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Abstract

This article explores the extent to which a decision maker’s probabilities can be measured separately from
his/her utilities by observing his/her acceptance of small monetary gambles. Only a partial separation is
achieved: the acceptable gambles are partitioned into a set of “belief gambles,” which reveals probabilities
distorted by marginal utilities for money, and a set of “preference gambles,” which reveals utilities reciprocally
distorted by marginal utilities for money. However, the information in these gambles still enables us to solve the
decision maker’s problem: his/her utility-maximizing decision is the one that avoids arbitrage (i.e., incoherence
or Dutch books).
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1. Introduction

One of the cornerstones of the theory of rational choice is the separation of beliefs from
preferences. Beliefs are based primarily on information, so the story goes, and are repre-
sented by numerical probabilities attached to events. Preferences are based on personal
tastes and are represented by numerical utilities attached to consequences of events and
decisions. Thus equipped with probability distributions to summarize their information
and utility functions to summarize their tastes, rational economic persons set out to
maximize their expected utility. This representation of rational behavior is taken very
literally by professional decision analysts, who attempt to elicit probabilities and utilities
from their clients in order to clarify their decisions, and also by economic theorists, who
model behavior in games and markets by making explicit assumptions about the proba-
bilities and utilities of the agents in them. For example, game theoretic models usually
assume that the players’ utilities are common knowledge and that their probability dis-
tributions are mutually consistent. Rational-expectations models of market phenomena
assume that the probabilities of different agents are not only mutually consistent but are
“correct” in the sense of the agreeing with the predictions of the economist’s model.
Given that holding the correct probabilities and knowing the values of other persons’
utilities is so important in theory, it is remarkable that these quantities are so rarely
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displayed in practice. Personal decisions and economic transactions are normally evalu-
ated in terms of money rather than roulette-wheel lotteries or utiles. Money provides not
only a medium of exchange but also the language of prices through which we articulate
our beliefs and preferences to ourselves and to others. We do not routinely assess the
relative utilities of Fords, Toyotas, and BMWs, yet we can determine how much more we
would pay for one than another. The financial pages do not report a probability distribu-
tion for the future value of IBM stock, but they do list the market-clearing prices for
options on that stock at different exercise values. In fact, given the importance of money
in everyday economic decisions, it is perhaps remarkable that money plays no distin-
guished role in the foundations of decision theory and microeconomics.

The low profile of probabilities and utilities in everyday economic discourse may
reflect an intrinsic difficulty in separating the effects of one from the effects of the other
when observing materially significant! choices that agents make under conditions of
uncertainty. Such choices reveal only the relative product of probability and utility:
expected utility equals probability times utility, summed over states of nature. However,
an agent’s utilities for consequences that we can measure (e.g., money, commodities,
services) may vary according to the state of nature in which they are obtained, either
because the agent has significant but unobservable prior stakes in the outcomes of
events, or because his/her utilities are intrinsically state-dependent.” Thus, for example,
two agents may hold very different probability distributions for the future value of a stock
price and yet be willing to pay the same price for an option on that stock, because their
differences in probabilities are offset by differences in state-dependent utilities for
wealth due to prior stakes in the company (stock ownership, employment, etc.). Unless
we know a priori how each agent’s utilities vary across states, we cannot uniquely sepa-
rate their probabilities from their utilities by observing their choices under uncertainty.
Schervish, Seidenfeld, and Kadane (1990) point out that this inseparability casts doubt
on much of probability theory and statistical theory, because it “deals solely with proba-
bilities and not with utilities.” The obvious corollary is that it also casts doubt on decision
analysis and economic models which require unique determination of an agent’s utilities.

This article starts from the premise that an agent’s probabilities may be inseparable
from his/her utilities and explores the implications for decision analysis. (The implica-
tions for economic models—especially noncooperative games—are considered more
fully in Nau, 1992b.) We assume that in some “grand world” of events, decisions, and
their tangible or intangible consequences, an agent wishes to behave in accordance with
the standard axioms of rational choice—1.e., he/she wishes to maximize expected utility
with respect to some probability distribution and utility function. We then suppose that
the agent’s behavior can be observed only in the “small world” of low-stakes monetary
side-gambles, and we ask whether these observations are sufficient to determine the
optimal grand-world decision. That is, we attempt to carry out a decision analysis by
asking the agent to articulate the set of small gambles he/she would be willing to accept in
addition to the grand-world consequences he/she faces.

Under these conditions, we find that only a partial separation between probabilities
and utilities is achieved: the set of all acceptable gambles can be partitioned into a set of
“belief gambles” and a set of “preference gambles.” Belief gambles reflect probabilities
distorted by state-dependent marginal utilities for money, and are those gambles which
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remain acceptable even if the decision is chosen by an arbitrary mechanism. Preference
gambles reflect grand-world utilities reciprocally distorted by state-dependent marginal
utilities for money, and are those gambles which remain acceptable even if the decision
maker receives arbitrary new information before making a decision. Despite the fact that
they do not reveal “true” probabilities and utilities, these two types of gambles can be
combined in such a way as to reveal the utility-maximizing decision in the grand-world
problem. This finding shows that the divide-and-conquer approach of decision analysis is
still possible even when probabilities and utilities are inseparable: one merely needs to
elicit distorted utilities to pair up with distorted probabilities. However, it also suggests
that distorted, rather than true, probabilities and utilities are likely to be the objects of
consensus or common knowledge in economic systems.

We also show that expected-utility-maximizing behavior in the grand-world problem
corresponds to coherence (Dutch book avoidance or “no arbitrage™) in the small-world
problem. This result is an extension of de Finetti’s (1937, 1974) formulation of subjective
probability theory. Recognizing that prices are the most familiar medium for quantifying
subjective judgments, de Finetti defined personal probabilities of events as prices of
lottery tickets—i.e., monetary gambling odds—and then showed that such prices must
conform to the laws of probability if they are not to lead to a Dutch book. For example, if
P(A) is the price of a ticket that pays $1 if 4 occurs and $0 otherwise, P(B) is the price of
a similar ticket on a mutually exclusive event B, and P(4 U B) is the price of a ticket that
pays $1 if either event occurs, then the prices must satisfy P(4 U B) = P(4) + P(B) or
else arbitrage is possible. This additive property is a consequence of the duality theorem
of linear programming, which underlies many other results in economic theory relating
the existence of a price system to the absence of arbitrage (Ross, 1976; Varian, 1987; Nau
and McCardle, 1991). Though elegant and practical, the monetary-gamble definition of
probability has two important drawbacks. First, it assumes that lottery ticket prices are
valid for arbitrary quantities bought or sold, which entails “rigidity in the fact of risk” —
i.e., linear utility for money within states. Second, it ignores the possibility that utilities
for money may vary between states due to prior stakes or other asymmetries.

In this article, we admit the possibility of nonlinear utility for money within states by
introducing the concept of “e-acceptability,” i.e., the acceptability of gambles for infini-
tesimal stakes. Further, we accommodate the distortion of probabilities by state-
dependent utilities for money by gathering complementary information about utilities
through the novel device of preference gambles. The Dutch book argument is then
applied to e-acceptable belief and preferences gambles to show that they must conform
to the laws of subjective expected utility. These innovations address the objection that
often has been levelled against the Dutch book argument as a basis for rational choice
theory, namely, that it is incompatible with risk-averse behavior (e.g., Yaari, 1985). We
conclude that Dutch book avoidance is precisely what obtains when subjective-expected-
utility-maximizing behavior in the grand world is projected into the small world of low-
stakes monetary gambles.

The remainder of the article is organized as follows. Section 2 describes the connec-
tion between subjective expected-utility maximization and the e-acceptance of monetary
gambles. Section 3 points out the intrinsic difficulty in separating probabilities from
utilities via material measurements, but shows that a partial separation can be achieved
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via the devices of belief and preference gambles. Section 4 describes how, in principle,
the parameters of belief and preference gambles can be elicited, and gives consistency
conditions which these parameters must satisfy. Section 5 presents the basic duality
theorem showing that expected-utility maximization in the “grand world” corresponds
precisely to coherence (no arbitrage or Dutch books) in the “small world” of monetary
gambles. This reconciles the Dutch book argument with nonlinear utility for money and
yields an alternative method for determining an optimal decision. Section 6 illustrates
how the preceding elicitation and optimization procedures can be used to solve a simpli-
fied decision analysis problem. Section 7 discusses some of the implications of these
results for statistical and economic models.

2. Gambling and subjective expected-utility maximization

Consider a decision maker (DM) who faces a set D of available decisions (acts) and a set
S of states of nature about whose resolution she is uncertain. For the purposes of this
article, these sets will be assumed to be finite, and the kth decision and nth state will be
denoted by d;, and s,,, respectively. In the richer “grand world” in which this decision
problem is embedded, the DM’s beliefs and preferences are assumed to satisfy the usual
axioms of rational choice which guarantee that they are represented by a probability
distribution over states and a utility function over consequences.® Let p(s) denote the
DM'’s probability for state s, and let u(s) denote her utility for the consequence received
when decision d;, is made and state s occurs, and define

ug(s) = wls) — uls)

as the difference in utilities yielded by decisions d; and d; in state s. In these terms, dy is
weakly (strictly) preferred to decision d; if and only if

2 POuyls) = [>]0. (1)

Although we assume that the DM satisfies (or at least wishes to satisfy) the consistency
axioms needed to support this representation, we do not assume that she intuitively
perceives her complete preference ordering on D or all the parameters of her probability
distribution and utility function. Rather, a process of decision analysis is required to help
the DM uncover (or perhaps construct) this representation of preferences by focusing
myopically on only a few states and/or consequences at a time. Normally this process is
carried out by asking the DM to consider various kinds of auxiliary decisions—e.g.,
choices among gambles or trade-offs among consequences—which are simpler in struc-
ture. The DM’s preferences in these auxiliary decisions are used to assess her probabil-
ities and utilities, which are then applied to the solution of the original problem

In standard decision-analytic practice, the auxiliary decisions are merely hypothetical:
they have no immediate material consequences for the DM or any other agents. For
example, the DM might be asked whether she would be willing to exchange consequence
X for a 50-50 roulette-wheel lottery between consequences Y and Z, even though



COHERENT DECISION ANALYSIS 75

the opportunity to make this substitution does not exist in the “real” grand world in
which the decision problem is embedded.* While this mental exercise may be helpful to
the DM in clarifying her own thoughts, it is not typical of the kind of choices that agents
ordinarily observe each other to make. For this reason, the probabilities and utilities that
a decision analyst would elicit may not be apparent to other agents.

What agents normally do observe are each others’ material choices—i.e., choices
which lead to feasible state-contingent transfers of money, commodities, or services
between agents. But if we restrict ourselves to material observations, we face the prob-
lem cited in the introduction: it may be impossible to uniquely separate probability from
utility, because prior stakes are unknown or utilities are otherwise state-dependent. In
particular, if the DM’s preferences are represented by probabilities p and utilities {u,},?
then for any strictly positive function v, they are equally well represented by probabilities
p’ « pvand utilities u; « uy/v. The corresponding utility differences satisfy u;; « wuy;/v,
whence puy; = p'uj;, and consequently:

2.POugls) 2[>10= 2 p'(ujg(s) = [>10.

SES sE

If all that we observe are choices between pairs of decisions, we cannot distinguish the
representation (p, {u,}) from the alternative representation (p’, {u;}). The same indeter-
minacy surrounds auxiliary decisions used to estimate probabilities and utilities if the
auxiliary decisions involve material rewards.

The simplest kinds of material auxiliary decisions which illustrate this phenomenon
are monetary side-gambles pegged to outcomes of the original decision problem. Such
gambles are formally similar to transactions in contingent claim markets, where “market
makers” set buying and selling prices for contingent claims (e.g., stock options) in order
to equalize supply and demand among investors, and investors appear “rational” if the
market admits no arbitrage opportunities. In this article, monetary side-gambles will be
used as the basic tool for measuring beliefs and preferences, because they resemble the
transactions actually observed in the most highly organized markets, and because they
reduce the decision problem to its barest essentials: acts of the DM and acts of nature. By
focusing entirely on monetary payoffs pegged to these acts, we can gather information
about utilities and probabilities without having to catalog the various other consequences
of decisions and measure their attributes which are relevant to the DM.% In this frame-
work, the DM will play the role of the (single) investor in the market, and the decision
analyst will play the role of the market maker who sets prices such that the investor is
indifferent to buying or selling. The purchase or sale of a contingent claim at a specified
price is a net gamble, and henceforth we shall refer simply to an “acceptable gamble.”
The monetary gambles accepted by the DM constitute the “shadow” that her decision
problem casts in a contingent claim market. We will ask what can be inferred about the
parameters and the solution of his/her decision problem by observing only this shadow.

To formalize the gambling system, consider a slightly grander-world view of the DM’s
decision problem, in which the consequence of decision dy, in state s may be augmented
by the receipt of a quantity of money z. A gamble g : s — R is a function that assigns a
guantity of money to every state. The set of all gambles is denoted G, and we are
interested in the DM’s preferences among decision-gamble pairs.
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Assumption 1: The DM’s preferences on the set D X G are represented by a probability
distribution p(s) and utility function (s, z), according to which the decision-gamble pair
(d, g) is [strictly] preferred to another decision-gamble pair (d;, g') if and only if

2 p(5)ui(s,8(5)) — uy(s.8'() = [>]0.

se8
Furthermore, preferences for money are monotonic and smooth, so that u.(s, z) is a
differentiable and strictly increasing function of the monetary payment z for any decision
d, and state 5. In the absence of gambling, decision d; will be chosen only if (dy, 0) is
preferred to (d;,0) for every other decision d;.

Letuy = uy(s, 0) and uy(s) = ui(s) — uj(s), so that the utility functions {u;} and the
utility differences {uy;} continue to represent the DM’s preferences among consequences
in the absence of gambling, and let v;(s) denote the DM’s marginal utility for money when
decision d, is chosen and state s occurs. That is:

vils) = —»u;;(s 2)| s =p-
Then, to a first-order approximation:
up(s,z) = up(s) + zvi(s) + o(z)

asz— 0, withvy(s) > Ofor all k and s. (Here, o(z) denotes a term with the property that
o(z))z—0asz—0.)

A gamble will always be paired with (conditioned on) a decision, and the notation g
henceforth will be used to denote a gamble paired with decision dj: the gamble’s (first)
subscript indicates the conditioning decision. In these terms, the acceptability of gambles
is now defined:

Definition: A gamble g, is e-acceptable to the DM if, when she chooses dy, for every e >
0 there exists 8 > 0 such that (dy, a(g + €)) is strictly preferred to (dy, 0) for any «
between 0 and o.

In other words, g, is e-acceptable if, when “sweetened” by an arbitrarily small amount
(e),itis “palatable” to the DM in sufficiently small doses (all @ < &) in the event that she
chooses dj,. This e-qualification of acceptability will be used to reconcile the Dutch book
argument with nonlinear utility for money.

Lemma 1: g;. 1s e-acceptable if it has nonnegative expected marginal utility in the event that
d; 1s chosen, i.e., if

> plsr(s)gi(s) = 0. )

SES

Proof: In terms of the DM’s probabilities and utilities, g, is e-acceptable if:
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0 < S p(o)uk(s.c(Ei(s) + €) — ug(s, 0)]

seES

@) pWis)g(s) + € + o(a)

SES

= ) pWils)g(s) + ae) plswi(s) + o()

sES seES

Il

as a — 0 for any € > 0. The second term on the RHS is strictly positive, while the third
term is negligible for sufficiently small . Hence, the inequality holds in the limit when-
ever the first term on the RHS is nonnegative. O

Some other useful properties of e-acceptable gambles are summarized in:

Lemma 2: e-acceptable gambles satisfy:
(i) Linearity: g; is e-acceptable if and only if ag;, is e-acceptable for any o > 0.
(ii) Additivity: If g and gf are both e-acceptable, then g; + g, is e-acceptable.
(iii) Monotonicity: If g, is e-acceptable and gi(s) = gu(s) for all s, then g; is
e-acceptable.

These properties were taken as primitive by de Finetti (1937, 1974). Here, linearity is a
consequence of the e-qualification of gamble acceptance, additivity is a consequence of
Lemma 1, and monotonicity is implied by Assumption 1.

3. Probabilities and utilities “revealed” by belief and preference gambles

Thus far it has been assumed that the DM’s preferences in the original decision problem
and her acceptance of small monetary side-gambles are jointly represented by a proba-
bility distribution p, utility-differences {uy;}, and marginal utilities for money {v; }. Unfor-
tunately, for the reasons pointed out by Kadane and Winkler (1988) and Schervish et al.
(1990), neither gamble-acceptance nor any other auxiliary choices among material re-
wards allow us to uniquely determine p and {ug}. However, let the DM’s marginal
utilities for money be used to define transformed probabilities and utility-differences,
denoted {p;} and {fi}, in the following way:
SWils
pus) = <220 o o0 @
ZyesP(s Wils')

and
Ui(s) = ug()v(s). (4)

Note that, since the marginal utilities are assumed to be strictly positive, p; is a probabil-
ity distribution on § for every decision d;. In these terms,

D pus) > [<,=10 > pr()ig(s) > [<.=]0. (5)

SES se 8
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Thus, the expected value of the DM’s true utility difference between decisions dy and d;
with respect to her true probabilities has the same sign as the expected value of the
transformed utility-difference with respect to the transformed probabilities, so that the
transformed probabilities and utility-differences also represent the DM’s preferences in
the original decision problem. Knowing {p} and {f1;} is therefore equivalent to knowing
p and {uy;} for purposes of decision analysis.

The motivation for making this transformation is that {pk} and {{i5;}, unlike p and {uy},
are uniquely determined”’ and can be directly revealed through e-acceptable gambles, as
the following two lemmas illustrate. First, note that since Py is a probability distribution
on S for any decision d;, conditional and unconditional probabilities may be defined for
all events in the usual way:

Pi(E) = Z Pir($)E(s), and

SES

Pr(E|F) = pr(EF)[pi(F) if pi(F) > 0,

forany E,F C S. Here, E and F are used to denote indicator vectors as well as names for
events. Thus, E(s) = 1ifevent E includes state s and E(s) = U otherwise. In these terms,
if p is a number between 0 and 1, (E — p)F is the net payoff vector of a gamble in which
$p is paid for a lottery ticket that returns $1 if E and F both occur, returns $0 if F occurs
without E, and returns the purchase price (i.e., the gamble is called off) if F fails to occur.
This is a conditional gamble on E given F at odds of (1 — p)/p against E. On the
probability side of the ledger, we now have:

Lemma 3: For any decision dj and events E, F, the gamble (E — p)F and its negative
(p — E)F are both e-acceptable given d;, when p = p(E|F).

Proof: The expected marginal utility of the first gamble is:

> PWrS)E(S) — pr(E|F)F(s)

SES

« px(EF) — pr(E|F)pi(F).

The RHS is zero because either pi(F) = 0 (in which case P,(EF) is also zero) or else
Di(EF) = p(E|F)p.(F), whence by Lemma 1, both this gamble and its negative are
e-acceptable. 0

An e-acceptable gamble of the form = (E — p)F, conditioned on a decision, will hence-
forth be referred to as a belief gamble, since it reveals information about the DM’s beliefs
as well as her marginal utilities for money. The quantities p; (E |F) will be referred to as
the DM’s “revealed” probabilities for events.

Since by (3) the revealed probabilities are proportional to true probabilities multiplied
by marginal utilities for money, Lemma 1 can be rewritten to say that g, is e-acceptable if
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2 Pi(s)ex(s) = 0. (6)
sES
In other words, g, is e-acceptable if it has nonnegative expected monetary value when
expectation is taken with respect to the revealed probabilities p, rather than the true
probabilities p. The acceptance of such gambles reveals that the DM is seemingly risk
neutral but holds (decision-dependent) beliefs {fi}. For this reason, the revealed prob-
abilities are also known as “risk neutral probabilities.”®
On the utility side of the ledger, the transformed utility-difference vectors are them-
selves e-acceptable gambles:

Lemma 4: The vector d; defined by (4) is an e-acceptable gamble conditional on d, for
every k andj.

Proof: d;, will be chosen only if it maximizes subjective expected utility, in which case the
following holds for every other decision d;:

0= > phuls) = 2 prls)itg(s)
ses sES
Hence, in the event that dy is chosen, @; has nonnegative expected monetary value with
respect to the DM’s risk neutral distribution, and by Lemma 1, as reformulated in (6), it
1s e-acceptable. L]

This result can be explained as follows: in the event that d; is chosen, the gamble Uy
yields state-dependent monetary payoffs proportional to (u, — u; )/Vi. These, in turn,
provide increments of utility proportional to u; — u;, the d}ﬁerence in utility between
decisions d and d;. Therefore, the expected increment in utility yielded by & i;; whendy is
chosen is nennegatlve precisely when the expected utility-difference between decisions
dy and d; is nonnegative. In this way the DM’s acceptance of ; merely “affirms” the fact
that the expected utility of d; must be greater than or equal to that of d '+ in the event that
she chooses d.. The e-acceptable gambles {ii,;} will henceforth be called “preference”
gambles: they depend only on the DM’s preferences for consequences—including
money—not on her beliefs. The quantity y;(s) will henceforth be called the DM’s “re-
vealed” utility difference between dy and d; in state s, and in these terms the equivalence
(5) can be interpreted to say that dy, is preferred to d; if and only if the expected revealed
utility-difference dj between d; is nonnegative, where the expectation is with respect to
the DM’s revealed probabilities.

4. Elicitation of belief and preference gambles

The preceding section established that there are two kinds of e-acceptable gambles:
“belief” gambles which are determined by the DM’s probabilities (and marginal utilities
for money) and “preference” gambles which are determined by utility differences (and
marginal utilities for money). Both types of gambles have the same structure: they are
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lotteries over states, conditioned on decisions. As such, it may not be apparent how to
distinguish one type of gamble from the other in practice. This structural similarity is not
necessarily a problem for decision analysis and economic modeling: it will be shown in
section 5 that we can infer the expected-utility-maximizing decision merely by observing
a sufficiently rich set of e-acceptable gambles, without labeling some as belief gambles
and others as preference gambles.

However, in the spirit of divide-and-conquer, it is desirable to have some method of
elicitation which enables us not only to distinguish belief gambles from preference gam-
bles, but also to construct them from judgments which are highly decomposed—i.e.,
which require the contemplation of only a few states and/or decisions at one time. A
decomposed method of elicitation is suggested by the following observation: belief gam-
bles are those that would remain e-acceptable if the DM lost her freedom of choice (but
meanwhile received no new information), whereas preference gambles are those that
would remain e-acceptable if the DM received new information (but meanwhile re-
tained freedom of choice). Hence, we can elicit one type of gamble separately from the
other by asking the DM to imagine scenarios in which either her freedom of choice is
arbitrarily restricted or her information is arbitrarily updated.

Belief gambles are—by definition—those gambles whose acceptability does not de-
pend on the DM’s utilities for the original consequences of decisions. Hence, they should
remain e-acceptable even if a decision is chosen in some arbitrary and uninformative
way. Such gambles can be constructed in a decomposed fashion by asking questions of
the following kind: “Suppose that decision d, is chosen arbitrarily, and consider events E
and F (subsets of the set of states of nature). For what value of p would you bet indiffer-
ently on or against the occurrence of E at odds of (1 — p)/p against E.” all conditional on
the occurrence of F?” The result is p, (E| F): the DM’s revealed probability for E|F in the
event that decision d, is chosen. By fixing the choice of decision d; and asking this
question for different events E and F, the DM’s revealed probability distribution py can
be constructed in the manner envisioned by de Finetti.

Preference gambles are—by definition— those gambles which are e-acceptable re-
gardless of the DM’s probability distribution over states. Hence, they should remain
e-acceptable regardless of any updating of the DM’s probabilities prior to the choice of a
decision. Such gambles can be elicited in a decomposed fashion by focusing on two
decisions and two states at a time—say, decisions dy, and d; and states s, and s,,,. Assume
that d. is strictly preferred when s,, occurs, while d; is strictly preferred when s,,, occurs—
i.e. u(s,) > 0anduy(s,,) < 0—and suppose it is learned that the true state is one of
the two states s,, and s,,,, but not which one. 10 Then choosing d, rather than d; is tanta-
mount to betting on the true state to be s, rather thans,,. Letp and 1 — p denote the
DM'’s true posterior probabilities!! for states s, and s,,, respectively. Then d;. will be
chosen over d; precisely when

puk(S;z) + (1 - p)uk(Sm) Zpuj(sn) + (1 - }))llj(Sm)
<:>pukj(5n> + (1 —p)ukj(sm) =0

ukj(sn) 1-p
—“Mkj(sm) = I (7>
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In other words, d; will be chosen over dj if the DM’s true posterior odds against s,,,
namely, (1 — p)/p, are less than or equal to the ratio of the true utility “‘gain” when s,
occurs to the true utility “loss” when s, occurs, namely, (s, )/( — (s, )). It seems as
though we could elicit the ratio of true utility-differences by simply asking the DM: “what
is the greatest value of the true posterior odds against 5,, for which you would choose d;,
over d;?7” Unfortunately, her response would have no material implications: it could not
be translated directly into a feasible gamble or trade involving other agents.

However, we can ask the DM what the least favorable posterior odds at are which she
would ever bet money on the occurrence of s, in the event that she chooses d, rather than
d;, when only states s, and s, are possible. This bet is literally enforceable only if the DM
actually learns that the state of nature is in the set {s,, s,,} prior to making his/her
decision, but meanwhile it reveals elements of the preference gamble i, as will now be
shown. Let monetary betting odds against s,, be denoted by (1 — p)/p. If d; is chosen, a
bet on s,, at those odds is e-acceptable precisely when

pvk(siz)(] o }3) - (} "’p)Vk{Sm)ﬁ =0

- 1 "16 - l-p Vk(sm}
PP wils)
In other words, as we might expect, monetary betting odds are e-acceptable if they are
greater than or equal to true odds adjusted by the DM’s relative marginal utilities for
money. Now, from (7), it follows that the largest value which the true odds ratio (1 — p)/p
can assume when dy. is chosen is (s, )/( —ui(s,,)), so that regardless of the DM’s poste-
rior probabilities, a bet on s, when d. is chosen is e-acceptable if the odds satisfy

1‘“]5’ - uk‘(Sn) Vk(Sm} — Qk'(‘g’f)
P —ukism) vilsy) —ligj(Sm)”

Hence, the minimum odds at which the DM would ever bet ons,, (versuss,, ) in the event
that she chooses d; (versus d;) is simply the ratio of the magnitudes of the “revealed”
utility-differences zi(s,,) and 7 ki (5,,) that are elements of the preference gamble @y;. By
fixing the decisions dj and d; and then eliciting these betting odds for different pairs of
states s, and s,,,, we can construct the entire gamble ;.

The procedure just described for eliciting preference gambles is admittedly not psy-
chologically trivial. Nevertheless, it is highly decomposed: it requires the DM to contem-
plate only two decisions and two states at one time, and it depends only on her utilities
for the original consequences and marginal utilities for money, not on her probabilities.
Furthermore, the response scale (money) is materially significant to the DM, the process
does not require the use of artificial randomization devices, and its outcome is subject to
immediate empirical validation. The constructed gamble d; should be holistically per-
ceived as e-acceptable, and belief and preference gambles conditioned on different de-
cisions should satisfy certain consistency conditions implied by Assumption 1. In partic-
ular, the pair of preference gambles i and @ and corresponding risk neutral
distributions P and p; should be related by:

Prly; _IA)jﬁjka (8)
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and for any three decisions {d;, d;, d;}, a chain of preference gambles should satisfy:
Brliy; o« Bprlly; + (1 — Bty ©)

for some B & (0, 1). These relations all follow from the fact that pyly; < p(u, — ;).

5, The coherence theorem

Once the DM’s revealed probabilities {p,} and revealed utility-differences {fi;;} have
been elicited by the procedures described in the preceding section, it follows from (5)
that we can determine the optimal decision by evaluating >, ¢ P(s)iy(s) for every pair
of decisions d and d;, concluding that d is weakly (strictly) preferred to d; if this
quantity is nonnegative (positive). Thus, by observing the DM’s choices in the small
world of monetary gambles, information is obtained which suffices to prescribe her
choice in the grand(er) world of the original decision problem. But more can be said
about the connection between grand-world and small-world behavior, namely, that ra-
tional behavior in the grand world, as codified in the axioms of subjective expected-utility
theory, corresponds to rational behavior in the small world, as codified in principles of
“coherent” gambling.

Recall that the belief gambles conditioned on decision d; reveal what the DM’s risk
neutral probabilities actually are when this decision is chosen, namely Py, whereas the
preference gambles conditioned on d reveal constraints that the risk neutral probabili-
ties must satisfy if this decision is to be chosen rationally, namely, > s p(s)iig;(s) = 0 for
every other decision d;. It will now be shown that if these constraints are not satisfied by
the actual risk neutral probabilities, then the belief and preference gambles conditioned
on dy, lead to a Dutch book—i.e., arbitrage or sure loss—a condition which de Finetti
termed incoherence. Thus, a DM who failed to maximize her revealed subjective ex-
pected utility would be an incoherent gambler.

The concept of coherence originally defined by de Finetti is weak, or ex ante, coher-
ence, which forbids the DM to accept a sure loss—i.e., a strictly negative gamble. A
stronger requirement is stricf coherence, which forbids the DM to accept any possibility
of loss without some compensating possibility of gain—i.e., it forbids her to accept even a
semi-negative gamble. Strict coherence requires the DM to implicitly assign positive
probability to every logically possible event, ruling out weakly dominated acts. The stan-
dard which will be applied here is intermediate in strength between weak and strict
coherence:

Definition: The decision maker is ex post coherent in outcome (dy, s,,) if there does not
exist an e-acceptable gamble g, conditioned on d such that g;(s) < Oforalls € § and

gk(sn) < 0.

As the name implies, ex post coherence is resolved after the outcome of the problem is
known: it will turn out to require the DM to have implicitly assigned positive probability
to the outcome which was observed, but not necessarily to those that were not. The
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rationale for this compromise between ex ante and strict coherence is that the set of
outcomes here involves decisions as well as states of nature, and it is desirable to treat
them symmetrically from the perspective of a betting opponent who may not know or
care which events are under the DM’s control. If the opponent succeeds in extracting
money from the DM without having put a proportional amount of money at risk, then
the DM appears irrational after-the-fact, regardless of whether the loss was precipitated
by an unexpected event or an unwise decision: she should have known better or else acted
otherwise.

Theorem: The DM is ex post coherent in outcome (dy, s,,) if and only if d; maximizes
expected utility and s,, is assigned positive probability.

Proof- Let G, denote the matrix whose columns are the e-acceptable belief and prefer-
ence gambles conditioned on dj. By the properties of linearity, additivity, and monoto-
nicity summarized in Lemma 2, any gamble which equals or dominates G a is also
e-acceptable, for any nonnegative vector a. Then the DM is ex post coherent in outcome
(dy,s,)if and only if there is no @ = 0 such that Gy < 0 with strict inequality in state s,,.
By linear duality (e.g., Gale, 1960, Theorem 2.10), this is true if and only if there exists a
distribution = such that w/G;, = 0 and =(s,)) > 0, i.e., a distribution assigning nonneg-
ative expectation to every e-acceptable gamble conditioned on d; and assigning positive
probability to s,. The belief gambles conditioned on d, have nonnegative expectation
under wif and only if w = p;, x pv, for alls; and w(s,)) > 0 implies p(s,) > 0 since v(s)
> 0 for all s. The preference gambles condiutioned on d; have nonnegative expected
value under 7 if and only if, for every other decision d;,

> w($)i(s) = 0

seSs
= D p)it(s) = 0
sES

= > prS)u(s) = 0.

seES

That is, dy has greater expected utility than d;. O

This result suggests a novel computational approach for determining optimal decisions:
having elicited belief and preference gambles conditional on dy, invoke the properties of
linearity, additivity, and monotonicity, then use linear programming to determine
whether there is any state s,, such that the DM is ex post coherent in outcome (dy, s, ). In
other words, form the matrix G, whose columns are the payoff vectors of e-acceptable belief
and preference gambles conditioned on dy, and solve for a vector w = 0, satisfying wl G, =z

0and >,c¢m(s) = 1, which is a probability distribution assigning nonnegative expectation to
every e-acceptable gamble. If such a distribution exists, then the DM is ex post coherent in
those outcomes {(dy, s,,)} for which w(s,,) > 0, and consequently dy, is a potentially optimal
decision. If such a distribution does not exist, then, by duality, there exists instead a
nonnegative vector a such that Gya < 0—i.e., a weighted combination of the gambles
vielding a sure loss conditional on decision d; —and the decision evidently is suboptimal.
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Note that the DM has not been asked to assign probabilities to his/her own decisions:
decisions have been treated as “events” only for purposes of conditioning. However, the
acceptance of a sure loss conditional on a decision is operationally equivalent to assign-
ing zero probability to that decision. Technically this is a risk neutral probability, but
there is no distinction between true and risk neutral probabilities when both are zero. So
the theorem has the following implication: by eliciting a sufficiently rich set of e-acceptable
gambles and invoking the properties of linearity, additivity, and monotonicity, it is discovered
that the DM implicitly assigns zero probability to decisions which ultimately fail to maximize
subjective expected utility.

Thus, coherence (together with linearity, etc.) is what is observed when expected-
utility-maximizing grand-world behavior is projected into the small world of money-
based measurements. This result establishes that conformity with subjective expected-
utility theory is a sufficient as well as a necessary condition for the avoidance of Dutch
books even in the presence of nonlinear utility for money, a point which has sometimes
been disputed (e.g., Yaari, 1985). The avoidance of Dutch books ex post as well as ex
ante also requires the implicit assignment of positive probability to the state which was
observed, if not to every state.

6. An example of decision analysis

The elicitation and optimization procedures developed in the preceding sections are
intended to illustrate the scope of “material” decision analysis, rather than to supplant
the psychological techniques commonly used in practice (c.f. von Winterfeldt and Ed-
wards, 1986). Nevertheless, it is instructive to consider how, in principle, a divide-and-
conquer decision analysis might be carried out in terms of the DM’s revealed (risk
neutral) probabilities {p;} and revealed utility-differences {{iy;}. The following simplified
example illustrates this process.

Several months before harvest time, a wheat farmer has the opportunity to sell part or
all of her crop “forward” at the current price of $3.80 per bushel. That is, the farmer can
contract now to deliver a specified quantity of wheat in the future for a guaranteed price
of $3.80. Suppose that he/she is considering one of three options: selling forward 100%,
60%, or 0% of the expected amount of his/her crop. Any portion of the crop not sold
forward will be sold at the spot price prevailing at the time of harvest, which is expected
to take on one of three values: $3, $4, or $5 per bushel. (These three-fold discretizations
of the decision space and state space are small-world simplifications of the farmer’s
problem, and are typical of much applied decision analysis. A more detailed analysis of a
similar problem is given by Hildreth, 1979). The decision tree for the farmer’s problem is
shown in figure 1. The values attached to the terminal branches are the average prices
obtained per bushel, which are shown merely to indicate an approximate ranking of
outcomes. For example, if the farmer sells only 60% of the crop forward, and the spot
price turns out to be $3 per bushel, then the average price per bushelis 0.6 x $3.80 + 0.4
x $3.00 = §$3.48.
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Spot = $3 (Avg = $3.80)

Sell 100% forward Spot = $4 (Avg = $3.80)

/ = §5 (Avg = $3.80)

3 (Avg = $3.48)

4 (Avg = $3.88)

(Avg = $4.28)

N

AN _Spot = $3 (Avg = $3.00)

\\\ /'"\"\///
\ Sell 0% forward pot = $4 (Avg = $4.00)

~_Spot = §5 (Avg = $5.00)

Figure 1. Wheat farmer’s decision tree.

To carry out the decision analysis, suppose the farmer is first asked to imagine that
decision d has been chosen (100% sold forward), and to determine the prices at which
she would indifferently buy or sell lottery tickets paying $1 in the event that states 51, s-,
or s3 occur (spot prices of $3, $4, or $5, respectively). Suppose that she assesses these
prices as $0.30, $0.50, and $0.20. (The prices must sum to 1 or else arbitrage is possible.)
Then her risk neutral probability distribution given d is p; = (0.3,0.5,0.2). Since d; is
the decision yielding the most nearly “constant” outcome, p; might be considered to
approximate her true distribution, although this is not necessary for the analysis. Now
suppose that the same exercise is carried out under the assumption that d- has been
chosen (60% sold forward), yielding p, = (0.35,0.5, 0.15). The risk neutral probability of
sy is greater when d; is chosen than when d; is chosen (0.35 versus 0.3), apparently
reflecting a higher marginal utility for money under a lower state of final wealth ($3.48
received per bushel versus $3.80). Finally, suppose that on the assumption that 45 has
been chosen (0% sold forward), the farmer assesses p3 = (0.45, 0.45, 0.10).

Now consider the assessment of preference gambles, beginning with @i;,. Note that d
(100% sold forward) should be preferred to d, (60% sold forward) in state s; ($3 spot
price), and vice versa in state s, ($4 spot price). The average prices are $3.80 versus $3.48,
given the $3 spot price, and $3.80 versus $3.88, given the $4 spot price. Now let the farmer
imagine that she has received information leading him/her to believe that one of these
two spot prices will prevail. If she chooses ¢ in this situation, at what odds would she also
accept a small bet on the $3 spot price occurring? Note that this choice yields a “gain” of
$0.32 per bushel if the $3 spot price occurs, and a “loss” of $0.08 per bushel if the $4 spot
price occurs. The ratio of monetary gain to loss is 4:1 in the primary decision problem,
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but suppose that the farmer judges that she would bet on the $3 spot price at minimum
odds-against of 9:2, reflecting a diminished relative utility for wealth in state s; when she
has chosen d;. This establishes that fi1,(s1)/( —@12(s2)) = 9/2.

Repeating this process with s3 replacing s,, note that the “loss” for choosing d; over d
is $0.48 per bushel when s3 occurs, as compared to the “gain” of $0.32 per bushel when s,
occurs. The ratio of gain to loss is now 2:3, but suppose that the farmer is only willing to
be on sy at odds-against of 9:11 or better, yielding fi1,(s; )/( — f212(s3)) = 9/11. Altogether,
this gives iy, « (1, —2/9, —11/9) = (1.0, —0.22, —1.22). Continuing with a few more
between-decision comparisons suppose we obtain 613 = (1.0, —0.2, —0.9) and {i;3 =
(1.0, — 0.2, —1.1). This information suffices to determine:

S pi(s)ins) = (03)(10) + (05)(—0.22) + (02)(—122) = —0.054 < 0=>dy < d,

SES
S pi(s)ia(s) = (03)(1.0) + (0.5)(—0.2) + (02)(—09) = 002 > 0=>d; > ds,
sES
S pals)iiza(s) = (035)(10) + (0.5)(—02) + (015)(~1.1) = 0.085 > 0=>dy > d,
sES

from which it may be concluded that d, > dy > d3—i.e., sell 60% > sell 100% > sell
0%. Notice that p3, iy, fi3;, and i3, are not needed to determine this preference
ordering—assuming that everything else has been assessed accurately—but these would
be useful for cross-checking and reconciling inconsistencies via equations (8) and (9). p,
o, 112, i3, and 013 already satisfy (9) within reasonable limits with B = 0.39.12

To illustrate the alternative method developed in section 5 for determining the opti-
mal decision, form the matrix G |, whose columns are the belief and preference gambles
conditioned on decision d 1, as follows:

Table 1. Belief and preference gambles conditioned on d;

Outcome E; — pi(E;) pi(Ey) — Ey Eo = pi(E2) pi(Ey) — Er E; — pi(E;) pi(Es) — E3 G fig3

54 0.8 -0.8 ~0.5 0.5 —~0.3 0.3 1.0 1.0
$2 -0.2 0.2 0.5 -0.5 -0.3 0.3 -0.22 —-0.2

53 -0.2 0.2 -05 0.5 0.7 ~0.7 ~122  —.09

A sure loss conditional on d; is achieved by setting a = (0, 25, 0, 0, 20, 0, 20, 0), yielding
Gia = (=6, —6, —6), proving that d; is suboptimal. The same procedure can be
repeated for decisions d- and d to reveal that d is also suboptimal, whereas d; is optimal.

The decision in this problem concerns the amount of a commodity to be bought or sold
at a given market price. In such a problem, it is actually unnecessary to elicit preference
gambles: it suffices to elicit the DM’s risk neutral probabilities and to compare his/her
own “risk neutral valuation” of a unit of the commodity (here, a bushel of wheat) with its
market price (here, $3.80) under each of the different decision scenarios:
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Risk neutral valuation givend; = (0.3)(83) = (0.5)($4) + (0.2)($5) = $3.90
Risk neutral valuation given d, = (0.35)($3) + (0.5)(34) + (0.15)($5) = $3.80
Risk neutral valuation given ds = (0.45)($3) + (0.45)($4) + (0.1)(85) = $3.65

Itis seen that under d, her risk neutral valuation equals the market price, indicating that
she would prefer to sell forward neither more nor less wheat than she is committed to sell
under this option (60%). Under d; her risk neutral valuation is above market price,
indicating that she would prefer to sell less than she is committed to under this option
(100%), and conversely for d3. These relationships illustrate a general principle of deci-
sion analysis with risk neutral probabilities: in the vicinity of her optimal decision, the
DM’s risk neutral valuation for any marketed commodity must equal its market price. A
DM with convex (risk averse) preferences can therefore solve a buying/selling problem
by searching among the available options for one in which her risk neutral valuation
satisfies this first-order condition for an optimum, at which point she is in equilibrium
with the market. In the example, if the DM’s risk neutral valuation had not equalled the
market price for any of the three options originally considered, then some percentage
other than 0%, 60%, or 100% would have been optimal. Further discussion of this
principle 1s given in Nau and McCardie (1991) and Smith and Nau (1994).

7. Discussion

The inability to measure true personal probabilities via material methods may be less
dire for statistical theory than has been suggested by Kadane and Winkler (1988) and
Schervish et al. (1990): the fact that a theory relies on a construct which is not directly
measurable does not necessarily invalidate the theory as long as it correctly accounts for
phenomena which are measurable (Feynman et al., 1965, pp. 2-8, 2-9). Besides, in a
nondecision (pure inference) context, the distorting effect of marginal utilities for money
is confined to the subject’s prior probabilities, which she is not required to justify. Baye-
sian inference emphasizes the process of prior-to-posterior updating, in which the prior
is multiplied by a likelihood function summarizing new information. This process is
unaffected if the subject’s prior distribution is taken to be a risk neutral distribution
rather than a true distribution. If the new information per se does not affect the subject’s
utilities, then her risk neutral probabilities are updated in the same manner (i.e., multi-
plied by the same likelihood function) as her true probabilities. The multiplicative con-
tribution of her state-dependent marginal utilities for money propagates straight
through from prior to posterior. Thus, demanding the separation of probability from
utility in an inferential setting is tantamount to demanding that the subject explain the
origin of her prior distribution.

In a decision context, the need to know true rather than risk neutral probabilities
depends on the information about utilities which is available. If the decision maker’s true
utility-differences are known, then of course they should be weighted by true probabili-
ties, but this begs the uniqueness question with respect to the measurement of utilities.
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The results of this article show that it is always possible, at least in principle, to uniquely
measure transformed utility-differences which can be weighted by risk neutral probabil-
ities to determine the decision maker’s utility-maximizing decision.

It might be objected that the nominal decision maker is sometimes an “expert” whose
personal probabilities are solicited for use by others in their own decision making. In
such cases, it appears as though the latter would want the expert’s true probabilities,
undistorted by her marginal utilities for money. But this begs the question: how does one
agent credibly and verifiably communicate her beliefs to others? How do the recipients of
the expert’s probability forecast know that they are getting her honest opinion, and to
what extent can it be confirmed by an outside observer that the recipients have assimi-
lated the expert’s message? If the climate is competitive rather than cooperative, it may
be hard to certify the transfer of information unless the participants back up their pro-
nouncements by betting with the others or submitting to some other monetary reward
scheme—but monetary transactions reveal only risk neutral probabilities! Furthermore,
if such a scheme is actually implemented, the agents will have incentives to continue
betting with each other, transferring state-contingent wealth, until a competitive equilib-
rium is reached in which their risk neutral probabilities are equal. (This scenario is
discussed by Kadane and Winkler, 1988, and in more detail by Nau, 1994.) Thus, to all
outward appearances, the probabilities which can be communicated between agents are
their risk neutral probabilities rather than their true probabilities. If they appear to
converge on a common distribution, it must be a risk neutral distribution: their true
probabilities may still differ.

By the same token, the utility-differences which can be visibly communicated between
agents are not the true utility-differences {u;} but rather the transformed values {fi;}
revealed by preference gambles. This observation is relevant to the modeling of games of
strategy, in which the players’ utility-differences constitute the “rules of the game” which
are supposed to be common knowledge. The implications of using preference gambles to
elicit the rules of noncooperative games have been explored by Nau and McCardle
(1990) and Nau (1992ab). The small-world manifestation of mutually expected Bayesian
rationality in such games turns out to be precisely the property of ex post coherence
applied to the joint behavior of all the players—i.e., their joint decision-making behavior
should present no ex post arbitrage opportunities to an outside betting opponent. The
corresponding duality theorem states that the only outcomes in which the players are
jointly coherent are those which occur with positive probability in a correlated equilibrium
of the game, which is a generalized Nash equilibrium in which mixed strategies may be
correlated between players (Aumann, 1974, 1987). This result supports Aumann’s con-
tention that correlated equilibrium is “‘the” expression of Bayesian rationality in nonco-
operative games. It also responds to some of the subjectivist complaints against game
theory raised by Kadane and Larkey (1982), albeit under a novel interpretation of com-
mon knowledge: the correlated equilibrium distribution, like the common prior, should
be interpreted as a risk neutral distribution.

The preceding arguments take a radically operational view of communication: cer-
tainly not all public communication of beliefs and preferences is mediated by transfers of
wealth. Yet, if the axioms of subjective expected-utility theory are taken seriously as
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standards of economic rationality, then the mutual revelation of probabilities and utili-
ties by whatever means must either equalize the risk neutral probabilities of the
agents involved, or else it must leave them in a state of common knowledge of Pareto
inefficiency, which could be alleviated by trading contingent claims. The appealing
feature of de Finetti’s elicitation method is that, as a microcosm of a contingent claim
market, it addresses the agents’ desires for efficiency as well as for information.

Acknowledgments

The author is grateful to Greg Fischer, Harvey Gold, Nancy Keeshan, Kevin McCardle,
Jim Smith, Peter Wakker, and Bob Winkler for comments on earlier drafts of this article.
This research was supported by the Business Associates Fund and the Hanes Corpora-
tion Foundation Fund at the Fuqua School of Business.

Notes

5

1. The focus in this article is on what can be learned about beliefs and preferences through “material
measurements—i.e., measurements which are immediately backed up by gambles or trades involving
exchanges of money or commodities with other agents—as opposed to psychological measurements, in
which purely intuitive judgments are elicited (e.g., DeGroot, 1970) and/or choices are made among purely
hypothetical alternatives.

. In Savage’s (1954) subjective expected utility theory, it is assumed that consequences can always be defined
in such a way as to justify the assumption that their “true” utilities are state-independent. However, these
definitions of consequences may be elaborate and inconvenient. Schervish et al. (1990) note that outside
observers generally cannot determine which consequences have constant utility across states for a partic-
ular agent, and that the agent’s “indirect” utilities for consequences which are easily measurable are ofien
state-dependent due to unknown prior stakes. It is sometimes convenient to assume that even true utilities
are intrinsically state-dependent (Karni et al., 1983; Karni, 1985, 1992; Dréze, 1987), which would not
affect the results in this article.

. Ttis not necessary for our purposes to specify the consequences or measure their attributes: it suffices to let
utility be defined simply as a function of the decision and the state. Hence, rather than beginning with an
infinite set of grand-world consequences and invoking Savage’s (1954) axioms, we could use a conditional
preference model such as Fishburn (1973, 1982, chapter 12} or Krantz et al. (1971, chapter 8), with the
stipulation that the states of nature are the same for all decisions.

4. Other examples of purely hypothetical auxiliary decisions are choices between decision-event pairs (Fish-
burn, 1973; 1982, chapter 12) and choices among lotteries predicated on the assignment of an objective
probability distribution to states of nature (Karni et al,, 1973; Karni, 1985: Schervish et al., 1990).

. Boldface notation is used to denote functions of the state s, which can be considered as vectors whose
elements are indexed by s. Multiplication of vectors is defined pointwise —e.g., pv is the vector whose sth
element is p(s)v(s).

6. Gambling payoffs are allowed to depend on the DM’s own acts as conditioning events in order to articulate
the “utility”side of the decision problem. In this respect, the gambles considered here differ from most
transactions in real contingent claim markets, which are pegged to events relevant to everyone and con-
trolled by no one—e.g., states of nature corresponding to stock and commodity prices.

7. Uniqueness of transformed probabilities and utilities is relative to the monetary currency: if the unit of
currency is changed, then {v;} and (B, } may change. as in the dollar-ven example of Schervish et al. (1990).

b

Lad
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However, {fi;;} changes reciprocally, and the effects cancel out when the products py(s)i(s) are taken in
(5): the representation of preferences is unaffected.

8. The term “risk neutral probability” originated in the finance literature (Cox and Ross, 1976) where it refers
to the apparent beliefs of a risk neutral representative investor in an arbitrage-free securities market. The
fact that marginal utilities are impounded in risk neutral probabilities was pointed out by Rubinstein
(1976), Garman (1979), and Brennan (1979), and even earlier by Dréze (1970), who observed: “It may
come as a surprise to the reader that, while the prices for contingent claims to the numeraire ... have all the
properties of a probability measure, they are 10 be interpreted as the products of a probability by a relative
marginal utility.”

9. Abeton{against] E atodds of (1 — p)/p against E is a bet which yields a net gain [loss] proportional to 1 —
pif Eoccurs and a net loss [gain] proportional to p if E does not occur. Thus, the higher the odds against E,
the more {less] favorable is a bet on [against] E.

10. If there are not two states which yield different strict preferences between decisions d; and d;, then
evidently one decision at Jeast weakly dominates the other, and it is unnecessary to precisely quantify the
utility differences between them.

11. The posterior probabilities p and 1 — p could be merely a renormalization of the prior probabilities p(s, )
and p{s,,), or they could be revised in some other way by the receipt of information. It is not necessary 1o
attach specific values to them for the purposes of assessing preference gambles.

12. Of course, in practice the not-so-primitive judgments in the wheat farmer’s problem could be aided by
more conventional techniques of probability and utility assessment. In fact, the values given here are
consistent {up to rounding off} with the assumption of a crop size of 100,000 bushels, a true probability
distribution of (0.2, 0.5, 0.3), and a state-independent exponential utility function with a risk tolerance of
$200,000. That is, u(z) = 1 — exp(—z/200000) where $z is the total received from wheat sales and
gambling. (The risk tolerance is the reciprocal of the Arrow-Prait measure of absolute risk aversion,
—u"{z)/u’(z), which is constant for the exponential utility function.)
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