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1.  THE RANDOM WALK MODEL1 
 
One of the simplest and yet most important models in time series forecasting is the random walk 
model.  This model assumes that in each period the variable takes a random step away from its 
previous value, and the steps are independently and identically distributed in size (“i.i.d.”).  This 
is equivalent to saying that the first difference of the variable is a series to which the mean model 
should be applied.  So, if you begin with a time series that wanders all over the map, but you find 
that its first difference looks like it is an i.i.d. sequence, then a random walk model is a 
potentially good candidate.  
 
 A random walk model is said to have “drift” or “no drift” according to whether the distribution 
of step sizes has a non-zero mean or a zero mean.  At period n, the k-step-ahead forecast that the 
random walk model without drift gives for the variable Y is: 

 
n+k nŶ  =  Y  

 
In others words, it predicts that all future values will equal the last observed value.  This doesn’t 
really mean you expect them to all be the same, but just that you think they are equally likely to 
be higher or lower, and you are staying on the fence as far as point predictions are concerned.  If 
you extrapolate forecasts from the random walk model into the distant future, they will go off on 
a horizontal line, just like the forecasts of the mean model.  So, qualitatively the long-term point 
forecasts of the random walk model look similar to those of the mean model, except that they are 
always “re-anchored” on the last observed value rather than the mean.of the historical data. 
 
For the random-walk-with-drift model, the k-step-ahead forecast from period n is: 
 

n+k n
ˆŶ   =  Y  +  kd  

where d̂  is the estimated drift, i.e., the average increase from one period to the next.  So, the 
long-term forecasts from the random-walk-with-drift model look like a trend line with slope d̂ , 
but it is always re-anchored on the last observed value.  By comparison, in a simple trend line 
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model fitted by linear regression, the trend line is firmly anchored at the center of mass of the 
data 2, and it doesn’t move very much if it is re-estimated each time a new data point is observed.   
 
In the random-walk-with-drift model, the estimation of the drift term can be tricky.  The obvious 
way to estimate it is to let it be the average period-to-period change observed in the past, which 
is merely the difference between the first and last values in the series divided by n-1:3 
 

n 1Y - Yd̂  = 
n -1

 

 
This is the slope of a line drawn between the first and last data points, not the slope of a trend 
line fitted to the data by simple regression.  It seems like the logical estimate to use when you 
consider that using the random-walk-with-drift model is equivalent to using the mean model to 
predict the first difference of the series.  However, as will be discussed in section 2, this method 
of estimating the drift is very sensitive to the choice of how much historical data to use in fitting 
the model.  In fact, if the drift is very small in comparison to the standard deviation of the step 
size (as it is for stock prices), the behavior of the random walk process is so irregular that it is 
very hard to estimate the drift from any finite amount of history, particularly in an era of bubbles 
and busts, as illustrated by the chart on page 9. 

The confidence intervals for forecasts from the random walk model (with or without drift) widen 
very rapidly as the forecast horizon lengthens, while those of the mean model remain the same 
and those of the simple trend line model widen only very slowly.  In fact:   

 The confidence interval for a k-period-ahead random walk forecast is wider 
than that of a 1-period-ahead forecast by a factor of square-root-of-k, which 
is called the “square root of time” rule.  

Thus the confidence interval for a 4-step-ahead forecast is twice as wide as that of a 1-step-ahead 
forecast.  This is the most important (and most measurable!) property of the random walk model.   
 
Now, why the factor of square-root-of-k?  The answer is simple.  The distance up or down that is 
traveled in k random steps is the sum of k independently and identically distributed random 
variables.  The variance of the distance traveled in k steps is sum of the variances of the 
individual steps (because variances are added when you add independent random variables), so 
the variance of the total distance traveled is k times the variance of one step.  The standard 
deviation of the distance traveled in k steps, which is your forecast standard error if you are 
predicting that the series will stay where it is now, is the square root of the variance, so the k-
step-ahead standard error is the 1-step-ahead standard error scaled up by the square-root-of-k 
rather than by k. 
 
                                                 
2 In a simple trend line model, the trend line always passes through the point (X, Y) , the means of both variables.  
“Trend” and “drift” both mean the same thing in the sense that they are average increases from one period to the 
next, but I will use the former term in the context of the simple trend line model and the latter one in the context of 
the random walk model. 
3 To see this, note that if you add up all the period-to-period changes, you get (Y2-Y1)+(Y3-Y2)+…+(Yn-Yn-1), and 
after canceling terms you are left with just Yn-Y1.  This is the total of n-1differences, so the average difference is 
(Yn-Y1)/(n-1). 
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So, the really important parameter of the random walk model is the standard error of the 1-step-
ahead forecast.  Everything else is determined from this one number by the square-root-of-k rule.   
 
For the random-walk-with-drift model, the 1-step-ahead forecast standard error is the standard 
deviation of the differenced series.  If the differenced series is called Y_DIFF1 as created in 
RegressIt, then the 1-step forecast standard error is: 
 

SEfcst(1)  = STDEV(Y_DIFF1) 
 
For the random walk model without drift, the 1-step forecast error is slightly different (although 
the difference is usually too small to matter):  it is the root-mean-square of the differenced series, 
i.e., the square root of the mean of the squared values, because the mean value is assumed to be 
zero rather than being estimated from the sample.  In Excel the RMS value of Y_DIFF1 can be 
calculated like this: 
 

SEfcst(1)  =  SQRT(VARP(Y_DIFF1) + AVG(Y_DIFF1)^2) 
 

I.e., it is the square root of the-population-variance-plus-the-square-of-the-mean.  This looks 
slightly messy but it is almost the same as STDEV(Y_DIFF1).  For both models, the standard 
error for a k-step-ahead forecast is the 1-step-ahead forecast scaled up by SQRT(k). 
 
Minor technical point:  The critical value of the t distribution that should be used to calculate a 
confidence interval based on the forecast and standard error is not quite the same:  for the 
random walk without drift model, the critical t-value is one that is based on n-1 degrees of 
freedom, where n is the sample size, and for the random walk with drift model, it is based on n-2 
degrees of freedom.  For large sample sizes this difference is unimportant, though:  a 95% 
confidence interval is roughly “plus or minus two standard errors” around the point forecast. 
 
As an example, consider the daily exchange rate between the dollar and the euro, from 1/4/1999 
to 8/7/2009 (2669 observations): 
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We see lots of short-term volatility, some larger-scale peaks and valleys, and a net upward trend 
from beginning to end.  Obviously we wouldn’t fit a simple trend line to this seemingly 
complicated pattern.  What if we look at its first difference (daily changes) instead? 
 

 
This looks very much like noise, except with intervals of higher and lower daily variance 
(volatility).  The mean of the daily changes is 0.0000887 and the standard deviation is 0.00775 
(roughly three-quarters of a cent) over the whole period.   
 
Is the mean of the daily changes significantly different from zero, which is to say, is there a 
significant day-to-day drift over this period?  Well, the standard error of the mean is the standard 
deviation divided by the square root of the sample size, which is 0.00775/SQRT(2669) = 
0.000149.  The t-stat for testing whether the mean is significantly different from zero is the ratio 
of the mean to its own standard error, which is 0.0000887/0.000149 = 0.595, which is not very 
significant by the usual t >2 standard.   
 
This simple statistical significance test should not be used to answer the question of whether the 
exchange rate will continue to drift upward in the future—that’s to some extent a policy decision, 
not a random process—but it does indicate that it won’t really matter if we assume the drift to be 
zero in the short run, so that’s what we’ll assume for purposes of this example. 
 
Does it appear to be a random walk without drift, i.e., are the daily changes statistically 
independent as well having a mean of zero?  We can check this by looking at the autocorrelation 
plot (produced with Statgraphics): 
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These are not significant autocorrelations.  The red bands are the 95% limits for testing 
significance.  Nearly all the autocorrelations (particularly the first few) are well within these 
limits, and there is no systematic pattern.  This tells as that, statistically speaking, the 
USDEuroRate series is an almost perfect random walk without drift, apart from some year-to-
year changes in volatility measured in absolute terms.  The forecasts and confidence limits for 
the next 20 business days (4 weeks) look like this: 
 

 
The point forecast remains constant at 1.418, the last actual value, and the 1-step-ahead forecast 
error (calculated via the formula two pages back) is 0.00775, essentially identical to the sample 
standard deviation of the first difference.  The 95% confidence limits for longer-horizon 
forecasts widen in a “sideways-parabola” fashion as they go farther out, which is the square-root-
of-time effect.  According to the model, the 95% confidence interval for the rate 4 weeks hence 
is [1.350, 1.486].   Here I would say it is appropriate to report 3 digits after the decimal point, but 
no more.   The 20-step ahead forecast standard error is 0.035, so 0.001 is 1/35 of a standard error.  
For a 1-step-ahead forecast, whose forecast standard error is 0.0075 as just noted, a precision of 
0.001 is about 1/8 of a standard error. The original data is reported to only 3 decimal places of 
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precision, so it would be strange to claim more precision that that for even a 1-step-ahead 
forecast. 
 
The daily volatility has been estimated from the whole 10-year sample, which is probably not 
appropriate in this case.  If we restrict the sample to data from 1/1/2008 onward, the estimated 
volatility is larger, and the confidence limits look like this (on the same scale) 
 

 
 
The exact 95% interval for the 4-week-ahead forecast is now [1.306, 1.530], significantly wider, 
which reflects the greater volatility in the last year-and-a-half.  This makes the point that your 
results are sensitive to your modeling assumptions, and one of your modeling assumptions is 
how much past data is considered to be relevant.   It might also be better to measure daily 
volatility in terms of percentage changes rather than absolute changes for this series—we will 
come back to that later. 
 
What about the interesting “peaks and valleys” we saw in the original data?  Aren’t these non-
random?   Well, the patterns did occur “for a reason” with the benefit of hindsight, so in a 
metaphysical sense they are non-random.  But the question is whether they occurred for a reason 
that would have allowed the patterns to be predicted in advance based on the historical data.  The 
results of our analysis tell us that they could not be, at least not with a simple statistical model.  
This is characteristic of financial variables for which speculative markets exist.  If short-term ups 
and downs could be easily predicted with statistical models, they would be arbitraged away by 
clever traders with big computers.  This does happen to some extent on the margin, but not 
enough to change the big picture unless really huge bets are made by insiders or those with the 
biggest computers (which has occasionally happened in recent years!).   
 
You will also find that random walks that are genuinely random, such as those created by Monte 
Carlo simulation with tools such as Crystal Ball, almost always have interesting-looking patterns, 
because your brain tries very hard to find order in chaos. This is an example of a “statistical 
illusion” such as the hot-hand-in-basketball phenomenon.  Players who are perceived to go on 
hot or cold shooting streaks may be just exhibiting the occasional strings of consecutive hits or 
misses that you would expect to find in purely random sequences. 
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2.   THE GEOMETRIC RANDOM WALK MODEL 
 
In the geometric random walk model, the natural logarithm of the variable is assumed to walk a 
random walk, usually a random walk with drift.  That is, the changes in the natural log from one 
period to the next, which are approximately the percentage changes, as we all know by now, are 
assumed to be independent and identically normally distributed.  The k-step-ahead forecasting 
equation of the geometric random walk model is therefore the same as the one for the random-
walk-with-drift model, except that it is applied to LN(Y) rather than Y: 
 

n+k n
ˆLN(Y )  =  LN(Y ) + kr  

 
where r is the drift measured in log units, which is almost the same as the percentage increase per 
period.4   In other words, this is basically the same as predicting that the series will undergo 
compound growth with a growth factor of (1+r) per period, i.e., 
 

k
n+k nŶ  =  Y (1+r)  

 
For example, if the estimated drift in log units is r̂ = 0.014 , this corresponds almost-exactly to a 
growth rate of 1.4% per period, which is a per-period compound growth factor of 1.014. 5   If the 
first difference of the logged series is called Y_LN_DIFF1 as created in RegressIt, then the 1-
step forecast standard error for the geometric random walk model in log units is: 
 

SEfcst(1)  = STDEV(Y_LN_DIFF1) 
 
The k-step-ahead forecast standard error is obtained by scaling it up by a factor of SQRT(k).  
Confidence intervals for the forecasts in log units are calculated in the usual way as the point 
forecasts plus-or-minus an appropriate number of standard errors.  Finally, point forecasts and 
confidence limits for the series in its original units are obtained by “unlogging” the logged ones 
by applying the EXP function to them.  Statgraphics will do all these calculations automatically 
for you, and it is not too hard to do them yourself in Excel. 
 
To illustrate the application of the geometric random walk on a geological time scale, consider 
the monthly closing values of the S&P500 index  January 1950 to July 2009 (714 observations). 

                                                 
4 I’ll use the symbol r rather than d to denote drift when it is measured in log units, because that is the case in which 
it is interpretable as a percentage growth rate. 
5 To see this correspondence, note that if you take the natural log of both sides of the second equation, you get 

k
n+k n n n

ˆLN(Y )  =  LN(Y (1+r) )  =  LN(Y ) + k LN(1+r) LN(Y ) + kr≈   because LN(1+r) ≈ r as discussed in the 
last section.  The first equation (in terms of natural  logs) should thought of as the “true” equation, and the second 
(in terms of compound percentage growth) should be thought of as a non-geeky approximation. 
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Overall we see what looks like a pattern of general exponential growth, with occasional dips and 
blips, leading up to the huge dot-com bubble and housing bubble within the last 15 years.  It’s 
hard to look at this picture and say that recent years look even remotely similar to the earlier 
ones.  It’s also hard to look at this picture and eyeball a long-term growth rate.   
 
If we plot the monthly change in the index (i.e., the first difference), we get the following 
picture: 

 
 
Here too we don’t see a pattern that looks stable over time:  the monthly changes are obviously a 
lot bigger toward the end of the series, where the absolute magnitude is also a lot bigger. 
 
Now let’s plot the natural log of the monthly index: 
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It’s a lot easier to make sense of this picture.  Recall that the natural log transformation turns an 
exponential growth pattern into a linear growth pattern, and the slope of a trend line fitted to 
natural-logged data can be interpreted as a percentage growth rate.  Just for fun, I have hand-
drawn a dotted line between the first and last value.  In very rough terms, this line captures the 
average linear trend in the logged index.  As you can see from the Y-axis scale, its height rises 
by about 4 natural-log units (from 2.8 to 6.8) over a time span of almost 60 years (714 months).  
The slope of this line is therefore 4/714 = 0.0056, which (voila!) can be interpreted as an average 
monthly increase in percentage terms.  That is, the average monthly increase of the S&P 500 
index since 1950 has been about 0.56%, which translates into an average annual increase of 
6.9%.6    
 
You can play this game with any starting and ending points, of course.  Pick any two points, 
draw a line between them, compute the slope, and that tells you the average monthly percentage 
growth over that interval of time.   Clearly there have been good decades and bad decades:  the 
50’s were a high-growth period, the 60’s were a normal-growth period, the 70’s were a stagnant 
period, the 80’s and early 90’s were a period of better-than average growth, and a roller-coaster 
ride began around 1995.  There are also sharp dips and recoveries interspersed throughout the 
series. 
 
So, there are a lot of interesting stories to go along with this picture, but what can we say about it 
in statistical terms?  Here is a plot of the first difference of the logged series: 
 

                                                 
6 The annual growth rate is computed by compounding the monthly rate for 12 periods:  (1.0056)12 = 1.069. 
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The diff-logs are interpretable as (approximate) percentage changes, so what we see here is a 
pretty steady stream of monthly changes on the order of +/- 5%.  In fact, the mean change is 
0.0057 and the standard deviation is 0.042.  (I have hand-drawn some reference lines at roughly 
+/- 4.2%.)   So, from one month to the next since 1950, the index has grown on average by 
0.57% per month with a standard deviation of 4.2%.  We do see what appear to be periods of 
somewhat higher and lower volatility, and occasional months of sheer panic, but on the whole 
the pattern is relatively consistent over this very long stretch of time.  
 
Apart from the modest departures from constant percentage growth and constant monthly 
volatility noted in the graphs of the logged and diff-logged data, are the monthly percentages 
random?  Let’s look at their autocorrelations: 
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There is no significant pattern here, so the monthly changes appear to be statistically 
independent.    as well as almost-identically distributed.  The S&P 500 monthly closing value 
therefore looks like an almost perfect random walk.   
 
One more question we might want to ask is whether the monthly percentage changes are 
normally distributed or not.  Confidence intervals for forecasts from the random walk model are 
based on the assumption that the steps are normally distributed as well as i.i.d.  We can test the 
hypothesis of normality by drawing a normal probability plot of the diff-logged series: 
 

 
Recall that a normal probability plot is a plot of the values versus the percentiles of a normal 
distribution having the same mean and standard deviation.  If the sample data is normally 
distributed, the points should lie along the straight line.  Here the fact that the plotted points bend 
to the left at the bottom of the plot means that the distribution is “skewed” to the left, i.e., there 
are more big values in the lower tail of the distribution than there should be if the distribution is 
normal.  In particular, there was a 24.5% drop in October 1987 and an 18.6% drop in October 
2008.7  The sample standard deviation of the diff-logged values, (which is the forecast standard 
error of the random-walk-with-drift model) is 4.2% as noted above.  So, we have one negative 
outlier that is more than 5 standard deviations and another that is more than 4 standard 
deviations.  Here are some handy facts: 

• A 4-standard-deviation outlier (either positive or negative) occurs less than 1 out of 
10,000 times in a normal distribution. 

• A 5-standard-deviation outlier occurs less than 1 out of a million times.8 
 
Here we have 714 observations, so there is no way we should have observed such large outliers, 
particularly two on the same side.  These two huge outliers by themselves are responsible for 

                                                 
7 A technical note about normal probability plots:  the left and right endpoints (i.e. biggest negative and positive 
outliers) are not actually shown.  They serve to anchor the scale on the left and right, but their points are not plotted.  
Here, for example, the most negative value plotted is the 18.6% drop of October 2008. 
8 More precisely, a “4-sigma” outlier is a 1-in-16 thousand event, and a 5-sigma outlier is a 1-in-1.7 million event. 
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most of the left-skewness in the distribution.  So apart from a meltdown every 20 years or so, the 
distribution of monthly percentage changes is not too far away from being normal.  
 
The steps in the analysis shown above follow a logical progression of the sort that you should 
follow with any sort of time series data.  We began by looking a time-series plot of the data as 
well as its first difference.  (The first-difference plot is only relevant for variables that are time 
series.)  We saw a pattern of very non-linear growth and very non-constant volatility in those 
plots, so we were led to consider the possibility of a transformation of the data.  The log 
transformation is well known to straighten out exponential growth curves and to stabilize the 
variance of their first differences, and in particular, the log transformation is a standard analytical 
tool in finance.  So we then looked at a time series plot of the logged data and its first difference, 
and what we saw there was an approximately-linear trend over the very long run and 
approximately-constant monthly volatility over the very long run.  Because we had used the 
natural log transformation, the long-term trend and the monthly changes were directly 
interpretable in percentage terms.   
 
These observations lead us to the conclusion that it would be reasonable to use a random-walk-
with-drift model to predict the logged S&P 500 index.  With the growth rate and volatility 
estimated above, we obtain the following picture: 

 
This plot was generated by using the [User-Specified] Forecasting procedure in Statgraphics.  
The series Log(SP500monthly) was used as the input variable and the random-walk-with drift 
model was specified, and 120 forecasts (10 years of monthly values) were produced.     
 
The dashed red line was not drawn by Statgraphics.  I have hand-drawn it myself (the same as in 
the earlier picture) to make the following point:  when the trend in the random-walk-with-drift 
model is estimated by calculating the average period-to-period increase that was observed in the 
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historical sample of data (as is the case here), the point forecasts for the future are actually just 
an extrapolation of a straight line drawn between the first and last data points!  Knowing this, 
you can guess how the forecasts for the future would have looked different if we had used a 
different starting point for the historical sample.  For example, if we had used a 10-year sample 
beginning in late 1999, at the height of the dot-com bubble, then a line extrapolated through the 
first and last data points would have trended downward, not upward.  This shows that it is very 
hard to estimate the trend in a random-walk-with-drift model based on the mean growth that was 
observed in the sample of data unless the sample size is very large.   
 
When fitting random-walk-with-drift models, it is usually necessary to draw on other sources of 
information to estimate the trend appropriately.  Here it would make no sense to predict that the 
index will decline in the future, based only on a very simple time series model fitted to a sample 
of historical data.  If everyone believed that, it would already have gone down!  Logically the 
growth rate of a stock index ought to be at least as great as the risk-free rate of interest, whatever 
that may be at the time.  How much greater depends on the “market price of risk” under current 
economic conditions.   Also, the growth rate that should be predicted for the prices of individual 
stocks and mutual funds depends on the degree to which their movements are correlated with 
those of the market index, a phenomenon explained by the so-called “capital asset pricing model” 
(CAPM).  These are mysteries beyond the scope of this course—ask your finance professor! 
 
The confidence intervals for the long-horizon forecasts widen in the sideways-parabola shape 
that is characteristic of the random walk model.  The width of the parabola depends on the 
standard error of the 1-month-ahead forecast, which is the estimated monthly volatility.  This 
parameter has also been estimated from the entire data set, under an implicit assumption that 
volatility is constant in the long run and that volatility in the near future will be “average.”  This 
is also too simplistic.  Short-term volatility can vary—sometimes very rapidly—and you really 
ought to draw on other sources of information to estimate it appropriately.  Current values of 
stock options can be used to back out the “implied volatility” of the market index as of right now, 
using the famous Black-Scholes formula.  This is also a topic beyond the scope of this course. 
 
Here is what was specified on the input panel of the Forecasting procedure in Statgraphics9  in 
order to get the results pictured above: 
 

                                                 
9 This procedure was designed by your humble instructor many years ago. 
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The key things that were done here were: (i) the (natural) log transformation was manually 
applied to the input variable10, (ii) the data was specified to be monthly, (iii) the starting date was 
specified to be 1/50 (this has no bearing on the analysis—it is just used to label the time axis on 
the plots),. and (iv)  120 forecasts (10 years’s worth) were requested. 
 
Here are the right-mouse-button “Analysis Options” that were used inside the procedure in order 
to specify the model: 

                                                 
10 Recall that in Statgraphics the natural log function is LOG rather than LN.  Function names and variable names 
are not case-sensitive in Statgraphics, so it would have been equivalent to type LOG(SP500MONTHLY) here.. 
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The Random Walk model type was selected with no additional math transformation (because the 
log transformation was already applied to the input variable), and the “Constant” box was 
checked to indicate that a constant growth rate should be estimated, i.e., that it is a random walk 
with drift.  This model has been specified as “Model A.”  You can specify up to 5 different 
models, and the output of this procedure contains a “Model Comparison Report” that shows all 
all their key stats and forecasts side-by-side.  
 
Fitting a random-walk-with-drift model to the logged series is equivalent to fitting the geometric 
random walk model to the original series.   The fitting of this model that was shown above was 
carried out in log units, by manually logging the variable on the input panel of the Forecasting 
procedure.   Notice that in log units the plot of the forecasts and their confidence limits looks 
quite reasonable—almost conservative—given the historical pattern of the data. 
 
Alternatively, you can fit the geometric random walk model by specifying the log transformation 
as one of the model options inside the procedure.  If you do it this way, the forecasts and 
confidence intervals will then be plotted in their original “unlogged” units in the output.  Exactly 
the same model will have been fitted, but the forecasts and confidence intervals will have been 
unlogged at the very end by applying the EXP function, which yields the following picture in the 
original units of the S&P 500 index: 
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Now this looks like a rather dramatic forecast of what might happen over the next 10 years, both 
on the high and low sides, but it is logically the same as the previous forecast plot.  Only the 
vertical axis scale has been changed.  Before it was in log units, here it is in original units. 
 
The settings for this model in Statgraphics are the same as for the previous one except for one 
small difference.  The Log function was not applied directly to the input variable, i.e., the input 
variable was SP500monthly rather than Log(SP500monthly): 
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Then, on the right-mouse-button Analysis Options panel, the natural log transformation was 
specified as a “Math” transformation. 
 

 
 
When a transformation is applied inside the procedure like this, what happens is the following:  
the math transformation is first applied to the input variable, then the forecasting model is 
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applied to the transformed variable, and at the end the forecasts and confidence intervals are un-
transformed to get back to original units before they are plotted. 
 
 
3.  MORE REASONS FOR USING THE RANDOM WALK MODEL  
 
The examples used in this chapter to illustrate the random walk and geometric random walk 
models were based on data from financial markets.   Finance is a very important application area, 
because there is a very good theoretical reason for believing that prices of assets for which 
speculative markets exist ought to behave like random walks.   Namely, if it were easy to predict 
whether the market would go up or down tomorrow, it should have already gone that way today. 
However, the random walk model also crops up in many non-financial applications, and you 
should be on the lookout for situations in which it is the best you can do, regardless of what you 
may have hoped or expected.   If you see what looks like pure noise (i.i.d. variations) after 
performing a 1st-difference or diff-log transformation, then your data is telling you that you that 
it is a random walk.  This isn’t very exciting in terms of the point forecasts you should make 
(“next month will be the same as last month, plus average growth”), but it has very important 
implications in terms of how much uncertainty there is in forecasting more than one period 
ahead. 
 
Some of the more sophisticated time series that we will study later are merely “fine-tuned” 
versions of the random walk model, in which lagged values of the dependent variable and/or 
lagged values of the forecast errors are added to the prediction equation in order to account for 
the fact that the steps may not be statistically independent—they may have patterns of 
autocorrelation that can be exploited to improve the forecast. 
 
Another very important use of random walk models is as a benchmark against which to compare 
more complicated time series models, particularly regression models.  There is a tendency in 
regression analysis to think of R-squared as a measure of the predictive power of the independent 
variables in the model.  This may not always be the case!  R-squared measures the amount by 
which the error variance of the regression model is lower than that of the mean model for 
purposes of predicting the dependent variable.  But if the mean model is not an appropriate 
reference point, this is a meaningless statistic.  If the time series is nonstationary, a random walk 
model will often have a much lower error variance than the mean model, and a better question 
would then be:  how much lower is the error variance of the regression model than the error 
variance of the random walk model?  A poorly chosen regression model may actually do worse 
than a random walk model for predicting a time series, even if it has a big R-squared. 
 
So, the random walk model is an important tool in your toolkit regardless of whether it is the 
model you end up using for your forecasts at the end of the day. 
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More wisdom from The Profit: 

 
A woman asked,  
Which way does the Wind Blow?  
 
And he said:  
The Wind is invisible but strong, like vodka… 
The Wind is a friend.  
The Wind is an enemy.  
The Wind is neutral, like Switzerland…  
Sometimes the Wind will blow down a tree.  
Other times it won't.  
 
There's just no telling with the Wind.  
 
Which way will the Wind blow tomorrow, the woman persisted.  
 
He answered:  
The Wind is free and unpredictable, like a bird. It is impossible to guess which way it will blow.  
She who would ask such a question would be a fool, and he who would attempt to answer it, a 
greater fool.  
 
I understand, the woman said, but which way will it blow?  
 
North, he replied. 
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