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Abstract 

This paper presents a new method of modeling indeterminate and incoherent 
probability judgments in decision analysis problems. The decision maker's degree 
of beliefs in the occurrence of an event is represented by a unimodal (in fact, 
concave) function on the unit interval, whose parameters are elicited in terms of 
lowcr and upper probabilities with attached confidence weights. This is shown to 
provide a unified framework for performing sensitivity analysis, reconciling 
incoherence, and combining expert judgments. 

1. Introduction 

In assessing subjective probabilities for the analysis of  a decision problem under 
uncertainty, several kinds o f  difficulty may arise. The decision maker (DM) may be 
reluctant or unable to provide a sufficiently precise and detailed assessment to deter- 
mine a unique distribution over the relevant states of  nature. Or, at the other extreme, 
the distribution may be over-determined: the assessment may be internally inconsistent, 
a condition known as incoherence. Or, even if the assessment process is structured so 
as to enforce uniqueness and coherence, it may be felt that some of  the probabilities 
thereby obtained are not entirely reliable, and hence some amount o f  sensitivity 
analysis will be desired. Standard Bayesian decision theory (as codified in the Savage 
axioms or other similar axiom systems) offers little guidance on how to deal with 
such problems since it does not formally acknowledge their existence. Pragmatic 
methods for dealing with imprecise, unreliable, or incoherent probabilities have been 
proposed in the decision-theoretic literature o f  the last few decades. Some of  these 
have been mainly computational devices, such as the early work of  Fishburn [10] on 
decision analysis with incomplete knowledge of  probabilities, or Fishburn et al. [9] 
on sensitivity analysis. Others have been obtained by incorporating a theory o f  
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measurement errors into the basic subjective probability model, such as the methods 
for reconciling incoherence by Lindley et aI. [22]. More radical solutions have been 
based on relaxations of the standard axioms, such as the ~quasi-Bayesian" interval- 
probability models by Smith [32], Good [16], and Giron and Rios [17]. (The belief- 
function models by Shafer [31] and Wolfenson and Fine [39] also use interval proba- 
bilities, but are less closely related to the Bayesian paradigm.) Descriptive models of 
decision making with imprecise probabilities have also been proposed by psychologists 
and philosophers (Levi [21], Gardenfors and Sahlin [13,14], Einhorn and Hogarth [7], 
Loui [24] ). 

This paper presents a new framework for modeling indeterminacy and 
incoherence in decision analysis that is based on the use of confidence-weighted proba- 
bilities (Nau [29]), a generalization of interval probabilities. The representation it 
proposes for beliefs is conceptually similar to an "epistemic reliability measure" 
(Gardenfors and Sahlin [13,14]) or "membership function" (Watson et al. [37], 
Freeling [12], Wallsten et al. [36]) describing a vague probability. The DM's degree of 
belief in the occurrence of an event is represented by a unimodal (in fact, concave) 
function on the unit interval. While the shape of this function is suggestive of a second- 
order probability distribution, it does not have this interpretation. Rather, the vertical 
scale is considered as an index for a nested sequence of probability intervals, as 
suggested by fig. 1. This index will be interpreted as a level of "qualification" applied 
to the DM's assessment, which can be given an operational interpretation in terms of 
betting with limited stakes. More generally, such a function is defined on the simplex 
of probability distributions over states, and a nested sequence of convex sets of 
distributions is obtained as the qualification level is varied. By observing the effects 
of varying the qualification level, the sensitivity of the recommended decision to 
different subjective inputs can be analyzed simultaneously, and incoherence can be 
reconciled if necessary. 

The expected-utility side of Savage's [30] theory has also been criticized, 
and many researchers have proposed that explanations of behavior inconsistent with 
the principle of maximizing expected, utility should be sought in weakenings of 
assumptions about utility instead of or in addition to those about probability. A 
survey of recent work in this area is given by Bell and Farquhar [2]. While the 
exposition in this paper will concentrate on the modeling of indeterminate proba- 
bilities, it can in princ!ple be generalized to cover jointly indeterminate probabilities 
and utilities; a sketch of how to do this is offered in the last section. 

We will consider the case of a decision problem in normal (tabular) form 
characterized by finite sets of states of nature and possible decisions. (The alternative 
representation, extensive form, is unsuitable in the presence of indeterminate proba- 
bilities because it may not be possible to make unequivocal decisions at intermediate 
nodes in tile decision tree.) Let ® denote the set of states, let its elements be indexed 
by a set M of integers, and let I1 denote the simplex of probability distributions on 19. 
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Fig. I .  Representation of  an indeterminate probability by 
a concave function defining a sequence of  nested intervals. 

For any m E M,  0 m denotes the mth element of O and rrrndenotes the probability 
assigned to 0 m by the distribution lr E rl. Let E, F, E n, F n denote vectors of l's and 
O's defining events (subsets of O). The m th element of E (respectively,En)is denoted 
E m (respectively, En m ), and is 1 or 0 according to whether the event E (respectively, E n) 
includes or does not include the state O rn . Finally, let D~ denote the vector of payoffs 
yielded by decision k, with generic element D~ n . The event pairs {E n , F n} and decisions 
{D k} will be indexed by sets of integers N and K, respectively. (For the moment, it 
will be assumed that payoffs are known quantities of money and that utility for 
money is linear. The extension to the more general case will be mentioned later.) 
For every distribution rr E 11, let Pn(E)  denote the probability of an event E, and let 
P ~ ( E I F )  denote the conditional probability of E given F. That is: 

P,r(F) = Z F m rrm , 
m E M  

P,r (EIF)  - P,r(EF)/P~r(F ) if P;r(F) > O. 

(Here, E F  denotes the elementwise product of E and F - i.e. the vector whose mth 
element is E m F  m .) Note that if D is the payoff vector for a decision, then Pn(D) i s  
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simply its expected value under the distribution n. Hence, a separate notation for 
expectation is unnecessary. 

It is desired to determine which among the decisions {D k} is (or are) preferred. 
In a conventional decision analysis, this is determined on the basis of  expected value. 
Let 11] denote the set of  all rr for which decision ] achieves the maximum expected 
payoff,  i.e.: 

H i ~ ITrlP~(D]) t> P,~(D k) for all k E K}. 

Roughly speaking, the sets {Ill}, some of which may be empty, form a partition of II, 
except that their edges overlap. For example, consider the following payoff matrix 
for a decision problem with 6 decisions and 3 states: 

States 
Decisions 0 ~ 0 2 0 3 

D 1 4 - 2  0 
D 2 2 3 0 
D 3 0 2 1 
D 4 - 1 0 2 
D s 1 4 - 2  
D 6 3 0 0 

(This problem is an adaption of the one discussed in Fishburn et al. [9]. Two addi- 
tional decisions, here numbered 5 and 6, have been added.) Figure 2 shows the parti- 
tion of  the probability simplex into the corresponding domains {Hi}. Note that I] 6 
does not appear: this set is empty, indicating that D 6 is dominated by a mixture of 
other decisions. For example, 0.57D 1 + 0.40D 2 + O.03D 4 yields the payoff vector 
(3.05,0.06, 0.06). 

Let ~" denote an ~estimate" of the DM's probability distribution over the 
states. Based on this estimate, it can be inferred that D/ is preferred (to all other 
decisions) if £' E 11/. However, even if the preferred decision is D i, there may be 
another decision - say, D k - which is "close" to being preferred in the sense th~it 

is near the boundary of li k. Fishburn et al.'s [9] method of analyzing the sensitivity 
of  the choice of  D i to the estimate ~ is to compute the distance from ~ to the nearest 
set Ilk, k ¢ j. To pursue this idea further, the distance from ~ to each set 11 i could 
be measured, and this distance would represent how "close" D/is  to being preferred. 
Then the alternative decisions might be ranked according to their closeness (in this 
sense) to being preferred. The latter criterion is what will be developed in more detail 
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Fig. 2. Partition of the simplex into domains of optimality of different decisions. 

below - the key issues are how and in what form to elicit the estimate, and how to 
measure the distances. 

2. Co n f id ence -we igh t ed  probabi l i t ies  

An estimated distribution is usually obtained by asking the decision maker to 
assess the conditional or unconditional probabilities of  various events that are subsets 
of  O. Let A n denote an assertion by the DM with respect to the conditional proba- 
bility of  an event E n given the occurrence of another event F n. Within the paradigm 
of ordinary ("sharp")  probabilities, this assertion-would have the form: "the condi- 
tional probability of  E n given F n is exactly Pn", for some number Pn" Geometrically, 
this means the estimated distribution must tie in the intersection of a certain linear 
subspace with the simplex, namely, the set ~r(An) defined by: 

~(A~) =- I ~  n VpnP~(F~) -P~(E~F~)  = 01. 
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An assessment by the DM consists of a finite set of assertions lAnln E N}, which will 
be denoted A N.* An assessment of sharp probabilities constrains the estimated distri- 
bution to lie in the intersection of the sets {5(An)In ~ N}, which will be denoted 
5(AN). Ideally, ~'(AN) is non-empty and consists of a single point. Realistically, unless 
artificial methods are employed to enforce this condition, ~(AN) is likely to contain 
many points or none - i.e. the assessment will either be incomplete or incoherent. 

For example, the decision maker may be unable or unwilling to give precise 
estimates for the probabilities of all the events under consideration. In this case, it 
may be more natural for her ~' to merely specify lower and upper bounds on the 
values. Thus, statement A n might take the weaker form: "the conditional probability 
of E n given F n is at least Pn'" This constrains the estilnated distribution to lie in the 
intersection of a certain half-space with the simplex,which is the set H(A n) defined by: 

I](An) -- {rr E I11 pnP, r(F~) - P,(EnFn) <<. 0}. (1) 

(Without loss of generality, we will restrict attention to statements referring to lower 
bounds, since a lower bound on the probability of one event determines an upper 
bound on the probability of its complement. In particular, if p is a lower bound on 
the probability of E, then 1 - p is an upper bound on the probability of  E'.) 

The intersection of the sets {I](An)ln E N} will be denoted I](AN)and repre- 
sents our "estimate" of the decision maker's distribution based on an assessment A N 
given in the form of lower probabilities. It is unlikely to consist of a single point: in 
general, it will be a convex polyhedron. Nonetheless, we could still rank the decisions 
{D i} according to the distances of the sets { 17 I} from the set (I(AN). That is, for each j 
we could compute the minimum distance from a point in I1 i to a point in I](AN). In 
practical terms, this would be an optimization problem with a quadratic objective 
function and linear constraints. 

The decision-ranking model just described is consistent with the lower.and- 
upper-probability view of subjective uncertainty that was originally developed by 
Koopman [18], Smith [32], and Good [16, and elsewhere], and which continues to 
attract support. (Suppes [33], Williams [38], Giron and Rios [17], Walley [34,35], 
Learner [20], Bewley [3]. See also the comments by Good, Fine, and Seidenfeld on 
Fishburn [11] .) Under this model, a certain amount of indeterminacy is considered 
to be natural and inevitable, and the likelihood of encountering incoherence is reduced. 
For those who can live with some things undecided, this is an improvement over the 
sharp probability model, but it presents its own dilemma, namely, the determinancy 
of the lower and upper bounds. For example, if the decision maker is willing to 
assert that the probability of  some events lies in the interval [0.6, 0.8],  then she 
would presumable also assert - and with even more confidence - that it lies in the 

*The assertions might also consist of estimates of conditional or unconditional expectations, 
and]or differences or ratios of probabilities or expectations. These would also give rise to linear 
constraints on the estimated distribution. 

~To avoid confusion between the two actors appearing in this paper, the DM wilt be referred to as 
"she", and the DM's betting opponent (who appears later) will be referred to as "he". 
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interval [0.55:0.85]; and she might also venture - although with somewhat less 
confidence - that it ties in the interval [0.65,0.75]. That is, it seems natural to 
envision a set of  nested intervals, indexed by some sort of parameter representing 
"confidence" (reliability, caution, acceptance, membership, or whatever). This leads 
to questions about whether such confidence is intercomparable between, say, a lower 
and an upper probability for the same event, or between lower probabilities for 
different events, and if so, what sort of laws it obeys. Is confidence defined in this 
way operationally measurable, .and can it be justified in terms of  some set of axioms 
of rational behavior? Previous attempts to generalize the interval-probability 
model have come up short precisely on these points. For example, Gardenfors and 
Sahlin [14, p. 242] state: "We will not attempt a full description of the properties 
of the measure p . . .  Nor will ally attempt be made to describe how the values of 
the p measure are to be determined." And Freeling [I2, p. 344] laments: "There is 
in fact a very great difficulty in asking an individual to produce fuzzy distributions. 
After many months working in this field, the author is still incapable of writing 
down a [membership] function which could accurately describe one's probability." 

The generalization proposed here is that each lower (or upper) probability 
should be qualified by a numerical confidence weight, which is scaled to take on 
values between 0 and 1. Thus, a generic probability assertion A n now takes the form: 
"the probability of  E n given F n is at least Pn with confidence c n." Equivalently, we 
will say that (Pn, Cn) is a confidence-weighted lower probability for E n I F n . The DM 
now has the option of assessing more than one lower or upper probability for the 
same event, at different levels of  confidence, although this is not strictly necessary. 
For example, (0.65, 0.5), (0.6,0.8), and (0.55,1) could all be confidence-weighted 
lower probabilities for the same event. These are to be considered as sample points 
from a continuum of possible responses: the DM's confidence increases as the value 
for the lower probability decreases. 

The interpretation of the confidence weights will be discussed more fully in 
sect. 4. For the moment,  assume that the DM is capable of making such judgments. 
Assessments of  sharp probabilities or lower and upper probabilities, sans confidence 
weights, can still be accommodated within this framework. For example, a sharp 
probability can be considered as a degenerate interval obtained at a confidence level 
near zero. An assessment of unweighted, lower and upper probabilities can be inter- 
preted as a set of bounds at the same numerical level of confidence, whose value is 
merely unspecified. In this context, such an assessment would not be considered as 
the unique set of intervals describing the DM's beliefs: wider or narrower bounds 
might in principle have been given at a greater or lesser degree of confidence. 

It may be objected that the additional parameters are a nuisance or even a 
step in the wrong direction: why increase the number of  parameters in order to 
decrease the precision of the representation? But, once it is admitted that probabilities 
may be unreliable or in error, it is natural to suppose that some are more unreliable 
or likely to be in error than others. Any attempts to quantify this will inevitably 
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require more parameters, and such additional parameters have often appeared explicitly 
in the literature dealing with imprecision and error in probability assessment. For 
example, Fishbum et al. [9] suggest a weighted minimum distance method for 
sensitivity analysis. Lindley et al.'s [22] reconciliation method associates a precision 
factor with each elicited probability, which is interpreted as the inverse of its dispersion 
under an assumption of normally distributed errors. Morris [25,26] has suggested 
that a credibility factor should be associated with each subjective probability. Of 
more immediate relevance to this paper, the need for additional parameters has 
previously been noted within the literature of lower and upper probabilities. Good [16] 
observed that "[the] inequalities themselves have fuzziness", and advocated the use 
of higher-order probability distributions to quantify it. While this approach is useful 
as a conceptual device, it would be difficult to put into practice, and it lacks a con- 
vincing theoretical basis. The confidence-weight approach proposed here is opera- 
tionally simpler, and can be defended on theoretical gounds as a natural consequence 
of  a further relaxation of the axioms of probability. 

A question might be raised as to whether an infinite-regress dilemma arises 
here (as it does with hierarchical probability models): should not the confidence 
weights themselves be considered as indeterminate, and hence described by higher- 
order hyperparameters, and so on? In answer to this, it should be noted that, in the 
progression from sharp probabilities to interval probabilities to confidence-weighted 
probabilities, each successive layer of modeling is qualitatively different from its 
predecessors and enlarges the range of behavioral phenomena that can be described. 
A way in which this progression might be continued to model still higher levels of 
indeterminacy, and its implications for behavior, are not immediately obvious. (Indeed, 
an axiomatically-based method of progressing even beyond interval probabilities has 
hitherto proved elusive.) The important consideration is whether the extension from 
interval probabilities to confidence-weighted probabilities confers significant practical 
benefits. It will be seen that what is gained is the ability to give a unified treatment 
of sensitivity analysis, reconciliation, and combining judgments. 

The geometric representation of an assessment given in terms of CWPs will now 
be considered. Recall that the representation of an assessment of sharp probabilities 
is (ideally) a single point ~(AN) in the simplex, whereas an assessment of lower and 
upper probabilities is represented by a convex subset (I(AN). For an assessment of 
CWPs, the representation takes the form of a concave function on the simplex, con- 
structed in the following way. Corresponding to the assertion An,Jet  a piecewise 
linear function R~(An) be defined on the simplex II as: 

R,~(An) =- 1 - (cn/pn)max{O,pnP.(Fn) - P . ( E n F n )  }. (2) 

Let (I(An) continue to denote the set of distributions defined by (1), irrespective of 
the value of c n . Then R~(An) = 1 for all lr E (l(An) , and elsewhere R. (An)  declines 
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in proportion to c n multiplied by the Euclidean distance from lr to the nearest point 

in rl(An)* Hence, 1 - R~(An) is a weighted distance from 7r to the set (l(An), in 
which the weight is proportional to the confidence c n and also depends in more subtle 

ways on Pn and the structure of the events E n and F n. 
A function R~(AN) summarizing the entire assessment is now defined as the 

pointwise minimum of the functions {Rn (A n)} : 

R~(AN) - min R,T(An). (3) 
h E N  

This function is concave and piecewise linear, and it plays a role similar to that of 
Gardenfors and Sahlin's [14] measure of  the "epistemic reliability" of 7r, or Watson 
et al.'s [37] and Freeling's [12] measure of the degree of "membership" of 7r in the 
DM's belief set. e In this paper, the functicn Rn  will be referred to as the Bayes risk 
function summarizing the DM's assessment, since it will be seen to be interpretable as 
the Bayes risk (minimum expected loss as a function of probability) for a hypothetical 
betting opponent  when the DM's confidence weights are operationally defined in 

terms of limits on betting stakes. This interpretation of  RTr, along with a rationale 
for the definitions (2) and (3), will be more fully discussed in sects. 4 and 5. 

*In fact, if dTr(An) denotes the Euclidean distance from ~r to the nearest point in (l(An), then we 
have the following identity: 

- R~(An) = Cna,~(A,,)[,,l-~ms'rD (~ - ~F~IP~)I. 

(Here, STD(.) denotes the sample standard deviation of the elements of tim vector in parentheses 
computed by the "l/n" rule.) The term in square brackets (which does not depend on rr or c. n) 
is a normalizing constant that exactly confines RTr(A n) to the interval [0, 1] in the extreme case 
where c n = 1. Hence, 1 - RTr(An) is directly proportional to c n, and also directly proportional 
to d~r(An). 

*The model presented here is not based on the theory of "fuzzy sets" (Zadeh [41]). Yet, the 
formal resemblance between this model and the fuzzy-decision-analysis models by Watson 
et al [37] and Freeling [12], which are based on fuzzy sets theory, is quite strong. The functions 
describing probabilities obey a "calculus" based on max and min operations, and the "laws" of 
confidence-weighted probabilities for unconditional events are the same as those obtained by 
"fuzzifying" the ordinary laws of probability according to Zadeh's [41] extension principle for 
functions defined on fuzzy sets. It is suggestive to think of {R~r(An) } as membership functions of 
fuzzy subsets of the simplex induced by the individual statements {An}, in which case R~r(AN) 
can be viewed as the membership function of their mutual intersection computed by Zadeh's 
original pointwise-minimum rule. The correspondence breaks down, though, where conditionality 
is present or where utility and probability are considered jointly. It might be fair to say that the 
present work provides a foundational justification (which has hitherto been lacking) for using 
fuzzy-set-like operations in the context of probability and utility modeling (and only in that 
context). However, it suggests that the extension principle needs to be modified to give a con- 
sistent treatment of conditionality. More details appear in Nau [29] and in a forthcoming paper. 
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The complementary function I - RTr(AN) may be considered to measure the 
distance of  the distribution 7r from the boundary of  a "fuzzy-edged" subset of  the 
simplex describing the DM's beliefs.* (Note that 1 - Rn(AN) is the maxflnum of  the 
weighted distances from 7r to any o f  the sets [I(An) .) In this respect, it is similar to 
metrics on the simplex proposed by Fishburn et al. [9] and Lindley et al. [22].  Its 
potential applications to decision analysis will now be discussed. 

3. T h e  d e c i s i o n - r a n k i n g  c r i t e r i o n  

In the general normal-form decision problem introduced earlier, let Qj denote 
the mh~imum of  1 - Rn(Alv ) on the set IIj. (Recall that rli is the set of  distributions 
for which D/ is a maximal-expected-value decision.) The quantity Q] measures, in 
some sense, how "far" the adoption of  decision / is from being consistent with the 
DM's assessed beliefs. More precisely, Q/measures  the distance of  decision / from 
being a "preferable" decision, in a sense to be discussed in sect. 6. Therefore, it is 
proposed that the decisions be ranked in ascending order of  the distances { Q/}, which 
are easily computed by linear programming. 

The ranking process will now be illustrated for the decision problem introduced 
in sect. 1. Suppose the following probability assessment is obtained from the DM: 

Event Lower Upper Confidence 
prob. prob. weight 

(a) 01 0.1 0.3 1.0 
0.15 0.25 0.5 

(b) 02 0.2 0.4 1.0 
0.25 0.35 0.5 

(c) 0310 -t 0.5 0.75 1.0 
0.6 0.7 0.5 

*The following canonical interpretation of "fuzziness" in metric spaces is suggested. Let a set be 
defined by a function whose value at any point represents the distance from that point to the 
nearest point in the set. At points which arc definitely "in" the set, the distance function has the 
value zero; at all other points, its value is positive. Thus, membership and non-membership are 
treated asymmetrically. An ordinary (~'crisp") set has the property that, for any point outside the 
set, there is a straight-line path (namely, the shortest path to the edge of the set) along which 
distance-from-the-set decreases as a linear function of the distance traveled. A fuzzy set, in contrast, 
would have the property that distance-from-the-set would in general be a nonlinear, convex 
function of the distance traveled, even along a shortest path to it. The distance function for an 
intersection (respectively, union) of two sets (crisp or fuzzy) would naturally be the pofntwise 
maximum (respectively, nlinimum) of their individual distance functions. Defining the member- 
ship function as the complement of the distance function, the max-min rules for fuzzy-set union 
and intersection are obtained. However, this idea seems inapplicable to spaces lacking natural 
metrics, or to the description of pathological (e.g. non-compact) sets. 
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Figures 3(a), 3(b), and 3(c) are contour plots of the Bayes risk functions on the 
simplex that would be determined by parts (a), (b), and (c) of the assessment con- 
sidered separately, superimposed on the partition diagram of fig. 2. (That is, fig. 3(a) 
is based on the directly assessed CWPs for 01 , fig. 3(b) is based on those for 02 , and 
fig. 3(c) is based on those for 0a[0 -1 .) In all three figures, the central dark band is 
the set of  ~ on which the Bayes risk achieves its maximal value of 1, namely, those 
satisfying the probability bounds at the lowest level of confidence. Additional contour 
lines are shown at intervals of 0.1 in height. Figure 4 shows the Bayes risk for the 
entire assessment, which is the pointwise minimum of those in figs. 3(a), 3(b). and 
3(c). Note that the darkly shaded area, where the Bayes risk equals 1, straddles both 
[I 2 and 1-I 3, indicating that decisions 2 and 3 are preferable (i.e. "within distance 0"). 
The distances-from-being-preferable {Qt } for all 6 decisons are summarized here: 

] : 0.1667 
2: 0.0000 
3: 0.0000 
4: 0.0305 
5: 0.3750 
6: ** (dominated) 

This yields a preliminary ranking: Q2 "~ Q3 < Qa ~ (2, < Qs, with decision 6 
eliminated on grounds of dominance. 

in order to better discriminate between decisions 2 and 3, the I)M may wish 
to sharpen her original assessment. For example, she might add the following 
assessments of sharp probabilities (at a low level of confidence) to her original 
assessment: 

F.vcn t Lowc r Uppc r (ion fi den ce 
prob. prob. weigh t 

(d) 01 0.2 0.2 0.1 
(e) 02 0.3 0.3 0.1 
( f )  0al 0 ~ 0.65 0.65 0.1 

These values are merely the midpoints of the narrowest intervals previously assessed 
for each event, and the resulting assessment is technically incoherent: p~trts (d) and (e) 
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l ' ig. 5. Bayes risk function for sharpened (incoherent) asscssmeni. 
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ilnply that the probability of 03101 in part (f) should be 0.625, rather than 0.65. The 
graph of tim Bayes risk function based on (a) through (f) is shown in fig. 5, and it is 
now seen to have a unique maximum, which occurs al rr = (0,1961,0.2941,0.5098) 
and which lies strictly inside the dolnains in which D 2 is optimal. The new distances 
for the decisions are as follows: 

I " 0 . 1 6 6 7  

2: 0.0020 
3: 0.0167 
4 :  0.0305 
5" 0.3750 
6: ** (dominaled) 

Note Ihal only Q2 and Q3 have changed, and decision 2 is now seen to be stightly 
"closer Io being preferable" lhan decision 3 (0.002 versus 0.0107). The t'acl thal 
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sharpening the assessment led to incoherence presents no particular problem: this 
only means that the maximum height attained by the Bayes risk function is less than 
unity (in fact, it is 0.998), and hence every decision is at some positive distance 
from being preferable. The minimum such distance may be considered as a measure 
of the relative incoherence of the assessment, and the point at which the Bayes risk 
is maximized serves as a reconciled estimate of the DM's distribution. In the example 
above, the reconciled values of the sharp probabilities for 01 , 02 , and 03101 are 
0.1961, 0.2941, and 0.6341, respectively. Thus, an incoherent assessment of CWPs 
contains, so to speak, the seeds of its own reconciliation. Of course, the DM, upon 
discovering her assessment to be incoherent, may wish to go back and revise some 
of her initial assertions, although this is not strictly necessary for the assessment 
to be put to use, as the above example shows. The linear programming algorithm 
used to evaluate the Bayes risk can help to suggest revisions by identifying subsets of  
assertions that are mutually contradictory. 

4. A x i o m a t i c  basis o f  con f idence -we igh t ed  probabilities 

This section presents an axiomatic basis and an operational measurement 
scheme for confidence-weighted probabilities to support the decision-making model 
presented above. It is essentially a synopsis of results in Nau [29]. 

De Finetti [4,5] observes that there are two ways to characterize rational 
behavior under uncertainty that both lead to the construction of a subjective proba- 
bility measure. One way is to take as primitive the judgment of comparative likelihood 
between pairs of events (e.g. "E is as likely as F" ) ,  and impose on such comparisons 
the usual axioms of completeness, transitivity, and independence that lead to a 
complete ordering among events. The other way is to take as primitive the determina- 
tion of an acceptable price p for a unit lottery ticket whose payoff is 1 if event E 
occurs and 0 otherwise, conditional on the occurrence of event F. Thus, in the terms 
introduced in sect. 1, the DM is assumed able to determine a number p for which 
she will accept a monetary gamble whose payoff vector is ( J ( E - p ) F ,  where.fl 
is "arbitrary (positive or negative) and at the choice of an opponent". The opponent 
selects fl after p is announced but before the outcomes of E and F are observed, and 
the payoff to the DM is then (3(E m - p ) F  m when state 0 rn obtains. In this setting, 
the price p constitutes a direct measurement of the numerical probability of E given F, 
and hence de Finetti refers to this as the "operational" way of defining probability. 
Actually, E may be considered as an arbitrary uncertain quanti ty  rather than an 
event; that is, the elements of  the vector E may be payoffs taking on values other 
than 0 or 1. In this case, p is interpreted as the subjective conditional expectation 

of E given the occurrence of F. Conditional expectation is actually the primitive 
concept, with conditional probability as a special case. 
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De Finetti presents the operational method somewhat informally, but the 
principal "axioms" of rational gamble-acceptance behavior on which is rests are: 

(i) every lottery has a fair price, at which it can be indifferently bought 
or sold; 

(ii) any non-negative linear combination of acceptable gambles is acceptable 
(a "gamble" meaning the purchase or sale of a lottery); and 

(iii) a strictly negative gamble - a "Dutch book" in the parlance of odds- 
making - is not acceptable. 

De Finetti's celebrated result, the "Dutch book theorem", is that (iii) is compatible 
with (i) and (ii) if and only if there exists a probability measure under which the price 
of every unit lottery is the probability of the corresponding event. More precisely, if 
Pn is the price of the ticket that yields E n conditional on F n, for n E N, then (iii) is 
consistent with (i) and (ii) if and only if there exists lr E II such that, for every n E N, 
either Pn = P~(EnlFn) or else P~(F~) = 0. This follows from a separating-hyperplane 
theorem that is a variant of Farkas' lemma, the basis of the duality theorem of linear 
programming. 

The generalization from sharp probabilities to interval probabilities can be 
obtained by relaxing the fair-price assumption (i), allowing the DM to quote possibly- 
distinct buying and selling prices for a lottery. The buying and selling prices are direct 
numerical measurements of lower and upper probabilities. The corresponding 
generalization of the Dutch book theorem (Smith [32], Williams [38], Nau [27]) 
states that the expert avoids exposure to certain loss if and only if there exists some 
lr E 11 such that, for every n, either P~(EnlFn) >t Pn or else P~r (Fn) = 0. Such arr was 
referred to by Smith as "medial odds". The set of all medial odds is in general a 
convex subset of  II, and was introduced in sect. 2 as ~I(AN). Note that if p and q are 
lower and upper probabilities, respectively, for the same Unconditional event, they 
must satisfy p ~< q in order to avoid a trivial Dutch book. 

The generalization from lower and upper probabilities to confidence-weighted 
probabilities is achieved by weakening assumption (ii) to state that only convex 
combinations (rather than non-negative linear combinations) of acceptable gambles 
are required to be acceptable. The effect of this is to allow the DM to limit the number 
of lottery tickets she will buy or sell on a given event at a given price. Thus, she 
can set different limits on the sizes of the stakes associated with different lower and 
upper probabilities. Assume the DM has a limited total stake for purposes of betting 
on the outcomes of events in •. Then, for each event EnlF n, let her give a lower 
probability Pn and an associated confidence .weight c n, with the interpretation that 
she will accept a non-negative multiple of  the gamble (E n -Pn)Fn  in which she 
stands to lose not more than a fraction c n of her total stake. This may be taken 
as the operational definition of (pn,Cn)as a confidence-weighted lower probability 
for Enl F n. If units of currency are normalized so the size of the DM's stake is 1, 
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her assertion of (Pn, cn) as a CWP for Enl F n means that she will accept precisely 
the gamble whose payoff  vector is (Cn/Pn)(E n -Pn ) Fn ,  which yields her a payoff  
of (cn/pn)(En m - pn)Fn m when state 0 m obtains. 

The Dutch book theorems for sharp probabilities and interval probabilities 
are essentially linear programming duality results. The information conveyed by the 
DM's assessment may be identified with the statistical decision problem it presents 
to her opponent, and such a problem has both a primal representation and a dual 
representation. The primal representation is a set of payoff vectors representing 
gambles the DM has agreed explicitly or implicitly to accept; the dual representation 
is a subset of  the probability simplex H on which all the acceptable gambles have non- 
negative expected value. In the sharp-probability case, the primal representation is a 
half-space of gambles, and the dual representation is a single point in H; in the interval- 
probability case, the primal representation is a convex cone of gambles, and the dual 
representation is a convex polyhedral subset of I1. The Dutch book theorem relates 
a property of the primal representation (that it should not contain a strictly negative 
vector) to a property of  the dual representation (that it should be non-empty), which 
can be proved constructively by linear programming. 

The same considerations apply to an assessment given in the form of CWPs. 
The primal representation of the assessment is now a conve.,c polyhedron of acceptable 
payoff vectors; the dual representation is a concave function on H, namely, the 
"Bayes risk" function for the decision problem (DeGroot [6], p. 123 ft.). This is the 
opponent's minimum achievable expected loss expressed as a function of his own 
hypothetical probability distribution n, where "loss" is conventionally defined as 
maximuna possible gain minus actual gain so as to have a minimum achievable value 
of zero. If units of  currency are normalized so that the DM's total stake is equal to 1, 
then the opponent's maximum gain is 1. His loss may therefore be defined as 1 
minus his gain; and his optimal expected loss is never greater than 1 since he can 
always achieve that value by choosing the zero gamble. With this scaling conven- 
tion, the Bayes risk function is bounded below by 0 and above by 1. The Dutch 
book theorem for CWPs (Nau [29]) states that the DM avoids exposure to certain 
loss if and only if there is some 7r in II at which the Bayes risk function attains 
the value I,  which is to say, the set II(AN) defined by (1) is non-empty. An opponent 
with such a 7r would decline all the DM's gambles. 

To illustrate the construction of the Bayes risk function, consider the case in 
which the assessment refers to a single unconditional event E. Here, ® = {E, E}, and H 
may be taken to be the unit interval, with rr representing a hypothetical value for the 
opponent's probability of  E. Suppose that the DM has assessed lower probabilities p~ 
and P2 for E with confidence weights c I and c 2, and upper probabilities P3 and P4 
with confidence weights c 3 and c 4, where p~ < P2 < P3 < P4- (That is, 1 - P3 and 
1 - P4 are lower probabilities for E" with confidence weights c 3 and c 4 .) Presumably, 
c~ > c 2 and c 3 < c 4. The graph of the Bayes risk function in this case is the point- 
wise minimum of: 
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Fig.  6 .  C o n s t r u c t i o n  o f  ( m a r g i n a l )  B a y e s  risk f u n c t i o n  fo r  a single even t .  

the straight line through the points (0, 1 - c I ) and (Pl ,  1 ), 

the line through (0, 1 - c2 )and  (P2 ,1) ,  

the line through (1,1 - ca)  and (Pa,  1), 

the line through (1,1 - c4) and (/)4,1), and 

the horizontal line y = 1, 

as shown in fig. 6. Each of  these lines describes the opponent 's  expected loss as a 
function of  7r for a certain pure strategy, namely, taking the maximum allowed 
multiple of  the gamble defined by a single CWP, or else (for the y = 1 line} the zero 
gamble. For any 7r, there is always a pure strategy that achieves the minimum expected 
loss; hence, for practical purposes, there is only a finite number  of  responses a 
"rational" opponent  need consider, namely,  l~n > 0 for at most one value of n. In the 
example of  fig. 6, the opponent  will choose #1 > 0 if his probabili ty rr lies in the 
range (0, rq) ,  he will choose ~2 > 0 ifrr is in the range (~r 1 , ~r2), and so on. 

A smooth concave function such as shown in fig. 1 represents the limiting 
case o f  a Bayes risk function constructed in the manner o f  fig. 6 when intervals (lower 
and upper probabilities) have been assessed at many different levels of  confidence. 
Note, however, that an interval between lower and upper probabilities having the 
same confidence is not an interval obtained by cutting the graph with a horizontal 
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line, as in fig. I .  Rather, the lower and upper probabilities with confidence c are the 
y = 1 intercepts of  tangent lines to the graph which intersect the x = 0 and x = 1 
lines at a height of  1 - c. The interval defined by a horizontal cut will be interpreted 
as the range of probability values considered under a given levebof qualification of 
the entire assessment, which will be discussed in sect. 6. Thus, a given Bayes risk 
function defines nested sequences of intervals in two different ways, one obtained 
by varying a threshold level of  confidence, and another obtained by varying a threshold 
level of  qualification. 

In announcing more than one lower or upper probability for the same event 
at different levels of  confidence, the DM is offering to bet successively larger stakes 
at successively more favorable odds. Such behavior is not to be attributed to risk 
aversion (i.e. concave utility), but rather to ambiguity in her perception of the 
probability, in the sense of  Ellsberg's [8] paradoxes. Ambiguity may have many 
intrinsic sources, such as lack of information, limits of cognition, ill-defined events, 
and so on, but an intriguing canonical definition is that it is the manifestation of an 
"uncertainty principle" - an interference of the instrument with the object of 
measurement - in the realm of probability measurements. Here, the measuring instru- 
ment is the opponent who may accept or decline the gambles offered by the DM. If 
the opponent's acceptance or rejection of gambles is potentially informative to the 
DM, then she will prefer to maintain a spread in the odds by giving her assess- 
ment in terms of lower and upper probabilities rather than sharp probabilities. The 
generalization from lower and upper probabilities to confidence-weighted probabilities 
allows an even richer description of this interaction between the DM and her 
betting opponent. The Bayes risk function in fig. 6 can be interpreted as follows: if 
the opponent's probability lies in the range (0, ~r 1), then he will take the gamble 
defined by (Pl, cl).  For this to be agreeable to the DM, then Pl must be a lower 
bound on her probability conditional on knowing the opponent's probability 
to be in the range (O, rq).  Similarly, P2 is a lower bound on her probability condi- 
tional on knowing his probability to lie in the range (nl ,  rr2), and so on. Thus, 
by offering more than one lower or upper probability for an event, the DM performs 
a more detailed reciprocal measurement on her betting opponent, and thereby 
reveals more details about the relative firmness of  her own beliefs. 

A connection may be noted with the theory of regret (Bell [1], Loomes and 
Sugden [23]) which has been used to explain certain kinds of anomalous decision- 
making behavior. The size of  the confidence weight has been defined as the relative 
amount of  loss to which the DM is willing to expose herself in a gamble on 
a given event at given odds. This is precisely the relative regret to which she is 
exposed as a result of  the decision to offer the gamble, suggesting that the extent to 
which regret is an important consideration in the DM's choices is related to the degree 
of ambiguity in her beliefs. 
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5. I n f e r e n c e  w i t h  c o n f i d e n c e - w e i g h t e d  p robab i l i t i e s  

In application o f  subjective probability, it is often desired to infer the proba- 
bility o f  some "target" event from probabilities that have been assessed for other, 
related events. The interential process can be discussed in terms of  the primal repre- 
sentation (acceptable gambles) or the dual representation (subsets of  the simplex). 
For example, suppose that within the sharp-probability paradigm the DM asserts that 
the probability o f  E 1 is Pl and the probability o f  E 2 is P2, where E l and E 2 are 
disjoint events. In the primal representation o f  the DM's beliefs, this means that the 
gambles E 1 - Pl and E 2 - P2 and any linear combination thereof are acceptable. 
Now let E 3 be defined as the u n i o n  of  E 1 and E 2 , and suppose we now wish to infer 
the DM's probability for E 3 . Since E 1 and E 2 are disjoint, we can wri te :E 3 = E L + E 2 . 
The inferred probability o f  E 3 is the value o f  P3 for which a gamble of  the form 
E3 - P3 can be constructed as a linear combination o f  the first two gambles. Observing 
that (E 1 - Pa) + (E2 - P2) = E3 - (Pl + P2) is a gamble of  this form, it follows 
immediately that P3 = Pa + P 2 .  In the dual representation, without loss of  
generality, let E 1 be composed of  the states {01 . . . . .  Or}, and let E~ be composed 
o f{0  r+l  . . . . .  OS}, for some s > r > i ,  whence E 3 is composed of  {01 . . . . .  OS}. 

Then, P~t(Ea) = 7r I + . . .  + rr r, P~r(E2)  = 7rr+ l + . . .  + nS,  and P~r(g3)  = Ir 1 + . . .  + zr s 

= PTr(Ea) +P~r(E2 ). The assertions o f  Pa and P2 as probabilities for E 1 and E 2 imply 
that the DM's belief set consists of  rr satisfying P~r (EL) = Pl and P~r (E2) = P2, whence 
it follows that P ~ ( E 3 )  = P3 = Pl + P2 as before. 

Rules o f  inference for CWPs can be derived analogously. For example, suppose 
that in the CWP paradigm the DM asserts that (p~, c~ ) and (P2, c2 ) are confidence- 
weighted lower probabilities for disjoint events E 1 and E 2 . In the primal representation, 
this means that the gambles (c a / P l  ) ( E l  - Pl  ) and (c 2 / P 2 ) ( E 2  - P 2 )  are both accept- 
able. i f  we now wish to infer a CWP for E 3 = E L + E2, we must find P3 and c 3 such 
that a gamble of  the form ( c 3 / p 3 ) ( E  3 - P 3 ) c a n  be constructed as a c o n v e x  combina- 
tion o f  the preceding two gambles. Letting/3 = (c 2 /P2) / ( (ca /P l )  + (c2/P2 )), we find: 

( e 3 / P 3 ) ( E 3  - P 3 )  = ( 3 ( e l / P l ) ( E 1  - P l )  + (1 - ( 3 ) ( c 2 / p 2 ) ( E  2 - P2), 

where P3 and c a are determined by P3 = PI + P2 and p 3 / c 3  = ( P 2 / C i ) + ( p l / c 2 ) .  
This result might be termed the "additive law of  CWPs" for disjoint events. (Note 
that in the special case where c 1 = c 2 = c, it follows also that c 3 = c.) Similar analogs 
can be developed for the other laws of  ordinary (sharp) probabilities, including Bayes' 
theorem. However, unlike with sharp probabilities, a complex inferential calculation 
with CWPs cannot generally be decomposed into a sequence of  calculations in which 
such laws are applied to combinations of  two or three events at a time. That is, such 
laws do not  form an alternative set o f  "axioms" for CWPs. Rather, in the most general 
case, linear programming must be used to simultaneously bring to bear all  of  the 
information in the assessment upon the target event. 
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The general inference procedure for CWPs is most easily discussed in terms 
of the dual representation, wherein the assessment A N is summaried by the Bayes 
risk function on the simplex. The formulas for constructing the Bayes risk function 
introduced in sect. 2 will now be derived, and its role in performing inference with 
CWPs will be discussed. As before, let A n stand for the DM's assertion of (Pn, Cn) as 
a confidence-weighted lower probability for EnlFn, and let A N denote the entire 
assessment {Anln E N}. The DM is committed to accept any gamble whose payoff 
vector is 

Y.  tJ,, (c,,/p,,) (E,, - p,,)F. 
n ~ N  

for non.negative {/~n} chosen by her opponent such that ~ n  ~< 1. With respect 
to A n by itself, the opponent's optimal betting strategy when his own distribution 
is n is to choose /3 n = 1 (the largest allowable value) if P~(EnIFn) < Pn, and/~n = 0 
otherwise. This yields a conditional expected gain of max{0, (c n/Pn)(Pn - P,  (Enl Fn)) } 
given the occurrence of F n , which occurs with probability PTr (Fn), and a conditional 
gain of zero given the non-occurrence of F n. Since the opponent's expected loss is 
1 minus his expected gain, his Bayes risk function determined by A n alone is 
the re fo re: 

R~r(An) =- 1 - P,~(Fn) max{O,(cn/Pn)(p n - P,~(EnlFn))} 

= 1 - (cn/pn)max{O,PnP+r(Fn) - P,+(EnFn) 1, 

as given in (2). The opponent's overall problem is to choose a mixture of the gambles 
offered by the DM. However, in mixed decision problems, as is well known, there is 
an optimal pure strategy for any n - i.e. an optimal strategy in which at most one of 
the {~n} is nonzero. It follows that the Bayes risk for the entire assessment R , ( A N ) i s  
merely the pointwise minimum of the Bayes risk functions {R~(An)}, as given by (3). 

In performing inference with sharp or interval probabilities within their 
respective dual representations, the image of the DM's belief set (a subset of the 
simplex) is marginalized or projected onto the subspace of the target event, yielding 
an inference in the form of a subset of the unit interval - i.e. a point or interval 
representing the inferred probability. A similar procedure is followed with CWPs: the 
image of the function on the simplex describing the DM's beliefs is projected onto the 
subspace of the target event, yielding an inference in the form of a function defined 
on the unit interval. From this function, individual probability bounds and their 
confidence weights can then be extracted. In particular, the function R~(AIv ) is 
"marginalized" with respect to an arbitrary target event E l F  to obtain a function 
rx(E[F; AN), defined for x E [0, t] as follows: 

rx(EIF; AN) = sup 1 - (1 - R'rc(AN))/PTr(F). 
.:P~(~tF) = X.gr(F) > 0 
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This is called the marginal Bayes risk (MBR) function for E l F  determined by the 
assessment AN, and it has the following interpretation: r x (El F ;  AN)is the minimum 
conditional expected loss, given the occurrence of  F, that is achievable by the 
opponent when x is his conditional probability for ElF. (In the case where the 
set ® consists of  a single event, say E, and its complement, the Bayes risk function 
and the MBR function for E are identical, and are constructed in the manner of  fig. 6.) 

The MBR function, like the Bayes risk function, is piecewise linear and concave, 
and every tangent to its graph corresponds to a nontrivial CWP that can be inferred 
for E l F  from the assessment A N. That is, each tangent defines a gamble of the form 
(c/p)(E - p)F that is acceptable for the DM and admissible (undominated) for the 
opponent. Those tangents that are facets of the graph represent irreducible CWPs in 
terms of which all the inferences for E l F  can be summarized. Thus, from an assess- 
ment given in the form of a finite number of CWPs, the inferences that can be obtained 
for any event can also be summarized by a finite number of CWPs. In practice, this 
can be accomplished by parametric linear programming, and involves not much more 
computational effort than the manipulation of interval probabilities. 

6. Der iva t ion  o f  the  dec is ion- ranking  c r i te r ion  

The decison-ranking criterion developed in sect. 3 refers to sets l]j orl which 
different decisions yield the maximum expected payoff. Thus, it may appear that the 
principle of maximizing the DM's expected payoff has been assumed a priori. In this 
section, a more fundamental derivation of the decision-ranking criterion will be 
presented which does not assume the principle of maximizing expected payoff, but 
instead derives it from an operational definition of preference. The natural way to 
define preference operationally is to say that decision j is preferred to decision k if 
the DM is willing to exchange D k for 19/. This is equivalent to saying that the DM 
would pay (at least) $0 for the lottery whose payoff is 1 ) / -  D k, which by definition 
means that 0 is a lower expectation for Dj - D~. 

In the CWP context, every inference is qualified by a confidence weight; 
hence, the notion of preference must also be confidence-weighted. Therefore, suppose 
that the DM has to option to buy, sell, or trade "shares ", of each decision. A share in 
a decision is some multiple of the corresponding payoff vector. Then, given two 
decisions 1)/and Dk, let Ajk(c ) stand for the assertion that "Dj is preferred to D k with 
confidence c", and define this to mean that (0, c) is a confidence-weighted lower 
expectation for the lottery 1 ) / -  D k. That is, the DM is willing to exchange a positive 
multiple of D k for the same multiple of Dj such that the maximum loss to which 
she might be exposed due to the exchange is not more than c. More precisely, 
letting D~k m denote the minimum element of 1 ) / -  Ok, the assertion Ajk(c ) is 
equivalent to acceptance of the gamble whose payoff vector is (c/ID~inl)(Di - Dk). 
Bayes risk function determined by this assertion is: 
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R.  (Aik (c)) 1 (c/ min = - ID)k I)max{O,PTr(Dk)- PTr(Di)}. 

If c > O, then R~(A]k(c)) is equal to 1 for all lr such that P~r(Di) >~ PTr(Dk). Suppose 
that, for some ], the DM can assert that D i is preferred to all other decisions at some 
positive level of  confidence. Such a decision will be called simply a preferred decision 
Let A/x(e ) stand for the conjunction of assertions {Aik(c)} for all k E K. Then the 
corresponding Bayes risk is the. pointwise minimum of separate Bayes risk functions: 

min R~(A]~:(c)). RTr(AiK(C)) = k ~ r  

The set of points for which this function is equal to 1 is precisely the set of points for 
which P~(Dj) >i P~r(Dk) for all k :/=], which we previously denoted by I1 k Thus: 

H i = {~rlRTr(Air(c)) = 1 forsome c > 0 } .  

Now return to a consideration of the DM's assessment AN, and suppose that for some 
c > 0 and some ] we have: 

R~r(AN) >I R~r(AiK(c)) for all ~r E H. 

This means that the set of  assertions A/K(C ) can be inferred from the assessment A N, 
which is to say, it can be inferred that ] is a preferred decision. In this case, we have 
I'I(AN) C IIj: the only distributions satisfying all the probability bounds are those 
under which decision ] is optimal. 

In general, such unequivocal preference may not emerge. However, weaker 
forms of support can also be distinguished. To aid in the formulation, two additional 
devices will be introduced: the "sharpening" and "qualifying" of an assessment. An 
Assessment is sharpened by conjoining assertions stronger than, but not inconsistent 
with, those already made. More precisely, AN, is defined to be a sharpening of A N 
if both are coherent and A N can be inferred from AN, but not vice versa. (Geo- 
metrically, this means the Bayes risk function for AN, can be obtained by "whitthng 
down" that of  A N, as in the sharpening of a pencil.) Now, if decision ] cannot be 
determined to be preferred on the basis of  the assessment AN, the next strongest 
support for ] would be that there exist some sharpening of A N under which ] is 
preferred. Such a decision will be called a preferable( "able to be preferred") decision. 
Thus, a preferable decision is one that could subsequently be determined to be 
preferred if suitable information were added to the existing assessment. Or, to put 
it another way, a preferable decision is one that could subsequently be asserted to be 
preferred (at some positive level of confidence) without contradicting previous 
testimony. 
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Formally, decision j is preferable if and only if the conjunction of A N and a 
set of assertions of the form Air(c), for some c > 0, is not incoherent. Since: 

n~r (AN, AiK(C)) = minln~r(Aq ), nn (Alto(c))}, 

it follows from the Dutch book theorem (cited in sect. 4) that the conjunction of A N and 
AjK (c) is coherent if and only if there is some rt for which Rrr (AN) = RTr (AiK(C)) = 1. 
This, in turn, holds if and only if the sets l-lj and (I(AN) have a non-empty inter- 
section, which implies Q/= 0. (Recall that the "distance" Q was defined as the 
minimum of 1 - RTr(A~v ), on the set llj.) Hence, the set of preferable decisions is 
precisely the set of  decisions {D i } for which Qj = O. 

A decision that cannot even be inferred to be preferable (much less preferred) 
is still not to be entirely disregarded. The distribution of values {Q j} provides the 
basis for a sensitivity analysis of the set of preferable decisions with respect to global 
features of  the assessment A N. Suppose that, upon reconsideration, the DM wishes to 
qualify her assessment - that is, to retract information in a generalized way. This 
can be operationalized as follows: let the DM be allowed to demand from the opponent 
a side payment of size Q (e.g. an an "entry fee") prior to taking up any of the bets 
that have been offered. The parameter Q, which takes on values between 0 and 1, will 
be called the level o f  qualification of the assessment, and the qualified assessment will 
be denoted AN(Q). The effect of the qualification is that, for every gamble other than 
the zero gamble, the opponent's expected loss is increased by Q. Therefore, the Bayes 
risk for the qualified assessment is: 

R~r(AN(Q) ) - min{1,Q + R~r(AN) }. 

A decision D 1 is preferable under the qualified assessment if and only if IIj has a non- 
empty intersection with (I(AN(Q)), which is the set of all r¢ satisfying R~(AIv(Q)) = 1, 
or equivalently Rn(A~v ) >t 1 - Q. This is the set of lr obtained by cutting the graph 
of Rn(AIv ) with a horizontal line (or hyperplane) at height 1 - Q, in the manner of 
fig. 1. 

The quantity Qj introduced in sect. 3 can now be interpreted as the minimum 
level o f  qualification needed in order for decision j to be preferable. That is, Qi is the 
least value of Q for which there exists a sharpening of AN(Q) under which j is 
preferred. In this operational sense, Qj measures the amount by which the assessment 
must be "stretched" in order to accommodate the selection of decision j as a preferred 
decision. Thus, the qualification level provides a single parameter through which a 
sensitivity analysis of  the decision model can be performed jointly with respect to 
all the assessed probabilities. As a "metric" with which to perform sensitivity analysis 
or reconcile incoherence, it is endogenous to the theory, and has a direct operational 
significance for the DM. 
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The following guidelines for decision analysis are therefore offered: starting 
from an assessment At¢, choose a reference value Q for the qualification level and 
restrict attention to those decisions which are preferable under AN(Q) - i.e. those 
{]}for which Qi <~ Q" (The reference level might be chosen after looking at the 
distribution of {Qj }.) The qualification level here plays a role analogous to that of the 
"desired level of epistemic reliability" in Gardenfors and Sahlin's [14] model, the 
"precision level" in Watson et al.'s [37] model, or the "membership threshold" in 
Wallsten et al.'s [36] model. However, no universal prescription (such as Gardenfors 
and Sahlin's maximin criterion) will be offered here for how to select a unique 
decision from the restricted set. Rather, some or all of the following holistic strategies 
might be employed: (i) additional information could be extracted from the existing 
assessment - e.g. by computing and displaying MBR functions for the expectations 
of each of the remaining decisions, or for pairwise differences in their expectations; 
(ii) an attempt could be made to sharpen the original assessment by further intro. 
spection; (iii) additional attributes of decision consequences, not included in the 
original analysis, might be brought into play. 

An objection might be raised to the fact that the decision analysis procedure 
does not guarantee a unique recommended decision: the prescription appears 
"incomplete" in this sense. Yet, once it is acknowledged that the DM's beliefs may be 
partly indeterminate, it naturally follows that her preferred decision may also 
be partly indeterminate. (For an eloquent defense of this view, see Bewley [3] .) 
Any mathematical attempt to force a unique solution on the problem in such a case 
will be guilty of arbitrariness. The procedure suggested here is actually not qualita- 
tively different from what is already considered good practice: if sensitivity analysis 
of a decision model reveals that small perturbations of subjectively-assessed para- 
meters lead to different solutions, then a reasonable conclusion (in the absence of 
additional information) is that the best decision cannot be unequivocally specified. 
What the CWP-based method offers is a way to systematically and simultaneously 
explore the sensitivity of the model to all of its subjective inputs. 

7. Discussion 

A theoretical framework has been presented for modeling ambiguous beliefs 
in more detail than is possible with interval probabilities, integrating sensitivity analysis 
into decision analysis, and reconciling incoherence. This has been characterized as a 
generalization of the Bayesian paradigm, at least as it applies to problems involving 
fihite numbers of states and decisions. However, the CWP model can be also viewed 
pragmatically as a technology for aiding decision analysis in the presence of imprecise 
or incoherent judgments even if probabilities are still held to be "theoretically" 
determinate. In this respect, the key features of the model are (i) the initial 
association of a confidence weight with each elicited probability, similar in spirit 
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to weighting schemes proposed by Fishburn et al. [9], Lindley et al. [22], Nau [27], 
Morris [25,26], and others; and (ii) the construction of a piecewise linear metric 
incorporating these weights, with which to measure relative distances on the proba- 
bility simplex. The calculations can be carried out by straightforward.linear program- 
ming. This framework can be employed no matter whether the probability of a typical 
event is elicited as a single number, an interval, or nested intervals. 

In general, the consequences of decisions may include non.monetary and/or 
imprecisely known payoffs, and utility for money may be nonlinear. The model 
described in this paper is not directly applicable in such cases. However, it can be 
extended to include a joint treatment of probability and utility along the lines 
developed in Nau [29] if the set of possible consequences is finite. The DM would 
then be asked to assess confidence-weighted utilities for consequences as well as 
confidence-weighted probabilities for events. The joint assessment of probabilities 
and utilities would be summarized by a Bayes risk function defined over a product- 
set ~2 of probabilities and utilities, and the analog'of the sets {H i} would be subsets 
{g2 i} of  ~2. The qualification level would then allow a sensitivity-analysis to be carried 
out jointly with respect to probabilities and utilities. 

In addition to indeterminacy and incoherence, the CWP model addresses 
another problem that has been troublesome for Bayesian decision theory: the com- 
bination of expert judgments ( "expert resolution"). There is a natural method for 
pooling probability (or utility) judgments obtained in the form of CWPs from different 
experts, namely, a linear pool o f  their Bayes risk functions. This pooling method has 
a direct operational significance, and can be shown to have the desirable properties 
of "marginalizability" and "external Bayesianity", which are known to be incom- 
patible in the context of sharp probabilities.* Details of this appear in Nau [28]. For 
recent discussions of the expert resolution problem, see Genest and Zidek's [15] 
survey paper and the collection of papers by Winkler, Lindley, Schervish, Clemen, 
French and Morris (Management Science 32, 3(1986) pp. 298-328).  

It has been shown that confidence-weighted probabilities, like sharp proba- 
bilities or interval probabilities, can be given an operational basis in terms of betting. 
Still, further work is needed on developing guidelines for a DM to follow in articulating 
assessments in this form, as well as on providing a more detailed prescription for 
decision analysis. Behavioral research may be undertaken to determine the extent 
to which actual decision making is described by the model. The CWP model "predicts" 
(or rather, allows) that decision-making behavior may depend on (i) the intrinsic 
uncertainty and ambiguity characterizing the DM's beliefs, which can be quantified 
in the form of confidence-weighted probabilities, and (ii) a reference level of qualifi- 
cation adopted by the DM for purposes of making a decision in a given context. The 

*Thus, "impossibility theorems" concerning the aggregation of probabilities or utilities do not 
necessarily hold in the CWP context. Of course, the price paid for a representation that allows 
aggregation is that it does not necessarily lead to a unique optimal decision. 
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latter might be considered to express the DM's "attitude toward ambiguity" in that 
context. Together, the assessment of CWPs and the qualification level determine a 
set of preferable decisions. If more than one decision is preferable, and if the assess- 
ment cannot be "sharpened" further, the model does not dictate which among the 
preferable decisions should be chosen, This leaves open the possibility that the final 
choice may be par ty  influenced by contextual factors (~.g. status quo attraction or 
other framing effects and heuristics) that tie outside the scope of  the model. In this 
respect, the CWP paradigm allows room for a rapprochement between normative and 
descriptive models of choice under uncertainty. 

The CWP model does have qualitative features in common with a number of 
descriptive models that have already found support in behavioral studies. For example, 
Einhorn and Hogarth's [7] "beta-theta" model of ambiguity postulates that the 
subjective probability of  an event is initially anchored on some reference value (which 
might be suggested by frequency data) and then adjusted upward or downward for 
decision-making purposes in a manner that depends on the intrinsic ambiguity 
surrounding the event and the individual's attitude toward ambiguity in the context 
of that decision. This model is summarized by graphs describing how a subject's 
response will vary as the anchoring point is moved (e.g. by considering similar events 
with different frequency probabilities) while the intrinsic ambiguity and the nature 
of the decision are held fixed. The CWP model might be considered as a cross-sectional 
view of the same process: it describes how responses to the same event may vary as 
features of the decision (gains versus losses, high stakes versus low stakes) are 
manipulated. Wallsten et al. [36] have tested a model of linguistic uncertainty in 
which unimodal functions are used to describe vague subjective probabilities. (These 
are referred to as "membership" functions, although fuzzy-set theory is not otherwise 
invoked.) In their model, it is postulated that the individual selects a threshold level 
of membership which depends on features of the decision and then bases his decision 
on a probability value randomly selected from the interval on which the function 
exceeds that threshold. This is suggestive of the "level of qualification" used in the 
CWP decision model. The CWP model does not provide a normative basis for extract- 
ing a single probability value from the resulting interval (by randomization or other- 
wise), but apparent randomization in behavioral experiments might be considered to 
arise from uncontrolled contextual factors. 
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