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SHOULD SCORING RULES BE ‘EFFECTIVE’?*

ROBERT F. NAU

A. B. Freeman School of Business, Tulane University,
New Orleans, Louisiana 70118

A scoring rule is a reward function for eliciting or evaluating forecasts expressed as discrete
or continuous probability distributions. A rule is strictly proper if it encourages the forecaster
to state his true subjective probabilities, and effective if it is associated with a metric on the set
of probability distributions. Recently, the property of effectiveness (which is stronger than
strict properness) has been proposed as a desideratum for scoring rules for continuous
forecasts, for reasons of “monotonicity” in keeping the forecaster close to his true probabili-
ties, since in practice the forecast must be chosen from a low-dimensional set of “admissible”
distributions. It is shown in this paper that what effectiveness implies, beyond strict proper-
ness, is not a monotonicity property but a transitivity property, which is difficult to justify
behaviorally. The logarithmic scoring rule is shown to violate the transitivity property, and
hence is not effective. The L, and L, metrics are shown to allow no effective scoring rules.
Some potential difficulties in interpreting admissible forecasts are also discussed.
(PROBABILITY FORECASTING; EVALUATION OF FORECASTS; PROPER SCOR-
ING RULES; EFFECTIVENESS OF SCORING RULES)

1. Introduction

Consider a forecast for an uncertain quantity, given in the form of a probability
distribution over the set of possible values. After the true value has become known, it
may be desired to assign the forecast a numerical score, either as the basis for a
monetary reward to the forecaster, or simply as a statistic by which to evaluate and
compare different forecasts. A function which assigns a score to every possible
combination of a probability forecast and a realized value for the uncertain quantity is
known as a scoring rule. A generally accepted desideratum for a scoring rule is that it
should lead the forecaster to state his true probabilities in order to maximize his
subjective expected score—i.e., there should be no incentive to hedge. This condition is
known as properness—or, if the maximization is always unique, strict properness.
Savage (1971) shows that the class of proper scoring rules can be identified on one
hand with the class of all convex functions on the set of possible forecasts, and on the
other hand with the class of all statistical decision problems with respect to the
uncertain quantity. Thus, the class of proper scoring rules is mathematically rich, and
the elicitation of forecasts under proper scoring rules is in some sense a microcosm of
the general problem of optimal decision-making under uncertainty. Savage’s analysis is
concerned with expected-value forecasts for uncertain vector quantities; a discrete
probability forecast represents the special case of an expected-value forecast in which
the set of possible values for the uncertain quantity is the set of unit vectors in R".
Matheson and Winkler (1976) demonstrate that a proper scoring rule for binary
discrete probability forecasts can be used to generate a family of proper scoring rules
for continuous probability forecasts—i.e. forecasts given in terms of continuous proba-
bility distributions—and a rigorous generalization of Savage’s main result to the
continuous case is given by Haim (1982).

A recent paper by Friedman (1983) proposes a stronger requirement for scoring
rules for continuous forecasts, noting that “ . . . the set of such distributions is infinite
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dimensional, and it is generally not possible to specify precisely an arbitrary member
of such a set.” Hence, “(i)n practice one would ask the forecaster to specify some
member of a low-dimensional subset of ‘admissible’ distributions (e.g., a member of
the two-dimensional set of normal distributions).” It is asserted that, “(i)n this context,
the use of a proper scoring rule provides no guarantee that the elicited distribution will be
appropriate, because the ‘true’ distribution will generally not be admissible. One requires
the stronger property that the expected score is higher when the elicited distribution is
closer to the ‘true’ distribution (‘closeness’ being defined in terms of some appropriate
distance function, i.e. metric). [Emphasis added] Scoring rules with this monotonicity
property will be referred to . . . as effective.” (1983, p. 448) The concept of effectiveness
illuminates some interesting properties of the quadratic and spherical scoring rules,
which Friedman shows to be effective with respect to the L, metric and the
“renormalized L, metric,” respectively. The question is subsequently posed: “One
might like to know which scoring rules are effective with respect to some metric,
however, exotic—the case of the logarithmic rule being particularly significant in this
regard. Equally, one might like to know which metrics allow effective scoring rules—
the case of the L, metric being especially significant here.” (1983, p. 454)

This paper will develop more fully the relationship between strictly proper scoring
rules and metrics. It will be shown that what the requirement of effectiveness adds to
that of strict properness is not a monotonicity property, but instead a transitivity
property, which is difficult to justify behaviorally, and which is not satisfied by the
logarithmic rule. Furthermore, it will be shown that neither the L, nor the L_, metric
allows an effective scoring rule. These results suggest that the requirement of effective-
ness is excessively restrictive without resolving the difficulties that may arise in
articulating and interpreting continuous probability forecasts.

2. Preliminaries

This section introduces some basic notation and definitions for scoring rules and
metrics which can be applied interchangeably to the discrete and continuous cases. We
are concerned with probability forecasts for an uncertain quantity, x, whose value is to
be drawn from a sample space, X. In the discrete case, X will be represented as a set of
positive integers: X = {1,2, ..., n}, where n < oo0. In the continuous case, X will be
represented by a subset of the real numbers: X C R. The symbols f, g, and h will be
used to denote general probability vectors representing distributions on the sample
space—either “external” forecasts or “internal” subjective probability distributions for
the forecaster. (The distinction will be clear from the context.) We will refer to the L,
norm of a vector (a measure of its length):

n=(S k) o (et

The L, norm is simply the sum of the absolute values of the components of a vector in
the discrete case, and the integral of the absolute value in the continuous case. The L,
norm (also known as the Tchebycheff norm) is the maximum of the absolute values of
the components in the discrete case, or the supremum of the absolute value in the
continuous case. The L, norm measures length in the ordinary Euclidean sense. A
vector f is a probability distribution if it is nonnegative and satisfies |f|;, = 1. A forecast
is defined here to be a probability distribution which is bounded, i.e. whose L_, norm
is finite. In the continuous case, this means that a forecast may not concentrate a finite
amount of probability mass on a single point.

The distance between two vectors in a set ¥V can be measured in terms of a metric,
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which is a function d: V' X V—>R having the following properties:

(@) positivity: 0 < d(f, g), with equality only if g =f;

(i) symmetry: d(f,g) = d(g,f); and

(iii) triangle inequality: d(f,h) < d(f,g) + d(g,h).
(Strictly speaking, in the continuous case, a metric is defined on a set of equivalence
classes of functions, where two functions f and g are considered equivalent if they
agree almost everywhere.) A metric is usually defined in terms of the length of the
difference between two vectors, under an appropriate norm. E.g., the L, metric is
defined as:

d.(f,g)=If—gl, for k=12,..., .

For any k&, d, is a metric on the set of vectors whose L, norm is finite. We will also
refer to the “renormalized L, metric,” denoted d*, which is obtained by applying the
L, metric to the difference between two vectors after they have first been renormalized
to unit L,-length, i.e. projected onto the surface of the unit sphere:

f _ 8
Ifl, lgl,

Friedman (1983) shows that d* is a metric on the set of bounded, continuous
probability distributions. The indicator distribution for the value x, which will be
denoted e,, is defined as the distribution which places unit mass on x and zero mass
(or density) on all other values. In the discrete case, e, is simply the xth unit vector in
R", and in the continuous case e,(z) = 8(z — x), where 8 is the Dirac delta function.
(In the latter case, e, may be manipulated as a “generalized function,” as described by
Lighthill 1958.)

It will be convenient to represent a scoring rule as a real-valued function S whose
arguments are the forecast distribution and the indicator distribution for x, rather than
the forecast and x itself. That is, S(f,e,) denotes the forecaster’s score when his
forecast is the distribution f, and the uncertain quantity takes on the value x. The
forecaster’s expected score for the forecast f when his true distribution is g can then be
simply represented as S(f, g), where:

d*(f.g) =

2

S(t.g) E;:Zl g S(f.e,) or f_ °:° f(x)S(f,e,)dx. )

Note that S(f,g) is a linear function of g. Thus, we may consider a scoring rule to be
any real-valued function of the forecast and the true distribution that is linear in the
true distribution. It will also be convenient to use inner product notation, where the
inner product of two vectors is defined as:

<f,g>=x§:‘,l feg: or f_“; f(x)g(x)dx.

For example, by taking the inner product of a forecast with an indicator distribution,
we select the probability mass or density assigned to a particular outcome: <{f,e > = f,
or f(x). Also, note that the L, norm can be expressed in terms of the inner product of a
vector with itself: |f|, = <f,f)!1/2

A scoring rule S is defined to be [strictly] proper if S(f,g) < S(g,g) for all f and g in
C [with equality only if g = f]. Some common, strictly proper scoring rules which will
be discussed below are the “quadratic” scoring rule:

So(f,e,) =2dM,e,> — (.1,
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the “spherical” scoring rule:
e
Ss(f,e)=——F,
S( ) <f, f>]/2

and the “logarithmic” scoring rule:
S, (f,e,) =log(<f, e, ).

These definitions apply to either the continuous or discrete case, under the appropriate
definition of the inner product.

From a purely formal standpoint, if would suffice to consider only the continuous
case, since it subsumes the finite and countable discrete cases. For example, every
n-dimensional discrete distribution f can be associated with a piecewise uniform
distribution f(z), where f(z) = f,fori — 1 <z < i, and f(z) = 0 for z < 0 or z > n. The
L, norm of the vector f is then identical to the L, norm of the corresponding function
f(2). Correspondingly, the discrete event x (where x € {1, ..., n}) can be associated
with the uniform distribution on (x — 1, x], denoted by u,(z). Thus, a discrete event
can always be associated with a partition of a continuous sample space, regardless of
whether this is the way it actually arose. If S is a [strictly] proper continuous scoring
rule whose domain includes the piecewise uniform distributions on (0, n], then S(f(z),
u,(2)) is a [strictly] proper scoring rule for the forecast vector f with respect to the
discrete event x. If g is the true discrete distribution, the appropriate expected score is
given by S(f(2), g(2)), where g(z) is the piecewise uniform distribution corresponding
to g. In particular, when these definitions for f(z) and u,(z) are substituted in the
expressions given above for the continuous versions of the quadratic, spherical, and
logarithmic scoring rules (taking the continuous inner product), the corresponding
discrete versions of these rules (taking the discrete inner product) are obtained.

There are several reasons, though, for presenting the discrete case side by side with
the continuous case. First, it will be convenient to use discrete counterexamples to
establish certain results for both the discrete and continuous cases. Second, in discuss-
ing the sample application given by Friedman, it will be shown that when a proper
continuous scoring rule is applied to a piecewise uniform forecast f(z) elicited under an
“admissibility” restriction, the score is not necessarily proper for the corresponding
discrete forecast f with respect to the implied partition of the sample space. In practice,
therefore, it may be preferable to partition the sample space at the outset, and then
explicitly use only discrete forecasts and scoring rules.

3. Necessary Conditions for Effectiveness and Co-effectiveness
A scoring rule S is defined to be effective if for some metric d:
S(h.g) < S(f.g)=d(f.g) <d(hg)

for f, g, and h in C. A metric will be said to be co-effective if there exists a scoring rule
which is effective with respect to it. From the positivity property of a metric, it follows
that a scoring rule is strictly proper if it is effective. Friedman (1983) shows that the
quadratic scoring rule is effective with respect to the L, metric, and the spherical
scoring rule is effective with respect to the renormalized L, metric.

Now, a significant property of a scoring rule (regardless of whether it is proper) is
that it is by definition a linear function of one of its arguments. This imposes the
following necessary condition on co-effective metrics:

PRrOPOSITION 1. Under a co-effective metric, if a is equidistant from f and g, and b is
also equidistant from f and g, then every convex combination of a and b is equidistant
from f and g.
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PrOOF. Suppose that a and b are each equidistant from f and g under the metric d
—i.e., d(f,a) = d(g,a) and d(f,b) = d(g,b). If d is co-effective, then for some scoring
rule S it follows that S(f, a) = S(g,a) and S(f,b) = S(g,b). If ¢ is a convex combination
of a and b—ie. ¢=ra+ (1 — r)b where 0 < r < 1—it follows from the linearity
property of scoring rules that:

S(f,c)y=rS(f,a) + (1 — r)S(f,b) = rS(g,a) + (1 — r)S(g b) = S(g,¢).

Since S is effective with respect to d, this implies d(f, ¢) = d(g, c)—i.e., ¢ is equidistant
from f and g, as asserted.

This requirement can be shown to rule out both the L, and L metrics. Consider the
3-dimensional case: let f =(0.3,0.3,0.4), g = (0.45,0.35,0.2), a = (0.35,0.35,0.3), and
b = (0.45,0.2,0.35). Under the L, metric, the distance between two vectors is the sum
of the absolute differences in their respective components, whence: d,(f,a) = 0.2,
di(g,a) = 0.2, d,(f,b) = 0.3, and d,(g,b) = 0.3. L.e., a and b are each equidistant from f
and g under d,. Now let ¢ =(a + b)/2 = (0.4,0.275,0.325). Then 4,(f,c) = 0.2, but
d,(g,c) = 0.25. Thus, c is a convex combination of a and b but it is not equidistant from
f and g. The same result obtains under the L metric, which measures the maximum
absolute difference in the components. In fact, for the 3-dimensional case, d_(f, g)
=d,(f,g)/2 if f and g are probability distributions. This example can also be used to
disqualify these metrics in the higher-dimensional discrete case by appending further
components which are all 0’s, or in the continuous case by converting them into
piecewise uniform functions, as noted above.

The symmetry property of metrics, on the other hand, implies what will be called the
“transitivity property of effective scoring rules:”

PROPOSITION 2. If S is an effective scoring rule, then:

() S(g,f) < S(h,f) and S(f,h) < S(g,h)= S(f,g) < S(h,g),
(i) S(g,f) < S(h,f) and S(f,h) < S(g,h)= S(f,g) < S(h,g),
(iii) S(g,f) = S(h,f) and S{,h) = S(g,h)= S(,g) = S(h,g).

Proor. For part (i), assume S(g,f) < S(h,f) and S(f,h) < S(g, h). If S is effective
with respect to a metric d, then the reverse inequalities hold for d: d(g,h) < d(f,h) and
d(h,f) < d(g,f). But, by the symmetry property of metrics, we also have d(f,h) =
d(h,f), whence d(g,h) < d(g,f). Invoking the symmetry property again to reverse the
arguments on both sides, we obtain d(h,g) < d(f,g). Finally, since S is effective with
respect to d, it follows that S(f,g) < S(h,g), as asserted. Parts (ii) and (iii) are proved
similarly. )

The transitivity property of effective scoring rules is illustrated by the following
scenario: consider three experts (called F, G, and H) who have subjective probability
distributions f, g, and h, respectively, for some uncertain quantity. Suppose that their
forecasts are simultaneously elicited under the same strictly proper scoring rule. Each
expert will then reveal his own distribution; and, after all three distributions have been
announced, each expert is able to compare the forecasts of the other two against his
own and against each other, based on their expected scores according to his own
distribution. If the scoring rule is not merely strictly proper but effective, then the
transitivity property implies that if F feels H’s forecast is better than G’s, and H feels
G’s forecast is better than F’s, it must follow that G will feel H’s forecast is better than
F’s. That is, the three “between-others” comparisons must not form a cycle. While this
would be a reasonable requirement for a triad of comparisons made by the same
individual (say, a fourth expert), it is hard to justify where three different subjective
viewpoints are represented.

For the logarithmic scoring rule, it is easy to generate examples of violations of the
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transitivity property. In the three-dimensional case, the logarithmic scoring rule is
simply:

3
S, (I.g)= gl glog(f).-

Letting f = (0.2,0.4,0.4), g = (0.26,0.61,0.13), and h = (0.5,0.3,0.2), we find:
S, (h,f) — S, (g f) = 0019, S, (g.h)— S,(f,h)=0.033 and

S, (f,8) — S, (h,g) = 0.027,

which forms a cycle in violation of part (ii). This example, by extension, also
disqualifies the logarithmic rule for higher-dimensional discrete forecasts or continuous
forecasts. (If it is desired to avoid zero-probability pathologies—i.e. the possibility of
an infinitely negative score—the 3 components of each vector could all be scaled down
by, say, multiplying them by 0.99. The remaining probability mass of 0.01 could then
be distributed, e.g. exponentially, over the remainder of the sample space in an
identical fashion for all 3 forecasts. This would produce no significant change in the
score differences given above.)

4. The Monotonicity Property of Strictly Proper Scoring Rules

Having established one property which effectiveness adds to that of strict properness
—namely the transitivity property—we now turn to the question of whether effective-
ness also implies a stronger “monotonicity” in some sense. First, note that a certain
measure of distance between distributions is already implicit in the definition of a
strictly proper scoring rule, and is defined by the “loss function” L, where: L(f,g)
= S(g,g) — S(f,g). This function measures the expected loss incurred by the forecaster
for announcing f rather than g as his forecast, when g is his true subjective probability
distribution. We shall refer to a loss function as “strictly proper” or “effective”
according to whether its corresponding scoring rule has those properties. If L is strictly
proper, then, by definition, it satisfies the positivity property of a metric—i.e., L(f, g)
> 0, with equality only if g = f. (If it is proper but not strictly proper, then L is merely
nonnegative.) The properties of a metric which are not generally satisfied by a strictly
proper loss function are the symmetry property and the triangle inequality. In fact,
Savage (1971, p. 788) shows that the only binary-event scoring rule for which the loss
function is symmetric is the quadratic rule.

In sketching an historical perspective for the concept of effectiveness in the scoring-
rule literature, Friedman (1983, p. 447) states: “In this literature, proper scoring
rules . . . are emphasized. There is a recurring theme that scoring rules should also
have some stronger monotonicity property, so that ‘it pays . . . to keep any unavoid-
able discrepancy [between reported and ‘true’ forecasts] small,”” where the inner
quotation is from Savage (1971, p. 787). Later (p. 453), it is reiterated: “The concept of
effectiveness does have its antecedents in the literature. As suggested in the introduc-
tion, it is a generalization to the probability case of Savage’s monotonicity property of
scoring rules for the expectation case.” It will be argued here that Savage’s monotonic-
ity property applies to all strictly proper scoring rules for discrete or continuous
probability forecasts, regardless of whether they are effective. The fuller text of
Savage’s remark is as follows: “The function L, and equivalently S, has an easily
derived and useful monotonicity, according to which it not only pays to choose f equal
to g, but to keep any unavoidable discrepancy small. Namely, if h is between g and f,
then L(h,g) < L(f,g), with strict inequality if . . . [strict properness holds] and f +# g.”
(Here our symbols f, g, h, and S have been substituted for Savage’s equivalents: z, x, r,
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and I, respectively.) This assertion (and a constructive proof) appear in Savage’s
discussion of scoring rules for univariate expected-value forecasts, but the argument
applies equally well to scoring rules for discrete or continuous probability forecasts,
with the relation “h is between g and f” being replaced by its higher-dimensional
generalization—i.e. the notion of a strictly convex combination:

ProposiTION 3. If S is proper, and if h is a strictly convex combination of f and g,
then S(f,g) < S(h,g), and equivalently L(h,g) < L(f,g). If S is strictly proper, these
relations hold with strict inequality.

ProoF. Let h be a strictly convex combination of f and g—i.e.,, h=rf + (1 — r)g,
where 0 < r < 1. If § is proper, then S(f,h) < S(h,h). Since S is linear in its second
argument, this can be expanded as:

rS(,1) + (1 —r)S(f,g) < rS(h,f) + (1 — r)S(h, g)
which rearranges to: .
(r/(A=n)(SET) = S(h.1)) < S(h.g) - ST, 8).

If S is proper, the LHS of this inequality is nonnegative (or in the strictly proper case,
positive), whence so is the RHS.

This proposition implies that L(h,g) increases monotonically as h traverses a linear
path (i.e. a continuously pararaeterized set of convex combinations) from g to f. Such
“straight-line monotonicity” is a property which is not necessarily possessed by a
metric. For example, consider a two-dimensional map of rugged 3-dimensional terrain.
The minimum possible hiking distance between points on the map defines a metric on
it, but traversing the path corresponding to a straight line on the map need not bring
the hiker monotonically closer to his destination under this metric if he thereby goes
over a tall and otherwise avoidable obstacle.

A co-effective metric for a continuous scoring rule, it will now be shown, must not
only possess staight-line monotonicity, but must in fact be related to the loss function
by a strictly increasing transformation. The exact form of this transformation, though,
may depend on the point of reference—i.e. the forecaster’s true distribution. In
particular:

PROPOSITION 4. A continuous scoring rule S is effective with respect to a metric d
if-and-only-if for every g there is a strictly increasing function t, which satisfies 1,(0) = 0,
such that:

d(f,g) = t(L(f,8)) = 1(S(8.8) — S(f.8)), (2
for all f.

Proor. For the “if” part, note that the existence of such a function 7, would imply
the following:

d(f,g) < d(h,g)=1,(L(f,g)) < 1(L(h, g))
< L(f,g) < L(h,g)= S(h,g) < S(f,8),

establishing the effectiveness of S with respect to d. For the “only-if” part, we assume
that S is continuous and effective with respect to a metric d, and must demonstrate the
existence of an appropriate function ¢,. Since § is continuous, so is its loss function L.
Since S is effective, it is strictly proper, and L therefore has the positivity property. Let
Z, denote the supremum of L(h,g) as h ranges over the set of all forecasts, and note
that Z, must be positive. Since L is continuous, for any z € (0, Z,) there must exist h

4
such that L(h,g) = z. Now, if L(f,g) = L(h, g) for two different forecasts f and h, then
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by effectiveness it follows that d(f, g) = d(h, g). Therefore, let 7,(z) be defined as the
unique value of d(h, g) for all h such that L(h,g) = z. Since d and L share the positivity
property, it follows that 7,(0) = d(g,g) = 0. Next, let x and y satisfy 0 < x <y < Z,,.
By the continuity of L, there exist vectors h, and h, such that L(h,,g)=x and
L(h,,g)=y. Since L(h,,g) < L(h,g), it follows from the defintion of effectiveness
that d(h,,g) < d(h)). From the definition of ¢,, we then have d(h,,g) = ,(x) and
d(h,,g) = 1,(y), whence t,(x) < #,(»), which establishes that ¢, is strictly increasing.

To demonstrate that a continuous scoring rule is effective with respect to a
particular metric, it therefore suffices to demonstrate that a strictly increasing function
t, satisfying (2) exists for all f and g. For the quadratic scoring rule, the loss function is
L(f g) = |f — g5, whence 1,(z) = z'/%. (Here, since 1, is independent of g, the loss
function shares the symmetry property of its ass001ated metric, as noted by Savage.)
For the spherical rule, t,(z) = (2z/ |gl»)"/2 In fact, this approach may be used to
establish the effectlveness of certain families of scoring rules based on the quadratic
and spherical rules. For example, a generalized quadratic scoring rule, denoted SA
can be defined by: SQ (f,e,) = Sy(Af, Ae,) where S, is the ordinary quadratic rule
defined previously, and A4 is a linear operator. Th1s rule is strictly proper if 4 is
invertible (i.e. of “full rank™) on the set of probability distributions. In the discrete
case, A can be any nonsingular matrix (Stael von Holstein and Murphy 1978). In the
continuous case, A can be a bounded nonzero weight function, or the differential
operator, or the integral with respect to a probability measure. (The latter case is
discussed by Matheson and Winkler 1976.) It is straightforward to show that the
generalized quadratic scoring rule is effective with respect to the corresponding
generalized L, metric: dj'(f,g) = d)(Af,Ag), with 1(z)=z'/? as before. A similar
generalization is possible for the spherical rule. Generalized quadratic scoring rules
have been found to be useful in some applications—e.g. the so-called ranked probabil-
ity score, in which A4 is a lower triangular matrix of 1’s, is appropriate when discrete
outcomes are meaningfully ordered, as in some weather forecasting situations. In
general, the choice of a scoring rule should be tailored to the particular forecasting
problem at hand, or undesirable, side effects may result. Against this possibility,
effectiveness provides no guarantee, as will be illustrated below.

5. Considerations in Choosing an Admissible Set

In summary, it appears more correct to say that a co-effective metric is more
monotonic than other metrics, rather than that an effective scoring rule is more
monotonic than other (strictly proper) scoring rules. What an effective scoring rule
possesses, beyond strict properness, is the transitivity property, whose merits are
dubious. We should therefore reconsider the original motivating issue: admissibility. If
a continuous forecast is to be drawn from a low-dimensional subset of admissible
distributions, the forecaster’s objective should be the same regardless of whether the
scoring rule is effective or merely strictly proper: a forecast should be selected which
maximizes the expected score on the admissible set. But the choice of a particular
admissible set may determine the appropriateness of a given scoring rule. Several
criteria to consider in this regard are: (i) how difficult is it for the forecaster to identify
the admissible forecast which maximizes his expected score (i.e. what constrained
maximization problem must he solve); and (ii) what inferences can be drawn by an
outside observer about the forecaster’s “true” probabilities, given his admissible
forecast (i.e., what basis does it provide for betting or decision making by others)?

For example, in the application described by Friedman, the admissible set is the set
of piecewise uniform distributions with five or fewer steps. Here, for any given
five-fold partition of the continuum, the forecaster must choose the optimal assign-
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ment of probability mass to the five designated intervals—and he must also choose the
optimal partition. This is a formidable mathematical programming problem to solve
subjectively. Commonly used probability elicitation schemes often require much less:
either a fixed partition is specified, so that a discrete forecast may be given, or else
fractiles are specified, and the forecaster must only locate the corresponding intervals.

Besides the difficulty in articulating a piecewise uniform forecast, there is the
problem of its interpretation. We might wish to be able to interpret the probability
mass assigned to each interval as representing the forecaster’s true probability for the
outcome falling in that interval. As a simple example, suppose that the sample space is
the unit interval, and that an admissible forecast may have only two steps—i.e. one
break point. Suppose the forecast has its break point at x = x*, with a probability
mass of p (i.e. a constant density f(x) = p/x*) assigned to the interval (0,x*], and a
complementary probability mass of 1 — p (i.e. a constant density f(x)=(1- p)/
(1 = x*)) on (x*, 1]. It would seem reasonable to infer that p represents the forecaster’s
probability that x < x*. This need not be the case, however, if the forecaster has
attempted to maximize his expected score, even though the scoring rule may be
effective. Consider the generalized quadratic scoring rule for which the operator 4 is a
weight function—i.e. Af(x) = a(x)f(x)— and let a(x) be defined as follows: a(x) =1
for 1/4 < x < 3/4, a(x) = r'/? otherwise, where 0 < r < 1. Note that this is simply
the ordinary (unweighted) quadratic scoring rule if r = 1. Now suppose that the
forecaster’s true distribution is the linear function g(x) = 2x. By simple calculus it can
be shown that the optimal break point is always x = 1/2, but the optimal density for
each interval depends on r—in particular, it is f(x) =3+ r)/(4 + 4r) for x < 1/2.
Obviously, if r % 1, the optimal probability mass assigned to the interval (0, 1/2] will
not equal the forecaster’s true probability mass for this interval, which is 1/4.

In general, for a piecewise uniform forecast to reflect the forecaster’s true assign-
ment of probability mass among the intervals, it is necessary for the scoring rule to
satisfy S(f,g) = S(f, g*) for every distribution g and every piecewise uniform forecast f,
where g* denotes the piecewise uniform distribution having the same break points as f
but assigning the same probability masses to the intervals as g. This is true for both the
unweighted spherical and quadratic rules since for them the expected score depends on
g only through the inner product <f, g», which is unaffected when g is replaced by g*.
(For these rules, expressions for the expected score may be obtained by substituting g
for e, in their definitions in §2.)

It seems likely that similar difficulties would arise if the admissible set were the
family of normal distributions, and it is not clear under what scoring rules the optimal
mean and variance would coincide with the forecaster’s true mean and variance, if
indeed there exist any scoring rules with this property. Thus, depending on the
interpretation which is desired of the forecast, the choice of an admissible set can place
particular demands on the scoring rule which are not addressed by mere consider-
ations of effectiveness or strict properness.
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