
this assumption in §5.6 below.

Uncertainties are resolved and trading takes place at
timest=0,1,...,T.Let$S = {vy,v2,...,vs} denote
the (finite) set of possible states of the world. The true
state of the world is revealed to the firm at time T. At
intermediate times ¢, the firm possesses some infor-
mation about this final state that we represent as the
time-t state of information w,. Formally, these time-t states
of information w; are defined as subsets of & that form
a partition of & (the possible w,’s are mutually exclusive
and their union is §) and become successively finer
with increasing ¢ (each w;_; is the union of states w, in
the next time period). The firm’s beliefs about the state
of the world are captured by subjective probabilities
which (without loss of generality) are assumed to be
strictly positive. Given state of information w;, the firm’s
expected value is written E[—|w;]; E[—|w,] is abbre-
viated as E[—].

We will be evaluating risky cash flow streams x(t, w;)
where x(t, w;) denotes the amount the firm receives at
time ¢ in state w;. Where convenient, we suppress the
dependence on the state w; and write x(¢) in place of
x(t, o). The firm’s preferences for cash flows are cap-
tured by a utility function, U(x(0), x(1), ..., x(T)),
that is assumed to be continuous, strictly increasing,
and strictly concave in x(0), x(1), ..., x(T).

A project is a risky cash flow stream ¢ (¢, w;) that spec-
ifies the project’s payoff at every time and in every pos-
sible state. Unlike securities, projects are lumpy, all-or-
nothing-type investments that are not traded. When
there are a number of alternative strategies available
for managing a project, each strategy « defines a dif-
ferent project whose payoffs are denoted c,. We assume
that these project management strategies a are mutually
exclusive and finite in number.

There are N + 1 traded securities. To simplify the
notation and analysis, we will assume that these se-
curities pay no dividends in the time frame of the model.
The prices of the securities are given by a vector

s(t, w;) = (So(t, wi), s1(t, w), ..., sn(t, o))
where s;(t, w;) denotes the price of the ith security at

time f in state w;. To highlight the role of borrowing
and lending, we assume that there is a risk-free security

MANAGEMENT SCIENCE/Vol. 41, No. 5, May 1995

(the Oth security) whose time-t price sq(t, w;)is (1 + 5)"
in all states w;; 7/ is referred to as the risk-free rate 2

As is standard in the option pricing literature, we as-
sume that the securities market is frictionless in that the
firm can buy or sell as many shares of a security as
desired (including fractional amounts) at the market
price without incurring any transaction costs (commis-
sions, taxes, etc.). We let

B(t, w) = (Bo(t, i), Bi(t, @), ..., Bu(t, @)

denote a trading strategy that specifies a portfolio of se-
curities held from time ¢ to time ¢ + 1 given state w;. To
prevent ““borrowing from beyond the horizon,” we re-
quire 8(T) = 0.°

The securities market is complete if all project risks
can be perfectly hedged by trading securities. Formally,
the securities market is complete if, for every project c,
there exists a replicating trading strategy B, that generates
cash flows which exactly match the project’s future cash
flows at all times and in all states, i.e., a trading strategy
8, such that

[B,(t =1, wm1) — B,(t, wi)]s(t, w) = c(t, wy)

for all t > 0 and w,. (The product here is an inner product
or dot product.) Since the project generates no cash flows
after time T, the final replicating portfolio 8,(T, wr) is
equal to 0 for all wr. For earlier times, given 8,(¢, w;)
for all w;, we find B,(t — 1, w;—1) by solving

B,(t— 1, w—1)s(t, w) = c(t, w;) + B,(t, w)s(t, w).
(1)

For each w;_1, (1) defines a set of M equationsin N + 1
unknowns where M is the number of states w, that are
subsets of w;_;. To be able to solve these equations for
B.(t — 1, w;—q) for any ¢, as required by completeness,
the M by N + 1 matrix s(f, w;) must have rank greater
than or equal to M for each ¢t and w,. Thus completeness

2 The assumption that there is a risk-free security is not as strong as
it might first appear: provided there is a security (say the Oth security)
whose price is always positive we could renormalize cash flows so
that the zeroth security behaves like a risk-free security in the nor-
malized price system.

3 We could instead include terminal wealth as an argument in the
utility function.
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requires the price process s(f, w;) to “span” the space
of all possible projects c(t, w;).

Throughout this paper, we will assume that the mar-
ket is arbitrage-free in that the firm cannot profit by
trading securities without taking some risk or expending
some capital. Formally, we say the market is arbitrage-
free if there is no trading strategy 8 with nonpositive
current value (i.e.,, 8(0)s(0) < 0), that always generates
nonnegative cash flows (i.e., [B(t — 1, w;—1) — B(t,
w;)]s(t, w;) = 0 for all t and possible states w; and w;_1),
and has some chance of generating a positive cash flow,
(e, [B(t — 1, w—q) — B(t, w;)]s(t, w;) > 0 for some ¢
and possible states w; and w;-1). Such a trading strategy,
called an “arbitrage opportunity,” could be imple-
mented with no initial cash outlay and has some chance
of generating profits and no chance of generating losses.

An equivalent, dual characterization of this no-
arbitrage condition focuses on a probability distribution
that supports the observed security prices: a securities
market is arbitrage-free if and only if there exists a
strictly positive probability distribution = such that for
all ¢,

m(w;)

s(t)
(1 + 7f)t

s(0) =2 (1+7,)

wt

s(t, w) = E«[ ] (2)
where E, denotes expectation with respect to w.* This
distribution is unique if and only if the market is com-
plete as well as arbitrage-free. (See Harrison and Kreps
1979 for proof and discussion.) The probabilities 7(w;)
are, in general, not equal to the probabilities of our firm
or any other market participant, but can be interpreted
as the probabilities used by a hypothetical risk-neutral
“representative investor” to determine securities prices
(Cox and Ross 1976). For this reason, « is referred to
as a risk-neutral distribution. These risk-neutral proba-
bilities can also be interpreted as “‘state prices” because
m(w;) /(1 + ;)" is the current price of a claim that pays
one dollar if and only if state w, prevails at time ¢.

3. Complete Markets: A Simple
Capital Budgeting Example

We first examine the relationships between the different

methods of valuation in the case where the securities

¢ Formally, the distribution 7 is defined on & and m(w) = Z,e., 7(Y)-
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market is complete. This is the usual assumption in the
real options literature and allows us to state the strongest
results. We relax this assumption and consider incom-
plete markets in the next two sections.

3.1. A Simple Capital Budgeting Example
We illustrate our results by considering a simple two-
period capital budgeting problem due to Trigeorgis and
Mason (1987) and used in Copeland et al. (1990, pp.
343-353) and Nau and McCardle (1991). The problem
is illustrated in the decision tree of Figure 1. The firm
is presented with the opportunity to invest $104 now
to build a plant that a year later will have a payoff that
depends on the uncertain “level of demand.” In the
“good” state, the plant pays $180 and in the “bad”
state, it pays only $60. The firm believes that these two
states are equally likely. Alternatively, for a fee to be
negotiated, the firm may obtain a one-year license that
allows them to defer construction of the plant until after
the state is known. If they choose this option, one year
from now they may invest $112.32 and receive a certain
value of either $180 or $60, or decline to invest and let
the option expire. (This $112.32 assumes that the $104
it costs to build the plant grows at the risk-free rate of
8 percent.) The firm may also decline to invest in the
plant or license without paying or receiving any money.
Following Trigeorgis and Mason and Copeland et al.,
suppose that there are two securities, a risk-free security
that allows the firm to borrow and lend at 8 percent
and a “"twin security” whose future values depend on
the uncertain level of demand. As shown in Figure 2,
the current price of the twin security is $20, in the good
state it will be worth $36, and in the bad state it will
be worth $12. These two securities are sufficient to

Figure 1 Decision Tree for the Simple Capital Budgeting Example
Cash Flow NPV
Current. Year One  @20%
-104.00  180.00 46.00
-104.00 60.00 -54.00
- nvest 000  67.68 56.40
0.00 0.00 0.00
000 -52.32 -43.60
0.00 0.00 0.00
0.00 0.00 0.00

MANAGEMENT SCIENCE/Vol. 41, No. 5, May 1995
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Figure 2 Payoffs of the Twin Security
Current Payoff in NPV
Market YearOne @20%
Value Good 3600 30.00
5
20 @
(205 Ba
12.00 10.00

complete the market: there are two possible states of
the world and there are two linearly independent se-
curities, so the payoffs of every risky cash flow can be
represented as a linear combination of the payoffs of
these two securities.

We analyze this problem using three different meth-
ods. First, following Trigeorgis and Mason and Cope-
land et al., we present a “'naive’” decision tree analysis
that uses discounted cash flow techniques in a simple
decision tree format. We next present an option pricing
analysis and a full decision tree analysis and then discuss
the consistency and separation results.

3.2. Naive Decision Tree Analysis

The fundamental idea of the discounted cash flow ap-
proach is that the value of a project is defined as “the
future expected cash flows discounted at a rate that re-
flects the riskiness of the cash flow” (Copeland et al.
1990, p. 75). Typically, these discount rates are defined
as "‘the equilibrium expected rate of return on securities
equivalent in risk to the project being valued” (Myers
1984, p. 126). For example, suppose that the nth se-
curity is judged to be “equivalent in risk” to the project
being valued.® Then we can determine the appropriate
time-t discount rate 7(¢) by computing the expected rate
of return on the security (sometimes called the “market-
required rate of return’’), by solving

s (t) ]

S"(O)ZE[(Hr(t))’

for r(t). The discounted cash flow value of the project
¢, is then defined as

® Exactly what is meant by “‘equivalent in risk”’ will generally depend
on some assumed underlying model of the securities market. For ex-
ample in the capital asset pricing model, two securities are “equivalent
in risk” if they have the same beta. More generally, the equivalent
security might be a portfolio of securities rather than a single security.

MANAGEMENT SCIENCE/Vol. 41, No. 5, May 1995

L)
E[EO (1+ r(t))'] '

Note that, in general, the market-required rate of return
will vary with the project management strategy o (be-
cause the equivalent security may change) as well as
with time.

In our simple capital budgeting example, the end-of-
period values of the twin security are perfectly propor-
tional to the payoffs of the Invest Now alternative (they
are equal to 3 of the project payoffs); thus the Invest
Now alternative and twin security are precisely “equiv-
alent in risk.” We can determine the market-required
rate of return r for the twin security by solving

0.5($36) + 0.5($12)  $24
1+7r 14

$20 =

to obtain r = 20 percent. Using this 20 percent discount
rate in the decision tree of Figure 1, we can “roll back”
the tree to find an expected NPV of —$4.00.

What discount rate should we use for the Defer al-
ternative? Copeland et al. (1990, pp. 350-351) write:
“The problem with the decision-tree approach is that
we do not know the appropriate discount rate. The 20
percent rate derived from our NPV comparable is in-
appropriate, because the comparable security is not even
approximately correlated with the payouts from the
[Defer] option. But let us use it anyway just for the heck
of it.”” Using this 20 percent discount rate in the decision
tree of Figure 1, we find an expected NPV of $28.20.
Thus, if the cost of the one-year license is less than
$28.20, the naive analysis suggests that the optimal
strategy is to Defer and wait a year before deciding
whether to build the plant.

3.3. Option Pricing Analysis

In the option pricing approach, rather than searching
for one security that is ““equivalent in risk”” to the project
being valued, one seeks a portfolio of securities that
exactly replicates the project’s payoffs. The value of the
project is then given by the market value of this repli-
cating portfolio. Formally, if 8, is the replicating strategy
for a project ¢ (such a strategy will always exist if the
market is complete), the option-pricing value of the
project is defined as the current value of this trading
strategy plus any time-0 project cash flows: c(0)
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+ 8,(0)s(0). The fundamental assumption underlying
this approach is that the value of a nontraded project
is “the price the project would have if it were traded”
(Mason and Merton 1985, pp. 38-39)—if the project
had any price other than ¢(0) + 8,(0)s(0), there would
be an arbitrage opportunity.

We can easily construct replicating portfolios for the
alternatives in our example. The payoffs of the Invest
Now alternative can be replicated by purchasing exactly
5 shares of the twin security: in the good state, the value
of 5 shares of the twin security is 5 X $36 = $180 and,
in the bad state, the value of 5 shares of the twin security
is 5 X $12 = $60. Since the market price of the twin
security is $20, the value of the future payoffs of the
Invest Now alternative is 5 X $20 = $100. Subtracting
off the cost of investment, the option-pricing value of
the Invest Now alternative is $100 — $104 = —$4, as
in the naive decision tree analysis. For the Defer alter-
native, letting 8, and B, denote the number of shares
of the risk-free and twin securities purchased, we con-
struct a replicating portfolio by applying Equation (1)
and equating the payoffs of the project and the portfolio
in the good and bad states:

Good State:  5,($1.08) + 3;($36) = $67.68

Bad State:  B,($1.08) + 8,($12) = $0.00.

Solving these two equations gives 8, = —31.33 and 4,
= 2.82, so the replicating portfolio consists of borrowing
$31.33 and buying 2.82 shares of the twin security. The
current value of this portfolio and, hence, the option-
pricing value of the Defer alternative is given by
—$31.33 + 2.82($20) = $25.07, which is less than the
value ($28.20) given by the naive decision tree analysis.

Which value is right? The argument in favor of the
option-pricing method is compelling: if one could buy
a portfolio of securities that has the same payoffs as the
Defer alternative for $25.07, it would be foolish to pay
$28.20 for the license. So what is wrong with the naive
analysis? Copeland et al. (1990, p. 352) note that, be-
cause the naive decision tree analysis used a discount
rate based on a security that did not mimic the payoffs
from the Defer option, the naive decision tree analysis
was “‘comparing apples and oranges.” The correct dis-
count rate should be determined by computing the

800

market-required rate of return r for the replicating port-
folio (a truly equivalent security); this gives r = 35 per-
cent. Thus, with the risk-adjusted discount rate ap-
proach, we should have used a 35 percent discount rate
for the Defer alternative and a 20 percent rate for the
Invest Now alternative.®

As an alternative to using replicating trading strate-
gies, we can determine option pricing values using risk-

~ neutral probabilities. Just as the price of any security is

equal to its discounted expected future value, the value
of any project ¢ is equal to the expected NPV of its
future cash flows where, in both cases, expectations are
computed using the risk-neutral probabilities and cash
flows are discounted using the risk-free rate. More ex-
plicitly, the value of the project c is given by

()
where E, denotes expectation with respect to the unique
risk-neutral distribution satisfying Equation (2).

To apply the risk-neutral valuation procedure in the
example, we first use Equation (2) to determine the risk-
neutral probabilities and then use Equation (3) to de-
termine the value of the project. Letting = denote the
probability of the good state, Equation (2) becomes

7($36) + (1 — 7)($12) _
(1 + 0.08) = $20,

which implies = = 0.4. We then use these risk-neutral
probabilities in the decision tree shown in Figure 3 to
apply Equation (3): we first compute NPVs for all cash
flows using the 8 percent risk free rate and then “roll
back” the tree to compute expected values. This gives
expected values of —$4.00 and $25.07 for the Invest
Now and Defer alternatives, in exact agreement with
the values derived by explicitly constructing the repli-
cating portfolio.

3.4. Full Decision Tree Analysis
In the traditional decision analysis paradigm, rather than
using risk-adjusted discount rates or market-based risk-

© This result is true in general: given the replicating portfolio and its
value, we can solve for the correct discount rate. Of course, if we are
given the value of the replicating portfolio, we know the project’s
value and there is no point in determining the correct discount rate!

MANAGEMENT SCIENCE/Vol. 41, No. 5, May 1995



SMITH AND NAU
Option Pricing Theory and Decision Analysis

Figure 3 Risk-Neutral Decision Tree for the Simple Capital Budgeting
Example

Cash Flow NPV
Year One @8%

-104.00  180.00 62.67

-10400  60.00 -48.44

000  67.68 62.67

0.00 0.00 0.00

000 -52.32 -48.44

0.00 0.00 0.00

0.00 0.00 0.00

neutral probabilities, we use the firm'’s subjective prob-
abilities and capture time and risk preferences using its
utility function. Rather than defining the value of a
project as “‘the price the project would have if it were
traded,” value is typically defined subjectively in terms
of the firm’s breakeven buying price or breakeven selling
price (the latter is also called the certainty equivalent).
In general, the breakeven buying price and breakeven
selling prices are not equal (e.g., see Raiffa 1968, pp.
89-91) and the appropriate definition of value will de-
pend on whether the firm is buying or selling the project.

The key to reconciling the option pricing and decision
analysis approaches is to explicitly recognize market
opportunities to trade by including them in the decision
analysis model. To formalize this approach, suppose
the firm is considering a project c. If the firm undertakes
the project and invests in securities following trading
strategy 8,, its time-t cash flow is given by

X (8 8y) = c(t) + [By(t — 1) — B, (1)]s(2).

If the firm declines to invest in the project and follows
trading strategy 8, , its time-t cash flow is given by

Xy (8 8,) = [By (£ — 1) = B, (£)]s(¢).

The breakeven buying price is defined as the lump-
sum time-0 payment v, that makes the maximum ex-
pected utility with the project equal to the maximum
expected utility without the project:

mﬁax E[U(x,,(O; 'BP) — Uy, xp(l,' Bp), ceey xp(T; ﬁp))]

= max E[U(x; (0, 8,), x, (L 8,), ..., %, (T B,))]

MANAGEMENT SCIENCE/Vol. 41, No. 5, May 1995

where E denotes expectations taken with respect to the
firm'’s subjective probability distribution. The breakeven
selling price is defined analogously as the v, such that

max E[U(x,(0; B,), x,(1: B,), - .., %,(T; B,))]
= max E[U(x,(0;8,) + v,

X (L8), % (T 8]

To be certain that the breakeven buying and selling
prices are well-defined, we will assume that, for any
project ¢, each of these maxima are finite and are ob-
tained by some trading strategy.

A full decision tree for the simple capital budgeting
example is shown in Figure 4. Here, in addition to
choosing among the three alternatives, the firm may
buy or sell shares of the risk-free and twin securities.
Though our results hold for arbitrary utility functions,
to make the example concrete suppose the firm’s time
and risk preferences are captured by the utility function

U(xo, x1) = —exp(—2xo/200) — exp(—x; /220)

where x; and x; are the time-0 and time-1 net cash flows.
This utility function is strictly concave in (xo, x;), and
continuous and strictly increasing in x, and x;. In the
neighborhood of (%, x;) = (0, 0), the firm is indifferent
between $1.00 at time 0 and $1.10 at time 1, implying
a marginal time preference captured by a 10 percent
discount rate. The utilities and expected utilities shown
in Figure 4 were computed using this utility function
and assuming that the license to Defer may be obtained
at zero cost. Given these assumptions, the optimal
strategy is to Defer, borrow $34.24 and buy 0.90 shares
of the twin security. With other costs for the license,
we would need to redo the analysis and solve for a new
optimal strategy.

To determine the value of the Invest Now and Defer
alternatives, we first need to define what we mean by
value. In this example, given that the firm is considering
investing in the plant, the appropriate definition of value
would be the breakeven buying price—the price at
which the firm is indifferent between “buying” the
project and declining. Explicitly solving the problem of
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Figure 4 for varying buying prices, we find breakeven
buying prices of —$4.00 and $25.07 for the Invest Now
and Defer alternatives—exactly the values given by the
option pricing analysis.

3.5. Consistency and Separation

The preceding consistency result—that the values given
by the decision tree analysis are the same as those given
by the option pricing analysis—generalizes beyond the
specifics of the example. The intuition behind this result
is similar to the no-arbitrage argument underlying the
definition of value in the option pricing approach. If
the market is complete, one can construct a portfolio
whose payoffs exactly replicate the payoffs of the proj-
ect. If the project costs more than this portfolio, then it
is obviously unattractive: the firm can obtain the same
payoffs more cheaply by buying the replicating port-
folio. If the project costs less than this portfolio, then it
is obviously attractive: the firm can do the project and
sell the replicating portfolio and thereby lock in a certain
profit. Thus the breakeven buying price must be equal
to the value of the replicating portfolio. A similar ar-
gument shows that the breakeven selling price must
also be equal to the value of the replicating portfolio.
We formalize this result as follows.

CONSISTENCY THEOREM ( COMPLETE MARKETS).  If the
securities market is complete, then the firm’s breakeven

Full Decision Tree for the Simple Capital Budgeting Example

‘EU: -1.999’

Figure 4

Buy Shares of
Risk-freeSec.

Bo* = -80.24

[~} Risk-freeSec. Twin Security

Buy Shares of Buy Shares of
Bo* =-34.24 Br*=0.90

Buy Shares of

Risk-freeSec. ?&{nsgggﬁgg;f s
Bo* =-78.26 *=372 \0
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Buy Shares of G
Twin Security ¢~
Br=-128 X0

buying and selling prices for any project are both equal to
the option-pricing value.

Furthermore, given a project with some managerial
flexibility, if the firm chooses a project management
strategy to maximize the project’s value, the option
pricing and decision analysis approaches must also give
the same optimal project management strategies. In this
sense, the two approaches are consistent.

On the other hand, if we look at the “inputs’” and
“outputs”” of the two analyses, we see that the ap-
proaches are quite different. Both methods require the
firm to specify state-contingent cash flows for the project
and state-contingent values for the securities for all
times, all possible states of the world, and all project
management strategies under consideration. While this
is all that is required in the option pricing approach, the
decision analysis approach also requires the firm to
specify probabilities and a utility function describing its
preferences for cash flows over time. In return for these
additional inputs, we get an additional output, the op-
timal strategy for investing in securities. If the firm is
not particularly interested in this additional output, then
clearly option pricing methods provide a simpler and
more direct way to compute the project’s value and de-
termine the optimal project management strategy.

Even if the firm is interested in computing the optimal
securities investment as well as the project value and

Project Securities

Cash Flows Cash Flows .
Utility
-104.00 180.00 10590 -132.85 -1.798
-104.00 60.00 10590 -102.06 -2.201
= _Invest 000  67.68 1630 469 -1673
0.00 0.00 1630 469  -1.943
0.00 -52.32 16.30 -26.22 -2.351
0.00 0.00 16.30 -26.22  -2.048
000  0.00 389 4935 -1.780
Bad 0.00 0.00 389 -39.90 -2.180
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management strategy, the options analysis suggests a
useful decomposition of this grand problem into two
simpler subproblems: the investment problem and the
financing problem. In the investment problem, we use
option pricing methods to determine the project value
v*, the optimal project management strategy o* and the
replicating trading strategy 87. In the financing problem,
we ignore the project cash flows and determine the
firm’s optimal securities investment B}k given that its
initial wealth is increased by v*. The optimal “grand”
securities investment, taking into account the project
cash flows, is then given by 8} = 8; — 8;. In doing the
project and selling the replicating portfolio, the firm
perfectly hedges the project’s risk and reduces its net
effect on cash flows to a lump-sum time-0 receipt of v*.
The cash flows generated by g} = B}k — BF are thus
exactly the cash flows in the financing problem.

This separation result can be viewed as an extension
of Fisher’s separation theorem to complete markets un-
der uncertainty and can be stated as follows (Fisher
1930; see Hirshleifer 1970 for a discussion of the ex-
tension to complete markets under uncertainty).

SEPARATION THEOREM (COMPLETE MARKETS).
securities market is complete, given a project c,, let

I

t=0

If the

Ca(t)

v* = max E —_—
(1 + Tf)'

«

] ,  (Investment Problem)

let o denote a maximizing project management strategy,
and let B} be a replicating trading strategy for c.. Let

Bf denote a trading strategy that maximizes,

max E[U(x(0; B) + v*, (1 B;), ..., x(T; Br))]
f

(Financing Problem)

Figure 5 Investment Problem for the Simple Capital Budgeting Example

U -1.861

\o\ Buy Shares of [ Buy Shares of
Rlsk-ﬁ'eeSec Twin Security
=-65.57 f* =372
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where

xp(t; Br) = [Be(t — 1) — By(t)]s(t).

Then o* and B} = B — B solve
mf;x E[U(x,(0; a0, By), (1, a0, By), ..., (T 0, By))]
Y, g

(Grand Problem)
where

X (t; a, By) = co(t) + [By(t — 1) — By(£)]s(1).

In the simple capital budgeting example, the invest-
ment problem is depicted in Figure 3; the optimal strat-
egy is to Defer and has a value of $25.07. The replicating
trading strategy for the Defer alternative consists of
borrowing $31.33 and buying 2.82 shares of the twin
security. The financing problem is shown in Figure 5;
here we see that the optimal financing strategy is to buy
3.72 shares of the twin security and borrow $82.76 dol-
lars. Subtracting off the replicating portfolio to find the
solution to the grand decision problem, we have an op-
timal grand strategy of buying 0.90 (=3.72 — 2.82)
shares of the twin security and borrowing $34.24
(=$65.57 — $31.33). These are exactly the amounts
borrowed and shares purchased in the solution to the
grand problem shown in Figure 4.

The same separation principle applies when valuing
several ““nonoverlapping” projects. (Two projects are
nonoverlapping if the choice of strategy for one project
does not affect the other’s available strategies or state-
contingent payoffs; overlapping projects need to be an-
alyzed as a single project.) One can solve investment
problems for several different projects and then sum
their values and solve a single financing problem. The
investment problems may be solved by one group
(Capital Budgeting) and the financing problem by an-
other group (Treasury); coordination requires only that

Project Securities

Cash Flows Cash Flows
Current Year One Current Year One Utility
25.07 0.00 -8.76 62.99 -1.673
25.07 0.00 -8.76 -26.22  -2.048
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Capital Budgeting tell Treasury the aggregate NPV. The
optimal grand securities investment is then given by the
solution to the financing problem less the sum of the
project replicating portfolios.

4. Incomplete Markets: An
Expanded Capital Budgeting

Problem

The consistency and separation results of the previous
section depend critically on the assumption that the
market is complete in that every risk can be perfectly
hedged by trading securities. While this assumption may
be quite reasonable when valuing options on stocks or
other derivative securities, most “real” risky projects
can at best be partially hedged by trading securities. In
this section, we describe how the results of the previous
section generalize to the case where markets are incom-
plete. We illustrate the incomplete markets case using
an expanded version of the simple capital budgeting
problem. Again, we consider a naive decision tree anal-
ysis, an option pricing analysis, and a full decision tree
analysis.

4.1. Naive Decision Tree Analysis

A decision tree for the expanded capital budgeting
problem is shown in Figure 6. Here, in addition to being
uncertain about the level of demand, the firm is uncer-
tain about the efficiency of the plant being constructed.
Suppose the plant can be either “efficient” or “ineffi-
cient” and that the true efficiency is not revealed until
after the plant is built. If demand is good, there is a .50
probability that the plant will be efficient; if demand is
bad, there is a .75 probability that the plant will be
efficient. The payoffs in these cases are shown in Figure
6. (These values and probabilities were selected so the
expected payoffs for each level of demand are the same
as in the original problem.) As before, we assume the
firm can borrow and lend as well as buy and sell shares
of the “twin security”” whose payoffs are tied to the
level of demand, but we assume that there is no such
security for plant efficiency.

Again, “the problem with the [naive] decision-tree
approach is that we do not know the appropriate dis-
count rate’”” (Copeland et al. 1990, pp. 350-351). One
might argue that since the plant’s efficiency risk is firm-
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Figure 6 Naive Decision Tree for the Expanded Capital Budgeting

Example

Project
Cash Flows Net
Year One NPV

Effient 10400 19000 5433

Invest NoL> 3 jent -10400 17000 37.67 { piooun
70.00 -45.67 o 20%
3000 -79.00
7768 57.54
5768 4373
000 000 ( piscount
a2xn a3 ( 235%
8232 6098
000 000

0.00 0.00 0.00

specific, it should not affect the risk-adjusted discount
rate. Thus, suppose we use a 20 percent risk-adjusted
discount rate for the Invest Now alternative and, having
learned from our previous mistake, use a 35 percent
discount rate for the Defer alternative. As shown in
Figure 6, this gives values of —$4.00, $25.07 and $0 for
the Invest Now, Defer and Decline alternatives, the
same as before.

4.2. Option Pricing Analysis
How can we use option pricing methods in this ex-
panded problem? Without a market equivalent for the
efficiency uncertainty, we cannot construct a perfect
replicating trading strategy or identify a unique risk-
neutral probability distribution and thus we cannot de-
termine a unique option-pricing value for the project.”
We can, however, extend the basic ideas underlying the
option pricing analysis to determine bounds on the
project’s value.

To compute these bounds, we introduce dominating
and dominated trading strategies as an extension of our
earlier notion of replicating trading strategies. Given a

7 We also have some semantic problems defining exactly what is meant
by the value of a non-traded project. Earlier the option-pricing value
of a project was defined as the price the project would have if it were
traded in an arbitrage-free market and was computed from the current
prices of traded securities. This definition does not work well in general
because the introduction of the project into the market may create
new investment opportunities and change the prices of the traded
securities.
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project ¢, a trading strategy 8 dominates the project if
the future cash flows generated by 8 are always greater
than or equal to those of the project; i.e., [B(+ — 1)
— B(t)]s(t) = c(t) for all t > 0 in all possible states of
the world. A trading strategy is dominated by the project
if the future cash flows generated by the trading strategy
are always less than or equal to those of the project. If
the project is traded in a market that does not allow
arbitrage, its current value must be less than or equal
to the current market value of every dominating trading
strategy and greater than or equal to the current market
value of every dominated trading strategy. Thus the
option pricing approach gives upper and lower bounds,
v and v, on the project’s value:

v =c(0)+ m;n{ﬁ(O)s(O) ([B8(t = 1) = B(1)]s(t)

=c(t)forallt >0},
v =c(0)+ m;ix{ﬁ(O)s(O) ([B(t — 1) — B(t)]s(t)

<c(t)forallt>0}.

In the special case where there is a replicating trading
strategy (for example, when markets are complete),
these bounds collapse to determine a unique project
value.

Alternatively, rather than considering dominating and
dominated portfolios, we compute bounds by consid-
ering the set of risk-neutral distributions that are con-
sistent with market information. In this approach, the
option-pricing bounds are given by

E,,[é ——Cg)—‘] and

6:
i e S Y
T
v = inf E,[z 1—‘:(—”——]
€1l o (1 +7¢)

where II denotes the set of risk-neutral distributions
satisfying Equation (2). (See Harrison and Kreps 1979
for proof and discussion.)

The usefulness of these bounds depends on how
much of the project risk can be hedged by trading se-
curities. In our expanded capital budgeting example,
we can determine unique risk-neutral probabilities for
the level of demand (.4 for the good state and .6 for
the bad state, as before) but cannot place any bounds
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on the risk-neutral probabilities for the plant’s efficiency.
In this case, the upper bounds are given by assuming
the plant is certainly efficient and the lower bounds are
given by assuming the plant is certainly inefficient. For
the Invest Now alternative, the upper bound is $5.26
(=0.4(%$190)/1.08 + 0.6($70) /1.08 — $104) and the
lower bound is —$24.37 (=0.4($170) /1.08 + 0.6($30) /
1.08 — $104); thus the Decline alternative is no longer
necessarily preferred to the Invest Now alternative.
Similarly, the upper and lower bounds for the Defer
alternative are $28.77 and $21.36. If the license to defer
costs less than $16.10 (=$21.36 — $5.26), the optimal
strategy would be to Defer. But if the license costs $25,
the optimal strategy is unclear and all three strategies
are potentially optimal.

4.3. Full Decision Tree Analysis

The full analysis of this expanded capital budgeting
problem is analogous to the full analysis of the original
version and is shown in Figure 7. (We use the same
utility function as before.) If the license were free, the
optimal strategy would be to Defer, buy .91 shares of
the twin security, and borrow $34.38. The breakeven
buying prices are —$4.47 and $24.98 for the Invest Now
and the Defer alternatives, respectively. These values
are slightly less than the previous values (—$4.00 and
$25.07) reflecting the additional risk premium for the
efficiency uncertainty. The optimal securities invest-
ments are similarly slightly changed.

Maintaining our previous definitions of breakeven
buying and selling prices, straightforward arbitrage ar-
guments lead to the following generalization of the
consistency theorem for complete markets.

CONSISTENCY THEOREM (INCOMPLETE MARKETS).
The firm’s breakeven buying and selling prices for any
project may differ, but both lie between the bounds given
by the option pricing analysis.

Thus we see that when option pricing methods give
a unique project value and optimal strategy (for ex-
ample, when markets are complete), a full decision tree
analysis will give the same value and optimal strategy.
When option pricing methods give bounds on the proj-
ect value and identify a class of potentially optimal
strategies, a full decision tree analysis will give a value
that lies between these bounds and an optimal strategy
in this set.
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Figure 7

Full Decision Tree for the Expanded Capital Budgeting Example

Project Securities
Cash Flows Cash Flows »
. Year One Utility
el 10400 19000 10567 -132.88  -1763
(D) G g A 000 s s L
Buy Shares of g Buy Shares of S iept -104.00 170.00 10567 -132.88 -1834
Invest NOW=R Risk-Free S Twin Security ({° o
*=-79.61 Bi* =130 \5 Effici 10400 7000 10567 -101.61 -2.146
Bad 75
2 -10400 3000 10567 -101.61 -2.376
000 7768 1626 451  -1.639
€U -1361) 000 5768 1626 451 -1707
Buy Shares of _K Buy Shares of 0.00 0.00 1626 451  -1.943
Risk-Free Sec. Twin Security
* = _34.38 B1* =091 0.00 -42.32 16.26 2626  -2.288
0.00 -8232 1626 2626 -2.560
EU: -1.980 oo 0.00 0.00 1626 2626  -2.049
Decline Buy Shares of _ {Buy Sharesof /= 000 000 389 4935 -1.780
Risk-Free Sec.[~} Twin Security Ci ’ p
=-78.26 * =372 0.00 0.00 3.89 -39.90 -2.180

When markets are incomplete, it is impossible to state
a separation theorem of the form given for complete
markets. Because we can no longer replicate project cash
flows by trading securities, the investment and financing
problems must generally be solved jointly as the firm's
preferences for project cash flows will be linked to the
performance of its securities investments.

5. Partially Complete Markets with

Restricted Preferences
If we are willing to restrict the firm’s preferences and
assume the market is “partially complete,” we can de-
velop a new procedure for valuing projects that inte-
grates decision analysis and option pricing methods and
satisfies consistency and separation properties analogous
to those obtained with complete markets. We first de-
scribe the restrictions on preferences and markets and
then describe the integrated valuation procedure and
our consistency and separation results.

5.1. Preference Restrictions
We will make two assumptions about the firm’s pref-
erences:

1) Additive Independence: The firm’s preferences
for risky cash flow streams (x(0), x(1), ..., x(T)) de-
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pend only the marginal distributions for period cash
flows and not on the joint distribution.

2) A-Property: If the firm is indifferent between re-
ceiving a time-t gamble f(¢) and a certain amount
CE([%(t)], then for any constant A, the firm is also in-
different between x(¢) + A and CE(X(t)] + A.

The additive independence condition implies that the
firm’s utility function can be written as

U(x(0), x(1), ..., x(T)) = 3 kuy(x(t))

t=0

where 1, is a utility function for time-t cash flows alone
(see Keeney and Raiffa 1976, p. 295 or Fishburn 1970,
p. 149). The A-property then implies the preferences
for time-t cash flows exhibit constant absolute risk
aversion, the u, can be written

u(x(t)) = —exp(=x(t)/p1),

and the certainty equivalent of a time-t gamble can be
written

CE[x(#)] = —pr In(E[exp(—%(¢)/ p)]-

By our assumptions that preferences must be strictly
increasing and concave, the utility weights k; and period
risk tolerances p, must be positive. The utility function
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that we used in our example is of this form and has
utility weights ko = k; = 1 and risk tolerances p, = $200
and p; = $220.

To demonstrate how we will use these preference
restrictions, suppose the firm is offered an “incremental
gamble” x(0) that involves only time-0 cash flows and
is resolved immediately. Given this incremental gamble
and a project ¢, the firm'’s problem is to choose a trading
strategy @, that solves

rr}?ax E[U(x,,(O, 6}7) + f(O), x},(l; Bp)/ ey xp(T; ﬁp))]

(4)

where

(45 By) = c(t) + [Bp(t — 1) = B,(£)]s(t).

Let 85 denote the optimal solution to (4) in the case
where £(0) = 0. The following proposition describes
how these incremental risks are valued and how the
firm spreads these risks over time.

PrROPOSITION 1. If the firm’s preferences satisfy ad-
ditive independence and the A-property, then, for any £(0),

a) the firm is indifferent between receiving the gamble
and a certain amount

ECE([#(0)] = —R, In(E[exp(—%(0)/R,)])  (5)
where
r
Iy
b) the optimal solution to (4) is B8} + B, where By(t)

= (Bro(t), 0,...,0)and
_ 5 _pEO)
Bl?O(t)_fz—l Ro(l +rf)T/ (6)

the optimal cash flows given by this trading strategy are
x,(t; B§)+I—§’—£(O). (7)
0

The first part of this result says that the incremental
gamble X(0) is valued as if the firm has an exponential
utility function with an effective risk tolerance R, equal
to the discounted sum of its period risk tolerances; the
amounts ECE[X(0)] are referred to as effective certainty
equivalents. This summing of risk tolerances can be in-
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terpreted as a result of risk-sharing: though the gamble
is resolved at time-0 and involves only time-0 cash
flows, the firm may share this risk with future periods
by adjusting its securities investment in response to the
outcome of the gamble. In the second part, we see that
the optimal adjustment involves only the risk-free se-
curity, and that, with this adjustment, each period bears
a share of ¥(0) in proportion to its discounted period
risk tolerance.®

The result of Proposition 1 will be key to understand-
ing our valuation procedure for partially complete mar-
kets. The part of a project’s payoff that cannot be hedged
by trading (its “'private’ risk) will be valued by com-
puting effective certainty equivalents and the optimal
trading strategy will include a rebalancing term, like 8,,
that shares the unhedgable risks across time.

5.2. Partially Complete Markets

To implement our procedure for valuing projects in in-
complete markets, we must refine the basic framework
introduced in §2 to distinguish between market uncer-
tainties and private uncertainties. Intuitively, market
uncertainties are those that can be perfectly hedged by
trading securities and private uncertainties are project-
specific uncertainties that cannot be hedged. In our ex-
ample, the level of demand is a market uncertainty and
the plant’s efficiency is a private uncertainty. In a more
realistic problem like valuing oil reserves, the spot price
for oil could be modeled as a market uncertainty and
reserve-specific uncertainties such as reservoir size,
drilling costs, etc. could be modeled as private uncer-
tainties.

To formalize the distinction between market and pri-
vate uncertainties, we assume that the state of the world
v can be written as a vector of market and private states
of the world, v = (y", ¥"), so the time-f state of in-
formation w; can be written as a vector of market and
private states of information w; = (w}', w}). We say that

8 This result is analogous to a result of Wilson’s (1968) “theory of
syndicates.”” Wilson shows that a syndicate whose members all have
exponential utilities and agree on probabilities will, as a group, behave
as if they have an exponential utility function with a risk tolerance
equal to the sum of the member’s risk tolerances and will share risks
in proportion to their risk tolerances. Here risks are shared across time
using the risk-free security and risk tolerances are discounted to reflect
interest earned on the risk-free security.
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the market is partially complete if the following condi-
tions are satisfied:

(1) security prices depend only on the market states
and thus can be written as a function of the market
state of information as s(t, w}');

(2) the market is complete with respect to market
uncertainties (i.e., the security price process s(t, w;")
“spans” the space of cash flows dependent only on
market states w}' as in the definition of completeness
in §2).

(3) private events convey no information about fu-
ture market events (i.e., given wj’;, the firm believes
that w}" and w/_; are independent events).

Conditions (1) and (2) imply that we can determine
unique risk-neutral probabilities for the market states
wt'. Note that while condition (3) says that private un-
certainties must be independent of future market events,
contemporaneous market and private uncertainties may

be dependent (as in the example).

5.3. Integrated Valuation Procedure

Given these restrictions on the firm’s preferences and
partial completeness of the market, we can integrate
decision analysis and option pricing methods into a new
procedure for valuing projects separately from the fi-
nancing problem. The basic idea is to decompose the
project cash flows into its market and private compo-
nents. We then use market information to value the
market risks and use subjective beliefs and preferences
to value the private risks. By substituting effective cer-
tainty equivalents for private risks, we reduce a problem
with incomplete markets to an equivalent one in which
markets are complete.

Our development of the integrated valuation proce-
dure parallels the development of the complete markets
procedures in §2. We begin by defining certainty-
equivalent replicating trading strategies that are like rep-
licating trading strategies in complete markets and
which match the project’s effective certainty equivalent
in each market state. Since the project ¢ generates no
cash flows after time T, the final replicating portfolio
B.(T, wr)is equal to O for all wr. For earlier times, given
B.(t, w;) for all w;, we find B,(t — 1, w;—1) by solving

Br(t - 1/ wt—-l)s(tl w;”)

= ECE{c(t, w) + B(t, w)s(t, /")), w 1] (8)
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where, as in Equation (5), the effective certainty equiv-
alent ECE —] is calculated using an exponential utility
function with an effective risk-tolerance R, that is the
NPV of the future period risk tolerances:

ECE([#(t)| @}, wi-1]
= —R, In(E[exp(—X(t)/R)|w!", wi—1]),

and

T

Pi
R=3 —t
! Z(1+r),_,

7=t

Like Equation (1), for each w;_; Equation (8) defines a
set of M equations in N + 1 unknowns where M is the
number of states w}" included in w}’,. Because of our
assumption about the completeness of the market with
respect to market uncertainties, for any project c, (8)
can be solved for B,(f — 1, w,—1).

As in complete markets, we define the value of a
project to be the current value of its certainty-equivalent
replicating trading strategy plus any time-0 project cash
flows: c(0) + 3,(0)s(0). Although we no longer have
an “objective”” no-arbitrage basis for this definition of
value (it depends on the firm’s beliefs and preferences
through the definition of the certainty-equivalent rep-
licating trading strategy), we will show that, as in the
case of complete markets, these values are equal to the
breakeven buying and selling prices given by a full de-
cision tree analysis.

We can illustrate this integrated procedure by finding
the certainty-equivalent replicating portfolio for the
Defer alternative in our extended capital budgeting ex-
ample. Since time-1 is the last period of the model, the
time-1 effective risk tolerance is $220. In the good state,
the time-1 certainty equivalent is

$67.45 = —$220 In(0.5 exp(—$77.68 /$220)
+ 0.5 exp(—$57.68 /$220))

and, in the bad state, the certainty equivalent is $0.00.
Letting B, and 8, denote the number of shares of the
risk-free and twin securities purchased, we construct a
certainty-equivalent replicating portfolio for the Defer
alternative by applying equation (8) and equating the
portfolio values and time-1 certainty equivalents in the
good and bad states:
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Good State:  (,($1.08) + 3,($36) = $67.45

Bo($1.08) + B:($12) = $0.00.

Solving these two equations gives 8, = —31.23 and £,
= 2.81, so the replicating portfolio consists of borrowing
$31.23 and buying 2.81 shares of the twin security. The
current market value of the certainty equivalent repli-
cating portfolio—and hence the value of the project—
is 2.81 ($20) — $31.23 = $24.98, exactly the breakeven
buying price we found in the full decision tree analysis
of the previous section.

Bad State:

5.4. Integrated Rollback Procedure

Before stating our consistency and separation results,
we first describe an integrated rollback procedure that
provides a straightforward and intuitive method for
computing projectvaluesandgeneralizestherisk-neutral
valuation procedure for complete markets. As illustrated
in Figure 8, this integrated rollback procedure uses risk-
neutral probabilities for market uncertainties and the
firm’s probabilities for private uncertainties.

To apply this procedure, first compute NPVs for all
endpoints using the risk-free rate. Then, as with the
usual rollback procedure, start at the right side of the
tree and work toward the left:

(1) upon encountering a node representing a private
uncertainty, replace the node with the certainty equiv-
alent given by using the firm’s probabilities and an ex-
ponential utility function with a risk tolerance equal to
the present value of the time-t effective risk-tolerance,
Ri/(1+1)5°

(2) upon encountering a node corresponding to a
market uncertainty, replace the node with the expected
value computed using the risk-neutral probabilities; and

(3) upon encountering a decision node, choose the
branch with the maximum value and replace the node
with this value.

The first case reduces incompleteness from the prob-
lem by replacing private risks with their effective cer-
tainty equivalents. The other two cases implement the
risk-neutral valuation procedure for complete markets.

° The formula for this is like the formula for ECE[%(#)|w]', w;-1] (see
Equation 8) except, because we have discounted cash flows to present
(time-0) values, we must similarly discount the time-t effective risk
tolerance R,.
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Figure 8 Integrated Decision Tree for the Expanded Capital Budgeting
Problem
Proi
Cashjl‘;lcttsws NPV
Year One @8%
-104.00 190.00  71.93
-104.00 170.00  53.41
7000  -39.19
3000 -76.22
7768 7193
57.68  53.41
0.00 0.00
4232 -39.19
8232 7622
0.00 0.00
0.00 0.00
Compute expected Compute certainty
values using risk- equivalents using firm's
neutral probablilities  probabilities and utilities

We can illustrate this procedure by computing the
value of the Invest Now alternative using the decision
tree of Figure 8. Rolling across the efficiency uncertainty,
we find certainty equivalents of

$62.46 = —$220/1.08
X In(0.5 exp(—$71.93 /($220 /1.08))
+ 0.5 exp(—$53.41 /($220/1.08))

for the good state and —$49.09 for the bad state; these
values are slightly less than the expected values of 62.67
and —$48.44. Rolling across the market uncertainty, we
find an expected certainty equivalent of —$4.47
(=0.4(%62.46) + 0.6(—$49.09)), exactly the same as
the breakeven buying price computed using the full de-
cision tree analysis. Similarly, applying the integrated
roll-back procedure with the Defer alternative, we find
a value of $24.98 as given by explicitly constructing the
certainty-equivalent replicating portfolio. A proof
showing that this result holds in general is given in the
appendix.

To better understand our integrated valuation pro-
cedure, it helps to consider the two extreme cases of
market completeness. If the securities market is com-
plete, then the firm'’s subjective probabilities do not ap-
pear anywhere in the tree, the firm’s risk tolerances are
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not used, and the integrated rollback procedure reduces
to the risk-neutral procedure used with complete mar-
kets. In the other extreme where the only security avail-
able is the risk-free security, the firm’s probabilities and
risk tolerances are used at every node. Even in this case,
we still discount all cash flows using the risk-free rate:
thus given these restrictions on preferences, the ability
to borrow and lend at the risk-free rate is sufficient to
“smooth” time preferences so that they can be captured
by NPVs computed using a single discount rate. Intu-
itively, the firm borrows and lends to bring its marginal
expected utilities for cash flows at different times into
equilibrium with the market’s risk-free rate so that in-
cremental cash flows are valued as if time preferences
were represented by NPVs computed using the risk-
free rate. Consequently, the only parameters of the
firm’s utility function used in the integrated valuation
procedure are the risk tolerances; we need not assess
the utility weights k; until we solve the financing
problem.?

5.5. Consistency and Separation

Having reduced a problem with incomplete markets to
one in which markets are complete, the consistency and
separation results for complete markets can now be
generalized. Maintaining our earlier definitions of
breakeven buying and selling prices, the consistency
theorem carries over directly.

CONSISTENCY THEOREM (PARTIALLY COMPLETE MAR-
KETS WITH RESTRICTED PREFERENCES). If the securities
market is partially complete and the firm’s preferences sat-
isfy additive independence and the A-property, then the
firm’s breakeven buying and selling prices for any project
are both equal to the value given by the integrated valuation
procedure.

The separation theorem also generalizes but with
some modifications. As in the complete markets case,
we solve the investment problem to determine the op-
timal project management strategy «*, its value v* and
its certainty-equivalent replicating trading strategy 87
and then solve the financing problem to determine an
optimal securities investment 8;. With complete mar-

19 Actually we do not need to assess the utility weights k; until we
determine the optimal position in the risk-free security, as the utility
weights do not affect the firm’s optimal investment in risky securities.
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kets, the optimal grand trading strategy 87, taking into
account both project and securities cash flows, is given
by 87 — B}: the project cash flows are perfectly hedged
by the replicating portfolio and the effect of the project
on cash flows is reduced to a lump-sum time-0 receipt
of the project’s value v*. With partially complete mar-
kets, the certainty-equivalent replicating portfolios do
not perfectly hedge project values and, if the project’s
value in some period exceeds (or falls short of) its cer-
tainty equivalent, the firm may want to rebalance its
securities investments to shift some of this windfall (or
shortfall) to future time periods.

If the firm'’s preferences satisfy the preference restric-
tions discussed in §5.1, this portfolio rebalancing takes
a particularly simple form and involves only an ad-
justment in the holdings of the risk-free security. For a
project ¢ with certainty-equivalent replicating trading
strategy B,, let x,(t) denote the “windfalls” corre-
sponding to the difference between the value of the
project at time ¢, c(t) + B8,(t)s(t), and the time-t value
of the replicating portfolio constructed in the previous
period, B,(t — 1)s(t):

Xo(t) = c(t) + [B.(t) — B,(t — 1)]s(t).

As was the case with incremental risks in §5.1, when
these cash flow windfalls are allocated optimally, each
period bears a share of the risk in proportion to its dis-
counted risk tolerance.' To achieve this sharing of
windfalls across periods, at time ¢, the firm must pur-
chase an additional

bt - 5 )5 500

T=t+1 (1 + r/)T RT

7=1

shares of the risk-free security (compare with equation
6), giving a rebalancing trading strategy B,(t) = (Bro(t),
0, ..., 0). Like the replicating trading strategy, the re-
balancing trading strategy does not depend on the firm’s
probabilities for market states and may be determined
independently of the solution to the financing problem.

With these definitions, we can state our separation
for partially complete markets as follows.

! This allocation of windfalls is analogous to the sharing of incremental
risks in Equation (7) and is displayed more explicitly in Lemma 1 in
the appendix; see also the discussion following Lemma 3.
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Figure 9

<§U: -1.861 '
\a, _{Buy Shares of
Risk-Free Sec.

Bo* = -65.61

Buy Shares of 5
Twin Security
B1*=3.72

SEPARATION THEOREM (PARTIALLY COMPLETE MAR-
KETS WITH RESTRICTED PREFERENCES). Suppose the se-
curities market is partially complete and the firm’s pref-
erences satisfy additive independence and A-property.
Given a project c,, let o* and v* denote a maximizing
project management strategy and maximizing value as given
by the integrated valuation procedure (i.e., a solution to
the investment problem), let B* be a certainty - equivalent
replicating trading strategy for c,., and let B} be the cor-
responding rebalancing trading strategy. Let B} denote a
trading strategy that solves,'

max E[U(x(0; B7) + v*, x(1; Bs), - . ., x:(T; B))]
f

(Financing Problem)

where
x:(t; Br) = [Br(t — 1) — B;(¢)]s(¢).
Then o* and B} = B — B} + B} solve

max E[U(%,(0; a, B), %(1; o, B), ..., %(T; o, B;))]

a,Bg

(Grand Problem)

where
Xo(t; a, Bg) = calt) + [Be(t — 1) — Bg(t)]s(t).

There are two key differences between this separation
theorem and the complete markets result: (1) we solve
the investment problem using our integrated procedure
rather than option pricing methods and (2) the optimal

12 Note that because future securities prices are assumed to indepen-
dent of the private states, the firm need not consider private states
when solving the investment problem: there will be an optimal 3
that is independent of the private states.
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Investment Problem for the Expanded Capital Budgeting Example

Project Securities

Cash Flows Cash Flows
Current Year One Cument Year Ope Utility
24.98 0.00 -8.72 62.94 -1.673
Bad _ 5408 000 872 -2626 -2.045

grand trading strategy is given by 8 — 8} + B8} rather
than 8 }k — B7. In the special case of complete markets,
this result reduces to the complete markets result: our
integrated procedure reduces to the option pricing pro-
cedure and, as project risks are perfectly hedged, there
are no windfalls and there is no need for rebalancing
(i.e., B = 0).

We can illustrate the separation theorem using the
expanded capital budgeting example: the investment
problem is depicted in Figure 8, the financing problem
in Figure 9, and the grand problem in Figure 7. Notice
that, as required by the theorem, the securities invest-
ment given as a solution to the grand problem (buy
0.91 shares of the twin security and borrow $34.38) is
exactly the difference between the solution to the fi-
nancing problem (buy 3.72 shares and borrow $65.61)
and the certainty-equivalent replicating portfolio (buy
2.81 shares and borrow $31.23); the rebalancing strat-
egy is zero in this case as all of the private uncertainties
are resolved in the final time period and Rr = 0.

Finally, we note that our preference restrictions are
necessary for separation to hold with incomplete mar-
kets. If the market is incomplete, then for some projects,
the firm will wind up holding some “‘residual” risk. In
order for separation to hold, the value of this residual
risk must be independent of the outcomes of securities
investments and the firm’s probabilities for market
states. Additive independence is required to ensure that
the value of a residual risk in one period is independent
of the securities payoffs and probabilities in other pe-
riods (see Keeney and Raiffa 1976, p. 242). The A-
property (i.e., constant absolute risk aversion) is re-
quired to ensure that the value of a time-t residual risk,
computed conditional on the time-t market state, does
not vary with changes of wealth due to securities payoffs
in the same period.
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5.6. Corporate Applications

Throughout this paper, we have attributed beliefs and
preferences to the firm as if it were privately owned
and operated by a single owner /manager, or equiva-
lently, as if its owners /managers were of one mind.
While this is consistent with the decision analysis ap-
proach in corporate settings, finance theorists and prac-
titioners view this personification of the firm skeptically
(Jensen and Meckling 1976) and argue that a firm
should make decisions consistent with the beliefs and
preferences of its diverse owners.

When markets are complete, investment decisions can
be made solely on the basis of market information and
all owners, regardless of their beliefs and preferences,
will agree on appropriate project values and manage-
ment strategies. The financing decisions require the use
of subjective beliefs and preferences, but since (regard-
less of market completeness) owners can replicate or
negate these financing decisions through their own se-
curities transactions, the firm’s financing decisions are
“irrelevant” (in the sense of Modigliani and Miller 1958)
from the owners’ perspective. The group’s grand de-
cision problem can be decomposed along the lines of
the separation result: the firm can make investment de-
cisions and manage its risks by shorting the appropriate
replicating portfolio (and subsequently rebalancing, if
necessary). The owners separately make their own fi-
nancing decisions."?

When markets are incomplete, investment decisions
require the use of subjective preferences and beliefs. In
our framework, we ask owners and managers to agree
upon risk tolerances and a mechanism for assigning
probabilities to private uncertainties. We can appeal to
Wilson'’s “’theory of syndicates” for some results along
these lines (Wilson 1968). Suppose the owners’ pref-
erences satisfy additive independence and the A-
property. Then to achieve Pareto optimality, the owners
should place bets among themselves on the private
states of the world (essentially completing the market
among themselves). After placing these bets, they

13 Technically either the firm or its owners could manage project risks
as both have equal access to the securities market. But since project
risk management requires intimate knowledge of project cash flows,
it seems more natural for the firm to do it. If the firm shorts the
replicating portfolio, the owners only need to know the value of the
project to solve their financing problems.
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should own shares of the firm in proportion to their
risk tolerances and the firm’s risk tolerance should be
equal to the sum of the owners’ risk tolerances. If the
owners do not agree upon probabilities (e.g., through
delegation to an expert manager), then the firm should
“sample’” the owners’ probabilities in proportion to their
shares (see Wilson for a precise definition of “sam-
pling”’). In this case, the firm’s investment decisions are
unanimously supported by every owner.

For a large publicly owned firm, this sampling of
owners’ beliefs and preferences is impractical. Taking
Wilson’s argument to the limit and summing risk tol-
erances over all market participants, one could argue
that a large publicly owned firm should be essentially
risk neutral. Insofar as beliefs are concerned, most
investors have little information about the opportunities
facing the company and, if sampled, would defer to the
manager’s judgment. In practice, we believe that pub-
licly owned firms operate rather autonomously with
managers using their own judgment and, to some extent,
their own preferences. Investors choose companies in
the same way they choose mutual funds: they look for
managers that they believe have good judgment and
risk preferences consistent with their own. If managers
exhibit poor judgment or are excessively risk-averse,
the company’s stock may sell at a discount and be a
target for takeover by a group of investors who fancy
themselves more sagacious or who are less risk averse.

6. Conclusions

We have two fundamental conclusions. Our first con-
clusion, highlighted by the consistency theorems for
complete and incomplete markets, is that option pricing
and decision analysis methods are fully compatible. The
problems attributed to decision analysis by Copeland
et al. (1990) and others are the result of using risk-
adjusted discount rates to capture time and risk pref-
erences as well as market opportunities to borrow and
trade. If time and risk preferences are captured using a
utility function and the market opportunities are ex-
plicitly modeled, decision analysis and option pricing
analysis will give consistent results. When both methods
give unique values and strategies, they give the same
values and strategies. When option pricing methods give
bounds on the project value and identify a set of po-
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tentially optimal strategies, a correct decision tree anal-
ysis will give a value that lies between these bounds
and an optimal strategy that is a member of this poten-
tially optimal set.

Our second conclusion, highlighted by the separation
theorems, is that decision analysis and option pricing
methods can be profitably integrated. This integration
allows us to extend the option pricing methods to in-
complete markets and simplify the analysis of projects
that can be partially hedged by trading securities. In
practice, we often analyze projects without explicitly
modeling opportunities for borrowing or trading secu-
rities. Our results suggest that when doing this, we
should: (1) use risk-neutral probabilities rather than
subjective probabilities for risks that can be hedged by
trading securities; (2) compute NPVs using the risk-
free rate; (3) use exponential utility functions to capture
risk preferences; and (4), when “'rolling back” a decision
tree to compute project values and strategies, assign risk
premiums only to private risks. Finally, in doing these
project analyses, it is important to remember that the
investment problem is only part of the grand problem
and that, if the firm undertakes a project, it should
manage risks by shorting the appropriate replicating
portfolio and subsequently rebalancing if necessary.'*

* We are grateful for the helpful comments provided by Doug Foster,
Pete Kyle, Kevin McCardle, Lenos Trigeorgis, S. Viswanathan, Bob
Winkler, three anonymous referees, and the area editor, Bob Clemen.
We are also grateful for the financial support of the Business Associates
Fund and the Hanes Corporation Fund of the Fuqua School of Busi-
ness.

Appendix: Proofs

Proofs for §3: Complete Markets

CONSISTENCY THEOREM. We focus on proving that the breakeven
selling price is equal to the value given by the option pricing analysis;
a similar argument holds for the breakeven buying price. Let 8, be a
replicating trading strategy for the project c and let 8, be a trading
strategy for the ""without project”” maximization problem (the one on
the right side of the equation defining breakeven selling price). Taking
B, = B, — B,, the cash flows associated with the “with project”” max-
imization problem become

Xp(t; By) = [By (t — 1) = B, ()]s(¢)
= [8:(t = 1) = B.(H)]s(t) + c(t).

For all t+ > 0, the last two terms cancel because of the definition of
the replicating trading strategy, so x,(t; 8,) = x, (t; 8,). Fort = 0,
we find
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%,(0; B,) = x,(0; B;) + B:(0)s(0) + c(0).

Therefore with v, = 8,(0)s(0) + ¢(0) and 8, = 8, — B,, the "with
project” problem is identical to the “without project” problem and,
thus, the breakeven selling price must be equal to 8,(0)s(0) + ¢(0),
the value given by the option pricing analysis. O

SEPARATION THEOREM. The fact that the same project management
strategy «* solves the grand and investment problems follows from
the consistency theorem for complete markets. Fixing « = o* and
taking 8, = 8; — B}, the cash flows associated with the grand problem
become

X(t; %, B) = [B(t — 1) = By()]s(t)
—[BE(t = 1) = BE(D]S(t) + can(t).

For all t+ > 0, the last two terms cancel because of the definition of
the replicating trading strategy, so x,(t; o*, B) = x;(¢; B;). For t = 0,
we find x,(0; o*, Bg) = x7(0; Bf) + v*. Thus, the grand problem reduces
to the financing problem and 8} = 8/ — 8. O

Proof for §4: Incomplete Markets

CONSISTENCY THEOREM. We focus on the breakeven buying price
and show that it lies between the bounds given by the option pricing
analysis; a similar argument holds for breakeven selling prices. Suppose
the price of the project were greater than the upper bound given by
the options analysis, then there exists a trading strategy that dominates
the project and costs less than the project. In this case, the project is
obviously unattractive as the company can do better investing in se-
curities. Similarly, if the project’s price is less than the lower bound,
then the project is obviously attractive as the company can do the
project and sell a dominated portfolio that costs more than the project
and lock in a certain profit. O

Proofs for §5: Partially Complete Markets with Restricted
Preferences

ProprosITION 1. Part (a) of the proposition follows from the con-
sistency theorem (established below) and part (b) follows from the
separation theorem. As Proposition 1 is stated for expository reasons
and is not used elsewhere, we will not explicitly prove it here.

Integrated Rollback Procedure. We need to prove that the value
given by the integrated rollback procedure is equal to ¢(0) + 8,(0)s(0)
where @, is project c’s certainty-equivalent replicating portfolio. Let
v(t) denote the value given by the starting the integrated rollback
procedure at time t in state of information w, (including only cash
flows received in time t and after). We will prove, using backward
induction, that

v(t) = c(t) + B(t)s(t). (A1)

At time t = T, since the project yields a certain cash flow ¢(T) and
generates no future cash flows, since 8,(T) = 0, (A1) holds with v(T)
= ¢(T). Now suppose that (A1) holds for some time t and all possible
time-t states w;; to complete the inductive proof we need to show that
(A1) holds for t — 1 as well. We show this by establishing the following
sequence of equalities:
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c(t— 1)+ B,(t— 1)s(t — 1)

1
=c(t—-1)+ En[m B.(t — 1)S(f)lwf—1]

c(t = 1)+EW[ECE{ (C(f)+ﬁy(f)5(f))|w7',wf-1]

.

.|

1
(T+7)

c(t—1)+ E,[ECE‘[ v(t)|wf, wf-l}

1
(1+7y)

=v(t—1).

The first equality follows from our assumptions that securities prices
depend only on market states (condition 1) and that the securities
market “'spans” these marketed states (condition 2), implying the
existence of unique risk-neutral probabilities for the market states
w]" conditional on w,;. The second equality follows from our definition
of the certainty-equivalent replicating strategy. The third equality fol-
lows from our induction hypothesis and the fourth equality defines
our integrated rollback procedure; we discount cash flows at the risk-
free rate, compute effective certainty equivalents over the private un-
certainties and use risk-neutral probabilities to take expectations over
the market uncertainties. O

We prove the consistency and separation theorems after establishing
a series of lemmas. In the statements of the lemmas and their proofs,
we consider a fixed project ¢ with value v and replicating and rebal-
ancing strategies 8, and B8,. The windfalls x,, are then defined as in
§5.5. For any §;and 8,, we define the grand and financing cash flows
as in the grand and financing problem in the separation theorem:

(1 B) = c(t) + [By(t — 1) — By(1)]s(t), and
x(t; ) = [B(t = 1) = B(1)]s (). (A2)

(Note that here the project strategy « is fixed and we suppress « in
the definition of x,.)

LeMMA 1. For any B;and B, = B; — B, + By,
£ X(7)
xg(£; Bg) = x(t; By) + pr 2 R fort >0 and (A3a)
=1 T
x,(t; Bg) = x(t; ) + v fort =0. (A3b)

PROOF. Substituting 8, = 8; — 8, + B, into the definition of x,(t;
ﬂg), we have

Xg(t; Bg) = c(t) + (By(t — 1) — By(t))s(t)
= (Bt = 1) = B,())s(t) + (Be(t — 1) = By(t))s(t).
(A4)

Equation (A3b) then follows from noting 8,(0) = 0 and v = ¢(0)
+ 8,(0)s(0). To establish (A3a), note that
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[Bo(t — 1) = Bu()]s(t)

_ Pt ! Xow(T) _ X (t) z Pr t
_((1+’f)'z R, R, f=:(1+'/)7)(1+r/)

r=1
L Xu(T)

=02 R c(t) +(B,(t — 1) = B,(1))s(t).
=1 T

The first equality follows the definition of the rebalancing portfolio
and cancelling common terms. The second equality follows from the
definitions of R, and x,(t). Substituting this expression back into
equation (A4) yields equation (A3a). [

LEMMA 2. For any Brand B, = B; — B, + By,
Xw f m
CE'[M_I—{(TJ wl', wh} =0.

(Note that p,(x,(t)/R;) is the share of x,(t) that is absorbed in
period t.)

PROOF. Using the definition of CE,, this result is equivalent to

E[exp(— x“}:t))

Using the definition of x,,, we can rewrite the left side of (A5) as
A(t—1 t t) + B,(t)s(t
ocp{ 4112 ))E[exp(_ JGREGLO) S wf_l]

R, R,
which, by the definition of the replicating portfolio, is equal to one. O

wT’,w’,’-l]= 1. (AS5)

LEMMA 3. For any B;and B, = B; — B, + By,

CE|[%(t; B;)] = CE[x(t; 8;)] fort> 0.

PROOF. Fort > 0, we have

CE{x,(t; 8))] = CE,[X,(t; Bt m s wa(,)]

7=1

t—1
- CEf[x,u; B)+ o > %)

=1

m 4
Wy, wt-l]]

t—1
- CE,[x,(t; B+ o > %} :

=1

Xu(t)

t

+ CE:[ Pt

(A6)

The first equality follows from equation (A3a) of Lemma 1. The second
equality is derived by computing certainty equivalents iteratively
(conditioning on the time-t market state w{’ and the time-(t — 1)
market state w}_, and taking certainty equivalents over the time t
private state w} ) and then applying the A-property, noting that 8;and
x/(t; By) are independent of all private states, and, for 7 < t, x,(7) is
independent of w}. The next equality follows from Lemma 2. At this
point, we have eliminated the 7 = ¢ term from the summation in (A6).
Repeating this process and taking expections over the earlier private
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, W) (all conditioned on the time-t market state
w;") we can eliminate the other terms to obtain the desired result. [

state wh_y, wh o, ...

The first lemma shows that if the firm manages project risks ac-
cording to 8, and 8,, the effect of the project on the grand cash flows
is reduced to a lump-sum receipt of the project’s value v at time 0
plus a residual cash flow stream in which each period’s windfalls are
shared with future periods in proportion to the discounted period risk
tolerances (compare with Equation 7). In the third lemma, we see
that given current information, the certainty equivalent of each period’s
residual cash flow is zero. Thus, if the firm manages project risks
according to 8, and B;, the net effect of a project on the firm’s cash
flows is reduced to a lump-sum receipt of v plus a residual cash flow
stream that has zero value.

Given these lemmas, we establish the consistency and separation
theorems after first establishing the separation theorem for a fixed
project.

SEPARATION THEOREM FOR A FIXED PROJECT. Let ¢ be a fixed project
with value v, and with replicating and rebalancing trading strategies
B, and B, respectively. Let ﬂf be an optimal solution to the financing
problem. To establish the separation theorem for a fixed project, we
need to show that B, = ﬂf — B, + By is optimal for the grand problem
(with fixed project):

max E[U(xs(0; By), 3(1 By). -, %(T: B))]

where x, is defined as in (A2).

Because of our assumption that U is strictly concave, the first-order
conditions for optimality are both necessary and sufficient for opti-
mality of 8. These first-order conditions may be written as

9

- E[U(x(0; By), %,(15 Bg), ..., xg(T; =0,
aﬂg(t/ w') [ (xg( ﬂg) xg( ﬁg) xg( ﬂg))l")f]

for all t and w,. Using the additive form of the firm’s utility function,

the first-order conditions are equivalent to

ks () ui(xg(t; B)) = kinE[s(t + Dulna(x,(t + 1 B)) ] (A7)

where u; denotes the derivative of the utility function u, for time-t
cash flows. This equation can be interpreted as follows. The left side
of (A7)is an 11 + 1 vector whose entries represent the marginal utility
of the cash flows at time-f (in state w;) required to purchase one share
of each security. The right side of (A7) is the corresponding vector
whose entries represent the expected marginal utilities of the cash
flows provided by these shares at time ¢ + 1. With an optimal trading
strategy, the two vectors of marginal utilities will be equal.

Focusing on the case where t > 0 (the proof for t = 0 is similar),
taking 8, = ﬁ,* — B, + By, rewriting (A7) using Equation (A3a) and
dropping common constant factors, we see that (A7) holds if and
only if:

kis(t)ui(x,(t; By))

= kyusE| s(t + Dyt (3t + 1:ﬁ;‘))e><p(—x“—'(RH—l))lw,]. (A8)
t+1
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Noting that s(t + 1) and x,(t + 1; B;") are both independent of whe
and taking expectations iteratively, first over wj,; and then over
wiy1, We can rewrite the right side of (A8) as:

w,] .

Yot + 1))
Applying Equation (A6), established in the proof of Lemma 2, this

Els(t+ 1)ufe (x(t + 1;ﬂ;*))E[exp(—
Ria
becomes

m 4
W1, Wt

E[s(t + Dujua(x(t + 1; B7)) ]

Noting that this expression is independent of w} and substituting back
into (A8), we find that (A7) is satisfied if

ks(t)ui(x,(t; BY))
= kE[s(t + Dt (x(t + 1, 81)) | w"].

These are precisely the first-order necessary and sufficient conditions
for the financing problem (they are analogous to the conditions of
Equation A7). Thus if 8] is optimal for the financing problem, then
By = ﬂ/‘ — B, + By is optimal for the grand problem. O

CONSISTENCY THEOREM. We first show the breakeven selling price
for any project ¢ is equal to the value v given by our integrated val-
uation procedure. Examining the equality defining the breakeven sell-
ing price, we see that the problem on the left side of the equality is
equivalent to the grand problem (for a fixed project) and, if v is the
breakeven selling price, the right side is equivalent to the financing
problem. Thus we can establish the consistency theorem by showing
that maximal expected utilities in the grand and financing problems
are equal. Taking 8} to be the solution to the financing problem, by
the separation theorem for a fixed project, the solution to the grand
problem is given by 87 = 8/ — 8, + 8,. Applying Equation (A2b) of
Lemma 1 and Lemma 2, we see that for 8 = ﬂ}* — B, + B,, the
certainty equivalents of the grand and financing cash flows are the
same in each period. Given additive independence of preferences,
this then implies the overall maximal expected utilities for the grand
and financing problems must be equal as well, and the breakeven
selling price is equal to v.

To show that the breakeven buying price for any project ¢ is equal
to the value v given by our integrated valuation procedure, let ¢” be
a new project identical to ¢ except for the time-0 cash flows where
c”(0) = ¢(0) — v. From the definition of our integrated valuation
procedure, the value of ¢” is equal to 0. By the previous argument for
breakeven selling prices, then the firm is indifferent between receiving
¢”and a lump-sum time-0 payment equal to 0. Thus v is the breakeven
buying price for project c. O

PROOF OF SEPARATION THEOREM.
fixed project was established earlier. We complete the proof by showing
that the project management strategy o* that solves the investment
problem also solves the grand problem. In the consistency theorem,
we saw that for any fixed project ¢ the financing and grand problems
have equal maximal expected utilities. Since the firm’s preferences

The separation theorem for a

are strictly increasing in time-0 cash flows, the project management
strategy that maximizes v, maximizes the expected utility in the fi-
nancing problem and, hence, in the grand problem. O

815



SMITH AND NAU
Option Pricing Theory and Decision Analysis

References

Bonini, C. P., “Capital Investment Under Uncertainty with Aban-
donment Options,” |. Financial and Quantitative Analysis, March
(1977), 39-54.

Copeland, T. E., T. Koller, and ]. Murrin, Valuation: Measuring and
Managing the Value of Companies, John Wiley and Sons, NY, 1990.

Cox, J. C. and S. A. Ross, "The Valuation of Options for Alternative
Stochastic Processes,”” |. Financial Economics, 3 (1976), 145-166.

Fishburn, P. C., Utility Theory for Decision Making, Krieger, Hunting-
don, NY, 1970.

Fisher, 1., The Theory of Interest, Macmillan, NY, 1930.

Harrison, J. M. and D. M. Kreps, “‘Martingales and Arbitrage in Mul-
tiperiod Securities Markets,”” ]. Economic Theory, 20 (1979), 381-
408.

Hirshleifer, J., Investment, Interest, and Capital, Prentical Hall, En-
glewood Cliffs, NJ, 1970.

Huang, C. and R. H. Litzenberger, Foundations for Financial Econontics,
North-Holland, NY, 1988.

Jensen, M. C. and W. H. Meckling, “Agency Costs and the Theory of
the Firm,” ]. Financial Economics, 3 (1976), 305-360.

Keeney, R. L. and H. Raiffa, Decisions with Multiple Objectives: Pref-
erences and Value Tradeoffs, John Wiley and Sons, NY, 1976.

Mason, S. P. and R. C. Merton, “'The Role of Contingent Claims Anal-

ysis in Corporate Finance,” in E. Altman and M. Subrahymanyam
(Eds.), Recent Advances in Corporate Finance, Irwin, Boston, MA,
1985.

Modigliani, F. and M. Miller, “The Cost of Capital, Corporation Fi-
nance, and the Theory of Investment,”” American Economic Review,
48 (1958), 261-297.

Myers, S. C., “Finance Theory and Financial Strategy,”” Interfaces, 14
(1984), 126-137.

Nau, R. F. and K. F. McCardle, “Arbitrage, Rationality, and Equilib-
rium,”” Theory and Decision, 31 (1991), 199-240.

Pindyck, R. S., “Irreversibility, Uncertainty, and Investment,” ]. Eco-
nomic Literature, XXIX (1991), 1110-1148.

Raiffa, H., Decision Analysis: Introductory Lectures on Choices under
Uncertainty, Random House, NY, 1968.

Robichek, A. A. and J. C. Van Horne, “Abandonment Value and
Capital Budgeting,” J. Finance, 22 (1967), 577-589.

Spetzler, C. S., “The Development of a Corporate Risk Policy for
Capital Investment Decisions,” IEEE Transactions on Systems Sci-
ence and Cybernetics, SSC-4 (1968), 279-300.

Trigeorgis, L. and S. P. Mason, “Valuing Managerial Flexibility,”” Mid-
land Corporate Finance J., 5 (1987), 14-21.

Wilson, R. B., “The Theory of Syndicates,” Econometrica, 36 (1968a),
119-132.

Accepted by Robert T. Clemen; received September 9, 1992. This paper has been with the authors 2% months for 2 revisions.

816

MANAGEMENT SCIENCE/Vol. 41, No. 5, May 1995



